Subido por Jose Luis

COMPRESS 2020

Anuncio
VERIFICATION MANUAL
2020
CODEWARE
®
Table of Contents
1. Introduction ............................................................................................................................................................... 5
1.1 Purpose of Document ......................................................................................................................................5
1.2 Scope of Software ...........................................................................................................................................5
1.3 Published Examples ........................................................................................................................................5
1.4 Intellectual Property Statement .......................................................................................................................5
2. Verification of Published Examples .......................................................................................................................... 6
2.1 ASME Section VIII - Division 1 Example Problems (PTB-4-2013) .............................................................7
E3.1 - Use of MDMT Exemptions Curves ......................................................................................................8
E3.2 - Use of MDMT Exemptions Curves with Stress Reduction ..................................................................9
E3.3 - Determine the MDMT for a Nozzle-to-Shell Welded Assembly ....................................................... 10
E4.1.2 - Determine Required Wall Thickness of Hemispherical Head ......................................................... 11
E4.2.1 - Nondestructive Examination Requirement for Vessel Design ......................................................... 12
E4.2.2 - Nozzle Detail and Weld Sizing ........................................................................................................ 13
E4.2.3 - Nozzle Detail with Reinforcement Pad and Weld Sizing ................................................................ 14
E4.3.1 - Cylindrical Shell .............................................................................................................................. 15
E4.3.2 - Conical Shell.................................................................................................................................... 16
E4.3.3 - Spherical Shell ................................................................................................................................. 17
E4.3.4 - Torispherical Head .......................................................................................................................... 18
E4.3.5 - Ellipsoidal Head .............................................................................................................................. 19
E4.3.6 - Combined Loadings and Allowable Stresses Cylindrical Shell ....................................................... 21
E4.3.7 - Conical Transitions Without a Knuckle ........................................................................................... 22
E4.3.8 - Conical Transitions With a Knuckle ................................................................................................ 26
E4.4.1 - Cylindrical Shell .............................................................................................................................. 27
E4.4.2 - Conical Shell.................................................................................................................................... 29
E4.4.3 - Spherical Shell and Hemispherical Head ......................................................................................... 31
E4.4.4 - Torispherical Head .......................................................................................................................... 32
E4.4.5 - Ellipsoidal Head .............................................................................................................................. 34
E4.4.6 - Combined Loadings and Allowable Stresses Cylindrical Shell ....................................................... 36
E4.4.7 - Conical Transitions Without a Knuckle ........................................................................................... 38
E4.4.8 - Conical Transitions With a Knuckle ................................................................................................ 44
E4.5.1 - Radial Nozzle in Cylindrical Shell .................................................................................................. 46
E4.5.2 - Hillside Nozzle in Cylindrical Shell ................................................................................................ 47
E4.5.3 - Radial Nozzle in Ellipsoidal Head ................................................................................................... 49
E4.5.4 - Radial Nozzle in Cylindrical Shell .................................................................................................. 51
E4.5.5 - Pad Reinforced Radial Nozzle in Cylindrical Shell ......................................................................... 52
E4.5.6 - Radial Nozzle in an Ellipsoidal Head with Inside Projection .......................................................... 53
E4.6.1 - Flat Unstayed Circular Heads Attached by Bolts ............................................................................ 54
E4.6.3 - Integral Flat Head with a Centrally Located Opening ..................................................................... 55
E4.7.1 - Thickness Calculation for a Type D Head ....................................................................................... 56
E4.11.1 - Partial Jacket .................................................................................................................................. 57
E4.12.1 - Unreinforced Vessel of Rectangular Cross Section....................................................................... 58
E4.15.1 - Horizontal Vessel with Zick's Analysis ..........................................................................................59
E4.15.2 - Vertical Vessel, Skirt Design ......................................................................................................... 60
E4.16.1 - Integral Type.................................................................................................................................. 61
E4.16.2 - Loose Type .................................................................................................................................... 65
E4.18.1 - U-Tube Tubesheet Integral with Shell and Channel ...................................................................... 69
E4.18.2 - U-Tube Tubesheet Gasketed with Shell and Channel ................................................................... 70
E4.18.3 - U-Tube Tubesheet Gasketed with Shell and Channel ................................................................... 71
E4.18.4 - U-Tube Tubesheet Gasketed with Shell and Channel, Extended as Flange .................................. 72
E4.18.5 - Fixed Tubesheet Exchanger, Configuration b, Tubesheet Integral with Shell, Extended as a
Flange and Gasketed on the Channel side ..................................................................................................... 73
2
E4.18.6 - Fixed Tubesheet Exchanger, Configuration b, Tubesheet Integral with Shell, Extended as a
Flange and Gasketed on the Channel Side .................................................................................................... 75
E4.18.7 - Fixed Tubesheet Exchanger, Configuration a ................................................................................ 77
E4.18.8 - Stationary Tubesheet Gasketed with Shell and Channel; Floating Tubesheet Gasketed, Not
Extended as a Flange ..................................................................................................................................... 78
E4.18.9 - Stationary Tubesheet Gasketed with Shell and Channel; Floating Tubesheet Integral....................80
E4.18.10 - Stationary Tubesheet Gasketed with Shell and Channel; Floating Tubesheet Internally Sealed . 81
E4.19.1 - U-Shaped Un-reinforced Bellows Expansion Joint and Fatigue Evaluation ................................. 82
E4.19.2 - Toroidal Bellows Expansion Joint and Fatigue Evaluation ........................................................... 83
E4.20.1 - Tube-To-Tubesheet Welds - Full Strength Welds ......................................................................... 84
E4.20.2 - Tube-To-Tubesheet Welds - Partial Strength Welds ......................................................................86
E6.1 - Postweld Heat Treatment of a Pressure Vessel ................................................................................... 89
E6.2 - Out-of-Roundness of a Cylindrical Forged Vessel ............................................................................. 90
E7.1 - NDE: Establish Joint Efficiencies, RT-1 ............................................................................................ 91
E7.2 - NDE: Establish Joint Efficiencies, RT-2 ............................................................................................ 92
E7.3 - NDE: Establish Joint Efficiencies, RT-3 ............................................................................................ 93
E7.4 - NDE: Establish Joint Efficiencies, RT-4 ............................................................................................ 94
E8.1 - Determination of a Hydrostatic Test Pressure .................................................................................... 95
E8.2 - Determination of a Pneumatic Test Pressure ...................................................................................... 96
2.2 ASME Section VIII - Division 2 Example Problems (PTB-3-2013) ........................................................... 97
E3.1 - Use of MDMT Exemptions Curves .................................................................................................... 98
E3.2 - Use of MDMT Exemptions Curves with Stress Reduction ................................................................ 99
E4.1.2 - Determine Required Wall Thickness of Hemispherical Head .......................................................100
E4.1.3 - Determine Required Wall Thickness of Hemispherical Head - Higher Strength Material ............101
E4.2.1 - Nondestructive Examination Requirement for Vessel Design ....................................................... 102
E4.2.2 - Nozzle Detail and Weld Sizing ...................................................................................................... 103
E4.2.3 - Nozzle Detail with Reinforcement Pad and Weld Sizing .............................................................. 104
E4.3.1 - Cylindrical Shell ............................................................................................................................ 105
E4.3.2 - Conical Shell.................................................................................................................................. 106
E4.3.3 - Spherical Shell ............................................................................................................................... 107
E4.3.4 - Torispherical Head ........................................................................................................................ 108
E4.3.5 - Ellipsoidal Head ............................................................................................................................ 109
E4.3.6 - Combined Loadings and Allowable Stresses ................................................................................. 110
E4.3.7 - Conical Transitions Without a Knuckle ......................................................................................... 111
E4.3.8 - Conical Transitions With a Knuckle .............................................................................................. 113
E4.4.1 - Cylindrical Shell ............................................................................................................................ 114
E4.4.2 - Conical Shell.................................................................................................................................. 115
E4.4.3 - Spherical Shell and Hemispherical Head ....................................................................................... 116
E4.4.4 - Torispherical Head ........................................................................................................................ 117
E4.4.5 - Ellipsoidal Head ............................................................................................................................ 118
E4.4.6 - Combined Loadings and Allowable Stresses Cylindrical Shell ..................................................... 119
E4.4.7 - Conical Transitions Without a Knuckle ......................................................................................... 120
E4.5.1 - Radial Nozzle in Cylindrical Shell ................................................................................................ 123
E4.5.2 - Hillside Nozzle in Cylindrical Shell .............................................................................................. 124
E4.5.3 - Radial Nozzle in Ellipsoidal Head...................................................................................................125
E4.6.1 - Flat Unstayed Circular Heads Attached by Bolts .......................................................................... 126
E4.11.1 - Partial Jacket ................................................................................................................................ 127
E4.15.1 - Horizontal Vessel with Zick's Analysis ....................................................................................... 128
E4.15.2 - Vertical Vessel, Skirt Design ....................................................................................................... 129
E4.16.1 - Integral Type................................................................................................................................ 130
E4.16.2 - Loose Type .................................................................................................................................. 132
E6.1 - Post-weld Heat Treatment of a Pressure Vessel ............................................................................... 134
E6.2 - Out-of-Roundness of a Cylindrical Forged Vessel ........................................................................... 135
E8.1 - Determination of a Hydrostatic Test Pressure .................................................................................. 136
E8.2 - Determination of a Pneumatic Test Pressure .................................................................................... 137
3
2.3 Taylor Forge Examples ............................................................................................................................... 138
Example 1 - Welding Neck Flange Design ................................................................................................. 139
Example 2 - Slip on Flange Design - Flat Faced ......................................................................................... 140
2.4 ASCE 7-16 Figure C15.7-4 Buckling Example............................................................................................141
Figure C15.7-4 Example - Section VIII, Division 2, Paragraph 4.4 ............................................................ 142
2.5 ASME PCC-1 Examples...............................................................................................................................144
PCC-1 Appendix O-4.3 Example Calculation ............................................................................................. 145
3. References ............................................................................................................................................................. 146
Appendix A: Certification ......................................................................................................................................... 147
4
1. Introduction
1.1 Purpose of Document
This document is a validation of calculations performed by COMPRESS against
published example problems (see 1.3 below). It shall be used to assess that the software
has sufficient coding quality and accurate mathematical calculations. Any
discrepancies between COMPRESS and published example calculations are explained
at the end of each problem.
1.2 Scope of Software
COMPRESS is a software application that is used to model, calculate, and create
detailed reports for pressure vessels and heat exchangers using the latest Edition of the
ASME Boiler and Pressure Vessel Code. The purpose of this software program is to
provide users with a powerful, accurate, and user-friendly tool that will enhance
engineering productivity and simplify vessel design.
1.3 Published Examples
Examples from several published manuals are included in this document. These
include: ASME Section VIII - Division 1 Example Problem Manual (ASME PTB-42013), ASME Section VIII - Division 2 Example Problem Manual (ASME PTB-32013), and Taylor Forge Bulletin 502 Edition VII.
1.4 Intellectual Property Statement
This document and its contents are considered to be proprietary. This material shall not
be copied or distributed to other parties without the express written consent of
Codeware, Inc.
5
2. Verification of Published Examples
6
2.1 ASME Section VIII - Division 1 Example Problems (PTB-4-2013)
7
E3.1 - Use of MDMT Exemptions Curves
a. Division 1
Determine if impact testing is required for the proposed shell section.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
Governing thickness, tg (in)
1.8125
-7
1.8125
-7
0.00%
0.00%
Yes
Yes
-
MDMT (°F)
Impact testing required per
UCS-66(a)?
Fig E3.1 Division 1 MDMT Comparison
8
E3.2 - Use of MDMT Exemptions Curves with Stress Reduction
a. Division 1
Determine if impact testing is required for the proposed shell section.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
Governing thickness, tg (in)
Coincident Ratio, Rts
TR * (°F)
1.8125
0.801
19.9
-26.9
No
1.8125
0.801
20
-27
No
0.00%
0.00%
0.50%
0.37%
-
MDMT (°F)
Impact testing required?
Fig E3.2 Division 1 MDMT Reduction Comparison
* In COMPRESS, the value of 𝑇𝑅 is interpolated from Fig. UCS-66.1, whereas in the
example manual the value of 𝑇𝑅 is approximated from Fig. UCS-66.1.
9
E3.3 - Determine the MDMT for a Nozzle-to-Shell Welded Assembly
a. Division 1
Determine if impact testing is required for the proposed nozzle assembly comprised of
a shell and integrally reinforced nozzle.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
Governing thickness, tg (in)
Coincident Ratio, Rts
TR * (°F)
MDMTShell **(°F)
MDMTNozzleAssembly (°F)
1.8125
0.801
19.9
-26.9
39.1
Yes
1.8125
0.801
20
N/A
39
Yes
0.00%
0.00%
0.50%
N/A
0.26%
-
Impact testing required?
Fig E3.3 Division 1 MDMT Assembly Comparison
* In COMPRESS, the value of 𝑇𝑅 is interpolated from Fig. UCS-66.1, whereas in the
example manual the value of 𝑇𝑅 is approximated from Fig. UCS-66.1
** In COMPRESS, the MDMT reduction is applied to both the shell and the nozzle
assembly. As the final adjusted MDMT of the shell is -26.9 °F < -20 °F, only the
nozzle assembly requires impact testing. The example manual considers the shell and
nozzle assembly as a single welded assembly.
10
E4.1.2 - Determine Required Wall Thickness of Hemispherical Head
a. Division 1
Determine the required thickness for a hemispherical head at the bottom of a vertical
vessel.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
Padjusted (psig)
1673.13
2.155
1673.14
2.155
0.00%
0.00%
t (in)
Fig E4.1.2a Division 1 Hemispherical Head tr Comparison
b. Code Case 2695*
Determine the required thickness for a hemispherical head at the bottom of a vertical
vessel.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
Padjusted (psig)
1673.13
2.1807
1673.14
2.1807
0.00%
0.00%
t (in)
Fig E4.1.2b CC 2695 Hemispherical Head tr Comparison
* Code Case 2695 moved to Appendix 46 in the 2019 Edition.
11
E4.2.1 - Nondestructive Examination Requirement for Vessel Design
a. Division 1
Compare NDE requirements for a cylindrical shell.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
t Full RT (in)
t Spot RT (in)
1.2414
1.4435
1.2413
1.4435
0.01%
0.00%
Fig E4.2.1a Division 1 NDE Comparison
b. Code Case 2695*
Compare NDE requirements for a cylindrical shell.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
t Full RT (in)
t Spot RT (in)
1.2371
1.4375
1.2371
1.4375
0.00%
0.00%
Fig E4.2.1b CC 2695 NDE Comparison
* Code Case 2695 moved to Appendix 46 in the 2019 Edition.
12
E4.2.2 - Nozzle Detail and Weld Sizing
a. Division 1
Determine the required fillet weld size of a set-in type nozzle as shown in Figure UW16.1(d).
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
t c (in)
0.25
0.25
0.00%
Fig E4.2.2a Division 1 Nozzle Weld Sizing Comparison
b. Division 2
(Repeated in Division 2 Manual: ASME PTB-3-2013 Division 2 Solution)
Determine the required fillet weld size and inside corner radius of a set-in type nozzle
as shown in Table 4.2.10, Detail 4.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
t c (in)
0.3571
0.357
0.03%
Fig E4.2.2b Division 2 Nozzle Weld Sizing Comparison
* In COMPRESS, the calculation for the minimum inside corner radius, 𝑟1, is not
performed.
13
E4.2.3 - Nozzle Detail with Reinforcement Pad and Weld Sizing
a. Division 1
Determine the required fillet weld sizes of a set-in type nozzle with added
reinforcement pad as shown in Figure UW-16.1(q).
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
Inner fillet t c (in)
Outer fillet t w (in)
Upper groove tw (in)
Lower groove tw (in)
0.25
0.25
0.2625
0.2625
0.25
0.25
0.2625
0.2625
0.00%
0.00%
0.00%
0.00%
Fig E4.2.3a Division 1 Nozzle with Pad Weld Sizing Comparison
b. Division 2
(Repeated in Division 2 Manual: ASME PTB-3-2013 E4.2.3 Division 2 Solution)
Determine the required fillet weld sizes and inside corner radius of a set-in type nozzle
with added reinforcement pad as shown in Table 4.2.11, Detail 2.
i. Comparison of results
Parameter
inner fillet t c
outer fillet t f1
(in)
(in)
COMPRESS
ASME
Difference
0.3571
0.4286
0.357
0.429
0.03%
0.09%
Fig E4.2.3b Division 2 Nozzle with Pad Weld Sizing Comparison
* In COMPRESS, the calculation for the minimum inside corner radius, 𝑟1, is not
performed.
14
E4.3.1 - Cylindrical Shell
a. Division 1
Determine the required thickness for a cylindrical shell.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
t (in)
0.9369
0.9369
0.00%
Fig E4.3.1a Division 1 Cylindrical Shell tr Comparison
b. Code Case 2695*
Determine the required thickness for a cylindrical shell.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
t (in)
0.9354
0.9354
0.00%
Fig E4.3.1b CC 2695 Cylindrical Shell tr Comparison
* Code Case 2695 moved to Appendix 46 in the 2019 Edition.
15
E4.3.2 - Conical Shell
a. Division 1
Determine the required thickness for a conical shell.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
DL * (in)
150.2679
1.5734
150.25
1.5732
0.01%
0.01%
t (in)
Fig E4.3.2a Division 1 Conical Shell tr Comparison
* The equation for the required cone thickness at the large end, 𝑡𝑟 , uses the large end
diameter, 𝐷𝐿 . COMPRESS calculates 𝐷𝐿 for a transition using the following equation:
𝐷𝐿 = 𝐷 + 2 ∗
𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐴𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒
0.125
= 150 + 2 ∗
= 150.2679 𝑖𝑛
𝑐𝑜𝑠(𝛼)
𝑐𝑜𝑠(21.0375)
The example manual calculates 𝐷𝐿 using:
𝐷𝐿 = 𝐷 + 2(𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐴𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒) = 150 + 2(0.125) = 150.25 𝑖𝑛
COMPRESS takes into account the half apex angle when considering corrosion.
b. Code Case 2695**
Determine the required thickness for a conical shell.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
DL * (in)
150.2679
21.0375
1.5707
150.25
21.0375
1.5705
0.01%
0.00%
0.01%
α (degrees)
t (in)
Fig E4.3.2b CC 2695 Conical Shell tr Comparison
* The equation for the required cone thickness at the large end, 𝑡𝑟 , uses the large end
diameter, 𝐷𝐿 . COMPRESS calculates 𝐷𝐿 for a transition using the following equation:
𝐷𝐿 = 𝐷 + 2 ∗
𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐴𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒
0.125
= 150 + 2 ∗
= 150.2679 𝑖𝑛
𝑐𝑜𝑠(𝛼)
𝑐𝑜𝑠(21.0375)
The example manual calculates 𝐷𝐿 using:
𝐷𝐿 = 𝐷 + 2(𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐴𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒) = 150 + 2(0.125) = 150.25 𝑖𝑛
COMPRESS takes into account the half apex angle when considering corrosion.
** Code Case 2695 moved to Appendix 46 in the 2019 Edition.
16
E4.3.3 - Spherical Shell
a. Division 1
Determine the required thickness for a spherical shell.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
t (in)
3.7265
3.7264
0.00%
Fig E4.3.3a Division 1 Spherical Shell tr Comparison
b. Code Case 2695*
Determine the required thickness for a spherical shell.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
t (in)
3.7824
3.7824
0.00%
Fig E4.3.3b CC 2695 Spherical Shell tr Comparison
* Code Case 2695 moved to Appendix 46 in the 2019 Edition.
17
E4.3.4 - Torispherical Head
a. Division 1
Determine the maximum allowable working pressure (MAWP) for the proposed
seamless torispherical head.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
M
MAWP (psi)
1.750868
135.3
1.7509
135.3023
0.00%
0.00%
Fig E4.3.4a Division 1 Torispherical Head MAWP Comparison
b. Code Case 2695*
Determine the maximum allowable working pressure (MAWP) for the proposed
seamless torispherical head.
i. Comparison of results
Parameter
D
L
r
t
βth
φth
Rth
(in)
(in)
(in)
(in)
(rad)
(rad)
(in)
C1
C2
C3
Peth (psi)
Py (psi)
G
Pck (psi)
Pak (psi)
Pac (psi)
Pa (psi)
COMPRESS
ASME
Difference
72.25
72.125
4.5
0.5
1.0842
1.3345
36.125
0.4939
1.25
26,900
5352.44
98.83
54.1595
199.57
133.04
236.27
133.04
72.25
72.125
4.5
0.5
1.0842
1.3345
36.125
0.494
1.25
26,900
5353.9445
98.8274
54.1747
199.5671
133.0447
236.2694
133.0447
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.02%
0.00%
0.00%
0.03%
0.00%
0.03%
0.00%
0.00%
0.00%
0.00%
Fig E4.3.4b CC 2695 Torispherical Head MAWP Comparison
* Code Case 2695 moved to Appendix 46 in the 2019 Edition.
18
E4.3.5 - Ellipsoidal Head
a. Division 1
Determine the maximum allowable working pressure (MAWP) for the proposed
seamless 2:1 Ellipsoidal head.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
K * (corroded)
K (uncorroded)
MAWP * (psi)
0.996322
1
443.86
N/A
1
442
N/A
0.00%
0.42%
Fig E4.3.5a Division 1 Ellipsoidal Head MAWP Comparison
* COMPRESS solves for K using corroded dimensions:
2
1
𝐷 2
1
90.25
𝐾 = (2 + ( ) ) = (2 + (
) ) = 0.99632
6
2ℎ
6
2 ∗ 22.625
The example uses uncorroded dimensions D = 90 in and h = 22.5 in, where K = 1.0.
This K value is used along with corroded dimensions to solve for MAWP. In
COMPRESS, the corroded K value is used with corroded dimensions to solve for
MAWP.
19
b. Code Case 2695**
Determine the maximum allowable working pressure (MAWP) for the proposed
seamless 2:1 Ellipsoidal head.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
k *
D (in)
L * (in)
r * (in)
t (in)
βth (rad)
φth (rad)
Rth (in)
C1
C2
Peth (psi)
Py (psi)
1.9945
90.25
81.0056
15.405
1
1.1006
0.5842
49.581
0.7231
1.0162
43,275.72
1094.58
39.5362
2201.55
1467.7
490.76
490.76
2
90.25
81.125
15.425
1
1.1017
0.5839
49.6057
0.7233
1.0157
43,321.6096
1096.8927
39.4948
2206.1634
1470.8
490.0459
490.0459
0.28%
0.00%
0.15%
0.13%
0.00%
0.10%
0.05%
0.05%
0.03%
0.05%
0.11%
0.21%
0.10%
0.21%
0.21%
0.15%
0.15%
G
Pck (psi)
Pak (psi)
Pac (psi)
Pa (psi)
Fig E4.3.5b CC 2695 Ellipsoidal Head MAWP Comparison
* The example solves for k, L, and r using uncorroded dimensions. COMPRESS solves
for k, L, and r using corroded dimensions:
𝐷
90.25
=
= 1.9945
2ℎ 2 ∗ 22.625
0.5
0.5
− 0.08) = 90.25 (
− 0.08) = 15.405 𝑖𝑛
𝑟 = 𝐷(
𝑘
1.9945
𝐿 = 𝐷(0.44𝑘 + 0.02) = 90.25(0.44 ∗ 1.9945 + 0.02) = 81.0056 𝑖𝑛
𝑘=
These calculations account for differences shown above.
** Code Case 2695 moved to Appendix 46 in the 2019 Edition.
20
E4.3.6 - Combined Loadings and Allowable Stresses Cylindrical Shell
COMPRESS does not calculate the Division 1 solution as shown in the example
manual. The Code Case 2695 solution is shown for this problem.
a. Code Case 2695
Determine the maximum tensile stress of the proposed cylindrical shell section given
the design conditions and specified applied loadings.
i. Comparison of results
Parameter
COMPRESS**
ASME
Difference
s1 (psi)
s2 + (psi)
s2 - (psi)
s3 (psi)
sT + (psi)
sT - (psi)
14,458.00
7,389.00
6,449.00
-160.20
12,662.00
12,679.00
14,458.05
7,390.17
6,447.91
-160.20
12,662.10
12,679.20
0.00%
0.02%
0.02%
0.00%
0.00%
0.00%
Fig E4.3.6a Code Case 2695 Combined Loadings Cylindrical Shell Comparison
* In COMPRESS a vertical load of -66,152.5 lbs is applied to act as F5, a lateral force
is applied to act as a bending moment, and wind code is active. A summary of the load
cases can be viewed in the Settings Summary. See results below from the cylinder
report under the Operating Hot & Corroded >> Wind >> Support Top load case.
** Rules for combined loads were updated in the 2019 Edition. COMPRESS results
reported are from the 2017 Edition.
21
E4.3.7 - Conical Transitions Without a Knuckle
a. Division 1
Determine if the proposed large and small end cylinder-to-cone junctions are
adequately designed considering the given design conditions, applied forces, and
applied moments.
i. Comparison of Results- Large end
Parameter
COMPRESS
ASME
Difference
t (in)
tr * (in)
Lmin (in)
1.4767
1.5734
22.5187
30
No
1.4767
1.5732
22.5187
30
No
0.00%
0.01%
0.00%
0.00%
-
D (deg)
Reinforcement Required?
Fig E4.3.7a Division 1 Conical Transition Without a Knuckle - Large end design
* The equation for the required cone thickness at the large end, 𝑡𝑟 , uses the large end
diameter, 𝐷𝐿 . COMPRESS calculates 𝐷𝐿 for a transition using the following equation:
𝐷𝐿 = 𝐷 + 2 ∗
0.125
𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐴𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒
= 150 + 2 ∗
= 150.2679 𝑖𝑛
𝑐𝑜𝑠(21.0375)
𝑐𝑜𝑠(𝛼)
The example manual calculates 𝐷𝐿 using:
𝐷𝐿 = 𝐷 + 2(𝐶𝑜𝑟𝑟𝑜s𝑖𝑜𝑛 𝐴𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒) = 150 + 2(0.125) = 150.25 𝑖𝑛
COMPRESS takes into account the half apex angle when considering corrosion.
ii. Comparison of Results- Small end
Parameter
COMPRESS
ASME
Difference
t (in)
tr * (in)
Lmin (in)
0.9369
0.995
9.4045
11.73
8417.47
3.2317
6.2773
Yes
0.9369
0.9949
9.4045
11.73
8429.1122
3.2362
6.2772
Yes
0.00%
0.01%
0.00%
0.00%
0.14%
0.14%
0.00%
-
D (deg)
Qs ** (lbf/in)
Ars (in)
Aes (in)
Adequately reinforced?
Fig E4.3.7a Division 1 Conical Transition Without a Knuckle - Small end design
* The equation for the required cone thickness at the large end, 𝑡𝑟 , uses the small end
diameter, 𝐷𝑆 . COMPRESS calculates 𝐷𝑆 for a transition using the following equation:
𝐷𝑠 = 𝐷 + 2 ∗
𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐴𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒
0.125
= 90 + 2 ∗
= 90.2679 𝑖𝑛
𝑐𝑜𝑠(𝛼)
𝑐𝑜𝑠(21.0375)
22
The example manual calculates 𝐷𝑆 using:
𝐷𝑠 = 𝐷 + 2(𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐴𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒) = 90 + 2(0.125) = 90.25 𝑖𝑛
COMPRESS takes into account the half apex angle when considering corrosion.
** 𝑄𝑠 is calculated using 𝑓2 , which COMPRESS calculates as:
𝑓2 =
𝑀𝑠
𝐹𝑠
±
2
𝜋𝑅𝑚
2𝜋𝑅𝑚
where 𝑅𝑚 is calculated as:
𝑅𝑚 =
(𝐷 + 2 ∗ (𝐶. 𝐴. )) + (𝑡 − 𝐶. 𝐴. ) (90 + 2 ∗ 0.125) + (1.125 − 0.125)
=
2
2
= 45.625 𝑖𝑛
The example manual uses 𝑅𝑠 in the equation for 𝑓2 , as
𝑅𝑠 = 𝑅 + 𝐶. 𝐴. = 45 + 0.125 = 45.125 𝑖𝑛
Therefore, COMPRESS calculates 𝐴𝑟𝑠 as 3.2317 in2 and the example calculates
3.2362 in2.
23
b. Code Case 2695***
Determine if the proposed large and small end cylinder-to-cone junctions are
adequately designed considering the given design conditions, applied forces, and
applied moments.
i. Comparison of Results- Large end
Parameter
COMPRESS
ASME
Difference
sqm+ (psi)
sqm- (psi)
ssm+ (psi)
ssm- (psi)
scqm+ (psi)
scqm- (psi)
scsm + (psi)
scsm- (psi)
Sps ** (psi)
3,258.00
3,815.00
7,981.00
7,620.00
2,863.00
3,431.00
7,426.00
7,090.00
67,200.00
Yes
3,258.64
3,815.69
7,980.48
7,619.12
2,862.31
3,430.40
7,425.26
7,088.96
60,000.00
Yes
0.02%
0.02%
0.01%
0.01%
0.02%
0.02%
0.01%
0.01%
12.00%
-
Adequately designed?
Fig E4.3.7b CC 2695 Conical Transition Without a Knuckle - Large end design
* 𝑅𝐿 is used in several steps of the Code Case 2695 solution for the large end and
ultimately affects each of the membrane stress calculations. COMPRESS calculates 𝑅𝐿
as:
𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐴𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒
0.125
𝑅𝐿 = 𝑅 +
= 150 +
= 75.1339 𝑖𝑛
𝑐𝑜𝑠(21.0375)
𝑐𝑜𝑠(𝛼)
The example manual uses:
𝑅𝐿 = 𝑅 + 𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐴𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒 = 75 + 0.125 = 75.125 𝑖𝑛
COMPRESS takes into account the half apex angle when considering corrosion.
** Per ASME Section VIII, Division 2 paragraph 5.5.6.1(d), Sps is the larger of 3*S or
2*Sy at the design temperature:
𝑆𝑝𝑠 = max[3𝑆, 2𝑆𝑦 ] = max[3 ∗ 20,000, 2 ∗ 33,600] = 67,200 𝑝𝑠𝑖
where SDesignT = 20,000 psi and Sy,DesignT = 33,600 psi per ASME Section II-D, Table
1A. COMPRESS uses this value while the example manual shows Sps = 60,000 psi.
*** Code Case 2695 moved to Appendix 46 in the 2019 Edition.
24
ii. Comparison of Results- Small end
Parameter
COMPRESS
ASME
Difference
sqm+ (psi)
sqm- (psi)
ssm+ (psi)
ssm- (psi)
scqm+ (psi)
scqm- (psi)
scsm + (psi)
scsm- (psi)
Sps ** (psi)
22,475.00
20,980.00
8,429.00
7,088.00
21,094.00
19,658.00
4,545.00
3,813.00
67,200.00
Yes
22,500.78
20,900.58
8,429.11
7,084.44
21,078.72
19,678.70
4,545.96
3,810.57
60,000.00
Yes
0.11%
0.38%
0.00%
0.05%
0.07%
0.11%
0.02%
0.06%
12.00%
-
Adequately designed?
Fig E4.3.7b CC 2695 Conical Transition Without a Knuckle - Small end design
* 𝑅𝑆 is used in several steps of the Code Case 2695 solution for the large end and
ultimately affects each of the membrane stress calculations. COMPRESS calculates 𝑅𝑆
as:
𝑅𝑆 = 𝑅 +
𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐴𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒
0.125
= 90 +
= 45.1339 𝑖𝑛
𝑐𝑜𝑠(21.0375)
𝑐𝑜𝑠(𝛼)
The example manual uses:
𝑅𝑠 = 𝑅 + 𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐴𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒 = 45 + 0.125 = 45.125 𝑖𝑛
COMPRESS takes into account the half apex angle when considering corrosion.
** Per ASME Section VIII, Division 2 paragraph 5.5.6.1(d), Sps is the larger of 3*S or
2*Sy at the design temperature:
𝑆𝑝𝑠 = max[3𝑆, 2𝑆𝑦 ] = max[3 ∗ 20,000, 2 ∗ 33,600] = 67,200 𝑝𝑠𝑖
where SDesignT = 20,000 psi and Sy,DesignT = 33,600 psi per ASME Section II-D, Table
1A. COMPRESS uses this value while the example manual shows Sps = 60,000 psi.
*** Code Case 2695 moved to Appendix 46 in the 2019 Edition.
25
E4.3.8 - Conical Transitions With a Knuckle
a. Division 1
Determine if the proposed large and small end cylinder-to-cone junctions are
adequately designed considering the given design conditions, applied forces, and
applied moments.
i. Comparison of Results
Parameter
COMPRESS
ASME
Difference
Pdesign *(psi)
Pe *(psi)
285.38
N/A
67.7346
1.4006
0.6778
0.9749
280
285.3828
67.735
1.4006
0.6778
0.9749
1.92%
N/A
0.00%
0.00%
0.00%
0.00%
L (in)
M
tk (in)
tc (in)
Fig E4.3.8a Division 1 Conical Transition with Knuckle Design
* COMPRESS does not calculate the knuckle design thickness for an ASME Section
VIII, Division 1 vessel using the equivalent pressure (see paragraphs UG-32(h) and
UG-32(c): P is the internal design pressure per UG-21). An equivalent pressure is
calculated per Appendix 1-5(g) and U-2(g) for conical transitions without a knuckle
and the half apex angle 𝛼 > 30°. The design pressure entered in COMPRESS is P =
285.38 psi to compare against the example manual.
b. Code Case 2695
Determine if the proposed large and small end cylinder-to-cone junctions are
adequately designed considering the given design conditions, applied forces, and
applied moments.
i. Comparison of Results
COMPRESS does not perform the calculations in ASME Section VIII, Division 2
paragraph 4.3.12 at this time.
26
E4.4.1 - Cylindrical Shell
a. Division 1
Determine the maximum allowable external pressure (MAEP) for a cylindrical shell.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
DO (in)
92.25
636
1
0.000192
2761.819
39.92
92.25
636
1
0.00019
2700
39
0.00%
0.00%
0.00%
1.05%
2.29%
2.36%
L (in)
t (in)
A *
B **
Pa (psi)
Fig E4.4.1a Division 1 Cylindrical Shell MAEP Comparison
*COMPRESS interpolates to find A. The example manual approximates A from Fig. G
in Subpart 3 of ASME Section II-D.
**COMPRESS uses logarithmic interpolation to determine B. The example manual
approximates B from External Pressure Chart CS-2.
27
b. Division 2
(Repeated in Division 2 Manual: ASME PTB-3-2013 Div 2 Solution E4.4.1)
Determine the maximum allowable external pressure (MAEP) for a cylindrical shell.
i. Comparison of results
Parameter
COMPRESS*
ASME
Difference
L (in)
t (in)
Mx
Ch
Fhe * (psi)
Fic (psi)
636
1
93.6459
0.0092
4512
4512
2
2255.76
48.91
636
1
93.6459
0.0092
4515.729
4515.729
2
2257.8645
48.9
0.00%
0.00%
0.00%
0.00%
0.08%
0.08%
0.00%
0.09%
0.02%
FS
FHA (psi)
Pa (psi)
Fig E4.4.1b Division 2 Cylindrical Shell MAEP Comparison
*In COMPRESS, 𝐹ℎ𝑒 is calculated with the unrounded value found for 𝐶ℎ from ASME
Section VIII, Division 2 eq. 4.4.22:
𝐶ℎ = 1.12 ∗ 𝑀𝑥−1.058 = 1.12 ∗ 93.6459−1.058 = .0091914262
𝐹ℎ𝑒 = 1.6 ∗ 𝐶ℎ ∗ 𝐸𝑦 ∗
𝑡
𝐷𝑜
= 1.6 ∗ .0091914262 ∗ 28.3E6 ∗ 1/92.25 =
** Rules for external pressure were updated in the 2019 Edition. COMPRESS results
reported are from the 2017 Edition.
28
E4.4.2 - Conical Shell
a. Division 1
Determine the maximum allowable external pressure (MAEP) for a conical shell.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
te (in)
DL * (in)
DS * (in)
Le (in)
1.6917
154.1517
94.1517
62.8202
0.004225
16897.3858
247.25
1.6917
153.625
92.25
62.4
0.0045
17000
249.6
0.00%
0.34%
2.06%
0.67%
6.11%
0.60%
0.94%
A **
B
Pa (psi)
Fig E4.4.2a Division 1 Conical Shell MAEP Comparison
* The equation for the equivalent length of a conical head or section between lines of
support, 𝐿𝑒 , uses the large and small end diameters, 𝐷𝐿 and 𝐷𝑠 . COMPRESS calculates
𝐷𝐿 for a transition using the following equation:
𝐷𝐿 = 𝐷 + 2 ∗
𝑡
1.9375
= 150 + 2 ∗
= 154.1517 𝑖𝑛
𝑐𝑜𝑠(𝛼)
𝑐𝑜𝑠(21.0375)
The example calculates 𝐷𝐿 as:
𝐷𝐿 = 𝐷 + 2(𝑈𝑛𝑐𝑜𝑟𝑟𝑜𝑑𝑒𝑑 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠) = 150 + 2(1.8125) = 153.625 𝑖𝑛
COMPRESS calculates 𝐷𝑆 for a transition using the following equation:
𝐷𝑆 = 𝐷 + 2 ∗
𝑡
1.9375
= 90 + 2 ∗
= 94.1517 𝑖𝑛
𝑐𝑜𝑠(𝛼)
𝑐𝑜𝑠(21.0375)
The example calculates 𝐷𝑆 as:
𝐷𝑆 = 𝐷 + 2(𝑈𝑛𝑐𝑜𝑟𝑟𝑜𝑑𝑒𝑑 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠) = 90 + 2(1.125) = 92.25 i𝑛
COMPRESS considers the half apex angle when calculating the thickness of the
conical section instead of using the thickness of the cylindrical shell.
** COMPRESS interpolates to find A. The example manual approximates A from Fig.
G in Subpart 3 of ASME Section II-D.
29
b. Division 2
(Repeated in Division 2 Manual: ASME PTB-3-2013 Div 2 Solution E4.4.2)
Determine the maximum allowable external pressure (MAEP) for a conical shell.
i. Comparison of results
Parameter
COMPRESS*
ASME
Difference
tc (in)
1.8125
21.0375
133.018
83.5703
7.6115
0.1308
80,714
33,395
1.6705
19,991
544.79
1.8125
21.0375
131.717
83.5703
7.649
0.1301
81,062.48
33,452.58
1.6693
20,039.88
551.5
0.00%
0.00%
0.99%
0.00%
0.49%
0.54%
0.43%
0.17%
0.07%
0.24%
1.22%
α (degrees)
Do * (in)
L (in)
Mx
Ch
Fhe (psi)
Fic (psi)
FS
FHA (psi)
Pa (psi)
Fig E4.4.2b Division 2 Conical Shell MAEP Comparison
* The equation for the outside diameter of a shell or head, 𝐷𝑂 , per ASME Section VIII,
Division 2 paragraph 4.4.6.1 is:
𝐷𝑜 =
0.5(𝐷𝐿 + 𝐷𝑆 )
𝑐𝑜𝑠(𝛼)
COMPRESS calculates 𝐷𝐿 for a transition using the following equation:
𝐷𝐿 = 𝐷 + 2 ∗
𝑡
1.9375
= 150 + 2 ∗
= 154.1517 𝑖𝑛
𝑐𝑜𝑠(𝛼)
𝑐𝑜𝑠(21.0375)
The example calculates 𝐷𝐿 as:
𝐷𝐿 = 𝐷 + 2(𝑈𝑛𝑐𝑜𝑟𝑟𝑜𝑑𝑒𝑑 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠) = 150 + 2(1.8125) = 153.625 𝑖𝑛
COMPRESS calculates 𝐷𝑆 for a transition using the following equation:
𝐷𝑆 = 𝐷 + 2 ∗
1.9375
𝑡
= 90 + 2 ∗
= 94.1517 𝑖𝑛
𝑐𝑜𝑠(𝛼)
𝑐𝑜𝑠(21.0375)
The example calculates 𝐷𝑆 as:
𝐷𝑆 = 𝐷 + 2(𝑈𝑛𝑐𝑜𝑟𝑟𝑜𝑑𝑒𝑑 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠) = 90 + 2(1.125) = 92.25 𝑖𝑛
COMPRESS considers the half apex angle when calculating the thickness of the
conical section instead of using the thickness of the cylindrical shell.
** Rules for external pressure were updated in the 2019 Edition. COMPRESS results
reported are from the 2017 Edition.
30
E4.4.3 - Spherical Shell and Hemispherical Head
a. Division 1
Determine the maximum allowable external pressure (MAEP) for a hemispherical
head.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
t (in)
Ro (in)
2.8125
77.3125
0.004547
15958.15
580.53
2.8125
77.3125
0.00455
15700
571.1
0.00%
0.00%
0.07%
1.64%
1.65%
A *
B **
Pa (psi)
Fig E4.4.3a Division 1 Hemispherical Head MAEP Comparison
*COMPRESS interpolates to find A. The example manual approximates A from Fig. G
in Subpart 3 of ASME Section II-D.
**COMPRESS uses logarithmic interpolation to determine B. The example manual
approximates B from External Pressure Chart CS-2.
b. Division 2
(Repeated in Division 2 Manual: ASME PTB-3-2013 Div 2 Solution E4.4.3)
Determine the maximum allowable external pressure (MAEP) for a hemispherical head.
i. Comparison of results
Parameter
COMPRESS*
ASME
Difference
t (in)
Ro (in)
Fhe (psi)
Fic (psi)
2.8125
77.3125
79,396
40,391
1.891
21,360
1554.09
2.8125
77.3125
79,395.72
40,391.23
1.891
21,359.72
1554.1
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
FS
FHA (psi)
Pa (psi)
Fig E4.4.3b Division 2 Hemispherical Head MAEP Comparison
* Rules for external pressure were updated in the 2019 Edition. COMPRESS results
reported are from the 2017 Edition.
31
E4.4.4 - Torispherical Head
a. Division 1
Determine the maximum allowable external pressure (MAEP) for a torispherical head.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
t (in)
Ro (in)
0.5
72.625
0.000861
8098.2799
81.02
55.7541
0.5
72.625
0.00086
8100
135.3
55.8
0.00%
0.00%
0.12%
0.02%
40.12%
0.08%
A *
B **
MEP *** (psi)
Pa (psi)
Fig E4.4.4a Division 1 Torispherical Head MAEP Comparison
*COMPRESS interpolates to find A. The example manual approximates A from Fig. G
in Subpart 3 of ASME Section II-D.
**COMPRESS uses logarithmic interpolation to determine B. The example manual
approximates B from External Pressure Chart CS-2.
***Per UG-33(a)(1), COMPRESS checks the minimum 𝑃𝑒 between 1) UG-33(a)(1)(a)
and 2) UG-33(a)(1)(b). UG-33(a)(1)(a) takes into account a design factor of 1.67. The
example manual uses the MAWP solved from E4.3.4 as P = 135.3 psi instead of:
𝑀𝐴𝑊𝑃𝑈𝐺−32𝑒
135.3
=
= 81.02 𝑝𝑠𝑖
1.67
1.67
32
b. Division 2
(Repeated in Division 2 Manual: ASME PTB-3-2013 Div 2 Solution E4.4.4)
Determine the maximum allowable external pressure (MAEP) for a torispherical head.
i. Comparison of results
Parameter
COMPRESS*
ASME
Difference
t (in)
Ro (in)
Fhe (psi)
Fic (psi)
0.5
72.625
13709
13709
2
6854.56
94.38
0.5
72.625
13709.1222
13709.1222
2
6854.5611
94.4
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.02%
FS
FHA (psi)
Pa (psi)
Fig E4.4.4b Division 2 Torispherical Head MAEP Comparison
* Rules for external pressure were updated in the 2019 Edition. COMPRESS results
reported are from the 2017 Edition.
33
E4.4.5 - Ellipsoidal Head
a. Division 1
Determine the maximum allowable external pressure (MAEP) for an Ellipsoidal head.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
Ko *
Do (in)
Ro * (in)
0.8786
92.25
81.0482
1
0.001542
13924.45
265.79
171.8045
0.9
92.25
83.025
1
0.00151
13800
442.2
166.2
2.38%
0.00%
2.38%
0.00%
2.12%
0.90%
39.89%
3.37%
t (in)
A
B
MEP ** (psi)
Pa (psi)
Fig E4.4.5a Division 1 Ellipsoidal Head MAEP Comparison
* The example manual evaluates 𝐾𝑜 under the assumption that the 2:1 ratio is
maintained at both the inner and outer surfaces. COMPRESS calculates the ratio as:
𝐷𝑜
𝐷𝑜
92.25
=
=
= 1.9524
2(ℎ𝑖 + 𝑡)
2ℎ𝑜
2 ∗ (22.5 + 1.125)
Interpolating from Table UG-33.1, 𝐾𝑜 = 0.8786. 𝑅𝑜 is calculated using the interpolated
𝐾𝑜 value.
**Per UG-33(a)(1), COMPRESS checks the minimum 𝑃𝑒 between 1) UG-33(a)(1)(a)
and 2) UG-33(a)(1)(b). UG-33(a)(1)(a) takes into account a design factor of 1.67. The
example uses the MAWP solved from E4.3.4 as P = 442.2 psi instead of:
𝑀𝐴𝑊𝑃𝑈𝐺−32𝑒
443.86
=
= 265.79 𝑝𝑠𝑖
1.67
1.67
See MAEP calculation on ASME PTB-4-2013 E4.3.5 Division 1 COMPRESS Report.
34
b. Division 2
(Repeated in Div 2 Manual: ASME PTB-3-2013 Div 2 Solution E4.4.5)
Determine the maximum allowable external pressure (MAEP) for an Ellipsoidal head.
i. Comparison of results
Parameter
ho * (in)
Do (in)
KO *
Ro * (in)
t (in)
Fhe (psi)
Fic (psi)
FS
FHA (psi)
Pa (psi)
COMPRESS*
23.625
92.25
0.8793
81.1192
1
26,165.0
19,830.0
1.970
10,067.0
248.21
ASME
Difference
23.0625
92.25
0.9005
83.0711
1
25,550.402
19,719.072
1.972
9,999.023
240.7
2.44%
0.00%
2.35%
2.35%
0.00%
2.41%
0.56%
0.12%
0.68%
3.12%
Fig E4.4.5b Division 2 Ellipsoidal Head MAEP Comparison
* The example evaluates ℎ𝑜 under the assumption that the 2:1 ratio is maintained at
both the inner and outer surfaces. COMPRESS calculates ℎ𝑜 as:
ℎ𝑜 = (ℎ𝑖 + 𝑡) = (22.5 + 1.125) = 23.625 𝑖𝑛
** Rules for external pressure were updated in the 2019 Edition. COMPRESS results
reported are from the 2017 Edition.
35
E4.4.6 - Combined Loadings and Allowable Stresses Cylindrical Shell
COMPRESS does not calculate the Division 1 solution as shown in the example
manual. The Division 2 solution is shown for this problem.
a. Division 2
(Repeated in Division 2 Manual ASME PTB-3-2013 Div 2 Solution E4.4.6)
Determine the allowable compressive stresses of the proposed cylindrical shell section
given the design conditions and specified applied loadings.
i. Comparison of results
Parameter
COMPRESS*****
ASME
FHA (psi)
Fxa (psi)
Fca * (psi)
Fba (psi)
Fve (psi)
Fva (psi)
Fxha ** (psi)
Fbha (psi)
2,256.00
20,156.00
713.00
21,816.00
37,839.00
9,116.00
706.00
1,559.00
2,257.86
20,155.97
18,672.43
21,817.83
37,843.77
9,116.56
1,710.25
1,560.23
4.4.12.2.h.3 Ratio ***
4.4.12.2.i.3 Ratio ****
Adequately designed?
0.5515
0.0242
Yes
0.4041
0.0278
Yes
Difference
0.08%
0.00%
96.18%
0.01%
0.13%
0.01%
58.72%
0.08%
36.48%
12.95%
-
Fig E4.4.6a Division 2 Combined Loadings Cylindrical Shell Comparison
* COMPRESS uses updated equation in the 2017 Edition and later.
** Per ASME Section VIII, Division 2 paragraph 4.4.12.2.e.2, for 0.15 ≤ 𝜆𝑐 ≤ 1.2:
"𝐹𝑥ℎ𝑎 is computed from the following equation and is evaluated using the equations in
paragraph (1) with 𝑓𝑥 = 𝑓𝑎 , and 𝐹𝑐𝑎 evaluated using the equations in paragraph (b)(2)."
The example manual solution states that 𝐹𝑥ℎ𝑎 should be evaluated using the equations
in ASME Section VIII, Division 2 paragraph 4.4.12.2.e.1 with 𝐹𝑎ℎ1 = 𝐹𝑥ℎ𝑎 and 𝐹𝑎ℎ2 is
evaluated per paragraph 4.4.12.2.e.2. The example manual also states 𝐹𝑐𝑎 is evaluated
using the equation in paragraph 4.4.12.2.b.2 with 𝐹𝑥𝑎 = 𝐹𝑥ℎ𝑎 as determined in
paragraph 4.4.12.2.e.1. In COMPRESS, 𝐹𝑥ℎ𝑎 is evaluated per paragraph 4.4.12.2.e.1
with 𝑓𝑥 = 𝑓𝑎 , as the Code states in paragraph 4.4.12.2.e.2.
*** Per ASME Section VIII, Division 2 paragraph 4.4.12.2.h , the evaluation of the
compressive axial and bending stresses, 𝑓𝑎 and 𝑓𝑏 , respectively, is determined using
the following interaction equation (4.4.107):
𝑓𝑎
8 Δ𝑓𝑏
+
≤ 1.0
𝐾𝑠 𝐹𝑥ℎ𝑎 9 𝐾𝑠 𝐹𝑏ℎ𝑎
36
Per paragraph 4.4.2 due to the presence of a combination of design loads and wind
loading, the allowable stress for 𝐹𝑏ℎ𝑎 may be increased by a factor of 1.2 in equations
(4.4.106), (4.4.107), (4.4.108), (4.4.111), (4.4.112), and (4.4.113). In the example
manual, 𝐹𝑏ℎ𝑎 is not increased by a factor of 1.2 and 𝐹𝑥ℎ𝑎= 1,710.25 psi, so the
equation evaluates to 0.4041. In COMPRESS, the 1.2 factor is applied and 𝐹𝑥ℎ𝑎= 706
psi, so the equation evaluates to 0.5244. Both satisfy the combined load check.
**** Per ASME Section VIII, Division 2 paragraph 4.4.12.2.i, the evaluation of the
compressive axial and bending stresses, fa and fb, respectively, is determined using the
following interaction equation (4.4.113):
𝑓𝑎
Δ𝑓𝑏
+
≤ 1.0
2𝐾𝑠𝐹c𝑎
𝐾𝑠𝐹𝑏𝑎
Per paragraph 4.4.2 due to the presence of a combination of design loads and wind
loading, the allowable stress for Fba may be increased by a factor of 1.2 in equations
(4.4.106), (4.4.107), (4.4.108), (4.4.111), (4.4.112), and (4.4.113). In the example
manual, Fba is not increased by a factor of 1.2, so equation (4.4.113) evaluates to 0.0278.
In COMPRESS, the 1.2 factor is applied and equation (4.4.113) evaluates to 0.0242.
***** Rules for external pressure were updated in the 2019 Edition. COMPRESS results
reported are from the 2017 Edition.
37
E4.4.7 - Conical Transitions Without a Knuckle
a. Division 1
Determine if the proposed large and small end cylinder-to-cone junctions are
adequately designed considering the given design conditions, applied forces, and
applied moments.
i. Comparison of Results- Large end
Parameter
COMPRESS
ASME
Difference
Lmin (in)
P/(Ss E1) *
D (degrees)
f1 ** (lbf/in)
QL (lbf/in)
22.77030
0.000735
1.84
505.92
1,070.49
22.77030
0.00070
1.75
497.12
1,061.70
0.00%
5.00%
5.14%
1.77%
0.83%
ArL (in2)
1.5794
1.5622
1.10%
AeL (in )
Adequately reinforced?
M (in)
32.1407
32.1407
0.00%
Yes
393.7947
Yes
393.7947
0.00%
ATL (in2)
FL (lbf/in)
B (psi)
693.5865
693.5865
0.00%
5,983.37
994.00
5,979.98
993.40
0.06%
0.06%
I's (in4)
104.48
105.12
0.61%
Adequately stiffened?
No
N/A
***See Note
2
Fig E4.4.7a Division 1 Conical Transition Without a Knuckle - Large end design
𝑃
𝑃
* COMPRESS calculates 𝑆 𝐸 = 0.000735 and the example manual calculates 𝑆 𝐸 =
𝑠 1
𝑃
𝑠 1
0.0007, rounding the value to the nearest ten thousandths place. Using
to
𝑆 𝐸
𝑠 1
interpolate ∆ from Table 1-8.1, COMPRESS calculates ∆= 1.84° and the example
manual calculates ∆= 1.75°.
** COMPRESS calculates 𝑓1 as:
𝑓1 =
𝐹𝐿
𝑀𝐿
±
2
2𝜋𝑅𝑚
𝜋𝑅𝑚
where 𝑅𝑚 is calculated as:
𝑅𝑚 =
(𝐷 + 2 ∗ (𝐶. 𝐴. )) + (𝑡 − 𝐶. 𝐴. ) (150 + 2 ∗ 0.125) + (1.8125 − 0.125)
=
2
2
= 75.9688 𝑖𝑛
The example manual uses 𝑅𝐿 (instead of 𝑅𝑚 ) in the equation for 𝑓1 as:
𝑅𝐿 = 𝑅 + 𝑡 = 75 + 1.8125 = 76.8125 in
38
Therefore, COMPRESS calculates 𝐴𝑟𝐿 as 1.5794 in2 and the example manual
calculates 𝐴𝑟𝐿 as 1.5622 in2 .
*** In both ASME Section VIII, Division 1 and the example manual, there is no
solution to calculate 𝐼 ′ , the available moment of inertia of the shell-cone or ring-shellcone junction. COMPRESS calculates 𝐼 ′ as:
𝐼 ′ = 𝐼𝑠ℎ𝑒𝑙𝑙 + 𝐼𝑐𝑜𝑛𝑒
where:
𝐼𝑠ℎ𝑒𝑙𝑙 = 𝐼𝑠ℎ𝑒𝑙𝑙(𝑦−𝑦) + 𝐴𝑠ℎ𝑒𝑙𝑙 ∗ 𝑥̅ 2
𝐿1 ∗ 𝑡𝑠 3 8.8555 ∗ (1.6875)3
𝐼𝑠ℎ𝑒𝑙𝑙(𝑦−𝑦) =
=
= 3.54662 𝑖𝑛4
12
12
𝐴𝑠ℎ𝑒𝑙𝑙 = 𝐿1 ∗ 𝑡𝑠 = 8.8555 ∗ 1.6875 = 14.94374 𝑖𝑛2
𝐿1 = 0.55√𝐷𝑜 𝑡𝑠
and
𝐼𝑐𝑜𝑛𝑒 = 𝐼𝑐𝑜𝑛𝑒(𝑦−𝑦) + 𝐴𝑐𝑜𝑛𝑒 ∗ (𝑥1 − 𝑥̅ )2
𝐼𝑐𝑜𝑛𝑒(𝑦−𝑦) = 𝐼𝑐𝑜𝑛𝑒(𝑦2−𝑦2) cos 𝛼 2 + 𝐼𝑐𝑜𝑛𝑒(𝑥2−𝑥2) sin 𝛼 2
𝐿2 3 ∗ 𝑡𝑐
𝐿2 ∗ 𝑡𝑐 3
2
=
cos 𝛼 +
sin 𝛼 2
12
12
9.488 ∗ 1.81253
9.4883 ∗ 1.8125
=
cos 21.03752 +
sin 21.03752
12
12
= 20.72589
𝐿1
cos 𝛼
= 𝐿2 ∗ 𝑡𝑐 = 9.488 ∗ 1.8125 = 17.19693 𝑖𝑛2
𝐿2 =
𝐴𝑐𝑜𝑛𝑒
𝐿1
8.8555
tan ∝ =
tan 21.0375 = 1.702989 𝑖𝑛
2
2
𝐴𝑐𝑜𝑛𝑒 ∗ 𝑥1
17.194 ∗ 1.703
𝑆𝑢𝑚[𝐴 ∗ 𝑥]
𝑥̅ =
=
=
= .911188 𝑖𝑛
𝑆𝑢𝑚[𝐴]
𝐴𝑐𝑜𝑛𝑒 + 𝐴𝑠ℎ𝑒𝑙𝑙 17.194 + 14.94374
𝑥1 =
therefore:
𝐼𝑠ℎ𝑒𝑙𝑙 = 𝐼𝑠ℎ𝑒𝑙𝑙(𝑦−𝑦) + 𝐴𝑠ℎ𝑒𝑙𝑙 ∗ 𝑥̅ 2 = 3.54662 + 14.94374 ∗. 9111882 = 15.95 𝑖𝑛4
𝐼𝑐𝑜𝑛𝑒 = 𝐼𝑐𝑜𝑛𝑒(𝑦−𝑦) + 𝐴𝑐𝑜𝑛𝑒 ∗ (𝑥1 − 𝑥̅ )2 = 20.726 + 17.197 ∗ (1.703 − .911188)2
= 31.508 𝑖𝑛4
and
𝐼 ′ = 𝐼𝑠ℎ𝑒𝑙𝑙 + 𝐼𝑐𝑜𝑛𝑒 = 15.95 + 31.508 = 47.461 𝑖𝑛4
As 𝐼 ′ < 𝐼𝑠 , the available moment of inertia of the combined shell-cone cross section is
not adequate.
39
ii. Comparison of Results- Small end
Parameter
COMPRESS
ASME
Difference
Lmin (in)
f2 * (lbf/in)
QS (lbf/in)
9.50820
930.13
1,269.15
9.50810
913.00
1,252.02
0.00%
1.88%
1.37%
Ars (in2)
1.1258
1.1106
1.37%
Aes **(in2)
Adequately reinforced?
N (in)
10.4818
10.1129
3.65%
Yes
362.3133
Yes
362.3133
0.00%
ATS (in2)
FS (lbf/in)
B (psi)
393.9600
393.9615
0.00%
5,683.75
998.00
5,677.16
997.02
0.12%
0.10%
I's (in4)
21.4901
21.5307
0.19%
Adequately stiffened?
No
N/A
***See Note
Fig E4.4.7a Division 1 Conical Transition Without a Knuckle - Small end design
* COMPRESS calculates 𝑓2 as:
𝑓2 =
𝐹𝐿
𝑀𝐿
±
2
2𝜋𝑅𝑚
𝜋𝑅𝑚
where 𝑅𝑚 is calculated as:
𝑅𝑚 =
(𝐷 + 2 ∗ (𝐶. 𝐴. )) + (𝑡 − 𝐶. 𝐴. ) (90 + 2 ∗ 0.125) + (1.125 − 0.125)
=
2
2
= 45.625 𝑖𝑛
The example manual uses 𝑅𝑠 (instead of 𝑅𝑚 ) in the equation for 𝑓2 , as
𝑅𝑠 = 𝑅 + 𝑡 = 45 + 1.125 = 46.125 𝑖𝑛
Therefore, COMPRESS calculates 𝐴𝑟𝑠 as 1.1258 in2 and the example calculates 1.1106
in2.
**In the example, 𝐴𝑒𝑠 is calculated using:
𝐴𝑒𝑠 = 0.55√𝐷𝑠 𝑡𝑠 [(𝑡𝑠 − 𝑡) +
(𝑡𝑐 − 𝑡𝑟 )
]
cos 𝛼
= 0.55√92.25 ∗ 1 [(1 − 0.6698) +
(1.8125 − 0.3339)
]
cos 21.0375
= 10.1129 𝑖𝑛2
where 𝑡𝑠 is the thickness of the shell at the small end, 𝑡𝑐 is the thickness of the cone at
the small end, 𝑡 is the minimum required thickness of the shell, and 𝑡𝑟 is the minimum
required thickness of the cone. The example does not show explicit calculations for
these thicknesses, however the methods used in E4.4.1 and E4.4.2 are referenced.
40
In COMPRESS, 𝐴𝑒𝑠 is calculated as:
𝐴𝑒𝑠 = 0.55√𝐷𝑠 𝑡𝑠 [(𝑡𝑠 − 𝑡) +
(𝑡𝑐 − 𝑡𝑟 )
]
cos 𝛼
= 0.55√92.25 ∗ 1 [(1 − 0.6685) +
(1.8125 − 0.27)
] = 10.4818 𝑖𝑛2
cos 21.0375
where 𝑡 = 0.6685 in per UG-28(c) for the small end cylinder and 𝑡𝑟 = 0.27 in per UG33(f) for the small end conical section (see E4.4.1 and E4.4.2). The differences in
thicknesses account for the difference in Aes.
*** Neither ASME Section VIII, Division 1 or the example manual provide a solution
to calculate 𝐼 ′ , the available moment of inertia of the shell-cone or ring-shell-cone
junction. COMPRESS calculates 𝐼 ′ according to the step shown in E4.4.7(i), Note (***).
To solve for 𝐼 ′ for the small cone-cylinder, use the small end dimensions. As 𝐼 ′ < 𝐼𝑠 ,
the available moment of inertia of the combined shell-cone cross section is not
adequate.
b. Code Case 2695***
Determine if the proposed large and small end cylinder-to-cone junctions are
adequately designed considering the given design conditions, applied forces, and
applied moments.
i. Comparison of Results- Large end
Parameter
COMPRESS
ASME
Difference
sqm+ (psi)
sqm- (psi)
FHA (psi)
ssm+ (psi)
ssm- (psi)
Fxa (psi)
scqm+ (psi)
scqm- (psi)
FHA (psi)
scsm + (psi)
scsm- (psi)
Fxa (psi)
Sps ** (psi)
-225.00
332.00
20,156.00
-271.00
-632.00
20,156.00
-210.00
358.00
20,156.00
-252.00
-588.00
20,156.00
67,200.00
Yes
-224.74
332.31
20,156.00
-271.03
-632.39
20,156.00
-210.17
357.93
20,156.00
-252.16
-588.48
20,156.00
60,000.00
Yes
0.12%
0.09%
0.00%
0.01%
0.06%
0.00%
0.08%
0.02%
0.00%
0.06%
0.08%
0.00%
12.00%
-
Adequately designed?
Fig E4.4.7b CC 2695 Conical Transition Without a Knuckle - Large end design
41
* 𝑅𝐿 is used in several steps of the Code Case 2695 solution for the large end and
ultimately affects each of the membrane stress calculations. COMPRESS calculates 𝑅𝐿
as:
𝑅𝐿 = 𝑅 +
0.125
𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐴𝑙l𝑜𝑤𝑎𝑛𝑐𝑒
= 150 +
= 75.1339 𝑖𝑛
𝑐𝑜𝑠(𝛼)
𝑐𝑜s(21.0375)
The example uses:
𝑅𝐿 = 𝑅 + 𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐴𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒 = 75 + 0.125 = 75.125 𝑖𝑛
COMPRESS considers the half apex angle when calculating the corrosion of the
conical section.
** Per ASME Section VIII, Division 2 paragraph 5.5.6.1(d), Sps is the larger of 3*S or
2*Sy at the design temperature. For this example, Sps is:
𝑆𝑝𝑠 = max[3𝑆, 2𝑆𝑦 ] = max[3 ∗ 20,000, 2 ∗ 33,600] = 67,200 𝑝𝑠𝑖
where SDesignT = 20,000 psi and Sy,DesignT = 33,600 psi per ASME Section II-D, Table
1A. COMPRESS uses this value while the example manual uses Sps = 60,000 psi.
*** Code Case 2695 moved to Appendix 46 in the 2019 Edition.
42
i. Comparison of Results- Small end
Parameter
COMPRESS
ASME
Difference
sqm+ (psi)
sqm- (psi)
FHA (psi)
ssm+ (psi)
ssm- (psi)
Fxa (psi)
scqm+ (psi)
scqm- (psi)
FHA (psi)
scsm + (psi)
scsm- (psi)
Fxa (psi)
Sps ** (psi)
-467.00
-1,967.00
20,156.00
65.00
-1,279.00
20,156.00
-429.00
-1,868.00
20,156.00
38.00
-696.00
20,156.00
67,200.00
Yes
-437.32
-2,037.52
20,156.00
65.19
-1,279.47
20,156.00
-440.12
-1,840.14
20,156.00
38.29
-697.10
20,156.00
60,000.00
Yes
6.79%
3.46%
0.00%
0.30%
0.04%
0.00%
2.53%
1.51%
0.00%
0.76%
0.16%
0.00%
12.00%
-
Adequately designed?
Fig E4.4.7b CC 2695 Conical Transition Without a Knuckle - Small end design
* 𝑅𝑆 is used in several steps of the Code Case 2695 solution for the small end and
ultimately affects each of the membrane stress calculations. COMPRESS calculates 𝑅𝑆
as:
𝑅𝑆 = 𝑅 +
𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐴𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒
0.125
= 90 +
= 45.1339
𝑐𝑜𝑠(𝛼)
𝑐𝑜𝑠(21.0375)
The example uses:
𝑅𝑆 = 𝑅 + 𝐶𝑜𝑟𝑟𝑜s𝑖𝑜𝑛 𝐴𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒 = 45 + 0.125 = 45.125 𝑖𝑛
COMPRESS considers the half apex angle when calculating the corrosion of the
conical section.
** Per ASME Section VIII, Division 2 paragraph 5.5.6.1(d), Sps is the larger of 3*S or
2*Sy at the design temperature. For this example, Sps is:
𝑆𝑝𝑠 = max[3𝑆, 2𝑆𝑦 ] = max[3 ∗ 20,000, 2 ∗ 33,600] = 67,200 𝑝𝑠𝑖
where SDesignT = 20,000 psi and Sy,DesignT = 33,600 psi per ASME Section II-D, Table
1A. COMPRESS uses this value while the example uses Sps = 60,000 psi.
*** Code Case 2695 moved to Appendix 46 in the 2019 Edition.
43
E4.4.8 - Conical Transitions With a Knuckle
a. Division 1
Determine if the proposed design for the large end of a cylinder-to-cone junction with a
knuckle is adequately designed considering the given conditions.
i. Comparison of Results
Parameter
COMPRESS
ASME
Difference
a * (deg)
Lc (in)
31.8026
84.9779
131.1794
30
84.9779
134.7106
6.01%
0.00%
2.62%
ATL (in2)
FL (lbf/in)
B (psi)
162.4890
162.4890
0.00%
2,018.02
1,136.00
2,063.96
1,162.25
2.23%
2.26%
I's (in4)
17.64
17.75
0.63%
Adequately Stiffened?
Yes
N/A
**See Note
M (in)
Fig E4.4.8a Division 1 Conical Transition with Knuckle Design
* The axial length of the cylinder, L, is given in the problem statement as L=73 in. If
this value is used in COMPRESS for a transition with a knuckle, COMPRESS
calculates 𝛼 as:
𝛼 = 90° − ∆ − 𝜙
Δ = tan−1(
𝑅−𝐴
𝑅
) , 𝜙 = cos −1( )
𝐵
𝑙
where
𝑅 = 𝑘𝑛𝑢𝑐𝑘𝑙𝑒 𝑖𝑛𝑠𝑖𝑑𝑒 𝑟𝑎𝑑𝑖𝑢𝑠 = 10 in
𝐴 = 𝑅𝐿 − 𝑅𝑠 = 61-17.5 = 43.5 in
𝑅𝐿 = outside radius of large cylinder , 𝑅𝑠 = outside radius of small cylinder
𝐵 = 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑐𝑜𝑛𝑒 = 73 in
𝑙 = √(𝑅 − 𝐴)2 + 𝐵 2
therefore
𝑙 = √(10 − 43.5)2 + 732 = 80.3197 𝑖𝑛
10 − 43.5
) = −24.651°
73
𝑅
10
𝜙 = cos−1 ( ) = cos −1(
) = 82.84798°
𝑙
80.3197
𝛼 = 90° − −24.651° − 82.84798° = 31.803°
Δ = tan−1(
44
In the example manual, the angle 𝛼 = 30° and length L=73 in are design inputs given
in the problem statement. The difference in 𝛼 affects subsequent calculations.
** Neither ASME Section VIII, Division 1 or the example provide a solution to
calculate 𝐼 ′ , the available moment of inertia of the shell-cone or ring-shell-cone
junction. COMPRESS calculates 𝐼 ′ according to the steps shown in E4.4.7(i), Note
(***). Use the appropriate dimensions. As 𝐼 ′ > 𝐼𝑠 , the available moment of inertia of
the combined shell-cone cross section is adequate.
b. Code Case 2695
Determine if the proposed design for the large end of a cylinder-to-cone junction with a
knuckle is adequately designed considering the given conditions.
i. Comparison of Results
COMPRESS does not perform the calculations in ASME Section VIII, Division 2
paragraph 4.3.12 at this time.
45
E4.5.1 - Radial Nozzle in Cylindrical Shell
a. Division 1
Design an integral nozzle in a cylindrical shell based on given vessel and nozzle data.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
tr (in)
trn (in)
LR (in)
LH (in)
1.3517
0.1462
16.25
4.2188
1.3517
0.1462
16.25
4.2188
0.00%
0.00%
0.00%
0.00%
A1 (in2)
5.4574
5.4568
0.01%
37.7899
37.7899
0.00%
21.9645
21.9651
0.00%
Aavail (in )
43.3879
43.3873
0.00%
Adequately reinforced?
Yes
Yes
-
2
A2 (in )
2
A (in )
2
Fig E4.5.1a Division 1 Nozzle-to-Shell Assembly Design Comparison
* Note: COMPRESS uses the latter procedure shown in the example manual. The hub
thickness section is defined as tn=4.625 in.
b. Code Case 2695*
Design an integral nozzle in a cylindrical shell based on given vessel and nozzle data.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
Reff (in)
LR (in)
LH (in)
75.125
11.2594
7.8176
75.125
11.2594
7.8176
0.00%
0.00%
0.00%
AT (in2)
PL (psi)
Pmax (psi)
55.2269
55.2269
0.00%
16026
444.28
Yes
16025.9281
444.28
Yes
0.00%
0.00%
-
Adequately reinforced?
Fig E4.5.1b Code Case 2695 Nozzle-to-Shell Assembly Design Comparison
* Code Case 2695 moved to Appendix 46 in the 2019 Edition.
46
E4.5.2 - Hillside Nozzle in Cylindrical Shell
a. Division 1
Design an integral hillside nozzle in a cylindrical shell based on given vessel and
nozzle data.
i. Comparison of results- Normal to the Longitudinal Axis
Parameter
COMPRESS
ASME
Difference
tr (in)
trn (in)
d (in)
LR (in)
LH (in)
1.3517
0.0708
8.868
8.868
4.2188
1.3517
0.0708
8.8679
8.8679
4.2188
0.00%
0.00%
0.00%
0.00%
0.00%
A1 (in2)
8.9715
8.9712
0.00%
A2 (in )
14.9698
14.9698
0.00%
A41 (in2)
0.1406
0.1406
0.00%
A (in )
5.9933
5.9934
0.00%
Aavail (in2)
24.0819
24.0816
0.00%
Adequately reinforced?
Yes
Yes
-
2
2
Fig E4.5.2a Division 1 Hillside Nozzle Design Comparison- Normal to Longitudinal Axis
ii. Comparison of results- Parallel to the Longitudinal Axis
Parameter
COMPRESS
ASME
Difference
tr (in)
trn (in)
d (in)
LR (in)
LH (in)
1.3517
0.0708
7.87
7.87
4.2188
1.3517
0.0708
7.87
7.87
4.2188
0.00%
0.00%
0.00%
0.00%
0.00%
A1 (in2)
2.6431
2.6427
0.02%
2
14.9698
14.9698
0.00%
2
0.1406
0.1406
0.00%
10.6376
10.6379
0.00%
Aavail (in )
17.7535
17.7531
0.00%
Adequately reinforced?
Yes
Yes
-
A2 (in )
A41 (in )
2
A (in )
2
Fig E4.5.2a Division 1 Hillside Nozzle Design Comparison- Parallel to Longitudinal Axis
47
b. Code Case 2695**
Design an integral hillside nozzle in a cylindrical shell based on given vessel and
nozzle data.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
Reff (in)
Rnc (in)
LR (in)
LH (in)
AT (in2)
PL (psi)
75.125
3.935
7.87
4.382
21.4356
19115
444.28
Yes
75.125
3.935
7.87
4.382
21.4307
19114.7819
444.28
Yes
0.00%
0.00%
0.00%
0.00%
0.02%
0.00%
0.00%
-
Pmax (psi)
Adequately reinforced?
Fig E4.5.2b Code Case 2695 Hillside Nozzle Design Comparison
* In the example manual the nozzle projection from the outside of the vessel wall,
𝐿𝑝𝑟1 , is given in the problem statement as 19.0610 in. In COMPRESS, 𝐿𝑝𝑟1 is
calculated as:
𝐿𝑝𝑟1 = 𝑁𝑜𝑧𝑧𝑙𝑒 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 − 𝐿𝑖
where
1
1
𝐷 + 𝑡 + 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑔𝑖𝑣𝑒𝑛 = (150) + 1.8125 + 19.0610
2
2
= 95.8735 𝑖𝑛
𝑁o𝑧𝑧𝑙𝑒 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 =
𝐿𝑖 = √𝑅𝑜 2 − 𝑚2 = √(
𝑚 = 𝑂𝑓𝑓𝑠𝑒𝑡 −
153.625 2
) − 29.0952 = 71.089 𝑖𝑛
2
𝑅𝑛,𝑜
11.56
= 34.875 −
= 29.095 𝑖𝑛
2
2
therefore
𝐿𝑝𝑟1 = 95.8735 − 71.089 = 24.7805 𝑖𝑛
𝐿𝑝𝑟1 is used in the equation to determine 𝐿𝐻 , the limit of reinforcement along the
nozzle wall projecting outside the vessel surface, but does not have an effect on the
result for this example.
** Code Case 2695 moved to Appendix 46 in the 2019 Edition.
48
E4.5.3 - Radial Nozzle in Ellipsoidal Head
a. Division 1
Design an integral radial nozzle centrally located in a 2:1 ellipsoidal head based on
given vessel and nozzle data.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
K1 *
tr (in)
trn (in)
LR (in)
LH (in)
0.8975
0.7222
0.1046
11.63
2.1875
0.9
0.7242
0.1046
11.63
2.1875
0.28%
0.28%
0.00%
0.00%
0.00%
A1 (in2)
1.7773
1.7538
1.34%
2
A2 (in )
8.9705
8.9705
0.00%
2
0.1406
0.1406
0.00%
A (in )
8.399
8.4224
0.28%
Aavail (in2)
10.8884
10.8649
0.22%
Adequately reinforced?
Yes
Yes
-
A41 (in )
2
Fig E4.5.3a Division 1 Radial Nozzle in Ellipsoidal Head Comparison
* The example evaluates 𝑡𝑟 using 𝐾1 = 0.9, where it is assumed that the 2:1 ratio is
maintained at both the inner and outer surfaces. COMPRESS considers corroded
values when evaluating 𝐾1 :
𝐷
90.25
=
= 1.9944
2ℎ
2(22.625)
Interpolating from Table UG-37, 𝐾1 = 0.8975.
49
b. Code Case 2695*
Design an integral radial nozzle centrally located in a 2:1 ellipsoidal head based on
given vessel and nozzle data.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
Reff (in)
LR (in)
LH (in)
AT (in2)
PL (psi)
80.9262
8.4149
3.4572
14.8837
16,552
430.17
Yes
80.9262
8.4149
3.4574
14.884
16,551.54
430.1715
Yes
0.00%
0.00%
0.01%
0.00%
0.00%
0.00%
-
Pmax (psi)
Adequately reinforced?
Fig E4.5.3b CC2695 Radial Nozzle in Ellipsoidal Head Comparison
* Code Case 2695 moved to Appendix 46 in the 2019 Edition.
50
E4.5.4 - Radial Nozzle in Cylindrical Shell
a. Division 1
Check the design of an integral radial nozzle in a cylindrical shell based on the given
vessel and nozzle data.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
tr (in)
trn (in)
tw,groove (in)
tw,fillet (in)
LR (in)
LH (in)
1.8328
0.2917
0.525
0.375
16.125
4.8438
1.8328
0.2917
0.525
0.375
16.125
4.8438
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
A1 (in2)
1.6883
1.6883
0.00%
31.3968
13.5218
See Note
0.5625
0.5625
0.00%
N/A
17.875
See Note
29.5539
29.5539
0.00%
33.6476
33.6476
0.00%
Yes
147,859.30
171,102.13
318,961.43
Yes
Yes
147,313.70
171,224.70
318,538.40
Yes
0.37%
0.07%
0.13%
-
2
A2 * (in )
2
A41 (in )
2
A5 (in )
2
A (in )
2
Aavail (in )
Adequately reinforced?
GWS **(lbs)
FWS **(lbs)
Path1-1 (lbs)
Weld Strength Acceptable?
Fig E4.5.4a Division 1 Radial Nozzle in a Cylindrical Head Comparison
* COMPRESS calculates the Area of Reinforcement for integrally reinforced nozzles
(Type 6, 9, and 10) using 𝐴2 as the complete external projection area of the nozzle and
𝐴5 = 0. See commentary in the example manual for problem E4.5.1.
** In the example manual, the Mean Diameter of the Weld used in the Groove Weld
Shear calculation is 16.875 in. In COMPRESS, corrosion is considered and this value
is calculated as:
(16.125 + (16 + 2 ∗ .875))
= 16.9375 𝑖𝑛
2
Also, the Sfws value used in the Fillet Weld Shear calculation is shown as 5,590 psi in
the example manual. This value should be 5,586 psi.
𝑀𝑒𝑎𝑛 𝐷𝑖𝑎𝑚 𝑓𝑜𝑟 𝐺𝑊𝑆 =
51
E4.5.5 - Pad Reinforced Radial Nozzle in Cylindrical Shell
a. Division 1
Check the design of a radial nozzle in a cylindrical shell based on the given vessel and
nozzle data.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
tr (in)
trn (in)
UG45 t (in)
tc,inner fillet (in)
tw,outer fillet (in)
tw,outer (in)
tw,finner (in)
stotal (psi)
LR (in)
LH (in)
1.5578
0.2799
0.5781
0.25
0.375
0.35
0.35
3,537.00
15
2.75
1.5578
0.2799
0.578
0.25
0.375
0.35
0.35
3,537.00
15
2.75
0.00%
0.00%
0.02%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
A1 (in2)
2.8824
2.883
0.02%
A2 (in )
1.2106
1.2106
0.00%
A41 (in2)
2
0.1406
0.1406
0.00%
2
0.7656
0.7656
0.00%
2
18.375
18.375
0.00%
23.3676
23.367
0.00%
23.3742
23.3748
0.00%
Yes
377,398.69
254,365.33
356,201.58
Yes
377,398.70
254,365.30
356,201.60
0.00%
0.00%
0.00%
Yes
Yes
-
A42 (in )
A5 (in )
2
A (in )
2
Aavail (in )
Adequately reinforced?
Path1-1 (lbs)
Path1-2 (lbs)
Path1-3 (lbs)
Weld Strength Acceptable per
UG-41(b)(2)?
Fig E4.5.5a Division 1 Pad Reinforced Nozzle in Cylindrical Shell Comparison
* In COMPRESS, the equation for 𝑡𝑏1 includes corrosion allowance for the 2nd term:
𝑡𝑏1 = max[trE=1 + C. A. , tUG−16b + C. A. ] = 1.8078 𝑖𝑛
where 𝑡𝑈𝐺−16𝑏 = 0.0625 in, t rE=1 = 1.5578 in, and C.A. = 0.25 in. The example manual
does not include corrosion in the t UG−16b term. This does not affect the results for this
example.
52
E4.5.6 - Radial Nozzle in an Ellipsoidal Head with Inside Projection
a. Division 1
Check the design of a radial nozzle centrally located in a 2:1 ellipsoidal head based on
the given vessel and nozzle data.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
tr (in)
trn (in)
t1,2 (in)
t1+2,min (in)
LR (in)
LH = Li (in)
0.0912
0.0512
0.1312
0.2344
8.125
0.4688
0.0912
0.0512
0.1313
0.2344
8.125
0.4688
0.00%
0.00%
0.08%
0.00%
0.00%
0.00%
A1 (in2)
0.7673
0.7673
0.00%
2
0.1278
0.1278
0.00%
2
A3 (in )
0.1607
0.1607
0.00%
2
0.0429
0.0429
0.00%
2
0.0429
0.0429
0.00%
0.7553
0.7553
0.00%
1.1416
1.1416
0.00%
Yes
47,542.11
39,831.47
Yes
Yes
47,542.10
39,831.40
Yes
0.00%
0.00%
-
A2 (in )
A41 (in )
A43 (in )
2
A (in )
2
Aavail (in )
Adequately reinforced?
Path1-1 (lbs)
Path1-2 (lbs)
Weld Strength Acceptable?
Fig E4.5.6a Division 1 Nozzle in Ellipsoidal Head with Inside Projection Comparison
53
E4.6.1 - Flat Unstayed Circular Heads Attached by Bolts
a. Division 1
Determine the required thickness for a heat exchanger blind flange.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
Wo (lbs)
Wg (lbs)
111,275.41
237,598.78
0.30
1.6522
0.9432
1.6522
111,329.50
237,626.30
0.30
1.6523
0.9433
1.6523
0.05%
0.01%
0.00%
0.01%
0.01%
0.01%
C
t o (in)
t g (in)
t (in)
Fig E4.6.1a Division 1 Flat Unstayed Circular Heads Attached by Bolts Comparison
*The example manual shows tg = 0.9943 in. This value should be shown as tg = 0.9433
in.
** See E4.16.1 for flange calculations.
b. Code Case 2695***
Determine the required thickness for a heat exchanger blind flange.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
Wo (lbs)
Wg (lbs)
111,285.07
237,635.04
0.30
1.6522
0.9433
1.6522
111,329.50
237,626.30
0.30
1.6523
0.9433
1.6523
0.04%
0.00%
0.00%
0.01%
0.00%
0.01%
C
t o (in)
t g * (in)
t (in)
Fig E4.6.1b Code Case 2695 Flat Unstayed Circular Heads Attached by Bolts Comparison
*The example manual shows tg = 0.9943 in. This value should be shown as tg = 0.9433
in.
** See E4.16.1 for flange calculations.
** The example manual shows the design rules per ASME Section VIII, Division 1
paragraphs UG-34 and Appendix 2, however the rules are the same as those provided
in ASME Section VIII, Division 2 paragraph 4.6.
*** Code Case 2695 moved to Appendix 46 in the 2019 Edition.
54
E4.6.3 - Integral Flat Head with a Centrally Located Opening
a. Division 1
Determine if the stresses in the integral flat head with a centrally located opening are
within acceptable limits.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
SH (psi)
SR (psi)
ST (psi)
52,372
8,283
20,570
52,287
8,277
20,582
0.16%
0.07%
0.06%
(Eθ)* (psi)
MH (psi)
X1
SHS (psi)
SRS (psi)
STS (psi)
269,805
1,793,573.7
0.376
21,665
7,670
3,283
14,667
12,474
19,676
3,112
9,349
11,394
14,513
269,584
1,792,262
0.376
21,621
7,663
3,286
14,642
12,454
19,672
3,114
9,362
11,393
14,517
0.08%
0.07%
0.08%
0.20%
0.09%
0.09%
0.17%
0.16%
0.02%
0.06%
0.14%
0.01%
0.03%
(SHS+ SRS) / 2 (psi)
(SHS+ STS) / 2 (psi)
SHO (psi)
SRO (psi)
STO (psi)
(SHO+ SRO) / 2 (psi)
(SHO+ STO) / 2 (psi)
Fig E4.6.3a Division 1 Integral Flat Head with a Centrally Located Opening Comparison
55
E4.7.1 - Thickness Calculation for a Type D Head
a. Division 1
Determine if the proposed Type D spherically dished bolted cover, used in a heat
exchanger application, is adequately designed considering the following design
conditions.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
tr,head (in)
Pa *(psi)
0.4174
631.89
16.25
16.25
16.6875
0.7188
50,191.8
6,180.8
101,931.1
19,611.8
28,082.6
30,580.0
-21,901.8
0.0
0.4174
629.63
16.25
16.1875
16.625
0.75
50,450.4
4,107.1
106,192.5
19,611.8
28,082.6
30,838.6
-23,975.5
0.0
0.00%
0.36%
0.00%
0.39%
0.38%
4.16%
0.51%
50.49%
4.01%
0.00%
0.00%
0.84%
8.65%
0.00%
Jgs (in2)
Tgs (in)
Fo,int (in)
3.8543
4.0154
4.01%
2.2132
0.2117
2.2539
0.2117
1.81%
0.00%
Jo,int (in2)
To,int (in)
Fo,ext (in)
1.1563
1.1661
0.84%
1.5577
0.3031
1.5621
0.3031
0.28%
0.02%
Jo,ext (in2)
To,ext (in)
0.8282
0.9066
8.65%
1.5124
2.2132
1.5517
2.2539
2.53%
1.81%
Flange ID (in)
Gasket ID **(in)
G ** (in)
hG (in)
Mo,int, App 2 (in-lbf)
Mo,ext, App 2 (in-lbf)
Mgs, App 2 (in-lbf)
Mr,int (in-lbf)
Mr,ext (in-lbf)
Mo,tubeside (in-lbf)
Mo,shellside (in-lbf)
Fgs (in)
T
Fig E4.7.1a Division 1 Spherically Dished Cover Comparison
* The example manual solution shows Pa = 544.4 psi. This should be 629.63 psi based
on the equation and values shown.
** The example manual states the gasket inner diameter is 16.1875 in, but uses the
flange inner diameter as 16.25 in. In COMPRESS, the gasket inner diameter must be
greater than or equal to the flange inner diameter. The example was modeled in
COMPRESS using Gasket ID = Flange ID = 16.25 in
56
E4.11.1 - Partial Jacket
a. Division 1
Design a partial jacket to be installed on the outside diameter of a section of a tower.
i.
Comparison of results
Parameter
Rj (in)
ts (in)
Rs (in)
trj (in)
jspecified (in)
j (in)*
trc (in)**
Y (in)***
Z (in)****
COMPRESS
48.125
0.875
46.0
0.4876
2.125
3.6174
1.3357
1.6786
-
ASME
48.125
0.875
46.0
0.4876
2.125
3.5549
1.3634
1.3125
0.875
Difference
0.00%
0.00%
0.00%
0.00%
0.00%
1.73%
2.03%
21.81%
-
Fig E4.11.1 Division 1 Partial Jacket Comparison
* The example manual uses tj = 0.5”. This value should consider corrosion and use
tj = 0.375”.
** The example manual incorrectly uses Rj = 48.125” instead of Rs = 46” in the
calculation of trc.
*** The example manual does not consider jacket corrosion on the inner fillet
weld. Additionally, the governing shell thickness value should consider the vessel
shell thickness at the outer weld location, ts = 1".
**** COMPRESS determines the minimum required weld size for each weld
individually.
57
E4.12.1 - Unreinforced Vessel of Rectangular Cross Section
Design a rectangular vessel per Appendix 13, Fig. 13-2(a) Sketch (1).
i. Comparison of results
Parameter
Lv /h*
em
eb
ci (in)
co (in)
3
I1 (in )
I2 (in3 )
𝛼
K
Sms (psi)
SbNi (psi)
SbNo (psi)
SbsQi (psi)
SbsQo (psi)
Sml (psi)
SbNi (psi)
SbNo (psi)
SbsQi (psi)
SbsQo (psi)
STNi (psi)
STNo (psi)
STsQi (psi)
STsQo (psi)
STMi
STMo
STlQi
STlQo
(psi)
(psi)
(psi)
(psi)
ASME
Difference
4.2368
4.21
0.5818
0.5818
0.5818
0.5818
0.63%
0.00%
0.4375
0.4375
0.00%
0.4375
0.0558
0.0558
0.7763
0.7763
0.4375
0.0558
0.0558
0.7763
0.7763
2,171
-1,831
1,831
19,482
-19,482
2,898
-27,299
27,299
19,482
-19,482
341
2,171.4
-1,831.7
1,831.7
19,490.8
-19,490.8
2,897.4
-27,310.9
27,310.9
19,490.8
-19,490.8
339.7
4,002
21,653
-17,310
-24,401
30,197
22,379
4,003.1
21,662.2
-17,319.4
-24,413.5
30,208.3
22,388.2
-16,593.4
0.00%
0.00%
0.00%
0.00%
0.00%
0.02%
0.04%
0.04%
0.05%
0.05%
0.02%
0.04%
0.04%
0.05%
0.05%
0.38%
0.03%
0.04%
0.05%
0.05%
0.04%
0.04%
0.06%
COMPRESS
-16,584
0.00%
Fig E4.12.1 Division 1 Unreinforced Vessel of Rectangular Cross Section Comparison
* COMPRESS includes corrosion in both Lv and h when calculating the aspect ratio.
The example problem only considers corrosion in the h value.
58
E4.15.1 - Horizontal Vessel with Zick's Analysis
This example was modeled in COMPRESS with Code Case 2695 active to compare
results with the Division 2 procedure shown in the example manual.
a. Code Case 2695**
Determine if the stresses in the horizontal vessel induced by the proposed saddle
supports are within acceptable limits.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
M1 * (in-lbf)
M2 * (in-lbf)
s1 (psi)
s2 (psi)
s3 (psi)
s4 (psi)
T (lbs)
t2 (psi)
x1, x2 (in)
s6 (psi)
s7 (psi)
Fh (lbs)
-371,880.3
1,388,595.9
11,230.0
11,539.0
11,755.0
11,178.0
33,532.9
415.00
7.4302
-58.00
-653.00
10544.90
-356,913.7
1,414,775.7
11,227.2
11,541.7
11,740.5
11,186.4
33,746.5
417.60
7.4302
-57.50
-653.40
10545.10
4.19%
1.85%
0.02%
0.02%
0.12%
0.08%
0.63%
0.62%
0.00%
0.87%
0.06%
0.00%
Fig E4.15.1 Code Case 2695 Horizontal Vessel with Zick's Analysis Comparison
* The example manual uses invalid dimensions, specifically for ho and t. In order to
model the vessel in COMPRESS with similar dimensions, Rating mode was used with
t = 3 in and ho = 18 in. The example uses ho = 16.5 in based on the outer diameter
Do= 66 in using the 2:1 head ratio:
2=
𝐷𝑜
𝐷𝑜 66
→ ℎ𝑜 =
=
= 16.5 𝑖𝑛
2ℎ𝑜
4
4
ℎ = ℎ𝑜 − 𝑡 = 16.5 − 3 = 13.5 𝑖𝑛
𝐷
→ 𝐷 = 4ℎ = 4 ∗ 13.5 = 54 𝑖𝑛
2ℎ
COMPRESS calculates ho as:
2=
𝐷
𝐷 60
→ ℎ= =
= 15 𝑖𝑛
2ℎ
4
4
ℎ𝑜 = ℎ + 𝑡 = 15 + 3 = 18 𝑖𝑛
2=
This difference affects the stress calculations for the vessel.
** Code Case 2695 moved to Appendix 46 in the 2019 Edition.
59
E4.15.2 - Vertical Vessel, Skirt Design
This problem has been modeled using ASME Section VIII, Division 1 with Code Case
2695 active.
a. Code Case 2695
Determine if the proposed cylindrical vessel skirt is adequately designed considering
the given loading conditions.
i. Comparison of results
Parameter
COMPRESS**
ASME
Difference
ssm, tension (psi)
ssm , compression (psi)
Fxa (psi)
528.00
-3,421.00
15,144.00
Yes
528.20
-3,421.00
15,143.90
Yes
0.04%
0.00%
0.00%
-
Stress acceptance satisfied?
Fig E4.15.2 Code Case 2695 Vertical Vessel with Skirt Design Comparison
* The example manual uses Load Case 6 per Table 4.1.2 due to dead load, wind load,
and live load. COMPRESS does not evaluate live loads, deflagration loads, or snow
loads. The problem was modeled in COMPRESS using an axial force F6=-427,775 lbs
and a bending moment from a lateral force M6 = 21,900,435 in-lbf.
** Rules for external pressure were updated in the 2019 Edition. COMPRESS results
reported are from the 2017 Edition.
60
E4.16.1 - Integral Type
a. Division 1
Determine if the stresses in the heat exchanger girth flange are within acceptable limits,
considering the given design conditions.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
hT (lbf)
hG (lbf)
hD (lbf)
HD (lbf)
H (lbf)
HP (lbf)
HT (lbf)
Wm1 (lbf)
Wm2 (lbf)
1.6875
0.8750
2.1563
73,023.40
92,224.74
19,050.66
19,201.35
111,275.41
142,997.56
1.6875
0.8750
2.1563
73,060.40
92,271.50
19,057.98
19,211.10
111,329.50
143,052.50
0.00%
0.00%
0.00%
0.05%
0.05%
0.04%
0.05%
0.05%
0.04%
Am1 (in2)
4.451
4.4532
0.05%
5.7199
5.7221
0.04%
13.288
13.288
0.00%
237,598.77
3.5294
206,528.30
207,898.90
0.7419
2.20
17.0787
0.9362
17,781.0
6,151.0
5,548.0
17,899.0
6,192.0
5,585.0
Yes
0.8358
0.7448
237,626.30
3.5294
206,634.60
207,923
0.7419
2.20
17.0665
0.9362
17,789.3
6,153.9
5,553.8
17,900.3
6,192.0
5,588.3
Yes
0.8319
0.7403
0.01%
0.00%
0.05%
0.01%
0.00%
0.00%
0.07%
0.00%
0.05%
0.05%
0.10%
0.01%
0.00%
0.06%
0.47%
0.61%
2
Am2 (in )
2
Ab (in )
W (lbf)
Bsmax (in)
Mo (in-lbf)
Mg (in-lbf)
h/ho
g/go
d (in3)
L
SH (oper) (psi)
SR (oper) (psi)
ST (oper) (psi)
SH (gasket seating) (psi)
SR (gasket seating) (psi)
ST (gasket seating) (psi)
Stress acceptance satisfied?
Jo ***
Jg ***
Fig E4.16.1a Division 1 Integral Type Flange Design Comparison
61
𝜋
* The example manual uses 4 in the bolt load and flange design equations even though
0.785 is specified per ASME Section VIII, Division 1 Appendix 2. COMPRESS uses
0.785.
*** Per ASME Section II-D, Table TM-1 for SA-105 (Carbon steels with C > 0.30%),
EDesign T = 25.85E+06 psi and EAmbient T = 29.2E+06 psi. The example manual shows
EDesign T = 26.0E+06 psi and EAmbient T = 29.4E+06 psi. This affects the rigidity
calculations.
62
b. Code Case 2695****
Determine if the stresses in the heat exchanger girth flange are within acceptable limits,
considering the given design conditions.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
Wo (lbs)
Wgs (lbs)
111,285.07
143,070.09
111,329.50
143,052.50
0.04%
0.01%
Am (in2)
5.7228
5.7221
0.01%
Ab (in2)
Wg (lbs)
HD (lbf)
H (lbf)
HT (lbf)
HG (lbf)
hT (lbf)
hG (lbf)
hD (lbf)
Bsmax (in)
Mo (in-lbf)
Mg (in-lbf)
F **
13.288
13.288
0.00%
237,635.04
73,023.40
92,224.74
19,201.35
19,060.32
1.6875
0.8750
2.1563
3.5294
206,536.80
207,930.70
0.7695
0.2687
0.9368
17,769.0
6,152.0
5,546.0
17,889.0
6,194.0
5,584.0
Yes
0.836
0.7451
237,626.30
73,060.40
92,271.50
19,211.10
19,058.00
1.6875
0.8750
2.1563
3.5294
206,634.60
207,923
0.7677
0.2680
0.9362
17,789.3
6,153.9
5,553.8
17,900.3
6,192.3
5,588.3
Yes
0.8319
0.7403
0.00%
0.05%
0.05%
0.05%
0.01%
0.00%
0.00%
0.00%
0.00%
0.05%
0.00%
0.23%
0.26%
0.06%
0.11%
0.03%
0.14%
0.06%
0.03%
0.08%
0.49%
0.65%
e ** (in-1 )
L **
SH (oper) (psi)
SR (oper) (psi)
ST (oper) (psi)
SH (gasket seating) (psi)
SR (gasket seating) (psi)
ST (gasket seating) (psi)
Stress acceptance satisfied?
Jo ***
Jg ***
Fig E4.16.1b Code Case 2695 Integral Type Flange Design Comparison
𝜋
* The example manual uses 4 in the flange force equations even though 0.785 is
specified per ASME Section VIII, Division 1 Appendix 2. COMPRESS uses 0.785.
** The example manual shows the solution for F, and thus e and L, using ASME
Section VIII, Division 1 Appendix 2. In COMPRESS with Code Case 2695 active, F is
interpreted using ASME Section VIII, Division 2 Table 4.16.5 so F = 0.7695. The
63
example shows F per ASME Section VIII, Division 2 Table 4.16.5 as 0.7695, however
this value is not used in subsequent calculations. This causes differences shown in the
stress calculations.
*** Per ASME Section II-D, Table TM-1 for SA-105 (Carbon steels with C > 0.30%),
EDesign T = 25.85E+06 psi and EAmbient T = 29.2E+06 psi. The example manual shows
EDesign T = 26.0E+06 psi and EAmbient T = 29.4E+06 psi. This affects the rigidity
calculations.
**** Code Case 2695 moved to Appendix 46 in the 2019 Edition.
64
E4.16.2 - Loose Type
a. Division 1
Determine if the stresses in the ASME B16.5, Class 300, NPS 20 Slip-on Flange are
within acceptable limits given the design data.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
hT (lbf)
hG (lbf)
hD (lbf)
HD (lbf)
H (lbf)
HP (lbf)
HT (lbf)
Wm1 (lbf)
Wm2 (lbf)
2.9081
2.4161
3.4
144,140.13
173,591.06
44,303.39
29,450.93
217,894.46
61,532.49
2.9081
2.4161
3.4
144,213.20
173,679.10
44,325.87
29,465.90
218,005.00
61,563.70
0.00%
0.00%
0.00%
0.05%
0.05%
0.05%
0.05%
0.05%
0.05%
Am1 (in2)
8.7158
8.7202
0.05%
2.4613
2.4625
0.05%
22.296
22.296
0.00%
387,647.23
8.3560
682,762.70
936,594.50
0.2302
1.00
5.4641
4.1032
3,864.0
4,080.0
17,278.0
5,301.0
5,596.0
23,701.0
No
1.6486
2.0021
387,702.50
8.3560
683,110.50
936,728
0.2302
1.00
5.4642
4.1032
3,866.4
4,082.0
17,286.6
5,301.9
5,597.5
23,704.6
No
1.6399
1.9887
0.01%
0.00%
0.05%
0.01%
0.00%
0.00%
0.00%
0.00%
0.06%
0.05%
0.05%
0.02%
0.03%
0.02%
0.53%
0.67%
2
Am2 (in )
2
Ab (in )
W (lbf)
Bsmax (in)
Mo (in-lbf)
Mg (in-lbf)
h/ho
g/go
d (in3)
L
SH (oper) (psi)
SR (oper) (psi)
ST (oper) (psi)
SH (gasket seating) (psi)
SR (gasket seating) (psi)
ST (gasket seating) (psi)
Stress acceptance satisfied?
Jo **
Jg **
Fig E4.16.2a Division 1 Loose Type Flange Design Comparison
* The example manual uses a flange thickness of 2.44 in, which is less than the
minimum required flange thickness per Appendix 2. This problem was modeled in
65
Rating mode with t = 2.44 in and in Design mode with t = 3.5 in. The results shown
above were determined in Rating mode.
𝜋
* The example manual uses 4 in the flange force equations even though 0.785 is
specified per ASME Section VIII, Division 1 Appendix 2. COMPRESS uses 0.785.
** Per ASME Section II-D, Table TM-1 for SA-105 (Carbon steels with C > 0.30%),
EDesign T = 25.85E+06 psi and EAmbient T = 29.2E+06 psi. The example manual shows
EDesign T = 26.0E+06 psi and EAmbient T = 29.4E+06 psi. This affects the rigidity
calculations.
66
b. Code Case 2695****
Determine if the stresses in the ASME B16.5, Class 300, NPS 20 Slip-on Flange are
within acceptable limits given the design data.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
Wo (lbs)
Wgs (lbs)
217,916.93
61,563.70
218,005.00
61,563.70
0.04%
0.00%
Am (in2)
8.7167
8.7207
0.05%
22.296
22.296
0.00%
387,658.47
144,213.20
173,679.10
29,465.90
44,325.90
2.9081
2.4161
3.4000
8.3560
682,816.90
936,621.60
3.2560
0.5996
4.0848
3,882.0
4,094.0
17,243.0
5,325.0
5,616.0
23,652.0
Yes
1.6455
1.9982
387,702.50
144,140.13
173,591.06
29,450.93
44,325.87
2.9081
2.4161
3.4000
8.3560
683,110.50
936,728
3.2609
0.6005
4.1032
3,866.4
4,082.0
17,286.6
5,301.9
5,597.5
23,704.6
Yes
1.6399
1.9887
0.01%
0.05%
0.05%
0.05%
0.00%
0.00%
0.00%
0.00%
0.00%
0.04%
0.01%
0.15%
0.15%
0.45%
0.40%
0.29%
0.25%
0.44%
0.33%
0.22%
0.34%
0.48%
2
Ab (in )
Wg (lbs)
HD (lbf)
H (lbf)
HT (lbf)
HG (lbf)
hT (lbf)
hG (lbf)
hD (lbf)
Bsmax (in)
Mo (in-lbf)
Mg (in-lbf)
FL **
e ** (in-1 )
L **
SH (oper) (psi)
SR (oper) (psi)
ST (oper) (psi)
SH (gasket seating) (psi)
SR (gasket seating) (psi)
ST (gasket seating) (psi)
Stress acceptance satisfied?
Jo ***
Jg ***
Fig E4.16.2a Division 1 Loose Type Flange Design Comparison
* The example manual uses a flange thickness of 2.44 in, which is less than the
minimum required flange thickness per Appendix 2. This problem was modeled in
Rating Mode with t = 2.44 in and in Design mode with t = 3.5 in. The results shown
above were determined in Rating mode.
67
𝜋
* The example manual uses 4 in the flange force equations even though 0.785 is
specified per ASME Section VIII, Division 1 Appendix 2. COMPRESS uses 0.785.
** The example manual shows the solution for FL, and thus e and L, using ASME
Section VIII, Division 1 Appendix 2. In COMPRESS with Code Case 2695 active, FL
is interpreted using ASME Section VIII, Division 2 Table 4.16.5 so FL = 3.256. The
example shows FL per ASME Section VIII, Division 2 Table 4.16.5 as 3.2556,
however this value is not used in subsequent calculations. This causes differences
shown in the stress calculations.
*** Per ASME Section II-D, Table TM-1 for SA-105 (Carbon steels with C >
0.30%), EDesign T = 25.85E+06 psi and EAmbient T = 29.2E+06 psi. The example manual
shows EDesign T = 26.0E+06 psi and EAmbient T = 29.4E+06 psi. This affects the rigidity
calculations.
**** Code Case 2695 moved to Appendix 46 in the 2019 Edition.
68
E4.18.1 - U-Tube Tubesheet Integral with Shell and Channel
Design a U-Tube heat exchanger as shown in ASME Section VIII, Division 1 Fig
UHX-12.1(a).
a. Division 1
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
MTS (in.-lb/in)
-160.13
567.98
35,999.00
N/A
-170.00
-17,576.00
17,746.00
1,343.00
25,274.00
26,616.00
-160.00
568.00
36,000.00
3,350.00
-170.00
-17,600.00
17,700.00
1,340.00
25,300.00
26,600.00
0.08%
0.00%
0.00%
N/A
0.00%
0.14%
0.26%
0.22%
0.10%
0.06%
M (in.-lb/in)
s (psi)
t * (psi)
ssm (psi)
ssb (psi)
ss (psi)
scm (psi)
scb (psi)
sc (psi)
Fig E4.18.1 Division 1 U-Tube Tubesheet Integral with Shell and Channel
* Per UHX-12.5.9, the shear stress calculation is not required if UHX-12.5.9(a) is
satisfied. As UHX-12.5.9(a) is satisfied, the shear stress calculation is not performed in
COMPRESS.
**The example manual only shows results for Load Case 1, which is compared above
to Load Case 1 from the COMPRESS solution.
69
E4.18.2 - U-Tube Tubesheet Gasketed with Shell and Channel
Design a U-Tube heat exchanger as shown in ASME Section VIII, Division 1 Fig
UHX-12.1(d).
a. Division 1
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
MTS (in.-lb/in)
-784.95
2,384.80
31,217.00
N/A
-785.00
2,380.00
31,200.00
2,960.00
0.01%
0.20%
0.05%
N/A
M (in.-lb/in)
s (psi)
t (psi)
Fig E4.18.2 Division 1 U-Tube Tubesheet Gasketed with Shell and Channel
* Per UHX-12.5.9, the shear stress calculation is not required if UHX-12.5.9(a) is
satisfied. As UHX-12.5.9(a) is satisfied, the shear stress calculation is not performed in
COMPRESS.
**The example manual only shows results for Load Case 1, which is compared above
to Load Case 1 from the COMPRESS solution.
70
E4.18.3 - U-Tube Tubesheet Gasketed with Shell and Channel
Design a U-Tube heat exchanger as shown in ASME Section VIII, Division 1 Fig
UHX-12.1(d).
a. Division 1
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
MTS (in.-lb/in)
2,250.98
26,682.00
39,950.00
N/A
2,250.00
26,700.00
39,900.00
3,770.00
0.04%
0.07%
0.13%
N/A
M (in.-lb/in)
s (psi)
t (psi)
Fig E4.18.3 Division 1 U-Tube Tubesheet Gasketed with Shell and Channel
* Per UHX-12.5.9, the shear stress calculation is not required if UHX-12.5.9(a) is
satisfied. As UHX-12.5.9(a) is satisfied, the shear stress calculation is not performed in
COMPRESS.
**The example manual only shows results for Load Case 1, which is compared above
to Load Case 1 from the COMPRESS solution.
71
E4.18.4 - U-Tube Tubesheet Gasketed with Shell and Channel, Extended as
Flange
Design a U-Tube heat exchanger as shown in ASME Section VIII, Division 1 Fig
UHX-12.1(e).
a. Division 1
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
MTS (in.-lb/in)
16467.24
30044.91
38176
N/A
0
-56,955.00
56,955.00
31,353.43
39,838.00
16500
30000
38200
4880
0
-57,000.00
57,000.00
31,400.00
39,800.00
0.20%
0.15%
0.06%
N/A
0.00%
0.08%
0.08%
0.15%
0.10%
M (in.-lb/in)
s (psi)
t (psi)
scm (psi)
scb (psi)
sc (psi)
MEP (in.-lb/in)
s
(psi)
Fig E4.18.4 Division 1 U-Tube Tubesheet Gasketed with Shell and Channel, Extended as Flange
* Per UHX-12.5.9, the shear stress calculation is not required if UHX-12.5.9(a) is
satisfied. As UHX-12.5.9(a) is satisfied, the shear stress calculation is not performed in
COMPRESS.
**The example manual only shows results for Load Case 2, which is compared above
to Load Case 2 from the COMPRESS solution.
72
E4.18.5 - Fixed Tubesheet Exchanger, Configuration b, Tubesheet Integral with
Shell, Extended as a Flange and Gasketed on the Channel side
Design a fixed tubesheet heat exchanger as shown in ASME Section VIII, Division 1
Fig UHX-13.1(b).
i. Comparison of Results
Step 5 (Operating conditions 2 and 4):
Parameter
COMPRESS
ASME
Difference
W*6,8 (lbs)
366,512.0
512,937.0
28.55%
E4.18.5 - Step 5 W* Comparison
Per Table UHX-8.1, W* for configuration (b) load cases 4-7 is Wc evaluated per
Appendix 2. In the example manual, W* for Operating conditions 2 and 4 (load cases 6
and 8) is 512,937 lbs. In COMPRESS, W* for load cases 6 and 8 is calculated as:
(8.785 + 20.536) ∗ 25,000
(𝐴𝑚 + 𝐴𝑏 )𝑆𝑎
=
= 366,512 𝑙𝑏𝑠
2
2
where W* is evaluated per Appendix 2 with Pt = 0 psi. This is reported in the
Tubesheet Effective Bolt Load Summary table in the Tubesheet report in COMPRESS.
This difference affects all of the subsequent calculations for load cases 6 and 8.
𝑊∗ =
Step 8 Shear Stress Calculation
* Per UHX-12.5.9, the shear stress calculation is not required if UHX-12.5.9(a) is
satisfied. As UHX-12.5.9(a) is satisfied, the shear stress calculation is not performed in
COMPRESS.
Step 9 (Design condition 2):
Parameter
st,min
(psi)
COMPRESS
ASME
Difference
269
0
100.00%
E4.18.5 - Step 9 𝝈𝒕,𝒎𝒊𝒏 Comparison
The value for 𝜎𝑡,𝑚𝑖𝑛 reported in the Step 9 Summary for Design condition 2 should be
269 psi. COMPRESS reports 269 psi. This does not affect any subsequent calculations.
73
Step 10 (Operating conditions):
Parameter
COMPRESS
ASME
Difference
Sps,s (psi)
54,400
36,200
50.28%
E4.18.5 - Step 10 Sps,s Comparison
The correct Sps, s value for the shell is 54,400 psi per UG-23(e). In the example manual,
Sps,s is reported as 36,200 psi for Operating load cases 1-4. COMPRESS uses Sps, s =
54,400 psi. This does not affect any subsequent calculations.
Step 11 & 12 (Design Condition 1):
The Elastic Plastic analysis per UHX-13.7 is performed for load case 1 and the final
result is as follows:
Parameter
|s|
(psi)
COMPRESS
ASME
Difference
25,761
25,752
0.03%
E4.18.5 - Step 12 𝝈 Comparison
74
E4.18.6 - Fixed Tubesheet Exchanger, Configuration b, Tubesheet Integral with
Shell, Extended as a Flange and Gasketed on the Channel Side
Design a fixed tubesheet heat exchanger as shown in ASME Section VIII, Division 1
Fig UHX-13.1(b).
i. Comparison of Results
Data Inputs Summary
Parameter
COMPRESS
COMPRESS w/
FUDM *
ASME
S (psi)
Syt (psi)
18,500
19,000
18,450
18,950
18,450
18,950
Ss,1 (psi)
18,500
18,450
18,450
E4.18.6 - Data Summary Comparison
* In the example manual, the Data Summaries for the Tubes, Tubesheet, and Shell
show unrounded allowable stresses. Per note (b) under Table 1A in ASME Section IID 2007 and later, interpolated stress values should be rounded to the same number of
decimal places as the value at the higher temperature between which values are being
interpolated. The correct values are: S = 18,500 psi, Sy,t = 19,000 psi, and Ss,1 = 18,500
psi. COMPRESS uses these values. For purposes of comparing against the published
example, a full user defined material was used in COMPRESS with the rounding
option in Set Mode >> General 2 >> Full User Defined Materials turned off.
Step 1 d* Calculation
Parameter
COMPRESS
ASME
Difference
d* (in)
0.6399
0.6392
0.11%
E4.18.6 - Step 1 d* Comparison
Per UHX-11.5.1, d* is calculated as:
𝐸𝑡𝑇 𝑆𝑡𝑇
𝑑∗ = max {[𝑑𝑡 − 2𝑡𝑡 ( ) ( ) 𝜌] , [𝑑𝑡 − 2𝑡𝑡 ]}
𝐸
𝑆
COMPRESS calculates d* as:
25.75𝐸6 12,588
𝑑 ∗ = max {[. 75 − 2 ∗ 0.083 ∗ (
)(
) ∗ 0.972] , [. 75 − 2 ∗ 0.083]}
25.75𝐸6 18,450
= 0.63991 𝑖𝑛
Using the values from the example manual, d* should be:
25.75𝐸6 12,588
𝑑∗ = max {[. 75 − 2 ∗ 0.083 ∗ (
)(
) ∗ 0.972] , [. 75 − 2 ∗ 0.083]}
25.75𝐸6 18,450
= 0.63991 𝑖𝑛
instead of 0.6392 as reported in Step 2. This difference affects subsequent calculations.
75
Step 2 K*s Calculation
Parameter
COMPRESS
ASME
Difference
K*s (lb/in)
5,868,479.8
5,876,500.0
0.14%
E4.18.6 - Step 2 K*s Comparison
The calculation for K*s= 5,876,500 lb/in includes corroded shell band lengths (l1=
9.75+0.125 = 9.875= l'1). Corrosion will not increase the shell band length, so l1= 9.75=
l'1. In COMPRESS corrosion is not considered on the shell band length, so K*s=
5,868,479.8 lb/in.
Step 5 (Operating conditions 2 and 4):
Parameter
COMPRESS
ASME
Difference
W*6,8 (lbs)
665,753.1
808,478.0
17.65%
E4.18.6 - Step 5 W* Comparison
Per Table UHX-8.1, W* for configuration (b) load cases 4-7 is Wc evaluated per
Appendix 2. In the example manual, W* for Operating conditions 2 and 4 (load cases 6
and 8) is 808,478 lbs. In COMPRESS, W* for load cases 6 and 8 is calculated as:
(20.9203 + 32.34) ∗ 25,000
(𝐴𝑚 + 𝐴𝑏 )𝑆𝑎
=
= 665,753 𝑙𝑏𝑠
2
2
where W* is evaluated per Appendix 2 with Pt = 0 psi. This is reported in the
Tubesheet Effective Bolt Load Summary table in the Tubesheet report in COMPRESS.
This difference affects all of the subsequent calculations for load cases 6 and 8.
𝑊∗ =
Step 8 Shear Stress Calculation
Per UHX-12.5.9, the shear stress calculation is not required if UHX-12.5.9(a) is
satisfied. As UHX-12.5.9(a) is satisfied, the shear stress calculation is not performed in
COMPRESS.
Step 10 (Operating conditions):
Parameter
COMPRESS
ASME
Difference
Sps,s (psi)
54,400
36,900
47.43%
E4.18.6 - Step 10 Sps,s Comparison
The correct Sps, s value for the shell is 54,400 psi per UG-23(e). In the example manual,
Sps,s is reported as 36,900 psi for Operating load cases 1-4. COMPRESS uses Sps, s =
54,400 psi. This does not affect any subsequent calculations.
76
E4.18.7 - Fixed Tubesheet Exchanger, Configuration a
Design a fixed tubesheet heat exchanger as shown in ASME Section VIII, Division 1
Fig UHX-13.1(a).
i. Comparison of Results
Step 8 Shear Stress Calculation
Per UHX-12.5.9, the shear stress calculation is not required if UHX-12.5.9(a) is
satisfied. As UHX-12.5.9(a) is satisfied, the shear stress calculation is not performed in
COMPRESS.
Step 9 (Design condition 5):
Parameter
COMPRESS
ASME
Difference
Stb (psi)
7,836
7,836.5
0.006%
Step 12 (Design condition 1):
Parameter
𝜆s
E*s (psi)
COMPRESS
38,952,242
20,215,847
77
ASME
Difference
39,000,000
20,200,000
0.12%
0.08%
E4.18.8 - Stationary Tubesheet Gasketed with Shell and Channel; Floating
Tubesheet Gasketed, Not Extended as a Flange
Design a floating tubesheet heat exchanger as shown in ASME Section VIII, Division
1 Fig UHX-14.2(d) and Fig UHX-14.3(C).
i. Comparison of Results
Stationary Tubesheet - Step 7 (Operating condition 1):
Parameter
|s|
COMPRESS
(psi)
16,420
ASME
16,400
Difference
0.12%
Step 7 (Operating condition 2):
Parameter
|s|
COMPRESS
(psi)
27,366
ASME
27,400
Difference
0.12%
Step 7 (Operating condition 3):
Parameter
|s|
(psi)
COMPRESS
10,947
ASME
10,900
Difference
0.43%
Step 8 Shear Stress Calculation
Per UHX-12.5.9, the shear stress calculation is not required if UHX-12.5.9(a) is
satisfied. As UHX-12.5.9(a) is satisfied, the shear stress calculation is not performed in
COMPRESS.
Step 9 (Operating conditions 1, 2, and 3):
Parameter
COMPRESS
Stb (psi)
10,666
78
ASME
10,700
Difference
0.32%
Floating Tubesheet - Step 7 (Operating condition 1):
Parameter
COMPRESS
-10.17
Q2 (in-lb/in)
|s|
(psi)
9,495
ASME
Difference
-10.2
9,500
0.29%
0.05%
ASME
Difference
16.95
15,800
0.29%
0.16%
Step 7 (Operating condition 2):
Parameter
Q2 (in-lb/in)
|s|
(psi)
COMPRESS
16.90
15,826
79
E4.18.9 - Stationary Tubesheet Gasketed with Shell and Channel; Floating
Tubesheet Integral
Design a floating tubesheet heat exchanger as shown in ASME Section VIII, Division
1 Fig UHX-14.2(d) and Fig UHX-14.3(A).
i. Comparison of Results
Front Stationary Tubesheet - Step 7 (Operating condition 1):
Parameter
|s|
COMPRESS
(psi)
10,976
ASME
11,000
Difference
0.22%
Step 7 (Operating condition 2):
Parameter
|s|
COMPRESS
(psi)
6,430
ASME
6,420
Difference
0.16%
Step 7 (Operating condition 3):
Parameter
|s|
(psi)
COMPRESS
16,510
ASME
16,500
Difference
0.06%
Step 8 Shear Stress Calculation
Per UHX-12.5.9, the shear stress calculation is not required if UHX-12.5.9(a) is
satisfied. As UHX-12.5.9(a) is satisfied, the shear stress calculation is not performed in
COMPRESS.
80
E4.18.10 - Stationary Tubesheet Gasketed with Shell and Channel; Floating
Tubesheet Internally Sealed
Design a floating tubesheet heat exchanger as shown in ASME Section VIII, Division
1 Fig UHX-14.1(c), Fig UHX-14.2(d), and Fig UHX-14.3(D).
i. Comparison of Results
Front Stationary Tubesheet - Step 7 (Operating condition 1):
Parameter
|s|
COMPRESS
(psi)
21,876
ASME
21,900
Difference
0.11%
Step 7 (Operating condition 2):
Parameter
|s|
COMPRESS
(psi)
18,751
ASME
18,800
Difference
0.26%
Step 7 (Operating condition 3):
Parameter
|s|
(psi)
COMPRESS
3,125
ASME
3,130
Difference
0.16%
Step 8 Shear Stress Calculation
Per UHX-12.5.9, the shear stress calculation is not required if UHX-12.5.9(a) is
satisfied. As UHX-12.5.9(a) is satisfied, the shear stress calculation is not performed in
COMPRESS.
81
E4.19.1 - U-Shaped Un-reinforced Bellows Expansion Joint and Fatigue
Evaluation
COMPRESS does not currently allow ASME Section VIII, Division 2 Heat
Exchangers so these examples were verified per ASME Section VIII, Division 1
Appendix 26.
a. Division 1
Check the acceptability of a U-shaped unreinforced bellows expansion joint for the
given design conditions in accordance with ASME Section VIII, Division 1.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
tp (in)
0.04701
0.2149
0.8295
53,700
13,739
10,015
5,823
1,064
37,539
1,648.54
0.0470
0.2150
0.8300
53,700
13,738.70
10,055.50
5,819.50
1,063.80
37,573.60
1,648.70
0.02%
0.05%
0.06%
0.00%
0.00%
0.40%
0.06%
0.02%
0.09%
0.01%
45,540
45,540
0.00%
146.74
51.19
913.00
136,551.00
1,241
146.80
51.20
913.60
136,516.30
1,246
0.04%
0.02%
0.07%
0.03%
0.40%
2
A (in )
Cp
Km *S
S1 (psi)
S2,E * (psi)
S2,I (psi)
S3 (psi)
S4 (psi)
Kb (lbf/in)
SY*
Psc
Psi
S5
S6
(psi)
(psi)
(psi)
(psi)
(psi)
Nalw **
Fig E4.19.1 Division 1 U-Shaped Unreinforced Bellows
* COMPRESS uses updated equation in the 2017 Edition and later.
** COMPRESS evaluates E @ Room Temp = 28.3E+06 psi for the Bellows Expansion
Joint per Table TM-1 for Material Group G. The example shows [email protected] Room Temp =
28.26E+06 psi
82
E4.19.2 - Toroidal Bellows Expansion Joint and Fatigue Evaluation
COMPRESS does not currently allow ASME Section VIII, Division 2 Heat
Exchangers so these examples will be verified per ASME Section VIII, Division 1
Appendix 26.
a. Division 1
Check the acceptability of a toroidal bellows for the given design conditions in
accordance with ASME Section VIII, Division 1.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
tp (in)
S1 (psi)
S'1 (psi)
S2 (psi)
S3 (psi)
S'2 (psi)
B1 *
B2 *
B3 *
Kb (lbf/in)
Psc (psi)
S5 (psi)
S6 (psi)
0.0740
13,644
14,277
4,054
8,437
15,607
3.6247
1.0025
2.3123
12,731.13
1,999.80
1,599
53,761
9,672
0.0740
13,643.60
14,277
4,054.10
8,436.80
15,606.60
3.6430
0.9970
2.3150
12,747.20
2,002
1,607.40
53,469.90
9,838
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.50%
0.55%
0.12%
0.13%
0.11%
0.52%
0.54%
1.69%
Nalw **
Fig E4.19.2 Division 1 Toroidal Bellows
* The example shows the solution for B1, B2, and B3 per ASME Section VIII, Division
2 Table 4.19.9. COMPRESS uses the ASME Section VIII, Division 1 solution per
Table 26-8 which results in slightly different values.
** COMPRESS evalutes E @ Room Temp = 28.3E+06 psi for the Bellows Expansion joint
per Table TM-1 for Material Group G. The example shows [email protected] Room Temp = 28.26E+06
psi.
83
E4.20.1 - Tube-To-Tubesheet Welds - Full Strength Welds
Determine the size and allowable axial load of full strength tube-to-tubesheet welds for
each of the joint types shown in Fig. UW-20.1.
a. Figure UW-20.1(a)
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
fw
fd
ar (in)
af (in)
Ft (lbs)
Lmax, 1-4 (lbs)
Lmax, 5-8 (lbs)
1.1385
1
0.1168
0.1168
1,412.8842
1,412.8842
2,825.7683
1.1385
1
0.1168
0.1168
1,412.9
1,412.9
2,825.8
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
Fig E4.20.1 Division 1 Tube-to-Tubesheet Full Strength Welds (a)
b. Figure UW-20.1(b)
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
fw
fd
ar (in)
ag (in)
Ft (lbs)
Lmax, 1-4 (lbs)
Lmax, 5-8 (lbs)
1.1385
1
0.0772
0.0772
1,412.8842
1,412.8842
2,825.7683
1.1385
1
0.0772
0.0772
1,412.9
1,412.9
2,825.8
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
Fig E4.20.1 Division 1 Tube-to-Tubesheet Full Strength Welds (b)
84
c. Figure UW-20.1(c)
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
fw
fd
ar (in)
af (in)
ag (in)
Ft (lbs)
Lmax, 1-4 (lbs)
Lmax, 5-8 (lbs)
1.1385
1
0.0957
0.0478
0.0478
1,412.8842
1,412.8842
2,825.7683
1.1385
1
0.0957
0.0479
0.0479
1,412.9
1,412.9
2,825.8
0.00%
0.00%
0.00%
0.21%
0.21%
0.00%
0.00%
0.00%
Fig E4.20.1 Division 1 Tube-to-Tubesheet Full Strength Welds (c)
d. Figure UW-20.1(d)
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
fw
fd
Ft (lbs)
Fg (lbs)
ff
ar (in)
ac (in)
af (in)
Lmax, 1-4 (lbs)
Lmax, 5-8 (lbs)
1.1385
1
1,412.8842
531.1854
0.6240
0.0748
0.1048
0.0748
1,412.8842
2,825.7683
1.1385
1
1,412.9
531.20
0.6240
0.0748
0.1048
0.0748
1,412.9
2,825.8
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
Fig E4.20.1 Division 1 Tube-to-Tubesheet Full Strength Welds (d)
85
E4.20.2 - Tube-To-Tubesheet Welds - Partial Strength Welds
Determine the size and allowable axial load of partial strength tube-to-tubesheet welds
for each of the joint types shown in Fig. UW-20.1.
a. Figure UW-20.1(a)
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
fw
Ft (lbs)
Fd * (lbs)
fd *
ar (in)
af (in)
Fg (lbs)
Ff ** (lbs)
Lmax,, all cases (lbs)
1.1385
1,412.8842
799.6216
0.5660
0.0682
0.0682
0.0000
800.9675
800.9675
1.1385
1,412.9
800.0
0.5662
0.0682
0.0682
0.0000
800.0
800.0
0.00%
0.00%
0.05%
0.04%
0.00%
0.00%
0.00%
0.12%
0.12%
Fig E4.20.2 Division 1 Tube-to-Tubesheet Partial Strength Welds (a)
* In COMPRESS, Fd (or WT) is evaluated for each load case in the UHX-13.5.9 Step 9
& UW-20 Tube-To-Tubesheet Joint Loads calculations. The governing case in
COMPRESS is compared above to the load given in the example manual.
** Ff is approximated in the example as:
𝐹𝑓 = min[(𝐹𝑑 − 𝐹𝑔 ), 𝐹𝑇 ]
COMPRESS calculates Ff per UW-20.3 as:
𝐹𝑓 = 0.55𝜋𝑎𝑓 (𝑑𝑜 + 0.67𝑎𝑓 )𝑆𝑤
86
b. Figure UW-20.1(b)
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
fw
Ft (lbs)
Fd * (lbs)
fd *
ar (in)
ag (in)
Fg (lbs)
Ff (lbs)
Lmax,, all cases (lbs)
1.1385
1,412.8842
799.6216
0.5660
0.0446
0.0446
800.9477
0.0000
800.9477
1.1385
1,412.9
800.0
0.5662
0.0446
0.0446
797.3
0.0
797.3
0.00%
0.00%
0.05%
0.04%
0.00%
0.00%
0.46%
0.00%
0.46%
Fig E4.20.2 Division 1 Tube-to-Tubesheet Partial Strength Welds (b)
* In COMPRESS, Fd (or WT) is evaluated for each load case in the UHX-13.5.9 Step 9
& UW-20 Tube-To-Tubesheet Joint Loads calculations. The governing case in
COMPRESS is compared above to the load given in the example manual.
87
c. Figure UW-20.1(c)
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
fw
Ft (lbs)
Fd * (lbs)
fd *
ar (in)
af (in)
ag (in)
Fg (lbs)
Ff (lbs)
Lmax,, all cases (lbs)
1.1385
1,412.8842
799.6216
0.5660
0.0549
0.0274
0.0274
486.1205
314.5485
800.6690
1.1385
1,412.9
800.0
0.5662
0.0549
0.0275
0.0275
486.1
313.9
800.0
0.00%
0.00%
0.05%
0.04%
0.00%
0.36%
0.36%
0.00%
0.00%
0.08%
Fig E4.20.2 Division 1 Tube-to-Tubesheet Partial Strength Welds (c)
* In COMPRESS, Fd (or WT) is evaluated for each load case in the UHX-13.5.9 Step 9
& UW-20 Tube-To-Tubesheet Joint Loads calculations. The governing case in
COMPRESS is compared above to the load given in the example manual.
d. Figure UW-20.1(d)
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
fw
Ft (lbs)
Fg (lbs)
Fd * (lbs)
fd *
ff
ar (in)
ac (in)
af (in)
Ff (lbs)
Lmax,, all cases (lbs)
1.1385
1,412.8842
531.1854
799.6216
0.5660
0.3357
0.0236
0.0536
0.0236
269.2472
800.4327
1.1385
1,412.9
531.2
800.0
0.5662
0.3360
0.0236
0.0536
0.0236
268.8
800.0
0.00%
0.00%
0.00%
0.05%
0.04%
0.09%
0.00%
0.00%
0.00%
0.00%
0.05%
Fig E4.20.2 Division 1 Tube-to-Tubesheet Partial Strength Welds (d)
* In COMPRESS, Fd (or WT) is evaluated for each load case in the UHX-13.5.9 Step 9
& UW-20 Tube-To-Tubesheet Joint Loads calculations. The governing case in
COMPRESS is compared above to the load given in the example manual.
88
E6.1 - Postweld Heat Treatment of a Pressure Vessel
a. Division 1
Establish the post-weld heat treatment (PWHT) requirements for a process tower given
the design conditions.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
tTop Head (in)
tbottom Head (in)
tshell (in)
2.1892
2.2184
4.4978
2.1891
2.2183
4.4977
0.00%
0.00%
0.00%
Fig E6.1 Division 1 PWHT Governing Thickness
* COMPRESS does not provide any specifications on the operation of PWHT, only the
governing thickness requirements per UCS-56 and UW-40(f). In COMPRESS, PWHT
is determined to be mandatory for this example and must be active for the entire vessel
in order to perform the Code Calculations. Also reference the PWHT note in the
Settings Summary.
89
E6.2 - Out-of-Roundness of a Cylindrical Forged Vessel
a. Division 1
Establish the reduced permissible operating pressure requirements considering the
following design conditions.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
t (in)
6.6675
6.6675
0.00%
Fig E6.2 Division 1 Forged Vessel Required Thickness
* COMPRESS does not currently consider out-of-roundness for vessels. However, the
required thickness of the forged cylindrical shell was calculated in COMPRESS.
90
E7.1 - NDE: Establish Joint Efficiencies, RT-1
a. Division 1
Design an RT-1 vessel.
i. Comparison of results
a. The vessel is given an RT-1 marking in COMPRESS per UG-116(e). See the
RT marking in the Radiography Summary. Joint efficiency values can be viewed
on each component report. Note: not all joint efficiency values are reported in
COMPRESS (i.e. nozzle to shell Category D welds).
b. COMPRESS only specifies joint types 1, 2, and 7.
c. Nozzles placed on sump heads are not available in COMPRESS
d. Joint identifier 7: the longitudinal seam on the Boot Nozzle. In the example
manual, the longitudinal seam of F-Boot Nozzle (N7) is specified as Category A
Type 1 with joint efficiency E = 1.0. COMPRESS does not specify joint types for
longitudinal seams of nozzles. A user defined joint efficiency can be specified in
the 'Nozzle Calculations' dialog.
91
E7.2 - NDE: Establish Joint Efficiencies, RT-2
a. Division 1
Design an RT-2 vessel.
i. Comparison of results
a. The vessel is given an RT-2 marking in COMPRESS per UG-116(e). See the
RT marking in the Radiography Summary. Joint efficiency values can be viewed
in each component report. Note: not all joint efficiency values are reported in
COMPRESS (i.e. nozzle to shell Category D welds).
b. COMPRESS only specifies joint types 1, 2, and 7.
c. Nozzles placed on sump heads are not available in COMPRESS
d. Joint identifier 7: the longitudinal seam on the Boot Nozzle. In the example
manual, the longitudinal seam of F-Boot Nozzle (N7) is specified as Category A
Type 2 with joint efficiency E = 0.9. COMPRESS does not specify joint types for
longitudinal seams of nozzles. A user defined joint efficiency can be specified in
the 'Nozzle Calculations' dialog. If the user defined joint efficiency is specified as
lss than 1, the overall vessel RT marking will be adjusted accordingly.
e. Joint identifier 14: the circumferential seam between the G-Process Outlet
nozzle and the attached flange. In the example manual, the Category C weld on
G-Process Outlet Nozzle (N8) is Type 3 and has a joint efficiency E = 0.60. In
COMPRESS, Type 3 joints are not specified. A user defined value was entered for
the circumferential joint efficiency as E = 0.6. Note this joint is exempt per
UW-11(a)(4).
92
E7.3 - NDE: Establish Joint Efficiencies, RT-3
Design an RT-3 vessel.
i. Comparison of results
a. The vessel is given an RT-3 marking in COMPRESS per UG-116(e). See the
RT marking in the Radiography Summary. Joint efficiency values can be viewed
on each component report. Note: not all joint efficiency values are shown in
COMPRESS (i.e. nozzle to shell Category D welds).
b. COMPRESS only specifies joint types 1, 2, and 7.
c. Nozzles placed on sump heads are not available in COMPRESS
d. In the example manual, Spot UW-11(b) is applied to the following joint
identifiers: 1, 3, 4, and 6. The remaining Category A and B joints required no
radiography per the length requirements described UW-52. In COMPRESS,
length requirements per UW-52 are not considered. If a seam has 'None' RT
selected in COMPRESS, the vessel will have an RT-4 marking. All joints were
assigned Spot UW-11(b) RT to create a vessel with an RT-3 marking in
COMPRESS.
e. Joint identifier 14: the circumferential seam between the G-Process Outlet
nozzle and the attached flange. In the example manual, the Category C weld on
G-Process Outlet Nozzle (N8) is Type 3 and has a joint efficiency E = 0.60. In
COMPRESS, Type 3 joints are not specified. A user defined value was entered for
the circumferential joint efficiency as E = 0.6. Note this joint is exempt per
UW-11(a)(4).
93
E7.4 - NDE: Establish Joint Efficiencies, RT-4
Design an RT-4 vessel.
i. Comparison of results
a. The vessel is given an RT-4 marking in COMPRESS per UG-116(e). See the
RT marking in the Radiography Summary. Joint efficiency values can be viewed
on each component report. Note: not all joint efficiency values are reported in
COMPRESS (i.e. nozzle to shell Category D welds).
b. COMPRESS only specifies joint types 1, 2, and 7.
c. Nozzles placed on sump heads are not available in COMPRESS
d. In the example manual, Spot UW-11(a)(5)(b) is applied to category B and C
joints with additional Spot Radiography per UW-52. In COMPRESS, length
requirements per UW-52 are not considered. The RT-4 vessel was constructed
using the Spot UW-11(b) and Spot UW-11(a)(5)(b) option for Type 1 and Type 2
joints on category B and C joints for main vessel components.
e. Joint identifier 14: the circumferential seam between the G-Process Outlet
nozzle and the attached flange. In the example manual, the Category C weld on
G-Process Outlet Nozzle (N8) is Type 3 and has a joint efficiency E = 0.60. In
COMPRESS, Type 3 joints are not specified. A user defined value was entered for
the circumferential joint efficiency as E = 0.6. Note this joint is exempt per
UW-11(a)(4).
94
E8.1 - Determination of a Hydrostatic Test Pressure
a. Division 1
Establish the hydrostatic test pressure for a process tower considering the design
conditions.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
PT (psi)
2211.281
2211
0.01%
Fig E8.1 Division 1 Hydrostatic Test Pressure
95
E8.2 - Determination of a Pneumatic Test Pressure
a. Division 1
Establish the pneumatic pressure for a vessel considering the design conditions.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
PT (psi)
1815
1815
0.00%
Fig E8.2 Division 1 Pneumatic Test Pressure
96
2.2 ASME Section VIII - Division 2 Example Problems (PTB-3-2013)
97
E3.1 - Use of MDMT Exemptions Curves
a. Division 2
Determine if Impact Testing is required for the proposed shell section.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
Governing thickness, tg (in)
1.8125
-19.1
1.8125
-19.1
0.00%
0.00%
Yes
Yes
-
MDMT (°F)
Impact testing required per
3.11.2.3?
Fig E3.1 Division 2 MDMT Comparison
98
E3.2 - Use of MDMT Exemptions Curves with Stress Reduction
a. Division 2
Determine if impact testing is required for the proposed shell section.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
Governing thickness, tg (in)
Coincident Ratio, Rts
TR (°F)
1.8125
0.7132
28.31
-47.41
No
1.8125
0.7132
28.3
-47.4
No
0.00%
0.00%
0.04%
0.02%
-
MDMT (°F)
Impact testing required?
Fig E3.2 Division 2 MDMT Comparison with Stress Reduction
* The example manual states the material used is SA-516 70 with 𝑆@ 70 𝐹 =
22,400 𝑝𝑠𝑖 and 𝑆@ 300 𝐹 = 22,400 𝑝𝑠𝑖. Per ASME Section II-D, Table 5A for SA-516
70: 𝑆@ 70 𝐹 = 25,300 𝑝𝑠𝑖 and 𝑆@ 300 𝐹 = 22,400 𝑝𝑠𝑖. A full user defined material was
used in COMPRESS to match the allowable stress values given in the problem
statement.
99
E4.1.2 - Determine Required Wall Thickness of Hemispherical Head
a. Division 2
Determine the required thickness for a hemispherical head at the bottom of a
vertical vessel.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
P (psig)
t (in)
1673.13
1.9563
1673.14
1.9563
0.00%
0.00%
Fig E4.1.2 Division 2 Hemispherical Head tr Comparison
100
E4.1.3 - Determine Required Wall Thickness of Hemispherical Head - Higher
Strength Material
a. Division 2
Determine the required thickness for a hemispherical head at the bottom of a
vertical vessel.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
P (psig)
t (in)
1673.13
1.5335
1673.14
1.5335
0.00%
0.00%
Fig E4.1.3 Division 2 Hemispherical Head tr Comparison
101
E4.2.1 - Nondestructive Examination Requirement for Vessel Design
a. Division 2
Compare NDE requirements for a cylindrical shell.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
t 1b (in)
t 3b (in)
1.116
1.2942
1.116
1.2942
0.00%
0.00%
Fig E4.2.1 Division 2 NDE Comparison
102
E4.2.2 - Nozzle Detail and Weld Sizing
a. Division 2
Determine the required fillet weld size and inside corner radius of a set-in type nozzle
as shown in Table 4.2.10, Detail 4.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
tc (in)
0.3571
0.357
0.03%
Fig E4.2.2 Division 2 Nozzle Weld Sizing Comparison
* In COMPRESS, the calculation for the minimum inside corner radius, 𝑟1, is not
performed.
See ASME PTB-4-2013 E4.2.2 Division 2 Solution
103
E4.2.3 - Nozzle Detail with Reinforcement Pad and Weld Sizing
a. Division 2
Determine the required fillet weld sizes and inside corner radius of a set-in type nozzle
with added reinforcement pad as shown in Table 4.2.11, Detail 2.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
tc (in)
tf1 (in)
0.3571
0.4286
0.357
0.429
0.03%
0.09%
Fig E4.2.3 Division 2 Nozzle with Pad Weld Sizing Comparison
See ASME PTB-4-2013 E4.2.3 Division 2 Solution.
104
E4.3.1 - Cylindrical Shell
a. Division 2
Determine the required thickness for a cylindrical shell.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
t (in)
0.8479
0.8479
0.00%
Fig E4.3.1 Division 2 Cylindrical Shell tr Comparison
105
E4.3.2 - Conical Shell
a. Division 2
Determine the required thickness for a conical shell.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
DL * (corroded, in)
150.2679
21.0375
1.4146
150.25
21.0375
1.4144
0.01%
0.00%
0.01%
α (degrees)
t (in)
Fig E4.3.2 Division 2 Conical Shell tr Comparison
* The equation for the required cone thickness at the large end, 𝑡𝑟 , uses the large end
diameter, 𝐷𝐿 . COMPRESS calculates 𝐷𝐿 for a transition using the following equation:
𝐷𝐿 = 𝐷 + 2 ∗
𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐴𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒
0.125
= 150 + 2 ∗
= 150.2679 𝑖𝑛
𝑐𝑜𝑠(𝛼)
𝑐𝑜𝑠(21.0375)
The example manual calculates 𝐷𝐿 using:
𝐷𝐿 = 𝐷 + 2(𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐴𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒) = 150 + 2(0.125) = 150.25 𝑖𝑛
COMPRESS takes into account the half apex angle when considering corrosion.
106
E4.3.3 - Spherical Shell
a. Division 2
Determine the required thickness for a spherical shell.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
t (in)
2.7298
2.7298
0.00%
Fig E4.3.3 Division 2 Spherical Shell tr Comparison
107
E4.3.4 - Torispherical Head
a. Division 2
Determine the maximum allowable working pressure (MAWP) for the proposed
seamless torispherical head.
i. Comparison of results
Parameter
D
L
r
t
βth
φth
Rth
(in)
(in)
(in)
(in)
(rad)
(rad)
(in)
C1
C2
C3
Peth (psi)
Py (psi)
G
Pck (psi)
Pak (psi)
Pac (psi)
Pa (psi)
COMPRESS
ASME
Difference
72.25
72.125
4.5
0.5
1.0842
1.3345
36.125
0.4939
1.25
26,900
5,352.44
98.83
54.1595
199.57
133.04
248.7
133.04
72.25
72.125
4.5
0.5
1.0842
1.3345
36.125
0.494
1.25
26,900
5,353.94
98.8274
54.1747
199.5671
133.0447
248.7047
133.0447
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.02%
0.00%
0.00%
0.03%
0.00%
0.03%
0.00%
0.00%
0.00%
0.00%
Fig E4.3.4 Division 2 Torispherical Head MAWP Comparison
108
E4.3.5 - Ellipsoidal Head
a. Division 2
Determine the maximum allowable working pressure (MAWP) for the proposed
seamless 2:1 Ellipsoidal head.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
k *
D (in)
L * (in)
r * (in)
t (in)
βth (rad)
φth (rad)
Rth (in)
C1
C2
Peth (psi)
Py (psi)
1.9945
90.25
81.0056
15.405
1
1.1006
0.5842
49.581
0.7231
1.0162
43,275.72
1,094.58
39.5362
2,201.55
1467.7
549.66
549.66
2
90.25
81.125
15.425
1
1.1017
0.5839
49.6057
0.7233
1.0157
43,321.6096
1,096.89
39.4948
2,206.16
1470.8
548.9
548.9
0.28%
0.00%
0.15%
0.13%
0.00%
0.10%
0.05%
0.05%
0.03%
0.05%
0.11%
0.21%
0.10%
0.21%
0.21%
0.14%
0.14%
G
Pck (psi)
Pak (psi)
Pac (psi)
Pa (psi)
Fig E4.3.5 Division 2 Ellipsoidal Head MAWP Comparison
* The example solves for k, L, and r using uncorroded dimensions. COMPRESS solves
for k, L, and r using corroded dimensions:
𝐷
90.25
=
= 1.9945
2ℎ 2 ∗ 22.625
0.5
0.5
𝑟 = 𝐷(
− 0.08) = 90.25 (
− 0.08) = 15.405𝑖𝑛
𝑘
1.9945
𝑘=
𝐿 = 𝐷(0.44𝑘 + 0.02) = 90.25(0.44 ∗ 1.9945 + 0.02) = 81.0056 𝑖𝑛
These calculations account for the differences shown above.
109
E4.3.6 - Combined Loadings and Allowable Stresses
a. Division 2
Determine the maximum tensile stress of the proposed cylindrical shell section given
the design conditions and specified applied loadings.
i. Comparison of results
Parameter
COMPRESS**
ASME
Difference
s1 (psi)
s2 + (psi)
s2 - (psi)
s3 (psi)
sT + (psi)
sT - (psi)
14,458.00
7,202.00
6,636.00
-160.20
12,660.00
12,670.00
14,458.05
7,201.72
6,636.36
-160.20
12,659.90
12,670.10
0.00%
0.00%
0.01%
0.00%
0.00%
0.00%
Fig E4.3.6 Division 2 Combined Loadings Cylindrical Shell Comparison
* In COMPRESS a vertical load of -66,152.5 lbs is applied to act as F5, a lateral force
is applied to act as a bending moment, and the wind code is active. A summary of the
load cases can be viewed in the Settings Summary. See results below from the cylinder
report under the Operating Hot & Corroded >> Wind >> Support Top load case.
** Rules for combined loads were updated in the 2019 Edition. COMPRESS results
reported are from the 2017 Edition.
110
E4.3.7 - Conical Transitions Without a Knuckle
a. Division 2
Determine if the proposed large and small end cylinder-to-cone junctions are
adequately designed considering the given design conditions, applied forces, and
applied moments.
i. Comparison of Results- Large end
Parameter
COMPRESS
ASME
Difference
sqm+ (psi)
sqm- (psi)
ssm+ (psi)
ssm- (psi)
scqm+ (psi)
scqm- (psi)
scsm + (psi)
scsm- (psi)
Sps (psi)
3,258.00
3,815.00
7,981.00
7,620.00
2,863.00
3,431.00
7,426.00
7,090.00
67,200.00
Yes
3,258.64
3,815.69
7,980.48
7,619.12
2,862.31
3,430.40
7,425.26
7,088.96
67,200.00
Yes
0.02%
0.02%
0.01%
0.01%
0.02%
0.02%
0.01%
0.01%
0.00%
-
Adequately designed?
Fig E4.3.7 Division 2 Conical Transition Without a Knuckle - Large end design
* 𝑅𝐿 is used in several steps of the Division 2 solution for the large end and ultimately
affects each of the membrane stress calculations. COMPRESS calculates 𝑅𝐿 as:
𝑅𝐿 = 𝑅 +
𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐴𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒
0.125
= 150 +
= 75.1339 𝑖𝑛
𝑐𝑜𝑠(21.0375)
𝑐𝑜𝑠(𝛼)
The example manual uses:
𝑅𝐿 = 𝑅 + 𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐴𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒 = 75 + 0.125 = 75.125 𝑖𝑛
COMPRESS takes into account the half apex angle when considering corrosion.
111
ii. Comparison of Results- Small end
Parameter
COMPRESS
ASME
Difference
sqm+ (psi)
sqm- (psi)
ssm+ (psi)
ssm- (psi)
scqm+ (psi)
scqm- (psi)
scsm + (psi)
scsm- (psi)
Sps (psi)
22,475.00
20,980.00
8,429.00
7,088.00
21,094.00
19,658.00
4,545.00
3,813.00
67,200.00
Yes
22,500.78
20,900.58
8,429.11
7,084.44
21,078.72
19,678.70
4,545.96
3,810.57
67,200.00
Yes
0.11%
0.38%
0.00%
0.05%
0.07%
0.11%
0.02%
0.06%
0.00%
-
Adequately designed?
Fig E4.3.7 Division 2 Conical Transition Without a Knuckle - Small end design
* 𝑅𝑆 is used in several steps of the Division 2 solution for the large end and ultimately
affects each of the membrane stress calculations. COMPRESS calculates 𝑅𝑆 as:
𝑅𝑆 = 𝑅 +
𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐴𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒
0.125
= 90 +
= 45.1339 𝑖𝑛.
𝑐𝑜𝑠(𝛼)
𝑐𝑜𝑠(21.0375)
The example manual uses:
𝑅𝑠 = 𝑅 + 𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐴𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒 = 45 + 0.125 = 45.125 𝑖𝑛
COMPRESS takes into account the half apex angle when considering corrosion.
112
E4.3.8 - Conical Transitions With a Knuckle
a. Division 2
Determine if the proposed large and small end cylinder-to-cone junctions are
adequately designed considering the given design conditions, applied forces, and
applied moments.
i. Comparison of Results
Parameter
COMPRESS
ASME
Difference
tL (in)
tc (in)
Rk (in)
Pe+ (psi)
Pe- (psi)
sqm+ (psi)
sqm- (psi)
ssm + (psi)
ssm- (psi)
0.7547
0.852
50
0.7547
0.8520
50
284.9125
273.3410
35.8767
756.6825
0.00%
0.00%
0.00%
0.03%
0.12%
0.34%
0.04%
0.00%
0.00%
-
Adequately designed?
285
273
36
757
8,904
8,542
Yes
8,904.0570
8,542.4256
Yes
Fig E4.3.8 Division 2 Conical Transition With a Knuckle
113
E4.4.1 - Cylindrical Shell
a. Division 2
Determine the maximum allowable external pressure (MAEP) for a cylindrical shell.
i. Comparison of results
Parameter
COMPRESS*
ASME
Difference
L (in)
t (in)
Mx
Ch
Fhe * (psi)
Fic (psi)
636
1
93.6459
0.0092
4512
4512
2
2255.76
48.91
636
1
93.6459
0.0092
4515.729
4515.729
2
2257.8645
48.9
0.00%
0.00%
0.00%
0.00%
0.08%
0.08%
0.00%
0.09%
0.02%
FS
FHA (psi)
Pa (psi)
Fig E4.4.1 Division 2 Cylindrical Shell MAEP Comparison
See explanation of results in: ASME PTB-4-2013 Div 2 Solution E4.4.1.
* Rules for external pressure were updated in the 2019 Edition. COMPRESS results
reported are from the 2017 Edition.
114
E4.4.2 - Conical Shell
a. Division 2
Determine the maximum allowable external pressure (MAEP) for a conical shell.
i. Comparison of results
Parameter
COMPRESS*
ASME
Difference
tc (in)
1.8125
21.0375
133.018
83.5703
7.6115
0.1308
80,714
33,395
1.6705
19,991
544.79
1.8125
21.0375
131.717
83.5703
7.649
0.1301
81,062.48
33,452.58
1.6693
20,039.88
551.5
0.00%
0.00%
0.99%
0.00%
0.49%
0.54%
0.43%
0.17%
0.07%
0.24%
1.22%
α (degrees)
Do * (in)
L (in)
Mx
Ch
Fhe (psi)
Fic (psi)
FS
FHA (psi)
Pa (psi)
Fig E4.4.2 Division 2 Conical Shell MAEP Comparison
See explanation of results in ASME PTB-4-2013 Div 2 Solution E4.4.2.
* Rules for external pressure were updated in the 2019 Edition. COMPRESS results
reported are from the 2017 Edition.
115
E4.4.3 - Spherical Shell and Hemispherical Head
a. Division 2
Determine the maximum allowable external pressure (MAEP) for a hemispherical
head.
i. Comparison of results
Parameter
COMPRESS*
ASME
Difference
t (in)
Ro (in)
Fhe (psi)
Fic (psi)
2.8125
77.3125
79,396
40,391
1.891
21,360
1554.09
2.8125
77.3125
79,395.72
40,391.23
1.891
21,359.72
1554.1
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
FS
FHA (psi)
Pa (psi)
Fig E4.4.3 Division 2 Hemispherical Head MAEP Comparison
* Rules for external pressure were updated in the 2019 Edition. COMPRESS results
reported are from the 2017 Edition.
116
E4.4.4 - Torispherical Head
a. Division 2
Determine the maximum allowable external pressure (MAEP) for a torispherical head.
i. Comparison of results
Parameter
COMPRESS*
ASME
Difference
t (in)
Ro (in)
Fhe (psi)
Fic (psi)
0.5
72.625
13709
13709
2
6854.56
94.38
0.5
72.625
13709.1222
13709.1222
2
6854.5611
94.4
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.02%
FS
FHA (psi)
Pa (psi)
Fig E4.4.4 Division 2 Torispherical Head MAEP Comparison
* Rules for external pressure were updated in the 2019 Edition. COMPRESS results
reported are from the 2017 Edition.
117
E4.4.5 - Ellipsoidal Head
a. Division 2
Determine the maximum allowable external pressure (MAEP) for an Ellipsoidal head.
i. Comparison of results
Parameter
ho * (in)
Do (in)
KO *
Ro * (in)
t (in)
Fhe (psi)
Fic (psi)
FS
FHA (psi)
Pa (psi)
COMPRESS*
23.625
92.25
0.8793
81.1192
1
26,165.0
19,830.0
1.970
10,067.0
248.21
ASME
Difference
23.0625
92.25
0.9005
83.0711
1
25,550.402
19,719.072
1.972
9,999.023
240.7
2.44%
0.00%
2.35%
2.35%
0.00%
2.41%
0.56%
0.12%
0.68%
3.12%
Fig E4.4.5 Division 2 Ellipsoidal Head MAEP Comparison
See explanation of results in ASME PTB-4-2013 Div 2 Solution E4.4.5.
* Rules for external pressure were updated in the 2019 Edition. COMPRESS results
reported are from the 2017 Edition.
118
E4.4.6 - Combined Loadings and Allowable Stresses Cylindrical Shell
a. Division 2
Determine the allowable compressive stresses of the proposed cylindrical shell section
given the design conditions and specified applied loadings.
i. Comparison of results
Parameter
FHA (psi)
Fxa (psi)
Fca * (psi)
Fba (psi)
Fve (psi)
Fva (psi)
Fxha ** (psi)
Fbha (psi)
4.4.12.2.h.3 Ratio ***
4.4.12.2.i.3 Ratio ****
Adequately designed?
COMPRESS*
ASME
2,256.00
20,156.00
713.00
21,816.00
37,839.00
9,116.00
706.00
1,559.00
2,257.86
20,155.97
18,672.43
21,817.83
37,843.77
9,116.56
1,710.25
1,560.23
0.5515
0.0242
Yes
0.4041
0.0278
Yes
Difference
0.08%
0.00%
96.18%
0.01%
0.13%
0.01%
58.72%
0.08%
36.48%
12.95%
-
Fig E4.4.6 Division 2 Combined Loadings Cylindrical Shell Comparison
See explanation of results in ASME PTB-4-2013 Div 2 Solution E4.4.6.
* Rules for external pressure were updated in the 2019 Edition. COMPRESS results
reported are from the 2017 Edition.
119
E4.4.7 - Conical Transitions Without a Knuckle
a. Division 2
Determine if the proposed large and small end cylinder-to-cone junctions are
adequately designed considering the given design conditions, applied forces, and
applied moments.
i. Comparison of Results- Large end
Parameter
COMPRESS**
ASME
Difference
sqm+ (psi)
sqm- (psi)
FHA (psi)
ssm+ (psi)
ssm- (psi)
Fxa (psi)
scqm+ (psi)
scqm- (psi)
FHA (psi)
scsm + (psi)
scsm- (psi)
Fxa (psi)
Sps (psi)
-225.00
332.00
20,156.00
-271.00
-632.00
20,156.00
-210.00
358.00
20,156.00
-252.00
-588.00
20,156.00
67,200.00
Yes
-224.74
332.31
20,156.00
-271.03
-632.39
20,156.00
-210.17
357.93
20,156.00
-252.16
-588.48
20,156.00
67,200.00
Yes
0.12%
0.09%
0.00%
0.01%
0.06%
0.00%
0.08%
0.02%
0.00%
0.06%
0.08%
0.00%
0.00%
-
Adequately designed?
Fig E4.4.7 Division 2 Conical Transition Without a Knuckle - Large end design
* 𝑅𝐿 is used in several steps of the Division 2 solution for the large end calculations
and ultimately affects each of the membrane stress calculations. COMPRESS
calculates 𝑅𝐿 as:
𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐴𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒
0.125
𝑅𝐿 = 𝑅 +
= 150 +
= 75.1339 𝑖𝑛
𝑐𝑜𝑠(𝛼)
𝑐𝑜𝑠(21.0375)
The example manual uses:
𝑅𝐿 = 𝑅 + 𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐴𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒 = 75 + 0.125 = 75.125 𝑖𝑛
COMPRESS takes into account the half apex angle when considering corrosion.
** Rules for external pressure were updated in the 2019 Edition. COMPRESS results
reported are from the 2017 Edition.
120
ii. Comparison of Results- Small end
Parameter
COMPRESS**
ASME
Difference
sqm+ (psi)
sqm- (psi)
FHA (psi)
ssm+ (psi)
ssm- (psi)
Fxa (psi)
scqm+ (psi)
scqm- (psi)
FHA (psi)
scsm + (psi)
scsm- (psi)
Fxa (psi)
Sps (psi)
-467.00
-1,967.00
20,156.00
65.00
-1,279.00
20,156.00
-429.00
-1,868.00
20,156.00
38.00
-696.00
20,156.00
67,200.00
Yes
-437.32
-2,037.52
20,156.00
65.19
-1,279.47
20,156.00
-440.12
-1,840.14
20,156.00
38.29
-697.10
20,156.00
67,200.00
Yes
6.79%
3.46%
0.00%
0.30%
0.04%
0.00%
2.53%
1.51%
0.00%
0.76%
0.16%
0.00%
0.00%
-
Adequately designed?
Fig E4.4.7a Division 1 Conical Transition Without a Knuckle - Small end design
* 𝑅𝑆 is used in several steps of the Division 2 solution for the large end and ultimately
affects each of the membrane stress calculations. COMPRESS calculates 𝑅𝑆 as:
𝑅𝑆 = 𝑅 +
𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐴𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒
0.125
= 90 +
= 45.1339 𝑖𝑛
𝑐𝑜𝑠(𝛼)
𝑐𝑜𝑠(21.0375)
The example manual uses:
𝑅𝑠 = 𝑅 + 𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐴𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒 = 45 + 0.125 = 45.125 𝑖𝑛
COMPRESS takes into account the half apex angle when considering corrosion.
** Rules for external pressure were updated in the 2019 Edition. COMPRESS results
reported are from the 2017 Edition.
121
E4.4.8 - Conical Transitions With a Knuckle
a. Division 2
Determine if the proposed large and small end cylinder-to-cone junctions are
adequately designed considering the given design conditions, applied forces, and
applied moments.
i. Comparison of Results
Parameter
COMPRESS**
ASME
Difference
Rk (in)
Pe+ (psi)
Pe- (psi)
sqm+ (psi)
sqm (psi)
50
-10
-21
50
-9.7875
-21.3590
-323.9558
0.00%
2.125%
1.68%
0.01%
0.04%
0.04%
0.07%
0.00%
0.00%
-
ssm + (psi)
ssm- (psi)
Fha (psi)
Fxa (psi)
Adequately designed?
-324
397
-306
-668
20,156
20,156
Yes
396.8501
-305.8780
-667.5093
20,156.0
20,155.9688
Yes
Fig E4.4.8 Division 2 Conical Transition With a Knuckle
* The length of conical section used in Compress is 54.641" instead of 73.0" reported
in the example manual in order to maintain an apex angle of 30o.
** Rules for external pressure were updated in the 2019 Edition. COMPRESS results
reported are from the 2017 Edition.
122
E4.5.1 - Radial Nozzle in Cylindrical Shell
a. Division 2
Design an integral nozzle in a cylindrical shell based on given vessel and nozzle data.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
Reff (in)
Rxn (in)
75.125
10.2644
75.125
10.2644
0.00%
0.00%
LR (in)
11.2594
11.2594
0.00%
LH (in)
7.8176
7.8176
0.00%
53.29
53.2889
0.00%
12,720.00
16,026.00
16,026.00
33600
1270.5
497.59
497.59
1.5692
20.0277
0.2652
45,452.76
1,987
Yes
12,720.68
16,025.93
16,025.93
31800
1202.3676
497.5936
497.5936
1.5692
20.0277
0.2652
45,450.98
1,986.44
Yes
0.01%
0.00%
0.00%
5.66%
5.67%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.03%
N/A
2
AT (in )
savg (psi)
scirc (psi)
PL (psi)
Sallow * (psi)
Pmax1 * (psi)
Pmax2 (psi)
Pmax (psi)
ky
Lt (in)
L41T (in)
fwelds (lbf)
t (psi)
Acceptable design?
Fig E4.5.1 Division 2 Nozzle-to-Shell Assembly Design Comparison
* In COMPRESS, Sallow is calculated per ASME Section VIII, Division 2 equation
4.5.57:
𝑆𝑎𝑙𝑙𝑜𝑤 = 1.5𝑆𝐸 = 1.5 ∗ 22,400 ∗ 1.0 = 33,600 𝑝𝑠𝑖
where S is the allowable stress from Annex 3-A for the vessel at the design temperature
per ASME Section VIII, Division 2 paragraph 4.5.18. The example shows:
𝑆 = min[𝑆𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 @ 𝐷𝑒𝑠𝑖𝑔n 𝑇𝑒𝑚𝑝 , 𝑆𝑛𝑜𝑧𝑧𝑙𝑒 @ 𝐷𝑒𝑠𝑖𝑔𝑛 𝑇𝑒𝑚𝑝 ] = 21,200 𝑝𝑠𝑖
𝑆𝑎𝑙𝑙𝑜𝑤 = 1.5𝑆𝐸 = 1.5 ∗ 21,200 ∗ 1.0 = 31,800 𝑝𝑠𝑖
123
E4.5.2 - Hillside Nozzle in Cylindrical Shell
a. Division 2
Design an integral hillside nozzle in a cylindrical shell based on given vessel and
nozzle data.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
Reff (in)
Rnc (in)
75.125
3.935
75.125
3.935
0.00%
0.00%
LR (in)
7.87
7.87
0.00%
LH (in)
4.382
4.382
0.00%
21.0025
21.0024
0.00%
17,933.00
16,026.00
19,840.00
33600
602.92
497.59
497.59
1.4689
9.0792
0.2652
9,341.05
901
Yes
17,932.85
16,025.93
19,839.77
31800
570.6114
497.5936
497.5936
1.4689
9.0792
0.2652
9,341.44
900.60
Yes
0.00%
0.00%
0.00%
5.66%
5.66%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.04%
N/A
2
AT (in )
savg (psi)
scirc (psi)
PL (psi)
Sallow * (psi)
Pmax1 * (psi)
Pmax2 (psi)
Pmax (psi)
ky
Lt (in)
L41T (in)
fwelds (lbf)
t (psi)
Acceptable design?
Fig E4.5.2 Division 2 Hillside Nozzle Design Comparison- Normal to Longitudinal Axis
* In COMPRESS, Sallow is calculated per ASME Section VIII, Division 2 equation
4.5.57:
𝑆𝑎𝑙𝑙𝑜𝑤 = 1.5𝑆𝐸 = 1.5 ∗ 22,400 ∗ 1.0 = 33,600 𝑝𝑠𝑖
where S is the allowable stress from Annex 3-A for the vessel at the design temperature
per ASME Section VIII, Division 2 paragraph 4.5.18. The example shows:
𝑆 = min[𝑆𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 @ 𝐷𝑒𝑠𝑖𝑔n 𝑇𝑒𝑚𝑝 , 𝑆𝑛𝑜𝑧𝑧𝑙𝑒@ 𝐷𝑒𝑠𝑖𝑔𝑛 𝑇𝑒𝑚𝑝 ] = 21,200 𝑝𝑠𝑖
𝑆𝑎𝑙𝑙𝑜𝑤 = 1.5𝑆𝐸 = 1.5 ∗ 21,200 ∗ 1.0 = 31,800 𝑝𝑠𝑖
124
E4.5.3 - Radial Nozzle in Ellipsoidal Head
a. Division 2
Design an integral radial nozzle centrally located in a 2:1 ellipsoidal head based on
given vessel and nozzle data.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
Reff (in)
Rxn (in)
80.9262
6.836
80.9262
6.836
0.00%
0.00%
LR (in)
8.4149
8.4149
0.00%
FP (in)
0.7295
0.7295
0.00%
LH (in)
3.4572
3.4574
0.01%
14.4846
14.4846
0.00%
16,964.00
16,552.00
17,376.00
33600
688.41
481.79
481.79
1.3706
12.5192
0.2652
4.415
16,963.49
16,551.54
17,375.44
31800
651.5402
481.7921
481.7921
1.3706
12.5192
0.2652
4.415
0.00%
0.00%
0.00%
5.66%
5.66%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
9.5142
9.5143
0.00%
17,760.55
2,166
Yes
17,760.73
2,166.09
Yes
0.00%
0.00%
N/A
2
AT (in )
savg (psi)
scirc (psi)
PL (psi)
Sallow * (psi)
Pmax1 * (psi)
Pmax2 (psi)
Pmax (psi)
ky
Lt (in)
L41T (in)
LH (in)
A2 (in2)
fwelds (lbf)
t (psi)
Acceptable design?
Fig E4.5.3 Division 2 Radial Nozzle in Ellipsoidal Head Comparison
* In COMPRESS, Sallow is calculated per ASME Section VIII, Division 2 equation
4.5.57:
𝑆𝑎𝑙𝑙𝑜𝑤 = 1.5𝑆𝐸 = 1.5 ∗ 22,400 ∗ 1.0 = 33,600 𝑝𝑠𝑖
where S is the allowable stress from Annex 3-A for the vessel at the design temperature
per ASME Section VIII, Division 2 paragraph 4.5.18. The example shows:
𝑆 = min[𝑆𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 @ 𝐷𝑒𝑠𝑖𝑔n 𝑇𝑒𝑚𝑝 , 𝑆𝑛𝑜𝑧𝑧𝑙𝑒 @ 𝐷𝑒𝑠𝑖𝑔𝑛 𝑇𝑒𝑚𝑝 ] = 21,200 𝑝𝑠𝑖
𝑆𝑎𝑙𝑙𝑜𝑤 = 1.5𝑆𝐸 = 1.5 ∗ 21,200 ∗ 1.0 = 31,800 𝑝𝑠𝑖
125
E4.6.1 - Flat Unstayed Circular Heads Attached by Bolts
a. Division 2
Determine the required thickness for a heat exchanger blind flange.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
Wo (lbs)
Wg (lbs)
111285.07
237635.04
0.3
1.6522
0.872
1.6522
111329.5
237626.3
0.3
1.6523
0.872
1.6523
0.04%
0.00%
0.00%
0.01%
0.00%
0.01%
C
t o (in)
t g (in)
t (in)
Fig E4.6.1 Division 2 Flat Unstayed Circular Heads Attached by Bolts Comparison
See E4.16.1 for flange calculations.
126
E4.11.1 - Partial Jacket
a. Division 2
Design a partial jacket to be installed on the outside diameter of a section of a tower.
i. Comparison of results
Parameter
Rj (in)
ts (in)
Rs (in)
trj (in)*
jspecified (in)
j (in)**
trc (in)***
Y (in)****
Z (in)*****
COMPRESS
48.125
0.875
46.0
0.4604
2.125
0.7957
1.6786
-
ASME
48.125
0.875
46.0
0.4483
2.125
4.0640
1.1701
1.3125
0.875
Difference
0.00%
0.00%
0.00%
2.63%
0.00%
32.00%
21.81%
-
Fig E4.11.1 Division 2 Partial Jacket Comparison
*The example manual uses an allowable stress value of 22400 psi. COMPRESS uses
an allowable stress of 21,600 psi for SA-516 Grade 70 at 400°F.
**The example manual uses equations from Detail 6. COMPRESS uses equations from
Detail 4, which do not include a jacket space calculation.
***The example manual uses equations from the jacket-to-closure bar in Detail 6.
COMPRESS uses closure bar-to-shell equations from Detail 4.
****The example manual does not consider jacket corrosion on the inner fillet weld.
Additionally, the governing shell thickness value should consider the vessel shell
thickness at the outer weld location, ts = 1".
***** COMPRESS determines the minimum required weld size for each weld
individually.
127
E4.15.1 - Horizontal Vessel with Zick's Analysis
a. Division 2
Determine if the stresses in the horizontal vessel induced by the proposed saddle
supports are within acceptable limits.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
M1 * (lbf-in)
-371,880.3
-356,913.7
4.19%
M2 * (lbf-in)
s1 (psi)
s2 (psi)
s3 (psi)
s4 (psi)
T (lbs)
t2 (psi)
x1, x2 (in)
s6 (psi)
s7 (psi)
Fh (lbs)
1,388,595.9
1,414,775.7
1.85%
11,230.0
11,539.0
11,755.0
11,178.0
33,532.9
415.00
7.4302
-58.00
-653.00
10544.90
11,227.2
11,541.7
11,740.5
11,186.4
33,746.5
417.60
7.4302
-57.50
-653.40
10545.10
0.02%
0.02%
0.12%
0.08%
0.63%
0.62%
0.00%
0.87%
0.06%
0.00%
Fig E4.15.1 Division 2 Horizontal Vessel with Zick's Analysis Comparison
* The example manual uses ho = 16.5 in based on the outer diameter Do= 66 in using
the 2:1 head ratio:
2=
𝐷𝑜
𝐷𝑜 66
→ ℎ𝑜 =
=
= 16.5 𝑖𝑛
4
2ℎ𝑜
4
ℎ = ℎ𝑜 − 𝑡 = 16.5 − 3 = 13.5 𝑖𝑛
𝐷
→ 𝐷 = 4ℎ = 4 ∗ 13.5 = 54 𝑖𝑛
2ℎ
COMPRESS calculates ho as:
2=
𝐷 60
𝐷
→ ℎ= =
= 15 𝑖𝑛
4
4
2ℎ
ℎ𝑜 = ℎ + 𝑡 = 15 + 3 = 18 𝑖𝑛
2=
This difference affects the stress calculations for the vessel.
128
E4.15.2 - Vertical Vessel, Skirt Design
a. Division 2
Determine if the proposed cylindrical vessel skirt is adequately designed considering
the given loading conditions.
i. Comparison of results
Parameter
COMPRESS**
ASME
Difference
Fxa (psi)
ssm, tension (psi)
ssm , compression (psi)
15,144
346
-2,804
Yes
15,143.90
345.70
-2,803.90
Yes
0.00%
0.09%
0.00%
-
Stress acceptance satisfied?
Fig E4.15.2 Division 2 Vertical Vessel with Skirt Design Comparison
* In COMPRESS a vertical load of -363,500 lbs was applied to act as F6 and a lateral
force was applied to act as M6 = 17,466,000 in-lbf.
** Rules for external pressure were updated in the 2019 Edition. COMPRESS results
reported are from the 2017 Edition.
129
E4.16.1 - Integral Type
a. Division 2
Determine if the stresses in the heat exchanger girth flange are within acceptable limits,
considering the given design conditions.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
Wo (lbs)
Wgs (lbs)
111,285.07
143,070.09
111,329.50
143,052.50
0.04%
0.01%
Am (in2)
5.7228
5.7221
0.01%
13.288
13.288
0.00%
237,635.04
73,023.40
92,224.74
19,201.35
19,060.32
1.6875
0.8750
2.1563
2.2312
3.5294
1.00
206,536.80
207,930.70
17,769.0
6,152.0
5,546.0
17,889.0
6,194.0
5,584.0
Yes
0.836
0.7451
237,626.30
73,060.40
92,271.50
19,211.10
19,058.00
1.6875
0.8750
2.1563
0.7102
3.5294
1.00
206,634.60
207,923
17,777.9
6,155.4
5,547.0
17,888.8
6,193.8
5,581.5
Yes
0.8313
0.7398
0.00%
0.05%
0.05%
0.05%
0.01%
0.00%
0.00%
0.00%
214.17%
0.00%
0.00%
0.05%
0.00%
0.05%
0.06%
0.02%
0.00%
0.00%
0.04%
0.57%
0.72%
2
Ab (in )
Wg (lbs)
HD (lbf)
H (lbf)
HT (lbf)
HG (lbf)
hT (lbf)
hG (lbf)
hD (lbf)
Bs ** (in)
Bsmax (in)
Bsc
Mo (lbf-in)
Mg (lbf-in)
SH (oper) (psi)
SR (oper) (psi)
ST (oper) (psi)
SH (gasket seating) (psi)
SR (gasket seating) (psi)
ST (gasket seating) (psi)
Stress acceptance satisfied?
Jo ***
Jg ***
Fig E4.16.1 Division 2 Integral Type Flange Design Comparison
𝜋
* The example manual uses 4 in the bolt load and flange design equations even though
0.785 is specified per ASME Section VIII, Division 2 paragraphs 4.16.6.1 Step 4 and
4.16.7.2 Step 5. COMPRESS uses 0.785. This accounts for most of the differences
shown above.
130
** Per ASME Section VIII, Division 2 paragraph 4.16.12, Bs is the bolt spacing and
"may be taken as the bolt circle circumference divided by the number of bolts...".
COMPRESS calculates Bs as:
𝐵𝑠 =
𝜋𝐶
𝜋 ∗ 31.25
=
= 2.2312 𝑖𝑛
𝑁𝑏𝑜𝑙𝑡𝑠
44
where 𝜋*C is the bolt circle circumference (C is bolt circle diameter) and Nbolts is the
number of bolts. The example calculates Bs as:
𝐵𝑠 =
𝐶
𝑁𝑏𝑜𝑙𝑡𝑠
=
31.25
= 0.7102 𝑖𝑛
44
*** Per ASME Section II-D, Table TM-1 for SA-105 (Carbon steels with C > 0.30%),
EDesign T = 25.85E+06 psi and EAmbient T = 29.2E+06 psi. The example manual shows
EDesign T = 26.0E+06 psi and EAmbient T = 29.4E+06 psi. This affects the rigidity
calculations.
131
E4.16.2 - Loose Type
a. Division 2
Determine if the stresses in the ASME B16.5, Class 300, NPS 20 Slip-on Flange are
within acceptable limits given the design data.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
Wo (lbf)
Wgs (lbf)
217,916.93
61,563.70
218,005.00
61,563.70
0.04%
0.00%
Am (in2)
8.7167
8.7202
0.04%
22.296
22.296
0.00%
Stress acceptance satisfied?
Jo ****
Jg ****
387,658.47
144,140.13
173,591.06
29,450.93
44,325.87
2.9081
2.4161
3.4000
3.5343
8.3560
1.00
682,816.90
936,621.60
3,882.0
4,094.0
17,243.0
5,325.0
5,616.0
23,652.0
Yes
1.6455
1.9982
387,702.50
144,213.20
173,679.10
29,465.90
44,325.90
2.9081
2.4161
3.4000
1.1250
8.3560
1.00
683,110.50
936,728
3,622.9
4,096.9
17,248.4
4,968.0
5,617.9
23,652.3
Yes
1.6366
1.9847
0.01%
0.05%
0.05%
0.05%
0.00%
0.00%
0.00%
0.00%
214.16%
0.00%
0.00%
0.04%
0.01%
7.15%
0.07%
0.03%
7.19%
0.03%
0.00%
0.54%
0.68%
Rigidity acceptance satisifed?
No
No
N/A
2
Ab (in )
Wg (lbs)
HD (lbf)
H (lbf)
HT (lbf)
HG (lbf)
hT (lbf)
hG (lbf)
hD (lbf)
Bs ** (in)
Bsmax (in)
Bsc
Mo (lbf-in)
Mg (lbf-in)
SH (oper) *** (psi)
SR (oper) (psi)
ST (oper) (psi)
SH (gasket seating) *** (psi)
SR (gasket seating) (psi)
ST (gasket seating) (psi)
Fig E4.16.2 Division 2 Loose Type Flange Design Comparison
* The example manual uses a flange thickness of 2.44 in, which is less than the
minimum required flange thickness per ASME Section VIII, Division 2 paragraph
4.16.7.2. This problem was modeled in Rating mode with t = 2.44 in and in Design
mode with t = 3.5 in. The results shown here were determined in Rating mode.
132
𝜋
* The example uses 4 in the flange force equations even though 0.785 is specified per
ASME Section VIII, Division 2 paragraphs 4.16.6 Step 4 and 4.16.7 Step 5.
COMPRESS uses 0.785. This causes slight rounding differences for the flange forces
and flange moments.
** Per ASME Section VIII, Division 2 paragraph 4.16.12, Bs is the bolt spacing and
"may be taken as the bolt circle circumference divided by the number of bolts...".
COMPRESS calculates Bs as:
𝐵𝑠 =
𝜋𝐶
𝜋 ∗ 27
=
= 3.534 𝑖𝑛
𝑁𝑏𝑜𝑙𝑡𝑠
24
where 𝜋*C is the bolt circle circumference (C is bolt circle diameter) and Nbolts is the
number of bolts. The example calculates Bs as:
𝐵𝑠 =
𝐶
𝑁𝑏𝑜𝑙𝑡𝑠
=
27
= 1.125 𝑖𝑛
24
*** The option to use B1 in place of B in the hub stress equation per ASME Section
VIII, Division 2 paragraph 4.16.12 is not available in COMPRESS. B = 20.2 in is used.
****Per ASME Section II-D, Table TM-1 for SA-105 (Carbon steels with C > 0.30%),
EDesign T = 25.85E+06 psi and EAmbient T = 29.2E+06 psi. The example manual shows
EDesign T = 26.0E+06 psi and EAmbient T = 29.4E+06 psi. This affects the rigidity
calculations.
133
E6.1 - Post-weld Heat Treatment of a Pressure Vessel
a. Division 2
Establish the post-weld heat treatment (PWHT) requirements for a process tower given
the design conditions.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
tTop Head (in)
tbottom Head (in)
tshell (in)
1.6949
1.7173
3.3592
1.6949
1.7173
3.3592
0.00%
0.00%
0.00%
Fig E6.1 Division 2 PWHT Governing Thickness
* COMPRESS does not provide any specifications on the operation of PWHT, only the
governing thickness requirements per part 6.4. In COMPRESS, PWHT is determined
to be mandatory for this example and must be active for the entire vessel in order to
perform the Code Calculations. Also reference the PWHT note in the Settings
Summary.
134
E6.2 - Out-of-Roundness of a Cylindrical Forged Vessel
a. Division 2
Establish the reduced permissible operating pressure requirements considering the
following design conditions.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
t (in)
6.1177
6.1177
0.00%
Fig E6.2 Division 2 Forged Vessel Required Thickness
* COMPRESS does not currently consider out-of-roundness for vessels. However, the
required thickness of the forged cylindrical shell can be calculated in COMPRESS.
135
E8.1 - Determination of a Hydrostatic Test Pressure
a. Division 2
Establish the hydrostatic test pressure for a process tower considering the design
conditions.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
PT * (psi)
Pm,top *** (psi)
Pm,bottom ** (psi)
Pm,cyl *** (psi)
2,343.41
33,815
33,382
2,359.50
34,163.00
N/A
35,138.00
0.68%
1.02%
5.10%
33,345
Fig E8.1 Division 2 Hydrostatic Test Pressure
* COMPRESS uses updated equation in the 2019 Edition and later.
** The example manual only provides the solution for the general primary membrane
stress, Pm, for the thinner head. COMPRESS shows Pm for each component.
*** The example manual uses the ASME Section VIII, Division 1 membrane equations
to solve for Pm for both the head and the cylindrical shell. In COMPRESS, Pm is solved
using the ASME Section VIII, Division 2 paragraph 4.3 equations:
𝑃𝑚 =
𝑃
,
𝐼. 𝑅. +𝑡
ln( 𝐼. 𝑅. )
𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 [𝑒𝑞𝑛 4.3.1]
𝑃
ℎ𝑒𝑚𝑖 ℎ𝑒𝑎𝑑 [𝑒𝑞𝑛 4.3.4]
],
𝐼. 𝑅. +𝑡
ln( 𝐼. 𝑅. )
Furthermore, the example manual does not consider static head when calculating the
hydrotest stresses. COMPRESS considers the horizontal head at the bottom of the
vessel that exists during the test.
𝑃𝑚 = 0.5 ∗ [
136
E8.2 - Determination of a Pneumatic Test Pressure
a. Division 2
Establish the pneumatic pressure for a vessel considering the design conditions.
i. Comparison of results
Parameter
COMPRESS
ASME
Difference
PT (psi)
Pm,top ** (psi)
Pm,bottom * (psi)
Pm,cyl ** (psi)
194.84
23,180.00
23,180.00
24,522.00
195.00
22,183.00
N/A
25,222.00
0.08%
4.49%
-2.78%
Fig E8.2 Division 2 Pneumatic Test Pressure
* The example manual only provides the solution for the general primary membrane
stress, Pm, for the thinner head. COMPRESS shows Pm for each component.
* The example manual uses the ASME Section VIII, Division 1 membrane equations
to solve for Pm for both the head and the cylindrical shell. In COMPRESS, Pm is solved
using the ASME Section VIII, Division 2 paragraph 4.3 equations:
𝑃𝑚 =
𝑃
,
𝐼. 𝑅. +𝑡
ln( 𝐼. 𝑅. )
𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 [𝑒𝑞𝑛 4.3.1]
𝑃
ℎ𝑒𝑚𝑖 ℎ𝑒𝑎𝑑 [𝑒𝑞𝑛 4.3.4]
],
𝐼. 𝑅. +𝑡
ln( 𝐼. 𝑅. )
Furthermore, the example manual does not consider static head when calculating the
test stresses. COMPRESS considers the horizontal head at the bottom of the vessel that
exists during the test.
𝑃𝑚 = 0.5 ∗ [
137
2.3 Taylor Forge Examples
138
Example 1 - Welding Neck Flange Design
The Example 1 worksheet from the Taylor Forge booklet compared to the calculated
results of COMPRESS.
i. Comparison of Results
Operating
Seating
Parameters
COMPRESS
Taylor Forge
Difference
Gasket Load Reaction Dia., G (in.)
Bolt Load, Wm1 (lb)
Gasket Seating Force, Hg (lb)
End Moment, MD (in. lb)
Gasket Load, Mg (in. lb)
Face Pressure, MT (in. lb)
Total Moment, Mo (in. lb)
Longitudinal Hub Stress, SH (psi)
Radial Flange Stress SR (psi)
Tangential Flange Stress, ST (psi)
Bolt Load, Wm2 (lb)
33.8876
432,268.06
71,680.05
622,976.00
111,548.50
79,201.40
813,725.90
22,854.00
10,967.00
6,483.00
120,552.82
464,084.03
722,207.60
20,283.00
9,734.00
6,074.00
33.8880
432,484.00
71,713.00
623,292.00
111,599.00
79,242.00
814,133.00
22,865.00
10,982.00
6,800.00
120,609.00
464,192.00
722,371.00
20,288.00
9,744.00
6,033.00
0.00%
0.05%
0.05%
0.05%
0.05%
0.05%
0.05%
0.05%
0.14%
0.00%
0.05%
0.02%
0.02%
0.02%
0.10%
0.68%
Flange Design Bolt Load, W (lb)
Total Moment Mg (in. lb)
Longitudinal Hub Stress, SH (psi)
Radial Flange Stress SR (psi)
Tangential Flange Stress, ST (psi)
Taylor Forge Example 1 Comparison of Results
COMPRESS performs the flange calculations in accordance with ASME Section VIII,
Division 1 Appendix 2 Section 2-3, which accounts for any differences shown above.
139
Example 2 - Slip on Flange Design - Flat Faced
The Example 2 worksheet from the Taylor Forge booklet compared to COMPRESS
calculations.
ii. Comparison of results
Operating
Seating
Parameters
COMPRESS
Taylor Forge
Difference
Bolt Load, Wm1 (lb)
End Moment, MD (in. lb)
Face Pressure, MT (in. lb)
Total Moment, Mo (in. lb)
Loose Type Flange Factor, VL*
Longitudinal Hub Stress, SH (psi)
Radial Flange Stress SR (psi)
Tangential Flange Stress, ST (psi)
Bolt Circle Stress, SRAD (in. lb)
Bolt Load, Wm2 (lb)
96,253.64
93,258.00
17,359.70
110,617.70
41.9971
432.00
446.00
6,361.00
698.00
71,770.07
113,156.82
30,344.60
96,305.10
93,305.90
17,405.70
110,712.00
40.0000
449.98
462.27
3,608.74
698.27
71,785.50
113,190.00
30,340.70
0.05%
0.05%
0.26%
0.09%
4.99%
4.00%
3.52%
0.00%
0.00%
0.02%
0.03%
0.01%
Flange Design Bolt Load, W (lb)
Total Moment Mg (in. lb)
Taylor Forge Example 2 Comparison of Results
The loose type flange factor, VL, is interpolated in COMPRESS. The hand calculation
uses an approximate value from Appendix 2 Fig. 2-7.5. This accounts for the
differences in SH and SR.
140
2.4 ASCE 7-16 Figure C15.7-4 Buckling Example
141
Figure C15.7-4 Example - Section VIII, Division 2, Paragraph 4.4
The Figure C15.7-4 example problem in ASCE 7-16 compared to
COMPRESS calculations.
ii. Comparison of results
Parameter
𝑓𝑎 * (psi)
𝑓b ** (psi)
COMPRESS
ASME
Fca (psi)
1,280.00
25,137.00
106,327.00
32,076.00
28,100.00
1,274.00
25,072.00
106,327.00
32,076.00
28,100.00
Fba (psi)
Fva (psi)
Fe (psi)
32,076.00
19,559.00
80,287.00
32,076.00
19,559.00
80,287.00
0.00%
0.00%
0.00%
0.00%
4.4.12.2.i.3 Ratio
0.821
0.82
0.12%
Fxe (psi)
Fxa (psi)
Difference
0.47%
0.26%
0.00%
0.00%
Fig C15.7-4 Example Comparison of Results
* Per ASME Section VIII, Division 2 paragraph 4.4.12.2.k, the cross sectional area of
the skirt is computed from the following equation:
A=
𝜋(Do2 − Di2)
4
The example manual evaluates, A, using the following equation:
𝜋Dot
** The example manual uses a rounded value for the design earthquake spectral
response acceleration parameter at short period, SDS, of 0.733 and COMPRESS uses
a value of 0.7333. Per ASME Section VIII, Division 2 paragraph 4.4.12.2.k, the
section modulus of the shell is computed from the following equation:
S =
𝜋(Do4 − Di4)
32 Do
The example manual evaluates, A, using the following equation:
𝜋Do2t
142
The example manual uses the following simplified equation to calculate the vessel
period of vibration:
COMPRESS uses the Rayleigh method of approximation:
143
2.5 ASME PCC-1 Examples
144
PCC-1 Appendix O-4.3 Example Calculation
i. Comparison of results
Parameter
O-1 (psi)
O-4 (psi)
O-5 (psi)
O-6 (psi)
O-7 (psi)
O-8 (psi)*
O-9 (psi)
O-10 (psi)
O-2 (ft-lb)**
COMPRESS
ASME
64,186
64,186
64,186
63,000
26,744
64,000
64,000
64,000
63,000
26,700
24,454
85,581
196,875
24,000
85,000
197,000
240
237.8
Difference
0.29%
0.29%
0.29%
0.00%
0.16%
1.86%
0.68%
-0.06%
-0.93%
PCC-1 Appendix O-4.3 Example Comparison of Results
* The ASME example and COMPRESS round the 3/4" Coarse bolt root area
differently.
** The ASME example is given in rounded KSI units rather than PSI for
pressure terms.
145
3. References
1. ASME B&PV Code, Section VIII, Division 1, Rules for Construction of Pressure
Vessels, 2019, ASME, New York, New York, 2019.
2. ASME B&PV Code, Section VIII, Division 2, Rules for Construction of Pressure
Vessels - Alternative Rules, 2019, ASME, New York, New York, 2019.
3. ASME PTB-4-2013: ASME Section VIII - Division 1 Example Problem Manual
4. ASME PTB-3-2013: ASME Section VIII - Division 2 Example Problem Manual
5. Taylor Forge Bulletin 502 Edition VII
6. ASCE/SEI 7-16, Minimum Design Loads and Associated Criteria for Buildings
and Other Structures, 2017, ASCE, Reston, Virginia, 2017.
7. ASME PCC-1-2013: Guidelines for Pressure Boundary Bolted Flange Joint
Assembly, 2013, ASME, New York, New York, 2013.
146
Appendix A: Certification
The data and results provided in this document are in accordance with the
following codes:
•
ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, 2019
Edition.
•
ASME Boiler and Pressure Vessel Code, Section VIII, Division 2, 2019
Edition.
The calculated results that were produced for verification are from COMPRESS Build
8000.
www.codeware.com
6530 Sawyer Loop Rd.
Sarasota, FL 34238
Tel. (941) 927-2670
Fax (941) 927-2459
147
All rights reserved. This publication contains proprietary information which
is protected by copyright. No part of this publication may be reproduced,
transcribed, translated into any language or computer language or transmitted in
any form whatsoever without the prior written consent of Codeware Inc.
Codeware Inc.
6530 Sawyer Loop Rd.
Sarasota, Florida 34238
United States
Telephone
(941) 927-2670
Fax
(941) 927-2459
Sales
[email protected]
Support
[email protected]
Website
https://www.codeware.com
© 2013 Codeware,
Inc. www.codeware.com
© 2019 Codeware
Inc. www.codeware.com
CODEWARE
®
Descargar