Subido por Hector Jurado

Mathematical Olympiad in China, 2011-2014 - Bin

Anuncio
10113_9789813143746_tp.indd 1
25/1/18 5:05 PM
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
Mathematical Olympiad Series
ISSN: 1793-8570
Series Editors: Lee Peng Yee (Nanyang Technological University, Singapore)
Xiong Bin (East China Normal University, China)
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
Published
Vol. 15 Mathematical Olympiad in China (2011–2014):
Problems and Solutions
edited by Bin Xiong (East China Normal University, China) &
Peng Yee Lee (Nanyang Technological University, Singapore)
Vol. 14 Probability and Expectation
by Zun Shan (Nanjing Normal University, China)
translated by: Shanping Wang (East China Normal University, China)
Vol. 13 Combinatorial Extremization
by Yuefeng Feng (Shenzhen Senior High School, China)
Vol. 12 Geometric Inequalities
by Gangsong Leng (Shanghai University, China)
translated by: Yongming Liu (East China Normal University, China)
Vol. 11 Methods and Techniques for Proving Inequalities
by Yong Su (Stanford University, USA) &
Bin Xiong (East China Normal University, China)
Vol. 10 Solving Problems in Geometry: Insights and Strategies for
Mathematical Olympiad and Competitions
by Kim Hoo Hang (Nanyang Technological University, Singapore) &
Haibin Wang (NUS High School of Mathematics and Science, Singapore)
Vol. 9
Mathematical Olympiad in China (2009–2010)
edited by Bin Xiong (East China Normal University, China) &
Peng Yee Lee (Nanyang Technological University, Singapore)
Vol. 8
Lecture Notes on Mathematical Olympiad Courses:
For Senior Section (In 2 Volumes)
by Xu Jiagu (Fudan University, China)
The complete list of the published volumes in the series can be found at
http://www.worldscientific.com/series/mos
Suqi - 10113 - Mathematical Olympiad in China.indd 1
19-01-18 10:39:14 AM
10113_9789813143746_tp.indd 2
25/1/18 5:05 PM
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
Published by
East China Normal University Press
3663 North Zhongshan Road
Shanghai 200062
China
and
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE
Library of Congress Cataloging-in-Publication Data
Names: Xiong, Bin. | Lee, P. Y. (Peng Yee), 1938–
Title: Mathematical Olympiad in China (2011–2014) : problems and solutions / editors, Bin Xiong,
East China Normal University, China, Peng Yee Lee, Nanyang Technological University, Singapore.
Description: [Shanghai, China] : East China Normal University Press ; [Hackensack, New Jersey] :
World Scientific, 2017. | Series: Mathematical olympiad series ; vol. 15
Identifiers: LCCN 2017002034| ISBN 9789813143746 (hardcover : alk. paper) |
ISBN 9813143746 (hardcover : alk. paper) | ISBN 9789813142930 (pbk. : alk. paper) |
ISBN 9813142936 (pbk. : alk. paper)
Subjects: LCSH: International Mathematical Olympiad. | Mathematics--Problems, exercises, etc. |
Mathematics--Competitions--China.
Classification: LCC QA43 .M31453 2017 | DDC 510.76--dc23
LC record available at https://lccn.loc.gov/2017002034
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.
Copyright © 2018 by East China Normal University Press and
World Scientific Publishing Co. Pte. Ltd.
All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.
For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance
Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy
is not required from the publisher.
For any available supplementary material, please visit
http://www.worldscientific.com/worldscibooks/10.1142/10113#t=suppl
Typeset by Stallion Press
Email: [email protected]
Printed in Singapore
Suqi - 10113 - Mathematical Olympiad in China.indd 2
19-01-18 10:39:14 AM
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
Pr
e
f
ac
e
Thef
i
r
s
tt
ime Ch
i
na pa
r
t
i
c
i
t
edi
nIMO wa
si
n1985,when
pa
twos
t
uden
t
swe
r
es
en
tt
ot
he26
t
hIMO.S
i
nce1986,Ch
i
naha
s
at
eamo
fs
i
xs
t
uden
t
sa
teve
r
ti
n1998wheni
twa
s
yIMOexcep
he
l
di
n Ta
iwan.Sof
a
r,upt
o2014,Ch
i
naha
sach
i
evedt
he
numbe
rone r
ank
i
ng f
or 20 t
ime
si
nt
eam e
f
for
t. A g
r
ea
t
ma
or
i
t
fs
t
uden
t
sr
e
c
e
i
vedgo
l
d meda
l
s.Thef
ac
tt
ha
tCh
i
na
j
yo
ob
t
a
i
neds
uchencou
r
ag
i
ngr
e
s
u
l
ti
sduet
o,ont
heonehand,
Ch
i
ne
s
es
t
uden
t
s
􀆳ha
rdworkandpe
r
s
eve
r
ance,andont
heo
t
he
r
hand,t
hee
f
f
or
to
ft
eache
r
si
ns
choo
l
sandt
het
r
a
i
n
i
ngo
f
f
e
r
ed
by na
t
i
ona
lcoache
s. We be
l
i
eve i
ti
sa
l
s
o ar
e
s
u
l
to
ft
he
educa
t
i
on s
s
t
em i
n Ch
i
na,i
n pa
r
t
i
cu
l
a
r,t
he empha
s
i
s on
y
t
r
a
i
n
i
ngo
fba
s
i
cs
k
i
l
l
si
ns
c
i
enc
eeduca
t
i
on.
Thema
t
e
r
i
a
l
so
ft
h
i
sbookcomef
r
omas
e
r
i
e
so
ffou
rbooks
(
i
nCh
i
ne
s
e)onFo
rwa
rdt
oIMO :ACo
l
l
e
c
t
i
ono
thema
t
i
ca
l
fMa
Ol
i
adPr
ob
l
ems (
2011 2014).I
ti
saco
l
l
ec
t
i
onofpr
ob
l
ems
ymp
ands
o
l
u
t
i
on
so
ft
hema
orma
t
hema
t
i
ca
lcompe
t
i
t
i
onsi
nCh
i
na.
j
I
tpr
ov
i
de
sag
l
imp
s
eo
fhowt
heCh
i
nana
t
i
ona
lt
eami
ss
e
l
ec
t
ed
and f
ormed. F
i
r
s
t, t
he
r
e i
s t
he Ch
i
na Ma
t
hema
t
i
ca
l
Compe
t
i
t
i
on,ana
t
i
ona
leven
t.I
ti
she
l
dont
hes
econdSunday
o
f Oc
t
obe
reve
r
r.Thr
ought
hecompe
t
i
t
i
on,abou
t300
y yea
s
t
uden
t
sa
r
es
e
l
e
c
t
edt
oj
o
i
nt
heCh
i
na Ma
t
hema
t
i
ca
lOl
i
ad
ymp
(
common
l
st
hewi
n
t
e
rcamp),ori
nshor
tCMO,i
n
yknowna
ⅴ
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
t
hef
o
l
l
owi
ngJ
anua
r
a
s
t
sf
orf
i
veday
s.Bo
t
ht
het
y.CMOl
ype
and t
he d
i
f
f
i
cu
l
t
ft
he pr
ob
l
ems ma
t
ch t
ho
s
e of IMO.
yo
S
imi
l
a
r
l
t
uden
t
sa
r
eg
i
vent
hr
ee prob
l
emst
os
o
l
vei
n4
.5
y,s
hour
seach day.Fr
om CMO,abou
t 50 t
o 60 s
t
uden
t
sa
r
e
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
s
e
l
e
c
t
edt
of
orm ana
t
i
ona
lt
r
a
i
n
i
ngt
eam.Thet
r
a
i
n
i
ngt
ake
s
l
ac
ef
ortwo week
si
nt
he mon
t
hof Ma
r
ch.Af
t
e
rf
ou
rt
os
i
x
p
t
e
s
t
s,p
l
u
stwoqua
l
i
f
i
ngexami
na
t
i
ons,s
i
xs
t
uden
t
sa
r
ef
i
na
l
l
y
y
eam,t
ak
i
ngpa
r
ti
nIMOi
nJ
u
l
s
e
l
e
c
t
edt
oformt
hena
t
i
ona
lt
y
o
ft
ha
tyea
r.
In v
i
ew o
ft
he d
i
f
f
e
r
enc
e
si
n educa
t
i
on, cu
l
t
u
r
e and
e
conomy o
f we
s
t
e
rn pa
r
to
f Ch
i
nai
n compa
r
i
s
on wi
t
ht
he
coa
s
t
a
lpa
r
ti
nEa
s
tCh
i
na,ma
t
hema
t
i
ca
lcompe
t
i
t
i
onsi
n We
s
t
Ch
i
nad
i
dno
tdeve
l
opa
sf
a
s
ta
si
nt
her
e
s
toft
hecoun
t
r
y.In
orde
rt
opr
omo
t
et
heac
t
i
v
i
t
fma
t
hema
t
i
ca
lcompe
t
i
t
i
onand
yo
t
oenhanc
et
hel
eve
lo
fma
t
hema
t
i
ca
lcompe
t
i
t
i
on,s
t
a
r
t
i
ngf
rom
2001,Ch
i
na Ma
t
hema
t
i
ca
lOl
i
ad Commi
t
t
eeor
i
ze
st
he
ymp
gan
Ch
i
na We
s
t
e
rn Ma
t
hema
t
i
ca
lOl
i
ad.Thet
optwo wi
nne
r
s
ymp
wi
l
lbeadmi
t
t
edt
ot
he na
t
i
ona
lt
r
a
i
n
i
ngt
eam.Throught
he
CWMO,t
he
r
e have beentwos
t
uden
t
sen
t
e
r
i
ng t
he na
t
i
ona
l
t
eamandr
e
c
e
i
v
i
ngGo
l
d Meda
l
sf
ort
he
i
rpe
r
f
ormancea
tIMO.
S
i
nc
e1995,f
ora qu
i
t
el
ongpe
r
i
odt
he
r
e wa
snof
ema
l
e
s
t
uden
ti
nt
he Ch
i
ne
s
e na
t
i
ona
lt
eam.In orde
rt
oencour
age
mor
e f
ema
l
e s
t
uden
t
s pa
r
t
i
c
i
t
i
ng i
n t
he ma
t
hema
t
i
ca
l
pa
compe
t
i
t
i
on, s
t
a
r
t
i
ng f
r
om 2002, Ch
i
na Ma
t
hema
t
i
ca
l
Ol
i
adCommi
t
t
eeconduc
t
edt
heCh
i
na Gi
r
l
s
􀆳Ma
t
hema
t
i
ca
l
ymp
Ol
i
ad.Aga
i
n,t
het
optwowi
nne
r
swi
l
lbeadmi
t
t
edd
i
r
ec
t
l
ymp
y
i
n
t
ot
hena
t
i
ona
lt
r
a
i
n
i
ngt
eam.
Theau
t
hor
so
ft
h
i
sbooka
r
ecoache
soft
heCh
i
nana
t
i
ona
l
t
eam.Theya
r
eXi
ongBi
n,LiShenghong,LengGang
s
ong,Wu
J
i
anp
i
ng, Chen Yonggao, Li We
i
i
ng, Zhu
gu, Yu Hongb
ⅵ
Pr
e
a
c
e
f
Huawe
i,Feng Zh
i
u Sh
i
x
i
ong, Qu Zhenhua, Wang
gang, Li
We
i
i
hu
i. Tho
s
e who t
ook pa
r
ti
nt
he
ye, and Zhang S
t
r
ans
l
a
t
i
on work a
r
e Xi
ong Bi
n, Wang Shanp
i
ng, Li
u
Yongmi
ng. Wea
r
eg
r
a
t
e
f
u
lt
o Qi
u Zonghu, Wang J
i
e, Wu
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
J
i
anp
i
ng,andPanChengb
i
aofort
he
i
rgu
i
danceanda
s
s
i
s
t
anc
e
t
oau
t
hor
s.Wea
r
eg
r
a
t
e
f
u
lt
o NiMi
ngofEa
s
tCh
i
na Norma
l
Un
i
ve
r
s
i
t
e
s
s.The
i
re
f
for
tha
she
l
obea
s
i
e
r.
yPr
ped makeourj
Wea
r
ea
l
s
og
r
a
t
e
f
u
lt
oZhangJ
iof Wor
l
dSc
i
en
t
i
f
i
cPub
l
i
sh
i
ng
f
orhe
rha
rdworkl
ead
i
ngt
ot
hef
i
na
lpub
l
i
ca
t
i
onoft
hebook.
Xi
ongBi
n
Oc
t
obe
r2017
ⅶ
b2530 International Strategic Relations and China’s National Security: World at the Crossroads
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
This page intentionally left blank
b2530_FM.indd 6
01-Sep-16 11:03:06 AM
Int
roduc
t
i
on
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
Ea
r
l
s
yday
The In
t
e
rna
t
i
ona
l Ma
t
hema
t
i
ca
l Ol
i
ad (IMO ),
ymp
f
oundedi
n 1959,i
sone o
ft
he mo
s
tcompe
t
i
t
i
veand h
i
l
gh
y
i
n
t
e
l
l
e
c
t
ua
lac
t
i
v
i
t
i
e
si
nt
hewor
l
df
orh
i
choo
ls
t
uden
t
s.
ghs
Even be
f
or
e IMO,t
he
r
e we
r
ea
l
r
eady many coun
t
r
i
e
s
wh
i
ch had ma
t
hema
t
i
c
scompe
t
i
t
i
on.They we
r
e ma
i
n
l
he
yt
coun
t
r
i
e
si
n Ea
s
t
e
rn Eu
r
opeandi
n As
i
a.In add
i
t
i
ont
ot
he
l
a
r
i
za
t
i
on o
f ma
t
hema
t
i
c
s and t
he conve
r
n
popu
gence i
educa
t
i
ona
ls
s
t
emsamong d
i
f
f
e
r
en
tcoun
t
r
i
e
s,t
hes
uc
c
e
s
sof
y
ma
t
hema
t
i
ca
lcompe
t
i
t
i
on
sa
tt
he na
t
i
ona
ll
eve
l prov
i
ded a
f
ounda
t
i
on f
or t
he s
e
t
t
i
ng
up o
f IMO. The coun
t
r
i
e
st
ha
t
a
s
s
e
r
t
edg
r
ea
ti
nf
l
uenc
ea
r
e Hunga
r
hef
orme
rSov
i
e
tUn
i
on
y,t
andt
heUn
i
t
edS
t
a
t
e
s.He
r
ei
sabr
i
e
fr
ev
i
ew o
ft
heIMO and
ma
t
hema
t
i
ca
lcompe
t
i
t
i
oni
nCh
i
na.
In1894,t
heDepa
r
tmen
to
fEduca
t
i
oni
nHunga
r
s
s
eda
ypa
mo
t
i
onandde
c
i
dedt
oconduc
ta ma
t
hema
t
i
ca
lcompe
t
i
t
i
onfor
t
he s
e
conda
r
choo
l
s. The we
l
l
-known s
c
i
en
t
i
s
t, J. von
ys
Et
övö
s,wa
st
heMi
n
i
s
t
e
ro
fEduca
t
i
ona
tt
ha
tt
ime.Hi
ss
uppor
t
i
nt
he even
t had made i
tas
uc
c
e
s
s and t
hu
si
t wa
s we
l
l
l
i
c
i
z
ed.Inadd
i
t
i
on,t
hes
uc
c
e
s
so
fh
i
ss
on,R .vonEt
övö
s,
pub
whowa
sa
l
s
oaphy
s
i
c
i
s
t,
i
nprov
i
ngt
hepr
i
nc
i
l
eofequ
i
va
l
ence
p
n
s
t
e
i
nt
hrough
o
ft
he gene
r
a
lt
heor
fr
e
l
a
t
i
v
i
t
yo
y by A .Ei
ⅸ
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
expe
r
imen
t,hadbrough
tHunga
r
ot
hewor
l
ds
t
agei
ns
c
i
ence.
yt
The
r
ea
f
t
e
r,t
hepr
i
z
ef
orma
t
hema
t
i
c
scompe
t
i
t
i
oni
n Hunga
r
y
övö
s pr
wa
s named “Et
i
ze”. Th
i
s wa
st
he f
i
r
s
t forma
l
l
y
or
i
z
ed ma
t
hema
t
i
ca
lcompe
t
i
t
i
on i
nt
he wor
l
d.In wha
t
gan
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
fo
l
l
ows,Hunga
r
ndeed pr
oduced al
o
tof we
l
l
-known
y hadi
s
c
i
en
t
i
s
t
si
nc
l
ud
i
ng L .Fe
é
r,G .S
z
e
r
j
gö,T.Radó,A .Haa
and M .Ri
e
s
z(
i
nr
ea
lana
l
s
i
s),D .Kön
i
i
ncomb
i
na
t
or
i
c
s),
g(
y
T.von Kármán (
i
nae
rodynami
c
s),andJ.C .Ha
r
s
any
i(
i
n
heor
l
s
owont
heNobe
lPr
i
zeforEconomi
c
s
gamet
y),whohada
i
n1994.Theya
l
lwe
r
et
he wi
nne
r
sof Hunga
r
t
hema
t
i
ca
l
y ma
compe
t
i
t
i
on.Thet
op s
c
i
en
t
i
f
i
c gen
i
u
so
f Hunga
r
y,J.von
soneo
ft
hel
ead
i
ng ma
t
hema
t
i
c
i
an
si
nt
he20
t
h
Neumann,wa
c
en
t
u
r
sove
r
s
ea
s wh
i
l
et
he compe
t
i
t
i
on t
ook
y.Neumann wa
l
ac
e.La
t
e
rhed
i
di
th
ims
e
l
fandi
tt
ookh
im ha
l
fanhourt
o
p
comp
l
e
t
e. Ano
t
he
r ma
t
hema
t
i
c
i
an wor
t
h men
t
i
on
i
ng i
st
he
s.Hewa
sapup
i
lof
h
i
l
oduc
t
i
venumbe
rt
heor
i
s
tP.Erdö
gh
ypr
Fe
é
r and a
l
s
o a wi
nne
roft
he Wo
l
f Pr
i
ze.Erdö
s wa
sve
r
j
y
s
s
i
ona
t
e abou
t ma
t
hema
t
i
ca
l compe
t
i
t
i
on and s
e
t
t
i
ng
pa
compe
t
i
t
i
onque
s
t
i
on
s.Hi
scon
t
r
i
bu
t
i
ont
od
i
s
c
r
e
t
ema
t
hema
t
i
c
s
wa
s un
i
r
ea
t
l
i
i
f
i
can
t.The r
ap
i
d pr
og
r
e
s
s and
que and g
ys
gn
deve
l
opmen
to
fd
i
s
c
r
e
t
e ma
t
hema
t
i
c
s ove
rt
he s
ub
s
equen
t
de
cade
shadi
nd
i
r
e
c
t
l
nf
l
uencedt
het
sofque
s
t
i
onss
e
ti
n
yi
ype
IMO.Ani
n
t
e
rna
t
i
ona
l
l
e
cogn
i
zed pr
i
ze nameda
f
t
e
r Erdö
s
yr
wa
st
ohonourt
ho
s
e whohadcon
t
r
i
bu
t
edt
ot
heeduca
t
i
onof
ma
t
hema
t
i
ca
lcompe
t
i
t
i
on.Pr
o
f
e
s
s
or Qi
u Zonghu f
rom Ch
i
na
hadwont
hepr
i
zei
n1993.
In1934,af
amou
s ma
t
hema
t
i
c
i
an B.De
l
one conduc
t
eda
ma
t
hema
t
i
ca
lcompe
t
i
t
i
onf
orh
i
choo
ls
t
uden
t
si
nLen
i
ng
r
ad
ghs
(
nowS
t.Pe
t
e
r
s
bu
r
s
cowa
l
s
os
t
a
r
t
edor
i
z
i
ng
g).In1935,Mo
gan
s
ucheven
t.Ot
he
rt
hanbe
i
ngi
n
t
e
r
r
up
t
eddur
i
ngt
he Wor
l
d Wa
r
ⅹ
In
t
r
oduc
t
i
on
I
I,t
he
s
eeven
t
shad beenca
r
r
i
edonun
t
i
lt
oday.Asfort
he
Ru
s
s
i
an Ma
t
hema
t
i
ca
lCompe
t
i
t
i
on (
l
a
t
e
rr
enameda
st
heSov
i
e
t
Ma
t
hema
t
i
ca
lCompe
t
i
t
i
on),i
t wa
s no
ts
t
a
r
t
ed un
t
i
l1961.
Thu
s,t
hef
orme
rSov
i
e
tUn
i
onand Ru
s
s
i
abecamet
hel
ead
i
ng
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
r
so
f Ma
t
hema
t
i
ca
lOl
i
ad.A l
o
tofg
r
andma
s
t
e
r
si
n
powe
ymp
ma
t
hema
t
i
c
si
nc
l
ud
i
ngt
he g
r
ea
t A .N .Ko
lmogo
r
ov we
r
ea
l
l
ve
r
t
hu
s
i
a
s
t
i
c abou
tt
he ma
t
hema
t
i
ca
lcompe
t
i
t
i
on.They
y en
s
t
i
ons for t
he
wou
l
d pe
r
s
ona
l
l
nvo
l
ve i
ns
e
t
t
i
ng t
he que
yi
compe
t
i
t
i
on. The f
orme
r Sov
i
e
t Un
i
on even ca
l
l
ed i
tt
he
Ma
t
hema
t
i
ca
l Ol
i
ad, be
l
i
ev
i
ng t
ha
t ma
t
hema
t
i
c
si
st
he
ymp
“
s
t
i
c
so
ft
h
i
nk
i
ng”.The
s
e po
i
n
t
sofv
i
ew gavea g
r
ea
t
gymna
impac
tont
heeduca
t
i
ona
lcommun
i
t
nne
roft
heFi
e
l
d
s
y.Thewi
Meda
li
n1998,M .Kon
t
s
e
v
i
ch,wa
sonc
et
hef
i
r
s
tr
unne
r
upof
he
t
he Ru
s
s
i
an Ma
t
hema
t
i
ca
l Compe
t
i
t
i
on. G . Ka
s
r
ov,t
pa
i
n
t
e
rna
t
i
ona
lche
s
sg
r
andma
s
t
e
r,wa
soncet
hes
econdr
unne
r
up.Gr
i
r
iPe
r
e
lman,t
e
l
d
s Meda
li
n2006
hewi
nne
ro
ft
heF
i
go
(
bu
thede
c
l
i
ned),whos
o
l
vedt
hePo
i
nca
r
é
􀆳
sCon
ec
t
ur
e,wa
sa
j
l
dmeda
l
i
s
to
fIMOi
n1982.
go
In t
he Un
i
t
ed S
t
a
t
e
so
f Ame
r
i
ca, due t
ot
he ac
t
i
ve
omo
t
i
onbyt
her
enowned ma
t
hema
t
i
c
i
an G .
D.
B
i
r
kho
f
f and
pr
h
i
ss
on,t
oge
t
he
r wi
t
h G .Pó
l
he Pu
t
nam ma
t
hema
t
i
c
s
ya,t
compe
t
i
t
i
on wa
sor
i
z
edi
n1938f
orj
un
i
orunde
r
r
adua
t
e
s.
gan
g
Manyo
ft
he que
s
t
i
on
s we
r
e wi
t
h
i
nt
hes
cope o
fh
i
choo
l
ghs
s
t
uden
t
s.Thet
opf
i
vecon
t
e
s
t
an
t
so
ft
hePu
t
nam ma
t
hema
t
i
ca
l
compe
t
i
t
i
on wou
l
dbeen
t
i
t
l
edt
ot
he membe
r
sh
i
t
nam.
p ofPu
Many o
ft
he
s
e we
r
e even
t
ua
l
l
t
s
t
and
i
ng ma
t
hema
t
i
c
i
ans.
y ou
The
r
ewe
r
et
hef
amou
sR .Fe
wi
nne
ro
ft
heNobe
lPr
i
ze
ynman (
forPhy
s
i
c
s,1965),K .Wi
l
s
on (
wi
nne
roft
heNobe
lPr
i
z
efor
Phy
s
i
c
s,1982),J.Mi
l
no
r(
wi
nne
ro
ft
heFi
e
l
d
sMeda
l,1962),
D .Mumf
o
rd (wi
nne
ro
ft
he F
i
e
l
d
s Meda
l,1974),and D .
ⅺ
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
i
l
l
en (
wi
nne
ro
ft
heF
i
e
l
d
sMeda
l,1978).
Qu
S
i
nce1972,i
norde
rt
o pr
epa
r
efort
heIMO,t
he Un
i
t
ed
S
t
a
t
e
s of Ame
r
i
ca Ma
t
hema
t
i
ca
l Ol
i
ad (USAMO ) wa
s
ymp
or
i
z
ed.Thes
t
anda
rd of que
s
t
i
on
s po
s
ed wa
s ve
r
i
gan
yh
gh,
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
r
a
l
l
e
lt
ot
ha
to
ft
he Wi
n
t
e
rCampi
nCh
i
na.Pr
i
ort
ot
h
i
s,t
he
pa
Un
i
t
ed S
t
a
t
e
s had or
i
z
ed
gan
Ame
r
i
can
Hi
l
gh Schoo
Ma
t
hema
t
i
c
s Exami
na
t
i
on (AHSME ) for t
he h
i
choo
l
gh s
s
t
uden
t
ss
i
nc
e1950.Th
i
swa
sa
tt
hej
un
i
orl
eve
lye
tt
he mo
s
t
t
hema
t
i
c
scompe
t
i
t
i
oni
nAme
r
i
ca.Or
i
i
na
l
l
i
twa
s
l
a
rma
g
y,
popu
l
anned t
os
e
l
e
c
t abou
t 100 con
t
e
s
t
an
t
sf
rom AHSME t
o
p
r
t
i
c
i
t
ei
nUSAMO.Howeve
r,duet
ot
hed
i
s
c
r
epancyi
nt
he
pa
pa
l
eve
lo
fd
i
f
f
i
cu
l
t
tween t
he two compe
t
i
t
i
on
s and o
t
he
r
y be
r
e
s
t
r
i
c
t
i
on
s,f
r
om 1983 onwa
rd
s, an i
n
t
e
rmed
i
a
t
el
eve
l of
compe
t
i
t
i
on, name
l
r
i
can Inv
i
t
a
t
i
ona
l Ma
t
hema
t
i
c
s
y, Ame
Exami
na
t
i
on (AIME ), wa
si
n
t
r
oduced. Hence
for
t
h bo
t
h
AHSMEandAIMEbe
camei
n
t
e
rna
t
i
ona
l
l
l
l
-known.Af
ew
y we
c
i
t
i
e
si
n Ch
i
na had pa
r
t
i
c
i
t
edi
nt
he compe
t
i
t
i
on and t
he
pa
r
e
s
u
l
t
swe
r
eencou
r
ag
i
ng.
S
imi
l
a
r
l
si
nt
hef
orme
rSov
i
e
tUn
i
on,t
he Ma
t
hema
t
i
ca
l
ya
Ol
i
adeduca
t
i
on wa
s wi
de
l
e
cogn
i
zedi
n Ame
r
i
ca.The
ymp
yr
book “How t
oSo
l
vei
t”wr
i
t
t
en by Geo
r
ePo
l
l
ong wi
t
h
g
ya a
many o
t
he
rt
i
t
l
e
s had been t
r
ans
l
a
t
ed i
n
t
o many d
i
f
f
e
r
en
t
l
anguage
s.Ge
o
r
e Po
l
i
ded a who
l
es
e
r
i
e
s of gene
r
a
l
g
ya prov
heur
i
s
t
i
c
sf
ors
o
l
v
i
ngpr
ob
l
emsofa
l
lk
i
nd
s.Hi
si
nf
l
uencei
nt
he
educa
t
i
ona
lcommun
i
t
nCh
i
nas
hou
l
dno
tbeunde
r
e
s
t
ima
t
ed.
yi
I
n
t
e
r
na
t
i
ona
lMa
t
hema
t
i
c
a
lOl
i
ad
ymp
In1956,t
heEa
s
tEu
r
opeancoun
t
r
i
e
sandt
heSov
i
e
tUn
i
on
t
ookt
hei
n
i
t
i
a
t
i
vet
o or
i
z
et
heIMO forma
l
l
i
r
s
t
gan
y.Thef
In
t
e
rna
t
i
ona
l Ma
t
hema
t
i
ca
l Ol
i
ad (
IMO ) wa
s he
l
di
n
ymp
ⅻ
In
t
r
oduc
t
i
on
Br
a
s
ov,Roman
i
a,i
n1959.Att
het
ime,t
he
r
ewe
r
eon
l
even
ys
r
t
i
c
i
t
i
ngcoun
t
r
i
e
s,name
l
i
a,Bu
l
r
i
a,Po
l
and,
pa
pa
y,Roman
ga
Hunga
r
echo
s
l
ovak
i
a, Ea
s
t Ge
rmany and t
he Sov
i
e
t
y, Cz
Un
i
on.Sub
s
equen
t
l
he Un
i
t
ed S
t
a
t
e
sof Ame
r
i
ca, Un
i
t
ed
y,t
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
Ki
ngdom,Fr
anc
e,Ge
rmanyanda
l
s
oo
t
he
rcoun
t
r
i
e
si
nc
l
ud
i
ng
t
ho
s
ef
r
om As
i
aj
o
i
ned.Today,t
heIMOhadmanagedt
or
each
a
lmo
s
ta
l
lt
hedeve
l
opedanddeve
l
op
i
ngcoun
t
r
i
e
s.Exc
ep
ti
n
e
sf
aced by t
he ho
s
t
t
heyea
r1980 duet
of
i
nanc
i
a
ld
i
f
f
i
cu
l
t
i
coun
t
r
l
i
a,t
he
r
ewe
r
ea
l
r
eady49 Ol
i
ad
she
l
dand
y,Mongo
ymp
97coun
t
r
i
e
spa
r
t
i
c
i
t
i
ng.
pa
The ma
t
hema
t
i
ca
lt
op
i
c
si
nt
he IMO i
nc
l
ude Al
a,
gebr
Comb
i
na
t
or
i
c
s,Geome
t
r
rt
heor
s
ea
r
ea
s had
y, Numbe
y.The
ov
i
dedgu
i
danc
ef
ors
e
t
t
i
ngque
s
t
i
onsfort
hecompe
t
i
t
i
ons.
pr
,
Ot
he
rt
hant
hef
i
r
s
tf
ew Ol
i
ad
s eachIMOi
snorma
l
l
l
d
ymp
yhe
i
nmi
d
J
u
l
r
randt
het
e
s
tpape
rcons
i
s
t
sof6que
s
t
i
ons
yeve
yyea
i
na
l
l.Theac
t
ua
lcompe
t
i
t
i
onl
a
s
t
sf
or2day
sforat
o
t
a
lof9
hou
r
swhe
r
e pa
r
t
i
c
i
t
sa
r
er
equ
i
r
edt
ocomp
l
e
t
e3 que
s
t
i
ons
pan
eachday.Eachque
s
t
i
oni
s7po
i
n
t
swi
t
ht
o
t
a
lupt
o42po
i
n
t
s.
Thef
u
l
ls
cor
ef
orat
eam i
s252 ma
rks.Abou
tha
l
f oft
he
r
t
i
c
i
t
s wi
l
l be awa
rded a meda
l, whe
r
e 1/12 wi
l
l be
pa
pan
awa
rdedago
l
dmeda
l.Thenumbe
r
sofgo
l
d,s
i
l
ve
randbronze
meda
l
sawa
rdeda
r
ei
nt
her
a
t
i
oo
f1:
2:
3appr
ox
ima
t
e
l
he
y.Int
ca
s
e when a pa
r
t
i
c
i
t pr
ov
i
de
sa be
t
t
e
rs
o
l
u
t
i
on t
han t
he
pan
o
f
f
i
c
i
a
lan
swe
r,as
c
i
a
lawa
rdi
sg
i
ven.
pe
Eachpa
r
t
i
c
i
t
i
ngcoun
t
r
l
lt
aket
u
rnt
oho
s
tt
heIMO.
pa
y wi
Theco
s
ti
sbornebyt
heho
s
tcoun
t
r
i
nahads
uc
c
e
s
s
f
u
l
l
y.Ch
y
ho
s
t
edt
he31
s
tIMOi
n Be
i
i
ng.Theeven
thad madea g
r
ea
t
j
impac
tont
hema
t
hema
t
i
ca
lcommun
i
t
nCh
i
na.Ac
cord
i
ngt
o
yi
t
her
u
l
e
sandr
egu
l
a
t
i
on
so
ft
heIMO,a
l
lpa
r
t
i
c
i
t
i
ngcoun
t
r
i
e
s
pa
a
r
er
equ
i
r
ed t
os
end a de
l
ega
t
i
on cons
i
s
t
i
ng o
f al
eade
r,a
􀃸
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
depu
t
eade
rand6con
t
e
s
t
an
t
s.Thepr
ob
l
emsa
r
econ
t
r
i
bu
t
ed
yl
byt
hepa
r
t
i
c
i
t
i
ngcoun
t
r
i
e
sanda
r
el
a
t
e
rs
e
l
ec
t
edca
r
e
f
u
l
l
pa
yby
t
heho
s
tcoun
t
r
ors
ubmi
s
s
i
ont
ot
hei
n
t
e
rna
t
i
ona
lj
ur
e
tup
yf
ys
by t
he ho
s
t coun
t
r
t
ua
l
l
l
ob
l
ems wi
l
l be
y.Even
y,on
y 6 pr
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
ac
c
ep
t
edf
oru
s
ei
nt
hecompe
t
i
t
i
on.Theho
s
tcoun
t
r
sno
t
ydoe
i
de any que
s
t
i
on. The s
hor
t
l
i
s
t
ed prob
l
ems a
r
e
prov
s
ub
s
equen
t
l
r
an
s
l
a
t
ed,i
f nec
e
s
s
a
r
n Eng
l
i
s
h, Fr
ench,
yt
y,i
t
he
rwork
i
ngl
anguage
s.Af
t
e
rt
ha
t,t
he
Ge
rman,Ru
s
s
i
anando
t
eam l
eade
r
s wi
l
lt
r
an
s
l
a
t
et
he prob
l
ems i
n
t
ot
he
i
r own
l
anguage
s.
The an
swe
rs
c
r
i
t
so
f each pa
r
t
i
c
i
t
i
ng t
eam wi
l
l be
p
pa
ma
rkedbyt
het
eam l
eade
randt
hedepu
t
eade
r.Thet
eam
yl
l
eade
rwi
l
ll
a
t
e
rpr
e
s
en
tt
hes
c
r
i
t
so
ft
he
i
rcon
t
e
s
t
an
t
st
ot
he
p
coord
i
na
t
or
sf
ora
s
s
e
s
smen
t.I
ft
he
r
ei
sanyd
i
s
t
e,t
hema
t
t
e
r
pu
wi
l
lbes
e
t
t
l
edbyt
hej
u
r
u
r
sf
ormedbyt
heva
r
i
ou
s
y.Thej
yi
t
eaml
eade
r
sandanappo
i
n
t
edcha
i
rmanbyt
heho
s
tcoun
t
r
y.
Thej
u
r
sr
e
s
s
i
b
l
ef
orde
c
i
d
i
ngt
hef
i
na
l6prob
l
emsfort
he
yi
pon
compe
t
i
t
i
on.The
i
r du
t
i
e
sa
l
s
oi
nc
l
udef
i
na
l
i
z
i
ng t
he g
r
ad
i
ng
s
t
anda
rd,en
s
u
r
i
ng t
he ac
cu
r
acy o
ft
he t
r
an
s
l
a
t
i
on of t
he
ob
l
ems,s
t
anda
rd
i
z
i
ng r
ep
l
i
e
st
o wr
i
t
t
en que
r
i
e
sr
a
i
s
ed by
pr
r
t
i
c
i
t
sdu
r
i
ngt
hecompe
t
i
t
i
on,s
i
z
i
ng d
i
f
f
e
r
enc
e
s
pa
pan
ynchron
i
ng
r
ad
i
ngbe
tweent
het
eaml
eade
r
sandt
hecoord
i
na
t
or
sand
a
l
s
ode
c
i
d
i
ngont
hecu
t
o
f
fpo
i
n
t
sf
ort
hemeda
l
sdepend
i
ngon
t
hecon
t
e
s
t
an
t
s
􀆳r
e
s
u
l
t
sa
st
hed
i
f
f
i
cu
l
t
i
e
so
fprob
l
emseachyea
r
a
r
ed
i
f
f
e
r
en
t.
Ch
i
nahadpa
r
t
i
c
i
t
edi
nf
orma
l
l
nt
he26
t
hIMOi
n1985.
pa
yi
On
l
t
uden
t
s we
r
es
en
t.S
t
a
r
t
i
ng f
rom 1986,excep
ti
n
ytwos
1998whent
heIMO wa
she
l
di
nTa
iwan,Ch
i
nahada
lway
ss
en
t
6 o
f
f
i
c
i
a
l con
t
e
s
t
an
t
st
ot
he IMO. Today, t
he Ch
i
ne
s
e
con
t
e
s
t
an
t
sno
ton
l
r
f
ormedou
t
s
t
and
i
ng
l
nt
heIMO,bu
t
ype
yi
􀃹
In
t
r
oduc
t
i
on
a
l
s
oi
nt
heIn
t
e
rna
t
i
ona
lPhy
s
i
c
s,Chemi
s
t
r
orma
t
i
c
s,and
y,Inf
Bi
o
l
ogy Ol
i
ad
s.Th
i
scanber
ega
rdeda
sani
nd
i
ca
t
i
ont
ha
t
ymp
Ch
i
na pay
sg
r
ea
ta
t
t
en
t
i
ont
ot
het
r
a
i
n
i
ng of ba
s
i
csk
i
l
l
si
n
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
ma
t
hema
t
i
c
sands
c
i
enc
eeduca
t
i
on.
Wi
nne
r
so
ft
heIMO
Amonga
l
lt
heIMO meda
l
i
s
t
s,t
he
r
e we
r
e many oft
hem
whoeven
t
ua
l
l
r
ea
t ma
t
hema
t
i
c
i
an
s.They we
r
ea
l
s
o
y becameg
awa
rdedt
heF
i
e
l
d
sMeda
l,Wo
l
fPr
i
zeandNevan
l
i
nnaPr
i
ze (
a
nen
tma
t
hema
t
i
c
spr
i
zeforcompu
t
i
ngandi
nforma
t
i
c
s).
promi
Inwha
tf
o
l
l
ows,wenames
omeo
ft
hewi
nne
r
s.
i
l
ve
r meda
l
i
s
to
f IMO i
n 1959, wa
s
G . Ma
r
l
i
s,a s
gu
awa
rdedt
heF
i
e
l
d
s Meda
li
n1978.L .Lova
s
z,who wont
he
Wo
l
fPr
i
zei
n1999,wa
sawa
rdedt
heSpec
i
a
lAwa
rdi
nIMO
i
n
e
l
d,ago
cons
e
cu
t
i
ve
l
n1965and1966.V .Dr
l
dmeda
l
i
s
tof
f
yi
IMOi
n1969,wa
sawa
rdedt
heF
i
e
l
d
s Meda
li
n1990.J.-C .
Yoc
coz and T.Gowe
r
s,who we
r
e bo
t
h awa
rdedt
he Fi
e
l
d
s
Meda
li
n1998,we
r
ego
l
d meda
l
i
s
t
si
nIMOi
n1974and1981
r
e
s
c
t
i
ve
l
i
l
ve
rmeda
l
i
s
to
fIMOi
n1985,L .La
o
r
f
f
gue,
pe
y.As
wont
heFi
e
l
d
sMeda
li
n2002.Ago
l
dmeda
l
i
s
tofIMOi
n1982,
Gr
i
r
iPe
r
e
lmanf
r
om Ru
s
s
i
a,wa
sawa
rdedt
heF
i
e
l
d
sMeda
li
n
go
2006f
ors
o
l
v
i
ngt
hef
i
na
ls
t
ep oft
hePo
i
nca
r
écon
ec
t
ur
e.In
j
1986,1987,and1988,Te
r
enc
eTao wonabronze,s
i
l
ve
r,and
l
d meda
lr
e
s
c
t
i
ve
l
st
he younge
s
t pa
r
t
i
c
i
tt
o
go
pe
y.He wa
pan
da
t
ei
nt
heIMO,f
i
r
s
tcompe
t
i
nga
tt
heageoft
en.Hewa
sa
l
s
o
awa
rdedt
heF
i
e
l
d
sMeda
li
n2006.Go
l
d meda
l
i
s
tofIMO1988
and1989, Ngo Bau Chao, won t
he Fi
e
l
d
s Meda
li
n 2010,
t
oge
t
he
r wi
t
h t
he br
onz
e meda
l
i
s
t of IMO 1988, E.
Li
nden
s
t
r
aus
s.Go
l
d meda
l
i
s
to
fIMO 1994and1995,Ma
r
yam
Mi
r
z
akhan
iwont
heF
i
e
l
d
s Meda
li
n2014.A go
l
d meda
l
i
s
tof
􀃺
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
IMOi
n1995,Ar
t
u
rAv
i
l
awont
heFi
e
l
d
sMeda
li
n2014.
r,wa
As
i
l
ve
rmeda
l
i
s
to
fIMOi
n1977,P.Sho
sawa
rded
t
he Nevan
l
i
nna Pr
i
z
e.A go
l
d meda
l
i
s
to
fIMO i
n1979,A .
Razbo
r
ov,wa
sawa
rdedt
he Nevan
l
i
nna Pr
i
z
e.Ano
t
he
r go
l
d
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
rnov,wa
sawa
rdedt
heCl
ay
meda
l
i
s
tofIMOi
n1986,S.Smi
l
d meda
l
i
s
tofIMO i
n
Re
s
ea
r
ch Awa
rd.V .La
o
r
f
f
gue,a go
1990,wa
sawa
rdedt
heEu
r
opean Ma
t
hema
t
i
ca
lSoc
i
e
t
i
ze.
ypr
Hei
sL .La
o
r
syounge
rbr
o
t
he
r.
f
f
gue􀆳
Al
s
o,a f
amou
s ma
t
hema
t
i
c
i
an i
n numbe
rt
heor
y, N .
El
k
i
e
s,whoi
sa
l
s
o a pro
f
e
s
s
ora
t Ha
r
va
rd Un
i
ve
r
s
i
t
s
y, wa
awa
rdedago
l
d meda
lofIMOi
n1982.Ot
he
rwi
nne
r
si
nc
l
ude
P.Kr
onhe
ime
rawa
rdedas
i
l
ve
rmeda
li
n1981andR .
Tay
l
o
ra
con
t
e
s
t
an
to
fIMOi
n1980.
Ma
t
hema
t
i
c
a
lc
ompe
t
i
t
i
oni
nCh
i
na
Duet
ova
r
i
ou
sr
ea
s
ons,ma
t
hema
t
i
ca
lcompe
t
i
t
i
oni
nCh
i
na
s
t
a
r
t
edr
e
l
a
t
i
ve
l
a
t
ebu
ti
spr
og
r
e
s
s
i
ngv
i
s
l
yl
gorou
y.
“Wea
r
ego
i
ngt
ohaveou
rown ma
t
hema
t
i
ca
lcompe
t
i
t
i
on
t
oo!”s
a
i
d HuaLuog
eng.Huai
sahou
s
e
-ho
l
dnamei
nCh
i
na.
Thef
i
r
s
t ma
t
hema
t
i
ca
lcompe
t
i
t
i
on wa
she
l
dconcur
r
en
t
l
n
yi
Be
i
i
ng,Ti
an
i
n,Shangha
iand Wuhani
n 1956.Duet
ot
he
j
j
l
i
t
i
ca
ls
i
t
ua
t
i
ona
tt
het
ime,t
h
i
seven
twa
si
n
t
e
r
r
up
t
edaf
ew
po
,
t
ime
s.Un
t
i
l1962 whent
he po
l
i
t
i
ca
lenv
i
ronmen
ts
t
a
r
t
edt
o
impr
ove, Be
i
i
ng and o
t
he
rc
i
t
i
e
ss
t
a
r
t
ed or
i
z
i
ng t
he
j
gan
compe
t
i
t
i
on t
hough no
tr
egu
l
a
r
l
he e
r
a of Cu
l
t
ur
a
l
y.In t
Revo
l
u
t
i
on,t
he who
l
e educa
t
i
ona
ls
s
t
em i
n Ch
i
na wa
si
n
y
chao
s.Thema
t
hema
t
i
ca
lcompe
t
i
t
i
oncamet
oacomp
l
e
t
eha
l
t.
Incon
t
r
a
s
t,t
hema
t
hema
t
i
ca
lcompe
t
i
t
i
oni
nt
hef
orme
rSov
i
e
t
Un
i
onwa
ss
t
i
l
lon
i
ngdu
r
i
ngt
hewa
randa
tat
imeunde
rt
he
go
d
i
f
f
i
cu
l
tpo
l
i
t
i
ca
ls
i
t
ua
t
i
on.Thecompe
t
i
t
i
onsi
n Mo
s
cow we
r
e
􀃻
In
t
r
oduc
t
i
on
i
n
t
e
r
r
up
t
edon
l
ime
sbe
tween1942and1944.I
twa
si
ndeed
y3t
commendab
l
e.
eng
In 1978,i
t wa
st
he s
i
ng o
fs
c
i
ence. Hua Luog
pr
conduc
t
edt
he Mi
dd
l
eSchoo
l Ma
t
hema
t
i
ca
lCompe
t
i
t
i
onfor8
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
i
nc
e
si
n Ch
i
na.The ma
t
hema
t
i
ca
lcompe
t
i
t
i
oni
n Ch
i
na
prov
wa
st
henmak
i
ngaf
r
e
s
hs
t
a
r
tandemba
rkedonaroado
fr
ap
i
d
s
s
ed awayi
n 1985.In commemor
a
t
i
ng
deve
l
opmen
t.Hua pa
h
im,acompe
t
i
t
i
onnamedHuaLuog
eng Go
l
dCupwa
ss
e
tupi
n
1986f
ors
t
uden
t
si
nGr
ade6and7andi
tha
sag
r
ea
timpac
t.
The ma
t
hema
t
i
ca
lcompe
t
i
t
i
on
si
n Ch
i
nabe
for
e1980can
becon
s
i
de
r
ed a
st
hei
n
i
t
i
a
l pe
r
i
od.The pr
ob
l
ems we
r
es
e
t
wi
t
h
i
nt
hes
copeo
f mi
dd
l
es
choo
lt
ex
t
book
s.Af
t
e
r1980,t
he
compe
t
i
t
i
on
swe
r
eg
r
adua
l
l
i
ngt
owa
rd
st
hes
en
i
or mi
dd
l
e
y mov
s
choo
ll
eve
l.In 1981, t
he Ch
i
ne
s
e Ma
t
hema
t
i
ca
l Soc
i
e
t
y
de
c
i
dedt
o conduc
tt
he Ch
i
na Ma
t
hema
t
i
ca
l Compe
t
i
t
i
on,a
na
t
i
ona
leven
tf
orh
i
choo
l
s.
ghs
In1981,t
heUn
i
t
edS
t
a
t
e
so
fAme
r
i
ca,t
heho
s
tcoun
t
r
yof
IMO,i
s
s
uedani
nv
i
t
a
t
i
ont
oCh
i
nat
opa
r
t
i
c
i
t
ei
nt
heeven
t.
pa
On
l
n 1985, Ch
i
na s
en
t two con
t
e
s
t
an
t
st
o pa
r
t
i
c
i
t
e
yi
pa
i
nf
orma
l
l
nt
heIMO.Ther
e
s
u
l
t
swe
r
eno
tencour
ag
i
ng.In
yi
v
i
ew o
ft
h
i
s,ano
t
he
r ac
t
i
v
i
t
l
l
ed t
he Wi
n
t
e
r Camp wa
s
y ca
conduc
t
ed a
f
t
e
rt
he Ch
i
na Ma
t
hema
t
i
ca
l Compe
t
i
t
i
on. The
Wi
n
t
e
rCamp wa
sl
a
t
e
rr
enamed a
st
he Ch
i
na Ma
t
hema
t
i
ca
l
Ol
i
adorCMO.The wi
nn
i
ngt
eam wou
l
dbeawa
rdedt
he
ymp
Che
rnSh
i
i
ng
Shen Cup.Ba
s
edont
heou
t
comea
tt
he Wi
n
t
e
r
Camp,a s
e
l
e
c
t
i
on wou
l
d be made t
o form t
he 6
-membe
r
na
t
i
ona
lt
eam f
orIMO.Fr
om 1986 onwa
rd
s,o
t
he
rt
hant
he
r when IMO wa
s or
i
z
edi
n Ta
iwan, Ch
i
na had been
yea
gan
s
end
i
nga6
-membe
rt
eamt
oIMO.Upt
o2011,Ch
i
nahadbeen
awa
rdedt
heove
r
a
l
lt
eamchamp
i
onf
or17t
ime
s.
ⅹ
ⅴ
ⅱ
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
In1990,Ch
i
nahads
uc
c
e
s
s
f
u
l
l
s
t
edt
he31s
tIMO.I
t
y ho
s
howedt
ha
tt
hes
t
anda
rdo
fma
t
hema
t
i
ca
lcompe
t
i
t
i
oni
nCh
i
na
ha
sl
eve
l
edt
ha
to
fo
t
he
rl
ead
i
ngcoun
t
r
i
e
s.F
i
r
s
t,t
hef
ac
tt
ha
t
Ch
i
naach
i
eve
st
heh
i
s
tma
rk
sa
tt
he31s
tIMOfort
het
eam
ghe
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
i
sanev
i
denc
eo
ft
hee
f
f
e
c
t
i
vene
s
so
ft
hepy
r
ami
dappr
oachi
n
s
e
l
e
c
t
i
ng t
he con
t
e
s
t
an
t
si
n Ch
i
na.Second
l
he Ch
i
ne
s
e
y,t
ma
t
hema
t
i
c
i
an
shads
imp
l
i
f
i
edand mod
i
f
i
edove
r100pr
ob
l
ems
ot
het
eaml
eade
r
so
ft
he35coun
t
r
i
e
sfor
ands
ubmi
t
t
edt
hemt
t
he
i
rpe
r
u
s
a
l.Even
t
ua
l
l
ob
l
emswe
r
er
ecommended.At
y,28pr
t
heend,5pr
ob
l
emswe
r
echo
s
en (
IMOr
equ
i
r
e
s6 pr
ob
l
ems).
Th
i
si
sano
t
he
rev
i
denc
et
os
howt
ha
tCh
i
naha
sach
i
evedt
he
h
i
s
tqua
l
i
t
ns
e
t
t
i
ngpr
ob
l
ems.Th
i
rd
l
heanswe
rs
c
r
i
t
s
ghe
yi
y,t
p
o
ft
hepa
r
t
i
c
i
t
swe
r
ema
rkedbyt
heva
r
i
ou
st
eaml
eade
r
sand
pan
a
s
s
e
s
s
edbyt
hecoord
i
na
t
or
swho we
r
enomi
na
t
edbyt
heho
s
t
coun
t
r
i
e
s.Ch
i
na had f
ormed a g
r
oup 50 ma
t
hema
t
i
c
i
anst
o
scoord
i
na
t
or
swho wou
l
den
s
ur
et
heh
i
cur
acyand
s
e
r
vea
ghac
f
a
i
rne
s
si
nma
rk
i
ng.Thema
rk
i
ngpr
oc
e
s
swa
scomp
l
e
t
edha
l
fa
dayea
r
l
i
e
rt
hani
twa
ss
chedu
l
ed.Four
t
h
l
ha
twa
st
hef
i
r
s
t
y,t
eve
rIMO or
i
z
edi
n As
i
a.Theou
t
s
t
and
i
ngpe
r
formanc
eby
gan
Ch
i
nahadencou
r
agedt
heo
t
he
rdeve
l
op
i
ngcoun
t
r
i
e
s,e
s
i
a
l
l
pec
y
t
ho
s
ei
n As
i
a.The or
i
z
i
ng andcoord
i
na
t
i
ng work oft
he
gan
IMObyt
heho
s
tcoun
t
r
sa
l
s
or
ea
s
onab
l
y wa
ygood.
In Ch
i
na,t
he ou
t
s
t
and
i
ng pe
r
f
ormancei
n ma
t
hema
t
i
ca
l
compe
t
i
t
i
oni
sar
e
s
u
l
to
f many con
t
r
i
bu
t
i
on
sf
r
om t
he a
l
l
r
t
e
r
so
f ma
t
hema
t
i
ca
l commun
i
t
r
ea
r
et
he o
l
de
r
qua
y. The
r
a
t
i
ono
fma
t
hema
t
i
c
i
an
s,mi
dd
l
e
agedma
t
hema
t
i
c
i
ansand
gene
a
l
s
ot
he mi
dd
l
eande
l
emen
t
a
r
choo
lt
eache
r
s.The
r
ei
sone
ys
r
s
onwhode
s
e
r
ve
sas
c
i
a
lmen
t
i
onandhei
sHuaLuog
eng.
pe
pe
Hei
n
i
t
i
a
t
edandpr
omo
t
edt
hema
t
hema
t
i
ca
lcompe
t
i
t
i
on.Hei
s
a
l
s
ot
he au
t
horo
ft
hef
o
l
l
owi
ng book
s:Beyond Yang hu
i􀆳
s
ⅹ
ⅴⅲ
In
t
r
oduc
t
i
on
Tr
i
ang
l
e,Beyondt
he p
i of Zu Chong
zh
i,Beyondt
he Mag
i
c
z
i, Ma
Compu
t
a
t
i
on of Sun
t
hema
t
i
ca
l Induc
t
i
on, and
Ma
t
hema
t
i
ca
lPr
ob
l
ems of Bee Hi
ve.The
s
e we
r
eh
i
s books
de
r
i
vedf
r
om ma
t
hema
t
i
c
scompe
t
i
t
i
on
s.When Ch
i
nar
e
s
umed
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
ma
t
hema
t
i
ca
lcompe
t
i
t
i
oni
n 1978,he pa
r
t
i
c
i
t
edi
ns
e
t
t
i
ng
pa
l
emsandg
i
v
i
ngc
r
i
t
i
os
o
l
u
t
i
on
soft
heprob
l
ems.Ot
he
r
prob
quet
ou
t
s
t
and
i
ng books de
r
i
ved f
r
om t
he Ch
i
ne
s
e ma
t
hema
t
i
c
s
t
t
i
ceandAr
ea
compe
t
i
t
i
on
sa
r
e:Symme
t
r
fu,La
yby DuanXue
by Mi
nS
i
he,OneS
t
r
oke Dr
awi
ng and Po
s
tman Prob
l
em by
J
i
angBo
u.
j
Af
t
e
r1980,t
he younge
r ma
t
hema
t
i
c
i
ansi
n Ch
i
na had
t
aken ove
rf
rom t
he o
l
de
r gene
r
a
t
i
on o
f ma
t
hema
t
i
c
i
ansi
n
r
unn
i
ng t
he ma
t
hema
t
i
ca
l compe
t
i
t
i
on. They worked and
s
t
r
i
vedha
rdt
obr
i
ngt
hel
eve
lo
f ma
t
hema
t
i
ca
lcompe
t
i
t
i
oni
n
sones
uch ou
t
s
t
and
i
ng
Ch
i
nat
oa new he
i
t.Qi
u Zonghu i
gh
r
epr
e
s
en
t
a
t
i
ve.Fromt
het
r
a
i
n
i
ngo
fcon
t
e
s
t
an
t
sandl
ead
i
ngt
he
t
eam 3t
ime
st
oIMO t
ot
he or
i
z
i
ng o
ft
he31
t
hIMO i
n
gan
Ch
i
na,hehadcon
t
r
i
bu
t
edpr
omi
nen
t
l
sawa
rdedt
heP.
yandwa
i
z
e.
Erdö
spr
Pr
e
r
a
t
i
onf
o
rIMO
pa
Cur
r
en
t
l
hes
e
l
e
c
t
i
onpr
oc
e
s
sofpa
r
t
i
c
i
t
sf
orIMOi
n
y,t
pan
Ch
i
nai
sa
sf
o
l
l
ows.
Fi
r
s
t,t
he Ch
i
na Ma
t
hema
t
i
ca
l Compe
t
i
t
i
on,a na
t
i
ona
l
compe
t
i
t
i
onforh
i
l
s,
i
sor
i
z
edont
hes
econdSunday
ghSchoo
gan
i
n Oc
t
obe
r eve
r
r.The ob
e
c
t
i
ve
sa
r
e:t
oi
nc
r
ea
s
et
he
y yea
j
i
n
t
e
r
e
s
tofs
t
uden
t
si
nl
ea
rn
i
ng ma
t
hema
t
i
c
s,t
o pr
omo
t
et
he
deve
l
opmen
to
fco
cur
r
i
cu
l
a
rac
t
i
v
i
t
i
e
si
n ma
t
hema
t
i
c
s,t
ohe
l
p
impr
ove t
he t
each
i
ng o
f ma
t
hema
t
i
c
si
nh
i
choo
l
s,t
o
gh s
d
i
s
cove
randcu
l
t
i
va
t
et
het
a
l
en
t
sanda
l
s
ot
o pr
epa
r
ef
ort
he
ⅹ
ⅰ
ⅹ
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
IMO.Th
i
s happens s
i
nce 1981. Cur
r
en
t
l
he
r
ea
r
e abou
t
yt
200,
000pa
r
t
i
c
i
t
st
ak
i
ngpa
r
t.
pan
Thr
ought
heCh
i
na Ma
t
hema
t
i
ca
lCompe
t
i
t
i
on,a
round350
o
fs
t
uden
t
sa
r
es
e
l
e
c
t
edt
ot
akepa
r
ti
nt
heCh
i
na Ma
t
hema
t
i
ca
l
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
Ol
i
adorCMO,t
ha
ti
s,t
he Wi
n
t
e
rCamp.TheCMOl
a
s
t
s
ymp
f
or5 day
sandi
she
l
di
nJ
anua
r
r
r.Thet
sand
y eve
yyea
ype
d
i
f
f
i
cu
l
t
i
e
so
ft
he prob
l
emsi
n CMO a
r
es
imi
l
a
rt
ot
heIMO.
The
r
ea
r
ea
l
s
o3prob
l
emst
obecomp
l
e
t
edwi
t
h
i
n4.
5hour
seach
r,t
hes
cor
ef
oreach pr
ob
l
emi
s21 ma
rkswh
i
ch
day.Howeve
addupt
o126 ma
rk
si
nt
o
t
a
l.S
t
a
r
t
i
ngf
rom 1990,t
he Wi
n
t
e
r
Camp i
n
s
t
i
t
u
t
ed t
he Che
rn Sh
i
i
ng
Shen Cup for t
eam
champ
i
on
sh
i
he Wi
n
t
e
r Camp wa
s of
f
i
c
i
a
l
l
p.In 1991, t
y
r
enameda
st
he Ch
i
na Ma
t
hema
t
i
ca
lOl
i
ad (CMO).I
ti
s
ymp
s
imi
l
a
rt
ot
heh
i
s
tna
t
i
ona
lma
t
hema
t
i
ca
lcompe
t
i
t
i
oni
nt
he
ghe
f
orme
rSov
i
e
tUn
i
onandt
heUn
i
t
edS
t
a
t
e
s.
The CMO awa
rd
st
he f
i
r
s
t,s
econd and t
h
i
rd pr
i
ze
s.
Amongt
hepa
r
t
i
c
i
t
so
fCMO,abou
t60s
t
uden
t
sa
r
es
e
l
ec
t
ed
pan
t
opa
r
t
i
c
i
t
ei
nt
het
r
a
i
n
i
ngf
orIMO.Thet
r
a
i
n
i
ngt
ake
sp
l
ace
pa
i
n Ma
r
cheve
r
r.Af
t
e
r6t
o8t
e
s
t
sandano
t
he
r2round
sof
yyea
l
i
f
i
ngexami
na
t
i
on
s,on
l
t
e
s
t
an
t
sa
r
eshor
t
l
i
s
t
edt
o
qua
y
y6con
f
ormt
heCh
i
naIMO na
t
i
ona
lt
eamt
ot
akepa
r
ti
nt
heIMOi
n
J
u
l
y.
Be
s
i
de
st
he Ch
i
na Ma
t
hema
t
i
ca
l Compe
t
i
t
i
on (
for h
i
gh
s
choo
l
s),t
heJ
un
i
or Mi
dd
l
eSchoo
l Ma
t
hema
t
i
ca
lCompe
t
i
t
i
on
i
sa
l
s
odeve
l
op
i
ng we
l
l.S
t
a
r
t
i
ngf
r
om1984,t
hecompe
t
i
t
i
oni
s
or
i
z
edi
nApr
i
leve
r
rbyt
hePopu
l
a
r
i
za
t
i
onCommi
t
t
ee
gan
yyea
o
ft
he Ch
i
ne
s
e Ma
t
hema
t
i
ca
lSoc
i
e
t
r
i
ou
sprov
i
nce
s,
y.Theva
c
i
t
i
e
sandau
t
onomou
sr
eg
i
on
swou
l
dro
t
a
t
et
oho
s
tt
heeven
t.
Ano
t
he
rma
t
hema
t
i
ca
lcompe
t
i
t
i
onf
ort
hej
un
i
ormi
dd
l
es
choo
l
s
i
sa
l
s
o conduc
t
edi
n Apr
i
leve
r
r by t
he Mi
dd
l
e Schoo
l
y yea
ⅹ
ⅹ
In
t
r
oduc
t
i
on
Ma
t
hema
t
i
c
s Educa
t
i
on Soc
i
e
t
ft
he Ch
i
ne
s
e Educa
t
i
ona
l
yo
Soc
i
e
t
i
nce1998t
i
l
lnow.
ys
eng Go
l
dCup,acompe
t
i
t
i
onbyi
nv
i
t
a
t
i
on,
The HuaLuog
had a
l
s
o been s
uc
c
e
s
s
f
u
l
l
t
ed s
i
nc
e 1986. The
y conduc
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
r
t
i
c
i
t
i
ngs
t
uden
t
scompr
i
s
ee
l
emen
t
a
r
i
xandj
un
i
ormi
dd
l
e
pa
pa
ys
ones
t
uden
t
s.The f
orma
t oft
he compe
t
i
t
i
on cons
i
s
t
s of a
e
l
imi
na
r
ound,s
emi
f
i
na
l
si
nva
r
i
ou
sprov
i
nce
s,c
i
t
i
e
sand
pr
yr
au
t
onomou
sr
eg
i
on
s,t
hent
hef
i
na
l
s.
Ma
t
hema
t
i
ca
lcompe
t
i
t
i
oni
nCh
i
naprov
i
de
sap
l
a
t
formf
or
s
t
uden
t
st
os
howca
s
et
he
i
rt
a
l
en
t
si
nma
t
hema
t
i
c
s.I
tencour
age
s
l
ea
rn
i
ng o
f ma
t
hema
t
i
c
s among s
t
uden
t
s.I
t he
l
den
t
i
f
ps i
y
t
a
l
en
t
ed s
t
uden
t
s and t
o pr
ov
i
de t
hem wi
t
h d
i
f
f
e
r
en
t
i
a
t
ed
l
ea
rn
i
ng oppor
t
un
i
t
t deve
l
op
s co
cur
r
i
cu
l
a
r ac
t
i
v
i
t
i
e
si
n
y.I
ma
t
hema
t
i
c
s.F
i
na
l
l
i
tbr
i
ng
sabou
tchange
si
nt
het
each
i
ngof
y,
ma
t
hema
t
i
c
s.
ⅹ
ⅹ
ⅰ
b2530 International Strategic Relations and China’s National Security: World at the Crossroads
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
This page intentionally left blank
b2530_FM.indd 6
01-Sep-16 11:03:06 AM
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
Con
t
en
t
s
Pr
e
f
ace
I
n
t
r
oduc
t
i
on
ⅲ
Ch
i
naMa
t
hema
t
i
c
a
lCompe
t
i
t
i
on
2010 (
Fu
i
an)
j
1
1
2011 (
Hube
i)
13
2013 (
J
i
l
i
n)
35
2012 (
Shaanx
i)
23
Ch
i
naMa
t
hema
t
i
c
a
lCompe
t
i
t
i
on (
Comp
l
emen
t
a
r
y
Te
s
t)
44
2010 (
Fu
i
an)
j
44
2012 (
Shaanx
i)
56
2011 (
Hube
i)
51
2013 (
J
i
l
i
n)
62
Ch
i
naMa
t
hema
t
i
c
a
lOl
i
ad
ymp
68
2011 (
Changchun,J
i
l
i
n)
68
2013 (
Shenyang,Li
aon
i
ng)
86
2012 (
Xi
an,Shaanx
i)
77
2013 (
Nan
i
ng,J
i
ang
s
u)
j
99
ⅹ
ⅹⅲ
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
Ch
i
naNa
t
i
ona
lTe
amS
e
l
e
c
t
i
onTe
s
t
2011 (
Fuzhou,Fu
i
an)
j
109
2013 (
J
i
angy
i
n,J
i
ang
s
u)
131
2012 (
Nanchang,J
i
anx
i)
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
109
2014 (
Nan
i
ng,J
i
ang
s
u)
j
Ch
i
naGi
r
l
s
􀆳Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
119
145
160
2010 (
Sh
i
i
azhuang,Hebe
i)
j
2011 (
Shenzhen,Guangdong)
160
2013 (
Zhenha
i,Zhe
i
ang)
j
199
2012 (
Guangzhou,Guangdong)
Ch
i
na We
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
174
190
211
2010 (
Ta
i
i)
yuan,Shanx
2011 (
Yu
s
han,J
i
angx
i)
211
2013 (
Lanzhou,Gan
s
u)
240
2012 (
Hohho
t,Inne
rMongo
l
i
a)
Ch
i
naSou
t
he
a
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
221
230
252
2010 (
Lukang,Changhua,Ta
iwan)
252
2012 (
Pu
t
i
an,Fu
i
an)
j
278
2011 (
Ni
ngbo,Zhe
i
ang)
j
2013 (
Yi
ng
t
an,J
i
angx
i)
265
286
I
n
t
e
rna
t
i
ona
lMa
t
hema
t
i
c
a
lOl
i
ad
ymp
299
2011 (
Ams
t
e
rdam,Ho
l
l
and)
299
2013 (
San
t
a Ma
r
t
a,Co
l
omb
i
a)
321
2012 (Ma
rDe
lP
l
a
t
a,Ar
t
i
na)
gen
2014 (
CapeTown,TheRepub
l
i
co
f
Sou
t
hAf
r
i
ca)
ⅹ
ⅹ
ⅰ
ⅴ
311
336
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
Ch
i
naMa
thema
t
i
ca
l
Compe
t
i
t
i
on
2010
Commi
s
s
i
oned by Ch
i
nese
(
F
u
i
a
n)
j
Ma
t
hema
t
i
ca
l Soc
i
e
t
i
an
y, Fu
j
Ma
t
hema
t
i
ca
l Soc
i
e
t
r
i
zed t
he 2010 Ch
i
na Ma
t
hema
t
i
ca
l
yo
gan
Compe
t
i
t
i
onhe
l
donOc
t
obe
r17,2010.
Compa
r
edt
ot
hecompe
t
i
t
i
on
si
nt
hep
r
ev
i
ousyea
r
s,wh
i
l
et
he
t
es
tt
imeandp
r
ob
l
emt
ema
i
nunchangedi
nt
h
i
scompe
t
i
t
i
on,
ypesr
t
hea
l
l
oca
t
i
ono
fma
r
kst
oeachp
r
ob
l
emi
sad
us
t
eds
l
i
t
l
omake
j
gh
yt
i
tmo
r
er
easonab
l
e.
Thet
imef
o
rt
hef
i
r
s
tr
oundt
es
ti
s80mi
nu
t
es,andt
ha
tf
o
rt
he
supp
l
emen
t
a
r
es
ti
s150mi
nu
t
es.
yt
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
2
Pa
r
tI Sho
r
t
-An
swe
r Qu
e
s
t
i
on
s(
e
s
t
i
on
s1 8,e
i
tma
rk
s
Qu
gh
e
a
ch)
1
Ther
angeo
ff(
x)=
x -5 - 24 -3x i
s
.
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
So
l
u
t
i
on.I
ti
sea
s
os
eet
ha
tf(
i
si
nc
r
ea
s
i
ngoni
t
sdoma
i
n
x)
yt
[
5,8].The
r
e
f
or
e,i
t
sr
angei
s [-3, 3].
2
Themi
n
imumo
fy = (
acos2x -3)
s
i
nxi
s -3.Thent
he
r
angeo
fr
ea
lnumbe
rai
s
So
l
u
t
i
on.Le
ts
i
nx
.
= t.Th
eexpr
e
s
s
i
oni
st
henchangedt
o
t)= (-a
t +a -3)
t,or
g(
2
t)= -a
t3 + (
a -3)
t.
g(
Fr
om -a
t3 + (
a -3)
t ≥ -3,wege
t
-a
t(
t -1)-3(
t -1)≥ 0,
2
(
t -1)(-a
t(
t +1)-3)≥ 0.
S
i
ncet -1 ≤ 0,wehave -a
t(
t +1)-3 ≤ 0,or
a(
t2 +t)≥ -3.
①
Whent =0,-1,
expr
e
s
s
i
on ① a
lway
sho
l
d
s;when0 <t ≤
1
2
≤t +
1,wehave0 <t2 +t ≤ 2;andwhen -1 <t < 0,4
3
≤a ≤ 1
t < 0.The
r
e
f
or
e,2.
2
3
Thenumbe
ro
fi
n
t
eg
r
a
lpo
i
n
t
s(
i.
e.,t
hepo
i
n
t
swho
s
ex
-
andy
i
na
t
e
sa
r
ebo
t
hi
n
t
ege
r
s)wi
t
h
i
nt
hea
r
ea (
no
t
-coord
i
nc
l
ud
i
ngt
hebounda
r
l
o
s
edbyt
her
i
anchof
y)enc
ghtbr
hype
rbo
l
ax2 -y2 = 1andl
i
nex = 100i
s
.
So
l
u
t
i
on.Bysymme
t
r
l
ocons
i
de
rt
hepa
r
tof
y,weon
yneedt
-ax
i
s.Suppo
s
el
i
ney = k i
n
t
e
r
cep
t
st
he
t
hea
r
eaabovet
hex
Ch
i
naMa
t
hema
t
i
c
a
lCompe
t
i
t
i
on
3
r
i
tbr
ancho
ft
hehype
rbo
l
aandl
i
nex = 100a
tpo
i
n
t
sAk and
gh
Bk (
k = 1,2, ...,99),r
e
s
c
t
i
ve
l
he numbe
ro
f
pe
y.Thent
i
n
t
eg
r
a
lpo
i
n
t
swi
t
h
i
nt
hes
egmen
tAkBk i
s99 -k.The
r
e
for
e,
t
henumbe
ro
fi
n
t
eg
r
a
lpo
i
n
t
swi
t
h
i
nt
hea
r
eaabovet
hex
-ax
i
si
s
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
99
∑ (99 -k)= 99 ×49 = 4851.
k=1
Fi
na
l
l
t
a
i
nt
he t
o
t
a
l numbe
ro
fi
n
t
eg
r
a
l po
i
n
t
s
y,we ob
wi
t
h
i
nt
hewho
l
ea
r
eaa
s2 ×4851 +98 = 9800.
4 I
ti
sknownt
ha
t{
an }i
sana
r
i
t
hme
t
i
cs
equencewi
t
hnon
-
z
e
r
ocommond
i
f
f
e
r
enc
eand {
t
r
i
cs
equence,
bn }ageome
s
a
t
i
s
f
i
nga1 =3,
b1 =1,a2 =b2 ,3a5 =b3 ;
f
ur
t
he
rmor
e,
y
t
he
r
ea
r
econs
t
an
t
sα andβ s
ucht
ha
tforeve
r
s
i
t
i
ve
y po
i
n
t
ege
rn,we havean = l
ogαbn + β.Thenα + β =
.
So
l
u
t
i
on.Le
an }bed andt
he
tt
hecommon d
i
f
f
e
r
enceof {
commonr
a
t
i
oo
f{
bn }beq.Then
3 +d =q,
3(
3 +4d)=q2 .
①
②
Sub
s
t
i
t
u
t
i
ng ① i
n
t
o ② ,wehave9 +12d = d2 +6d +9.
Thenwege
td = 6andq = 9.
The
r
e
for
e,3 +6(
n -1)= l
ogα9n-1 +βor6
n -3 = (
n-
1)
l
ogα9 +βho
l
d
sf
oreve
r
s
i
t
i
vei
n
t
ege
rn.Le
t
t
i
ngn =1and
ypo
nt
u
rn,wef
i
ndt
ha
tα = 3andβ = 3.
n = 2i
3
Con
s
equen
t
l
α +β = 3 +3.
y,
3
5
Func
t
i
onf(
x)=a2x +3ax -2 (
a >0,a ≠1)r
eache
st
he
max
imumva
l
ue8oni
n
t
e
r
va
l[-1,1].Theni
t
smi
n
imum
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
4
va
l
ueont
h
i
si
n
t
e
r
va
li
s
So
l
u
t
i
on.Le
ta
x
.
=y.Th
eor
i
i
na
lf
unc
t
i
oni
st
henchangedt
o
g
æ 3
ö
2
i
chi
si
nc
r
ea
s
i
ngove
r ç - ,+ ∞ ÷ .
g(
y)= y + 3y - 2,wh
è 2
ø
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
a,a-1]and
When0 < a < 1,wehavey ∈ [
1
-2
-1
-1
g(
y)max = a +3a -2 = 8⇒a = 2⇒a = .
2
Then
æ 1 ö2
1
1
-2 = .
g(
y)min = ç ÷ +3 ×
è2ø
2
4
Whena > 1,wehavey ∈ [
a-1 ,a]and
2
g(
y)max = a +3a -2 = 8⇒a = 2.
Then
1
-2
-1
g(
y)min = 2 +3 ×2 -2 = - .
4
1
I
ns
umma
r
i
s- .
hemi
n
imumv
a
l
u
eo
ff(
x)onx ∈ [-1,1]
y,t
4
6
Twope
r
s
on
sr
o
l
ltwod
i
c
ei
nt
u
rn.Whoeve
rge
t
st
hes
um
numbe
rg
r
ea
t
e
rt
han 6 f
i
r
s
t wi
l
l wi
nt
he game.The
obab
i
l
i
t
ort
hepe
r
s
onr
o
l
l
i
ngf
i
r
s
tt
owi
ni
s
pr
yf
.
So
l
u
t
i
on.Theprobab
i
l
i
t
orr
o
l
l
i
ngtwod
i
cet
oge
tt
hes
um
yf
7
21
=
.The
r
e
f
or
e,t
her
equ
i
r
ed
numbe
rg
r
ea
t
e
rt
han 6i
s
12
36
obab
i
l
i
t
s
pr
yi
æ 5 ÷ö2 7
æ 5 ÷ö4 7 …
7
7
×
×
+ç
+ç
+
=
×
12 è12ø
12
12 è12ø
12
1
12
=
.
25
17
1144
Ch
i
naMa
t
hema
t
i
c
a
lCompe
t
i
t
i
on
7
5
Thel
eng
t
hso
ft
hen
i
needge
so
fr
egu
l
a
rt
r
i
angu
l
a
rpr
i
sm
ABC A1B1C1 a
st
hemi
dpo
i
n
to
fCC1,andt
r
eequ
a
l,Pi
he
i
nα =
d
i
hed
r
a
lang
l
eB A1P B1 =α.Thens
.
So
l
u
t
i
on 1. Le
t t
he l
i
ne
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
t
hr
oughs
egmen
tAB bex
-ax
i
s
i
ng t
he
wi
t
ht
he or
i
i
n O be
g
mi
dpo
i
n
to
fAB andl
e
tt
hel
i
ne
t
hr
oughs
egmen
tOC bey
-ax
i
st
o
e
s
t
ab
l
i
s
h as
er
ec
t
angu
l
a
r
pac
coord
i
na
t
e s
s
t
em s
hown i
n
y
F
i
.7
.1.As
s
umi
ng t
hel
eng
t
h
g
,
of an edge i
s 2 we have
B(
1, 0, 2),
1,0,0), B1(
,P(
-1,
A1(
0,2)
0,3,1)
.Th
e
n
F
i
.7
.1
g
→ = (-2,0,2),B→
BA
P = (-1, 3,1),
1
→ = (-2,0,0),B →
-1, 3,-1)
B1A
.
1
1P = (
→
→
Le
tve
c
t
or
sm = (
x1 ,y1 ,z1)andn = (
x2 ,y2 ,z2)be
rpend
i
cu
l
a
rt
oBA1P andB1A1P ,r
e
s
t
i
ve
l
pe
pec
y.Wehave
→
→ = -2x +2
m ·BA
z1 = 0,
1
1
{
{
→
m ·B→
P = -x1 + 3y1 +z1 = 0,
→
→ = -2x = 0,
n·B A
1
1
2
n·B1→
P = -x2 + 3y2 -z2 = 0.
→
→
→
Wecant
hena
s
s
umet
ha
tm = (
1,0,1),n = (
0,1, 3).
Fr
om|m ·n|=|m |·|n||c
o
sα|,wehave
→
→
→
→
6
3 = 2·2|c
o
sα|⇒|cosα|=
.
4
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
6
The
r
e
f
or
e,s
i
nα =
10
.
4
So
l
u
t
i
on2.Ass
eeni
nF
i
.7
.2,wehave
g
PC =PC1 ,PA1 =PB .Suppo
s
eA1Band
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
AB1i
n
t
e
r
s
e
c
ta
tO .Then wege
tOA1 =
OB ,OA = OB1 ,A1B ⊥ AB1 .
henPO ⊥ AB1 .
S
i
ncePA = PB1 ,t
The
r
e
f
or
eAB1 ⊥ p
l
anePA1B .
Onp
l
anePA1B t
hr
oughO dr
awl
i
ne
OE ⊥ A1P wi
t
hf
oo
tpo
i
n
tE .
F
i
.7
.2
g
st
hent
he p
l
aneang
l
eoft
he
Conne
c
t
i
ngB1E , ∠B1EO i
d
i
hedr
a
lang
l
eB A1P B1 .As
s
umi
ngAA1 =2,
i
ti
sea
s
of
i
nd
yt
t
ha
tPB = PA1 = 5,A1O = B1O = 2,PO = 3.
Inr
i
tt
r
i
ang
l
e△PA1O ,wehaveA1O·PO = A1P·OE ,
gh
6
or 2· 3 = 5·OE .SoOE =
.
5
AsB1O = 2,wehave
B1E =
B1O2 +OE2 =
2+
F
i
na
l
l
y,
i
n∠B1EO =
s
i
nα = s
8
6
45
=
.
5
5
B1O
2
10
=
=
.
4
B1E
45
5
Thenumbe
ro
fpo
s
i
t
i
vei
n
t
ege
rs
o
l
u
t
i
onsofequa
t
i
onx +
s
t
hx ≤ y ≤zi
y +z =2010wi
.
So
l
u
t
i
on.I
ti
sea
s
of
i
ndt
ha
tt
henumbe
rofpo
s
i
t
i
vei
n
t
ege
r
yt
sC2
009 ×1004.
s
o
l
u
t
i
on
so
fx +y +z = 2010i
2009 = 2
Wenowc
l
a
s
s
i
f
he
s
es
o
l
u
t
i
on
si
n
t
ot
hr
eeca
t
egor
i
e
s:
yt
Ch
i
naMa
t
hema
t
i
c
a
lCompe
t
i
t
i
on
7
(
1)x =y =z,
t
henumbe
ri
nt
h
i
sca
t
egor
sobv
i
ou
s
l
yi
y1;
(
2)t
he
r
ea
r
eexac
t
l
ha
ta
r
eequa
lamongx,y,z —
ytwot
t
henumbe
ri
nt
h
i
sca
t
egor
s1003;
yi
(
3)x,y,z a
r
ed
i
f
f
e
r
en
tf
r
om eacho
t
he
r—s
uppo
s
et
he
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
numbe
ri
nt
h
i
sca
t
egor
sk.
yi
Fr
om
k = 2009 ×1004,
1 +3 ×1003 +6
wehave
k = 2009 ×1004 -3 ×1003 -1
6
=2
006 ×1005 -2009 +3 ×2 -1
=2
006 ×1005 -2004.
Wege
t
k = 1003 ×335 -334 = 335671.
The
r
e
f
or
e, t
he numbe
r o
f po
s
i
t
i
ve i
n
t
ege
r s
o
l
u
t
i
ons
s
a
t
i
s
f
i
ngx ≤ y ≤zi
s
y
1 +1003 +335671 = 336675.
Pa
r
tI
I Wo
r
dPr
ob
l
ems (
16 ma
rk
sf
o
r Qu
e
s
t
i
on9,20 ma
rk
s
e
a
chf
o
r Qu
e
s
t
i
on
s10and11,andt
hen56 ma
rk
si
n
t
o
t
a
l)
9 I
ti
sknownt
ha
tf(
x)=ax3 +bx2 +cx +d (
a ≠0),and
'(
x)|≤ 1for0 ≤ x ≤ 1.P
l
ea
s
ef
i
ndt
he max
imum
|f
va
l
ueofa.
So
l
u
t
i
on1.f'(
x)= 3ax2 +2
bx +c.Wehave
'(
0)=c,
ìïf
ï æ1ö 3
'ç ÷ = a +b +c,
íf
ï è2ø 4
ï ()
îf
' 1 = 3a +2
b +c.
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
8
Then
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
Wege
t
æ1ö
a = 2f
3
'(
0)+2f
'(
1)-4f
'ç ÷ .
è2ø
æ1ö
3|a| = 2f
'(
0)+2f
'(
1)-4f
'ç ÷
è2ø
æ 1 ö÷
≤ 8.
è2ø
≤ 2|f
'(
0)|+2|f
'(
1)|+4 f
'ç
The
r
e
f
or
e,a ≤
8
.Fu
r
t
he
rmor
e,i
ti
sea
s
of
i
ndt
ha
t
yt
3
8
x)= x3 -4x2 +x +m (
sanycon
s
t
an
t)s
a
t
i
s
f
i
e
s
whe
r
emi
f(
3
8
t
heg
i
vencond
i
t
i
on.The
r
e
for
e,t
hemax
imumva
l
ueofai
s .
3
So
l
u
t
i
on2.Le
tg(
x)=f
'(
x)+1.Then0 ≤g(
x)≤2for0 ≤
x ≤ 1.Le
tz = 2x -1.Thenx =
z +1
and -1 ≤z ≤ 1.Le
t
2
æz +1ö÷ 3
a 2 3a +2
b
3
a
=
+b +c +1.
h(
z)= g ç
z +
z+
è 2 ø
4
2
4
I
ti
sea
s
oche
ckt
ha
t0 ≤h(
z)≤2and0 ≤h(-z)≤2for
yt
-1 ≤z ≤ 1.
The
r
e
for
e,0 ≤
t
ha
ti
s
0≤
h(
z)+h(-z)
≤ 2f
or -1 ≤ z ≤ 1.And
2
3
a 2 3a
+b +c +1 ≤ 2.
z +
4
4
3
a
3
a
+b +c +1 ≥ 0a
Thenwehave
nd z2 ≤ 2.Fr
om0 ≤
4
4
z2 ≤ 1wege
ta ≤
8
.
3
8
Asf(
x)= x3 -4x2 +x + m (
whe
r
em i
sanycons
t
an
t)
3
Ch
i
naMa
t
hema
t
i
c
a
lCompe
t
i
t
i
on
9
s
a
t
i
s
f
i
e
st
heg
i
vencond
i
t
i
on.Weob
t
a
i
nt
ha
tt
hemax
imumva
l
ue
8
s .
o
fai
3
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
10 Gi
ventwo mov
i
ngpo
i
n
t
sA (
x1 ,y1)andB (
x2 ,y2)on
r
abo
l
acu
r
vey2 =6x wi
t
hx1 +x2 =4andx1 ≠x2 ,and
pa
n
t
e
r
s
ec
t
sx
-ax
i
s
t
hepe
rpend
i
cu
l
a
rb
i
s
e
c
t
oro
fs
egmen
tABi
a
tpo
i
n
tC .F
i
ndt
hemax
imuma
r
eaof△ABC .
So
l
u
t
i
on1.Le
tt
hemi
dpo
i
n
tofAB beM (
x0 ,y0).Thenx0
=
y1 +y2
x1 +x2
= 2a
.Wehave
ndy0 =
2
2
kAB =
y2 -y1
y2 -y1
6
3
=
=
.
2 =
+
x2 -x1 y2
2
1
0
y
y
y
2
y1
6
6
Theequa
t
i
ono
ft
hepe
rpend
i
cu
l
a
rb
i
s
e
c
t
orofABi
s
y0
x -2).
y -y0 = - (
3
①
I
ti
sea
s
of
i
ndt
ha
tones
o
l
u
t
i
ono
fi
ti
sx = 5,y = 0.
yt
The
r
e
f
or
e,t
hei
n
t
e
r
s
ec
t
i
onC i
saf
i
xed po
i
n
twi
t
hcoord
i
na
t
e
(
5,0).
From ① ,weknowt
heequa
t
i
onofl
i
neABi
sy -y0 =
(
x -2),or
x =
or
y0 (
y -y0)+2.
3
3
y0
②
Sub
s
t
i
t
u
t
i
ng ②i
ny2 = 6x,wege
ty2 = 2y0(
y -y0)+12,
2
2
y -2y0y +2y0 -12 = 0.
③
Asy1 andy2 a
r
etwor
ea
lr
oo
t
so
f③ andy1 ≠y2 ,wehave
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
10
Δ = 4y2
2y2
2)= -4y2
8 > 0.
0 -4(
0 -1
0 +4
The
r
e
for
e,-2 3 < y0 < 2 3.Thenwehave
2
2
(
+(
x1 -x2)
y1 -y2)
|AB | =
æç
æy0 ö2 ö
2
1+ ç ÷ ÷ (
y1 -y2)
è
è3ø ø
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
=
2
æç
y0 ö
2
1 + ÷ [(
y1 +y2) -4
y1y2]
è
9ø
=
=
=
2
3
2
æç
y0 ö
2
2
4
2
1+ ÷ (
y0 -4(
y0 -12))
è
9ø
(
(
9 +y2
12 -y2
.
0)
0)
F
i
.10
.1
g
s
Thed
i
s
t
anc
ef
r
om po
i
n
tC(
5,0)t
os
egmen
tABi
h =|CM |=
The
r
e
f
or
e,
S△ABC =
=
≤
=
2
2
(
+(
=
5 -2)
0 -y0)
1
1
|AB |·h =
2
3
1
3
1
3
9 +y2
0.
(
(
· 9 +y2
9 +y2
12 -y2
0)
0)
0
1(
(
(
9 +y2
24 -2y2
9 +y2
0)
0)
0)
2
2
2
2 3
1 æç9 +y0 +24 -2y0 +9 +y0 ö÷
2è
ø
3
14
7.
3
Theequa
l
i
t
l
d
si
fandon
l
f9 +y2
4 - 2y2
i.
e.
0 =2
0,
yho
yi
t
y0 = ± 5.Thenwege
æ
ö
æ
ö
A ç6 + 35, 5 + 7 ÷ ,B ç6 - 35, 5 - 7 ÷
è
ø
è
ø
3
3
and
æ
ö
æ
ö
A ç6 + 35,- (5 + 7)÷ ,B ç6 - 35,- 5 + 7÷ .
è
ø
è
ø
3
3
Ch
i
naMa
t
hema
t
i
c
a
lCompe
t
i
t
i
on
11
14
Con
s
equen
t
l
hemax
imuma
r
eaof△ABCi
s
7.
y,t
3
So
l
u
t
i
on 2. S
he
imi
l
a
rt
o So
l
u
t
i
on 1, we ge
tt
ha
t C ,t
i
n
t
e
r
s
e
c
t
i
onoft
hepe
rpend
i
cu
l
a
rb
i
s
e
c
t
orofAB andt
hex
-ax
i
s,
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
i
saf
i
xedpo
i
n
twi
t
hcoord
i
na
t
e(
5,0).
Le
tx1 =t2
x2 =t2
t1 >t2 ,
t2
t2
st
he
ThenS△ABCi
1,
2,
1 +
2 =4.
ab
s
o
l
u
t
eva
l
ueo
f
5
1 t2
1
2
t2
2
0
1
6t1 1 ,
6t2 1
s
o
S2△ABC =
=
=
≤
æç 1 (
ö2
5 6t1 + 6t2
t2 - 6t1t2
t2)÷
1
2 -5 6
è2
ø
3(
2
2
(
t1 -t2)
t1t2 +5)
2
3(
4 -2
t1t2)(
t1t2 +5)(
t1t2 +5)
2
3 çæ14÷ö
.
2è3ø
3
The
r
e
f
or
e,S△ABC ≤
14
7andt
heequa
l
i
t
l
d
si
fandon
l
yho
y
3
7+ 5
2
=t1t2 +5a
i
f(
ndt2
t1 -t2)
t2
henge
tt1 =
1 +
2 =4.Wet
6
andt2 = -
or
7 - 5,
wh
i
chimp
l
i
e
se
i
t
he
r
6
ö
ö
æ
æ
A ç6 + 35, 5 + 7 ÷ ,B ç6 - 35, 5 - 7 ÷
è
ø
è
ø
3
3
ö
æ
ö
æ
A ç6 + 35,- (5 + 7)÷ ,B ç6 - 35,- 5 + 7 ÷ .
ø
è
è
ø
3
3
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
12
14
F
i
na
l
l
hemax
imuma
r
eaof△ABCi
s
7.
y,t
3
11 Pr
ovet
ha
tequa
t
i
on2x3 +5x -2 = 0ha
sexac
t
l
ea
l
yoner
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
r
oo
t (deno
t
ed a
s r),and t
he
r
ei
s a un
i
t
r
i
c
t
l
que s
y
2
i
nc
r
e
a
s
i
ngs
equ
en
c
e{
an }
s
u
cht
ha
t =ra1 +ra2 +ra3 + … .
5
So
l
u
t
i
on.Le
tf(
x)= 2x3
+5
x -2.Then wehavef
x)=
'(
i
ch mean
s f(
ss
t
r
i
c
t
l
nc
r
ea
s
i
ng.
6x2 +5 > 0, wh
x) i
y i
æ1ö
3
> 0.Th
Fu
r
t
he
rmor
e,f(
0) = - 2 < 0,f ç ÷ =
e
r
e
for
e,
è2ø
4
1ö
æ
saun
i
ea
lr
oo
tr ∈ ç0, ÷ .From2
x)ha
r3 +5
r -2 =0,
f(
quer
2ø
è
wehave
r
2
4
7
10
=
=r +r +r +r + … .
5 1 -r3
The
r
e
for
e,s
equencean = 3
n -2 (
n = 1,2,...)s
a
t
i
s
f
i
e
st
he
r
equ
i
r
edcond
i
t
i
on.
As
s
umet
he
r
ea
r
etwod
i
f
f
e
r
en
tpo
s
i
t
i
vei
n
t
ege
rs
equence
s
a1 < a2 < … < an < … andb1 <b2 < … <bn < …
s
a
t
i
s
f
i
ng
y
ra1 +ra2 +ra3 + … =rb1 +rb2 +rb3 + … =
2
.
5
De
l
e
t
i
ngt
het
e
rmst
ha
tappea
ra
tt
he bo
t
hs
i
de
soft
he
expr
e
s
s
i
on,wehave
rs1 +rs2 +rs3 + … =rt1 +rt2 +rt3 + …,
whe
r
es1 <s2 <s3 < …,
t1 <t2 <t3 < … wi
t
ha
l
lt
hesiandtj
d
i
f
f
e
r
en
tf
r
omeacho
t
he
r.
Wemaya
swe
l
la
s
s
umet
ha
ts1 <t1 .Then
Ch
i
naMa
t
hema
t
i
c
a
lCompe
t
i
t
i
on
13
rs1 <rs1 +rs2 + … =rt1 +rt2 + …,
1 <rt1-s1 +rt2-s1 + … ≤r +r2 + …
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
=
1
-1 <
1 -r
1
-1 = 1.
1
12
I
ti
sacon
t
r
ad
i
c
t
i
on.Th
i
spr
ove
st
ha
t{
an }
i
sun
i
que.
2011
(
Hu
b
e
i)
Comm
i
s
s
i
o
n
edb
i
n
e
s
e Ma
t
h
ema
t
i
c
a
lSo
c
i
e
t
iMa
t
h
ema
t
i
ca
l
y Ch
y,Hube
Soc
i
e
t
r
i
zedt
he2011Ch
i
naMa
t
hema
t
i
ca
lCompe
t
i
t
i
onhe
l
don
yo
gan
Oc
t
obe
r16,2011.
Pa
r
tI Sho
r
t
-An
swe
r Qu
e
s
t
i
on
s(
e
s
t
i
on
s1 8,e
i
tma
rk
s
Qu
gh
e
a
ch)
1
Le
tA = {
a1 ,a2 ,a3 ,a4}.Suppo
s
et
hes
e
tofs
umsofa
l
l
t
hee
l
emen
t
si
neve
r
e
rna
r
ub
s
e
tofAi
sB = {-1,3,
yt
ys
5,8}.ThenA =
.
So
l
u
t
i
on.Obv
i
ou
s
l
r
l
emen
tofA appea
r
st
hr
eet
ime
s
y,eve
ye
i
na
l
lt
het
e
rna
r
ub
s
e
t
s.Thenwehave
ys
3(
a1 +a2 +a3 +a4)= (-1)+3 +5 +8 = 15,
ora1 +a2 +a3 +a4 = 5.The
r
e
f
or
e,t
hefoure
l
emen
t
sofA a
r
e
5 - (-1)= 6,5 -3 = 2,5 -5 = 0,5 -8 = -3,r
e
s
t
i
ve
l
pec
y.
Theanswe
ri
sA = {-3,0,2,6}.
2
Theva
l
uef
i
e
l
do
ff(
x)=
x2 +1
i
s
x -1
.
14
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
So
l
u
t
i
on.Le
tx
=t
anθ,-
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
x)=
f(
π
π
π
<θ <
andθ ≠ .Wehave
2
2
4
1
co
sθ
1
=
=
t
anθ -1 s
osθ
i
nθ -c
1
.
πö
æç
i
nθ - ÷
2s
4ø
è
πö
æ
Le
tu = 2s
i
nçθ - ÷ .Then - 2 ≤ u < 1andu ≠ 0.
4ø
è
The
r
e
for
e,f(
x)=
3
æ
1
2 ùú ∪ (
∈ ç - ∞ ,1,+ ∞ ).
ú
u
è
2û
1 1
Suppo
s
eaandba
r
epo
s
i
t
i
ver
ea
lnumbe
r
ss
a
t
i
s
f
i
ng +
y
a b
≤ 2 2a
nd (
a -b) = 4(
ab).Thenl
ogab =
2
So
l
u
t
i
on.From 1 + 1
a
o
t
he
rhand,
b
3
.
≤22,weh
avea +b ≤22ab.Ont
he
2
2
3
(
=4
=4
a +b)
ab + (
a -b)
ab +4(
ab)
≥ 4·2 a
b·(
ab) = 8(
ab),
3
2
andt
ha
tmeans
The
r
e
f
or
e,
a +b ≥ 2 2ab.
①
a +b = 2 2ab.
②
Theequa
l
i
t
n ① ho
l
d
son
l
s
oc
i
a
t
i
ngi
t
yi
y whenab = 1.As
wi
t
h ② ,wef
i
nd
a = 2 -1,
a = 2 +1,
and
b = 2 +1,
b = 2 -1.
{
{
Sot
hean
swe
ri
sl
ogab = -1.
Ch
i
naMa
t
hema
t
i
c
a
lCompe
t
i
t
i
on
4
15
Suppo
s
ec
o
s5θ - s
i
n5θ < 7(
s
i
n3θ - c
os3θ),θ ∈ [
0,2π).
Thent
her
angeo
fθi
s
.
So
l
u
t
i
on.Fromtheinequa
l
i
t
y
c
o
s5θ -s
i
n5θ < 7(
s
i
n3θ -co
s3θ),
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
wehave
s
i
n3θ +
1 5
1 5
s
i
nθ > c
sθ.
o
s3θ + co
7
7
S
i
ncef(
x)= x3 +
1 5
si
nc
r
ea
s
i
ngove
r (- ∞ ,+ ∞ ),
x i
7
t
hens
i
nθ > c
o
sθ,andt
ha
tmean
s
kπ +
2
π
5π
<θ < 2
kπ + (
k ∈ Z).
4
4
æ π 5πö
Bu
tθ ∈ [
sç , ÷ .
0,2π),
s
ot
her
angeofθi
è4 4 ø
5 Sevens
t
uden
t
sa
r
ea
r
r
angedt
oa
t
t
endf
i
ves
t
i
ngeven
t
s.
por
I
ti
sr
equ
i
r
edt
ha
ts
t
uden
t
sA andBcanno
ta
t
t
endt
hes
ame
even
t,eve
r
ti
sa
t
t
endedbya
tl
ea
s
tones
t
uden
t,and
yeven
eachs
t
uden
t mu
s
ta
t
t
endoneandon
l
t.Then
y oneeven
t
henumbe
ro
ft
hea
r
r
angemen
tp
l
ansmee
t
i
ngt
her
equ
i
r
ed
cond
i
t
i
oni
s
nume
r
i
ca
lva
l
ue)
.(
t
heanswe
rshou
l
d be g
i
veni
n
So
l
u
t
i
on.Therearetwopos
s
i
b
l
eca
s
e
st
ha
ts
a
t
i
s
f
her
equ
i
r
ed
yt
cond
i
t
i
on
s:
(
1)t
he
r
ei
saneven
ta
t
t
endedbyt
hr
ees
t
uden
t
s— t
h
i
sca
s
e
1
ha
sC3
600p
l
an
s;
7 ·5! - C
5 ·5! = 3
(
2)t
he
r
ea
r
etwoeven
t
seacha
t
t
endedbytwos
t
uden
t
s—
1 2 · 2)· !
t
h
i
sca
s
eha
s (
1400p
l
ans.
C7 C5 5 - C2
5 ·5! = 1
2
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
16
The
r
e
f
or
e,t
he
r
ea
r
e3600+11400 =15000p
l
anst
ha
tmee
t
t
her
equ
i
r
edcond
i
t
i
on.
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
6
Gi
venat
e
t
r
ahedr
onABCD ,i
ti
sknownt
ha
t ∠ADB =
∠BDC = ∠CDA =6
0
°,AD =BD =3andCD =2.Then
t
he r
ad
i
u
s of t
he s
r
e c
i
r
cums
c
r
i
b
i
ng ABCD i
s
phe
.
So
l
u
t
i
on.Le
tt
he c
en
t
e
ro
ft
he
s
r
ec
i
r
cums
c
r
i
b
i
ngABCD beO .
phe
Then O i
s on t
he ve
r
t
i
ca
ll
i
ne of
hr
ough po
i
n
tN t
he
l
ane ABD t
p
I
ti
sknown
c
i
r
cumc
en
t
e
rof△ABD .
t
ha
t△ABD i
sr
egu
l
a
r,s
oN i
st
he
cen
t
e
ro
fi
t.Le
tP and M bet
he
mi
dpo
i
n
t
s
AB
of
and
CD ,
r
e
s
c
t
i
ve
l
sonDP wi
t
h
pe
y.ThenN i
F
i
.6
.1
g
ON ⊥ DP andOM ⊥ CD .
Le
tθdeno
t
et
heang
l
ebe
tweenCD andp
l
aneABD .From
∠CDA = ∠CDB = ∠ADB = 6
0
°,
wef
i
ndc
osθ =
1,
2
s
i
nθ =
.
3
3
S
i
nc
eDM =
1
2
2 3
CD =1,DN = ·DP = · ·3 = 3,
2
3
3 2
byco
s
i
net
heor
em wehave,i
n△DMN ,
MN2 = DM 2 + DN2 -2·DM ·DN ·cosθ
= 1 + (3) -2·1· 3·
2
2
1
= 2,
3
t
ha
ti
sMN = 2.Ther
ad
i
u
so
ft
hes
r
ec
i
r
c
ums
c
r
i
b
i
ngABCD
phe
i
st
hen
Ch
i
naMa
t
hema
t
i
c
a
lCompe
t
i
t
i
on
OD =
17
MN
2
=
= 3.
s
i
nθ
2
3
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
Thean
swe
ri
sR = 3.
7
Li
nex - 2y - 1 = 0and pa
r
abo
l
ay2 = 4x i
n
t
e
r
s
ec
ta
t
sont
hepa
r
abo
l
a,and ∠ACB =
i
n
t
sA ,B ,po
i
n
tC i
po
90
°.Thent
hecoord
i
na
t
eo
fCi
s
.
So
l
u
t
i
on.Le
x1 ,y1),B (
x2 ,y2),C(
t ,2
t).From
tA (
2
x -2y -1 = 0,
{
2
y = 4x,
weg
e
ty2 -8
i
chme
an
sy1 +y2 = 8,y1·y2 =-4.
y -4 = 0,wh
S
i
nc
ex1 = 2y1 +1,x2 = 2y2 +1,wehave
x1 +x2 = 2(
y1 +y2)+2 = 18,
x1 ·x2 = 4y1 ·y2 +2(
y1 +y2)+1 = 1.
°,wehaveC→
A ·C→
B = 0,
Fur
t
he
rmor
e,by ∠ACB = 90
wh
i
ch mean
s
(
t2 -x1)(
t2 -x2)+ (
2
t -y1)(
2
t -y2)= 0,
t
ha
ti
s
t4 - (
x1 +x2)
t2 +x1 ·x2 +4
t2 -2(
t +y1 ·y2 = 0.
y1 +y2)
Then
t4 -14
t2 -16
t -3 = 0,
or
(
t2 +4
t +3)(
t2 -4
t -1)= 0.
he
rwi
s
e,wehavet2 - 2·
Obv
i
ou
s
l
t2 -4
t -1 ≠ 0;ot
y,
2
t -1 = 0,wh
i
ch meansC i
sonx - 2y - 1 = 0,i.
e.,C
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
18
co
i
nc
i
de
swi
t
he
i
t
he
rA orB .Sot2 + 4
t + 3 = 0.Thent1 =
- 1,
t2 = -3.
The
r
e
f
or
e,t
hecoord
i
na
t
eofCi
s(
1,-2)or (
9,-6).
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
8
Le
tan = Cn
200·(6)
3
200-n
æ 1 ön
·ç ÷ (
n =1,2,...,95).Then
è 2ø
t
henumbe
ro
ft
e
rmst
ha
ta
r
ei
n
t
ege
r
si
n{
an }
i
s
So
l
u
t
i
on.Wehavean
= C200·3
n
200-n
3
·2
400-5n
6
.
.Whenan (
1 ≤n ≤
400 -5
n
200 -n
and
mu
s
tbei
n
t
ege
r
s.Then
95)
i
sani
n
t
ege
r,
3
6
6|n +4.
Whenn = 2,8,14,20,26,32,38,44,50,56,62,68,
400 -5
200 -n
n
and
a
r
ea
l
lnon
-nega
t
i
vei
n
t
ege
r
s.So
74,80,
3
6
t
hecor
r
e
s
i
ngan ,
t
o
t
a
l
l
r
ei
n
t
ege
r
s.
pond
y14,a
6
38
-5
Thenumbe
rof
Whenn =86,wehavea86 = C8
200·3 ·2 .
t
hef
ac
t
or
so
f2i
n200! i
s
200
200
200
200
200
200
0
+
+
+
+
+
+
=1
97.
[20
2 ] [2 ] [2 ] [2 ] [2 ] [2 ] [2 ]
2
3
4
5
6
7
Byt
hes
amer
ea
s
on,t
henumbe
r
soft
hef
ac
t
or
sof2i
n86!
and114! a
r
e82and110,r
e
s
c
t
i
ve
l
r
e
for
e,t
henumbe
r
pe
y.The
6
o
ft
hef
ac
t
or
so
f2i
nC8
200 =
a86i
sani
n
t
ege
r.
200!
i
s197 -82 -110 =5.So
86!·114!
2
36
-10
.Int
hes
ame
Whenn = 92,wehavea92 = C9
200 ·3 ·2
way,wef
i
ndt
henumbe
r
soft
hef
ac
t
or
sof2i
n92! and108!
6
a
r
e88and105,r
e
s
c
t
i
ve
l
i
ch meanst
ha
ti
nC8
s197 200i
pe
y,wh
88 -105 = 4.The
r
e
f
or
e,
a92i
sno
tani
n
t
ege
r.
Ove
r
a
l
l,t
her
equ
i
r
ednumbe
ri
s14 +1 = 15.
Ch
i
naMa
t
hema
t
i
c
a
lCompe
t
i
t
i
on
19
Pa
r
tI
I Wo
r
dPr
ob
l
ems (
16 ma
r
k
sf
o
r Qu
e
s
t
i
on9,20 ma
rk
s
hen56 ma
rk
si
n
e
a
chf
o
r Qu
e
s
t
i
on
s10and11,andt
t
o
t
a
l)
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
9 Suppo
s
ef(
x)=|l
x +1)
b(
a <b)
ea
lnumbe
r
sa,
|andr
g(
æ b +1÷ö , (
s
a
t
i
s
f
a)= f ç b + 21) = 4
l
g2.
f 10a + 6
yf(
è b +2ø
F
i
ndt
heva
l
ue
so
fa,b.
æ b +1ö÷ ,
wehave
è b +2ø
So
l
u
t
i
on.Asf(
a)= f ç -
æ 1 ö÷
æ b +1
ö
+1÷ = l
=|l
a +1)|= l
b +2)|.
|l
gç gç
g(
g(
èb +2ø
è b +2
ø
Thene
i
t
he
ra +1 =b +2or(
a +1)(
b +2)=1.S
i
nc
ea <
oa +1 ≠b +2.The
b,s
a +1)(
b +2)= 1.
r
e
for
e,(
a)=|l
a +1)|weknow0 < a +1.Then
Fromf(
g(
0 < a +1 <b +1 <b +2,
wh
i
chimp
l
i
e
s
The
r
e
f
or
e,
0 < a +1 < 1 <b +2.
(
10
a +6
b +21)+1 = 10(
a +1)+6(
b +2)
10
> 1.
b +2
= 6(
b +2)+
Then
10
b +2)+
10
a +6
b +21)= l
g 6(
f(
b +2
[
]
10
.
b +2
b +2)+
=l
g 6(
[
Ont
heo
t
he
rhand,
a +6
b +21)= 4
l
10
g2.
f(
]
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
20
So
10
b +2)+
=4
l
l
g 6(
g2,
b +2
[
]
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
10
1
=1
wh
i
ch mean
s6(
b +2)+
6.Thene
i
t
he
rb = - orb =
b +2
3
-1 (
d
i
s
ca
rded).
Sub
s
t
i
t
u
t
i
ngb = -
2
.
5
The
r
e
f
or
ea = -
1
i
n
t
o(
a +1)(
b +2)= 1,wef
i
nda =
3
2,
1
b =- .
5
3
10 Suppo
s
es
e
en
c
e{
an }
t-3(
t ∈ Randt ≠±1),
s
a
t
i
s
f
i
e
sa1 =2
qu
an+1 =
(
tn+1 -3)
an +2(
t -1)
tn -1(
2
n ∈ N* ).
an +2
tn -1
(
1)Fi
ndt
heformu
l
aofgene
r
a
lt
e
rmabou
t{
an }.
(
2)I
ft > 0,
f
i
ndou
twh
i
chi
sl
a
r
rbe
tweenan+1andan .
ge
So
l
u
t
i
on.(
1)Theg
i
venexpr
e
s
s
i
oncanber
ewr
i
t
t
ena
s
an+1 =
2(
tn+1 -1)(
an +1)
-1.
an +2
tn -1
Then
2(
an +1)
(
)
an+1 +1
2 an +1
tn -1
=
=
.
n+1
n
t -1 an +2
t -1 an +1
+
2
tn -1
an +1
2
bn ,
a1 +1
=bn .Th
=
Le
tn
enbn+1 =
wi
t
hb1 =
bn +2
t -1
t -1
2
t -2
= 2.
t -1
Ch
i
naMa
t
hema
t
i
c
a
lCompe
t
i
t
i
on
21
1
1 1 ,1
1
=
+
=
Fu
r
t
he
rmor
e,
.Then
bn+1 bn 2 b1
2
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
1 (
1
·1 = n .
=
+ n -1)
2
bn b1
2
an +1 2 ,
2(
tn -1)
=
-1.
The
r
e
f
or
e, n
wh
i
chmeansan =
n
t -1 n
(
2)Wehave
an+1 -an =
=
2(
tn+1 -1) 2(
tn -1)
n +1
n
2(
t -1)[ (
n 1 +t + … +tn-1 +tn )n(
n +1)
(
n +1)(
1 +t + … +tn-1)]
=
=
=
t -1)[ n (
2(
n
t - 1 +t + … +tn-1)]
n(
n +1)
t -1)[(n
2(
t -1)+ (
tn -t)+ … + (
tn -tn-1)]
n(
n +1)
2
2(
t -1)
[(
tn-1 +tn-2 + … +1)+
(
)
n n +1
t(
tn-2 +tn-3 + … +1)+ … +tn-1].
I
ti
sobv
i
ou
st
ha
tan+1 -an >0fort >0(
t ≠1).The
r
e
for
e,
an+1 > an .
11 S
t
r
a
i
tl
i
nel wi
t
hs
l
ope
gh
1
3
2
x2 y
i
n
t
e
r
c
ep
t
se
l
l
i
s
eC : +
p
36 4
= 1a
t po
i
n
t
s A ,B ,and
i
n
tP (
3 2, 2)i
si
nt
he
po
(
t
op
l
e
f
to
fl a
sshowni
n
F
i
.11
.1
g
Fi
.11
.1).
g
(
1)Pr
ovet
ha
tt
hecen
t
e
roft
hei
ns
c
r
i
bedc
i
r
c
l
eof△PAB
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
22
i
sonag
i
venl
i
ne;
(
2)When ∠APB = 60
°,f
i
ndt
hea
r
eaof△PAB .
So
l
u
t
i
on.(
1)Le
tlbeas
t
r
a
i
tl
i
nes
ucht
ha
ty
gh
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
andA (
x1 ,y1),B (
x2 ,y2).
Sub
s
t
i
t
u
t
i
ngy =
i
t,wehave
=
1
x +m,
3
1
x2 y
+
= 1,
x +mi
n
t
o
ands
imp
l
i
f
i
ng
y
36 4
3
2
2x2 +6mx +9m2 -36 = 0.
Thenx1 +x2 = -3m ,x1x2 =
kPB =
y2 - 2
y1 - 2 ,
9m2 -36,
kPA =
2
x1 -3 2
.The
r
e
f
or
e,
x2 -3 2
kPA +kPB =
=
y1 - 2
x1 -3 2
+
y2 - 2
x2 -3 2
(
x2 -3 2)+ (
x1 -3 2)
y1 - 2)(
y2 - 2)(
.
(
x1 -3 2)(
x2 -3 2)
Int
heexpr
e
s
s
i
onabove,t
henume
r
a
t
ori
sequa
lt
o
æç 1
ö
æ1
ö
x1 + m - 2 ÷ (
x2 -3 2)+ ç x2 + m - 2 ÷ (
x1 -3 2)
è3
ø
è3
ø
=
=
2
x1x2 + (
m -2 2)(
x1 +x2)-6 2(
m - 2)
3
2 ·9m2 -36 (
(-3m )-6 2(
+ m -2 2)
m - 2)
2
3
= 3m -1
2 -3m +6 2m -6 2m +12 = 0.
2
2
The
r
e
for
e,
i
nc
ePi
kPA +kPB =0.S
si
nt
het
op
l
e
f
to
fl,we
s pa
r
a
l
l
e
lt
ot
he y
-ax
i
s.
know t
ha
tt
he b
i
s
ec
t
or o
f ∠APB i
The
r
e
for
e,t
hec
en
t
e
ro
ft
hei
n
s
c
r
i
bedc
i
r
c
l
eo
f△PABi
sonl
i
ne
x = 3 2.
Ch
i
naMa
t
hema
t
i
c
a
lCompe
t
i
t
i
on
23
(
2)When ∠APB = 60
°,byt
her
e
s
u
l
ti
n(
1),wehav
ekPA =
3,kPB = - 3.Thent
heequa
t
i
onforl
i
nePA i
sy - 2 =
2
x2 y
+
= 1,a
x -3 2).Sub
3(
nde
l
imi
na
t
i
ng
s
t
i
t
u
t
i
ngi
ti
n
t
o
36 4
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
t
y,wege
1 -3 3)
x +18(
13 -3 3)= 0,
14x2 +9 6(
wh
i
chha
sr
oo
t
sx1 and3 2.Sox1 ·3 2 =
x1 =
3 2(
13 -3 3)
.Thenwef
i
nd
14
2
·|x1 -3 2|=
1 + (3)
|PA |=
18(
13 -3 3),
i.
e.
14
3 2(
3 3 +1)
.
7
3 2(
3 3 -1)
In t
he s
ame way, we have | PB |=
.
7
The
r
e
f
or
e,
S△PAB =
=
=
1·
i
n60
°
|PA |·|PB |·s
2
1 ·3 2(
3 3 +1)·3 2(
3 3 -1)· 3
2
7
7
2
117 3
.
49
2012
(
Sh
a
a
n
x
i)
Commi
s
s
i
oned by Ch
i
nese Ma
t
hema
t
i
ca
l Soc
i
e
t
i
y, Shaanx
Ma
t
hema
t
i
ca
l Soc
i
e
t
r
i
zed t
he 2012 Ch
i
na Ma
t
hema
t
i
ca
l
yo
gan
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
24
Compe
t
i
t
i
onhe
l
donOc
t
obe
r14,2012.
i
tma
rk
s
Pa
r
tI Sho
r
t
-An
swe
r Qu
e
s
t
i
on
s(
e
s
t
i
on
s1 8,e
gh
Qu
e
a
ch)
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
1
Le
tP beapo
i
n
tont
heimageo
fy = x +
2(
x > 0).
x
awl
i
ne
spe
rpend
i
cu
l
a
rt
oy = x andy
-ax
i
s
Thr
oughP dr
wi
t
hf
oo
tpo
i
n
t
sA ,B ,r
e
s
c
t
i
ve
l
heva
l
ueof
pe
y.Thent
→
→
PA ·PBi
s
.
2 ö÷
.Theexpr
e
s
s
i
onforl
i
nePA
x0 ø
So
l
u
t
i
on1.Le
tP çx0 ,x0 +
æ
è
i
st
hen
2 ö÷
æ
=- (
x -x0),
y - çx0 +
x0 ø
è
2
y = -x +2x0 + .
x0
or
Fr
om
ìïy = x,
ï
í
2
ïy = -x +2x0 + ,
x0
î
1
1 ö÷
æ
wege
tA çx0 + ,x0 +
.
x0
x0 ø
è
2 ÷ö
æ
Ont
heo
t
he
rhand,wehaveB ç0,x0 +
.ThenP→
A =
x0 ø
è
æç 1 , 1 ö÷
B = (-x0 ,0).The
r
e
f
or
e,
andP→
x0 ø
èx0
1 ·(
-x0)= -1.
P→
A ·P→
B =
x0
Thean
swe
ri
s -1.
Ch
i
naMa
t
hema
t
i
c
a
lCompe
t
i
t
i
on
25
So
l
u
t
i
on2.Ass
eeni
nF
i
.1
.1,
g
2 ÷ö
æ
t
hed
i
s
t
anc
e
sf
r
om P çx0 ,x0 +
t
o
x0 ø
è
i
s,r
e
s
c
t
i
ve
l
l
i
ne
sy = x andy
-ax
pe
y,
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
a
r
e
2 ö÷
æ
x0 - çx0 +
x0 ø
è
|PA |=
2
=
2
x0
F
i
.1
.1
g
and
|PB |= x0 .
S
i
nc
eO ,A ,P andB a
r
econcyc
l
i
cpo
i
n
t
s,t
hen
∠APB = π - ∠AOB =
3π
.
4
3π
= -1.
The
r
e
f
or
e,P→
A ·P→
B =|P→
A |·|P→
B |·cos
4
2
Suppo
s
e △ABC wi
t
h ang
l
e
s A , B and C ,and t
he
cor
r
e
s
i
ngs
i
de
sa,bandcs
a
t
i
s
f
i
e
sequa
t
i
onaco
sB pond
bcosA =
t
anA
3
c.Thent
heva
l
ueo
f
i
s
5
t
anB
.
So
l
u
t
i
on1.Byt
h
eg
i
v
e
nc
ond
i
t
i
onandt
heLawo
fCo
s
i
n
e
s,weha
v
e
3
c2 +a2 -b2
b2 +c2 -a2
-b·
= c,
a·
2
ca
2
b
c
5
ora2 -b2 =
3 2
c .The
r
e
f
or
e,
5
c2 +a2 -b2
a·
t
anA s
i
nAc
o
sB
2
ca
=
=
2
2
2
+c -a
t
anB s
i
nBc
osA
b
b·
b
c
2
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
26
8 2
c
c2 +a2 -b2
5
= 2
=
= 4.
2 2
b +c2 -a2
c
5
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
Thean
swe
ri
s4.
So
l
u
t
i
on 2. As s
een i
n F
i
.2
.1,
g
aw CD ⊥ AB wi
t
hfoo
t
t
hr
oughC dr
i
n
tD .Wehaveac
o
sB = DB and
po
bc
o
sA = AD .Byt
heg
i
v
enc
ond
i
t
i
on,
wehaveDB -AD =
3
c.Comb
i
n
i
ng
5
i
twi
t
hDB + AD = c,wege
tAD =
F
i
.2
.1
g
4
1
candDB = c.The
r
e
f
or
e,
5
5
CD
t
anA
BD
AD
=
=
= 4.
AD
t
anB
CD
BD
So
l
u
t
i
on3.Byt
hep
r
o
e
c
t
i
ont
he
o
r
em,wehav
eac
o
sB +bc
o
sA
j
=
3
4
c.Comb
i
n
i
ngi
twi
t
hac
o
sB -bc
o
sA = c,weg
e
tac
o
sB = c
5
5
andbc
osA =
1
c.The
r
e
f
or
e,
5
4
c
t
anA s
i
nAc
osB a·c
osB
5
=
=
=
= 4.
t
anB s
i
nBc
osA b·co
sA
1
c
5
3
Le
tx,y,z ∈ [
0,1].Thent
hemax
imumva
l
ueo
fM =
s
|x -y| + |y -z| + |z -x|i
So
l
u
t
i
on.Wemayas
s
ume0 ≤ x
M =
≤ y ≤z ≤ 1.Th
en
y -x + z -y + z -x .
.
Ch
i
naMa
t
hema
t
i
c
a
lCompe
t
i
t
i
on
27
S
i
nce
z -y)] =
2[(
y -x)+ (
y -x + z -y ≤
wehave
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
M ≤
z -x),
2(
2(
z -x)+ z -x = (2 +1) z -x ≤ 2 +1.
Theequa
l
i
t
l
d
si
fandon
l
fy -x =z -y,x =0,z =
yho
yi
1
æç
ö
.
e.x = 0,y = ,z = 1÷ .
1i
2
è
ø
The
r
e
for
e,t
hean
swe
ri
sM max = 2 +1.
4
Le
tt
hef
ocu
sandd
i
r
e
c
t
r
i
xo
fpa
r
abo
l
ay2 = 2px(
p > 0)
beFandl,
r
emov
i
ngpo
i
n
t
sont
he
r
e
s
c
t
i
ve
l
pe
y.A andBa
π
.Le
tt
hepro
ec
t
i
ono
fM
j
3
r
abo
l
as
a
t
i
s
f
i
ng ∠AFB =
pa
y
t
he mi
dpo
i
n
to
fs
egmen
t AB on l be N .Then t
he
MN |
i
s
max
imumva
l
ueof|
|AB |
So
l
u
t
i
on1.Suppos
e ∠ABF
Lawo
fS
i
ne,wehave
|AF | =
s
i
nθ
Andt
hen
So
.
= θç0 <θ <
æ
è
2πö÷
.Thenbyt
he
3ø
|BF |
|AB |.
=
π
æ2π
ö
ç
÷
-θ
s
i
n
s
i
n
3
è3
ø
|AF |+|BF | = |AB |.
π
æ2π
ö
-θ÷
s
i
n
s
i
nθ +s
i
nç
3
è3
ø
|AF |+|BF | =
|AB |
æ2π
ö
-θ÷
s
i
nθ +s
i
nç
πö
æ
è3
ø
=2
c
osçθ - ÷ .
3ø
è
π
s
i
n
3
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
28
Ass
eeni
nF
i
.4
.1,byu
s
i
ngt
he
g
de
f
i
n
i
t
i
on o
f a pa
r
abo
l
a and t
he
ope
r
t
fat
r
ape
zo
i
d, we have
pr
yo
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
|AF |+|BF |.Then
|MN |=
2
πö
æ
|MN | =
c
o
sçθ - ÷ .
3ø
è
|AB |
MN |
The
r
e
f
or
e,|
r
eache
st
he
|AB |
max
imumva
l
ue1whenθ =
Thean
swe
ri
s1.
F
i
.4
.1
g
π
.
3
So
l
u
t
i
on2.By us
i
ng t
he de
f
i
n
i
t
i
on ofa pa
r
abo
l
a andt
he
|AF |+|BF |.In
ope
r
t
fat
r
ape
zo
i
d,wehave|MN |=
pr
yo
2
△AFB ,byu
s
i
ngt
heLawo
fCo
s
i
ne
swehave
π
2
2
2
|AB | =|AF | +|BF | -2|AF |·|BF |cos
3
2
=(
|AF |+|BF |) -3|AF |·|BF |
æ AF |+|BF |÷ö2
2
è
ø
|
2
≥(
|AF |+|BF |) -3ç
=
æç|AF |+|BF |ö÷2
2
=|MN | .
2
è
ø
The equa
l
i
t
l
d
si
f and on
l
f | AF |=| BF |.
y ho
yi
MN |
The
r
e
f
or
e,t
hemax
imumva
l
ueof|
i
s1.
|AB |
5 Suppo
s
etwor
egu
l
a
rt
r
i
angu
l
a
rpyr
ami
d
sP ABC andQ
ABCsha
r
i
ngt
hes
ameba
s
ea
r
ei
n
s
c
r
i
bedi
nt
hes
ames
r
e.
phe
I
ft
heang
l
eb
e
twe
ent
hes
i
de
f
a
c
eandt
heba
s
eo
fP ABCi
s
45
°,
t
hent
het
ang
en
tv
a
l
u
eo
ft
heang
l
eb
e
twe
ent
hes
i
d
e
f
a
c
e
Ch
i
naMa
t
hema
t
i
c
a
lCompe
t
i
t
i
on
andt
heba
s
eo
fQ ABCi
s
29
.
So
l
u
t
i
on. As s
e
en i
n F
i
.5
.1,
g
t
henPQi
spe
r
i
c
u
l
a
r
c
onne
c
t
i
ngPQ,
pend
t
op
l
aneABC wi
t
ht
hef
oo
tpo
i
n
tH
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
be
i
ngt
hec
en
t
e
ro
f△ABC .Thec
en
t
e
r
sa
l
s
oonPQ .Conne
c
t
o
ft
hes
r
eOi
phe
andex
t
endCH t
ol
e
ti
ti
n
t
e
r
s
ec
twi
t
h
ABa
tpo
i
n
tM .M i
st
hent
hemi
dpo
i
n
t
o
fAB ,andCM ⊥ AB .
I
ti
sea
s
os
ee
yt
t
ha
t ∠PMH and ∠QMH a
r
et
hep
l
ane
ang
l
e
sformed by t
hes
i
de
s
f
ac
e
sand
F
i
.5
.1
g
t
heba
s
e
so
ft
her
egu
l
a
rt
r
i
ang
u
l
a
rpy
r
ami
d
sP ABCandQ ABC,
°,
s
oPH = MH =
r
e
s
c
t
i
v
e
l
pe
y.Then ∠PMH = 45
1
AH .
2
S
i
nce ∠PAQ =90
°,AH ⊥PQ ,
t
henAH2 =PH ·QH .We
t
henhaveAH2 =
1
AH ·QH .
2
The
r
e
for
e,QH = 2AH = 4MH .
QH
= 4.
F
i
na
l
l
t
an∠QMH =
y,
MH
Thean
swe
ri
s4.
6
Le
tf(
x)beanoddf
unc
t
i
ononR,andf(
x)=x2forx ≥
0.Suppo
s
eforanyx ∈ [
a,a +2],f(
x +a)≥ 2f(
x).
Thent
her
angeo
fr
ea
lnumbe
rai
s
.
So
l
u
t
i
on.Accord
i
ngt
ot
heg
i
vencond
i
t
i
on,wehave
x)=
f(
x2
{
2
-x
(
x ≥ 0),
(
x < 0).
So2f(
x)= f(2x).The
r
e
for
e,t
heor
i
i
na
li
nequa
l
i
t
s
g
yi
equ
i
va
l
en
tt
of(
x +a)≥ f(2x).
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
30
Asf(
x)
i
si
nc
r
ea
s
i
ngove
rR,t
henx +a ≥ 2x,
i.
e.,
a ≥ (2 -1)
x.
a,a + 2],(2 - 1)x r
eache
s
Fu
r
t
he
rmor
e,s
i
nc
ex ∈ [
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
(2 -1)(
a +2)t
hemax
imumva
l
uewhenx = a +2.
a ≥ (2 -1)(
a +2),
The
r
e
for
e,
f
rom wh
i
chweob
t
a
i
na ≥
a ∈ [2,+ ∞ ).
2,
i.
e.,
Thean
swe
ri
st
hen [2,+ ∞ ).
7
Thes
umo
fa
l
lt
hepo
s
i
t
i
vei
n
t
ege
r
sns
a
t
i
s
f
i
ng
y
<
1
i
s
3
1
π
<s
i
n
n
4
.
So
l
u
t
i
on.Ass
i
nxi
saconvexf
unc
t
i
onf
orx
π ö÷ ,
we
6ø
∈ ç0,
æ
è
3
have x < s
i
nx < x.Then
π
π
π
1,
π
3
π
1,
<
<
>
×
=
s
i
n
s
i
n
13 13 4
12 π 12 4
π
1,
3 π
1,
π
π
<
<
>
×
=
s
i
n
s
i
n
π 9
3
10 10 3
9
t
ha
ti
s
1
π
π
π
1
π
π
<
<s
<s
<s
<
<s
i
n
i
n
i
n
i
n .
s
i
n
12
11
10 3
9
13 4
r
e
The
r
e
f
or
e,a
l
lt
hepo
s
s
i
b
l
eva
l
ue
sofpo
s
i
t
i
vei
n
t
ege
r
sna
10,11,12,andt
he
i
rs
umi
s33.
Thean
swe
ri
s33.
8
Ani
nf
orma
t
i
ons
t
a
t
i
onemp
l
oy
sfou
rd
i
f
f
e
r
en
tcode
s,A ,
B ,C andD ,
f
orcommun
i
ca
t
i
on,bu
teachweeku
s
e
son
l
y
Ch
i
naMa
t
hema
t
i
c
a
lCompe
t
i
t
i
on
31
one of t
hem. The code u
s
ed i
n a de
f
i
n
i
t
e week i
s
r
andoml
e
l
ec
t
edwi
t
hequa
lchanceamongt
het
hr
eeone
s
ys
t
ha
thave no
tbeen u
s
edi
nt
hel
a
s
t week.Suppo
s
et
he
codeu
s
edi
nt
hef
i
r
s
tweeki
sA .Thent
hepr
obab
i
l
i
t
ha
t
yt
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
Ai
sa
l
s
ou
s
edi
nt
hes
even
t
hweeki
s
a
sani
r
r
educ
i
b
l
ef
r
ac
t
i
on)
.(
expr
e
s
s
ed
So
l
u
t
i
on.Le
t
et
hepr
obab
i
l
i
t
ha
tcodeA i
su
s
edi
n
tPk deno
yt
t
hekt
hweek.Thent
heprobab
i
l
i
t
ha
tAi
sno
tu
s
edi
nt
hekt
h
yt
weeki
s1 -Pk .The
r
e
f
or
e,wehave
Pk+1 =
1(
1 -Pk ).
3
Or
Pk+1 AsP1 =1, Pk -
{
a
st
hef
i
r
s
tt
e
rmand -
1
1 çæP - 1 ÷ö
=.
k
4ø
4
3è
1
3
i
st
henageome
t
r
i
cs
equencewi
t
h
4
4
}
1
a
st
hecommonr
a
t
i
o.Sowehave
3
Pk -
k-1
1
3 æç - 1 ö÷
=
.
4
4è 3ø
Or
Pk =
The
r
e
f
or
e,P7 =
k-1
1
3 æç - 1 ö÷
+
.
4è 3ø
4
61
.
243
61
Thean
swe
ri
s
.
243
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
32
Pa
r
tI
I Wo
r
dPr
ob
l
ems (
56ma
rk
si
nt
o
t
a
lf
o
rt
hr
e
equ
e
s
t
i
on
s)
1
3
+
9 (
16ma
rk
s)Suppo
s
ef(
x)= as
i
nx - c
os2x +a 2
a
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
1,
a ∈ R,a ≠ 0.
2
(
1)I
ff(
x)≤ 0foranyx ∈ R,f
i
ndt
her
angeofa.
(
2)I
fa ≥2andt
he
r
eex
i
s
t
sx ∈ Rs
ucht
ha
tf(
x)≤0,
f
i
nd
t
her
angeofa.
So
l
u
t
i
on.(
1)Wehavef(
x)= s
i
n2x
t =s
i
nx(-1 ≤t ≤ 1).Then
+as
i
nx +a -
3
.Le
t
a
3
t)=t2 +a
t +a - .
g(
a
Thes
u
f
f
i
c
i
en
tandne
c
e
s
s
a
r
i
t
i
onf
orf(
x)≤ 0,∀x
ycond
∈ Ri
s
ìï (-1)= 1 - 3 ≤ 0,
g
a
ï
í
ï ()
3
≤ 0.
aïg 1 = 1 +2
î
a
The
r
e
f
or
e,weob
t
a
i
nt
her
angeaofi
s(
0,1].
a
(
≤ -1.Weh
2)Asa ≥ 2,
t
hen ave
2
3
t)min = g(-1)= 1 - .
g(
a
3
Thenf(
x)min = 1 .The
r
e
for
e,t
he s
u
f
f
i
c
i
en
t and
a
s1ne
c
e
s
s
a
r
i
t
i
onf
orf(
x)≤0,∃x ∈ Ri
ycond
a ≤ 3.
3
≤0,
or0 <
a
F
i
na
l
l
t
a
i
nt
ha
tt
her
angeofai
s[
2,3].
y,weob
Ch
i
naMa
t
hema
t
i
c
a
lCompe
t
i
t
i
on
33
10 (
20ma
rk
s)I
ti
sknownt
ha
teacht
e
rmofs
equence {
an }i
s
anon
z
e
r
or
ea
lnumbe
r,andforany po
s
i
t
i
vei
n
t
ege
rn
ho
l
d
st
heequa
t
i
on
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
3
3
3
2
(
= a1 +a2 + … +an .
a1 +a2 + … +an )
(
1)Whenn = 3,f
i
ndou
ta
l
lt
hes
equence
scons
i
s
t
i
ngof
t
hr
eet
e
rmsa1 ,a2 ,a3 .
(
an }s
ucht
ha
t
2)Doe
st
he
r
eex
i
s
tani
nf
i
n
i
t
es
equence {
a2013 = -2012?I
fi
tex
i
s
t
s,wr
i
t
eou
tt
heformu
l
aofgene
r
a
l
t
e
rm;i
fno
t,g
i
veyourr
ea
s
on.
So
l
u
t
i
on.(
1)Whenn =1,wehavea2
1
ta1 = 1.
ge
=a1 .
S
i
ncea1 ≠0,we
3
2
3
= 1 +a2 .
1 +a2)
S
i
ncea2 ≠0,we
Whenn =2,wehave(
ta2 = 2ora2 = -1.
ge
2
3
3
=1+a2 +a3 .F
Whenn = 3,weha
v
e(
1+a2 +a3)
o
ra2 =
2,wege
ta3 = 3ora3 = -2;f
ora2 = -1,wege
ta3 = 1.
Ins
umma
r
tt
hr
ees
equence
scons
i
s
t
i
ng o
ft
hr
ee
y,we ge
t
e
rmst
ha
ts
a
t
i
s
f
heg
i
vencond
i
t
i
on:
yt
{
1,2,3},{
1,2,-2},and {
1,-1,1}.
(
2)Le
tSn = a1 +a2 + … +an .Thenwehave
2
3
3
3
= a1 +a2 + … +an (
Sn
n ∈ N),
2
3
3
3
3
(
= a1 +a2 + … +an +an+1 .
Sn +an+1)
F
i
nd
i
ngou
tt
hed
i
f
f
e
r
enc
eo
ft
hetwoexpr
e
s
s
i
on
saboveand
2
byan+1 ≠ 0,wehave 2Sn = an
+1 -an+1 .
r
om (
1)t
ha
ta1 = 1.
Whenn = 1,weknowf
Whenn ≥ 2,wehave
2
2
-an )
2
an = 2(
Sn -Sn-1)= (
an
an
.
+1 -an+1 )- (
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
34
Andt
ha
ti
s
(
an+1 +an )(
an+1 -an -1)= 0.
Thenwege
tan+1 = -an oran+1 = an +1.
i
ndt
heformu
l
a
F
i
na
l
l
roma1 =1anda2013 = -2012,wef
y,f
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
ofgene
r
a
lt
e
rmf
orar
equ
i
r
eds
equenc
ea
s
an =
n,
{
1 ≤ n ≤ 2012,
2012(-1), n ≥ 2013.
n
11 (
20ma
rk
s)Ass
eeni
nF
i
.11
.1,
g
i
n t
he r
e
c
t
angu
l
a
r coord
i
na
t
e
s
s
t
em XOY ,t
he s
i
de o
ft
he
y
,
r
hombu
sABCDi
s4 and|OB |=
|OD |= 6.
(
sa
1)Pr
ovet
ha
t|OA|·|OC|i
con
s
t
an
t.
(
2) When po
i
n
tA i
smov
i
ngon
2
2
+y =
t
heha
l
fc
i
r
c
l
e(
x - 2)
F
i
.11
.1
g
4(
2 ≤ x ≤ 4),f
i
ndt
het
r
ac
eo
f
C.
So
l
u
t
i
on.(
1)S
i
nc
e|OB |=|OD |
and|AB|=|AD |=|BC|=|CD |,
t
henO ,A ,C a
r
eco
l
l
i
nea
r.
Ass
eeni
nF
i
.11
.2,connec
t
i
ng
g
BD ,t
henBD i
spe
rpend
i
cu
l
a
rt
oAC
andt
hr
oughi
t
s mi
dpo
i
n
t K .So we
have
F
i
.11
.2
g
Ch
i
naMa
t
hema
t
i
c
a
lCompe
t
i
t
i
on
35
|OK |-|AK |)(
|OK |+|AK |)
|OA |·|OC | = (
2
2
=|OK | -|AK |
2
2
2
2
=(
|OB | -|BK | )- (
|AB | -|BK | )
=|OB | -|AB | = 6 -4 = 2
0(
acons
t
an
t).
2
2
2
2
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
(
2)Le
tC(
x,y),A (
2 +2c
o
sα,2s
i
nα),whe
r
e
π ÷ö
æ π
≤α ≤
.
α = ∠XMA ç 2ø
è 2
Then ∠XOC =
α
.As
2
α
2
2
2
+(
= 8(
2 +2c
osα)
2s
i
nα)
1 +c
osα)= 16cos2 ,
|OA | = (
2
α
i
n
i
ngi
twi
t
ht
her
e
s
u
l
ti
n(
1),we
t
hen|OA |= 4co
s .Comb
2
α
t|OC |co
s = 5.
ge
2
α
α
os =5,andy =|OC|s
i
n =
Thenwehavex =|OC|c
2
2
α
∈[
-5,5]
.
5
t
an
2
The
r
e
f
or
e,t
het
r
ac
eo
fpo
i
n
tCi
sas
egmen
twi
t
ht
heend
s
(
5,5)and (
5,-5).
2013
(
J
i
l
i
n)
Comm
i
s
s
i
o
n
ed b
i
n
e
s
e Ma
t
h
ema
t
i
c
a
lSo
c
i
e
t
i
l
i
n Ma
t
h
ema
t
i
ca
l
y Ch
y,J
Soc
i
e
t
r
i
zedt
he2013Ch
i
naMa
t
hema
t
i
ca
lCompe
t
i
t
i
onhe
l
don
yo
gan
Oc
t
obe
r13,2013.
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
36
Pa
r
tI Sho
r
t
-An
swe
r Qu
e
s
t
i
on
s(
e
s
t
i
on
s1 8,e
i
tma
rk
s
Qu
gh
e
a
ch)
1
Gi
venA = {
2,0,1,3},
l
e
tB = {
x|-x ∈ A ,2 -x2 ∉
A }.Thent
hes
umofe
l
emen
t
si
nBi
s
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
So
l
u
t
i
on.I
ti
sea
s
of
i
ndt
ha
tB
yt
.
⊆ {-2,0,-1,-3}
.We
have2 -x2 ∉ A whenx = -2,-3,and2 -x2 ∈ A whenx =
t
hes
umofwho
s
ee
l
emen
t
s
0,-1.The
r
e
for
e,B = {-2,-3},
i
s -5.
Thean
swe
ri
s -5.
2 Inap
l
aner
e
c
t
angu
l
a
rcoord
i
na
t
es
s
t
emxOy,po
i
n
t
sA ,
y
Ba
r
eont
hepa
r
abo
l
ay2 =4x,
A ·O→
B = -4,
s
a
t
i
s
f
i
ngO→
y
st
hef
ocu
soft
he pa
r
abo
l
a.ThenS△OFA ·
andpo
i
n
tF i
S△OFB =
.
So
l
u
t
i
on.Le
tF (
1,0),A (
x1 ,y1),B (
x2 ,y2).Thenx1
2
1
=
2
2
y ,
y ,
x2 =
and
4
4
→
→
-4 = OA ·OB = x1x2 +y1y2 =
f
r
om wh
i
ch we have
The
r
e
for
e,
S△OFA ·S△OFB =
=
1(
2
y1y2) +y1y2 ,
16
1(
2
y1y2 + 8) = 0,ory1y2 = - 8.
16
æç 1
ö æ1
ö
|OF |·|y1 |÷· ç |OF |·|y2 |÷
è2
ø è2
ø
1·
2
|OF | ·|y1y2 |= 2.
4
Thean
swe
ri
s2.
3
i
nA = 10s
i
nBs
i
nC ,cosA =
Suppo
s
ei
n△ABC wehaves
10c
osBc
o
sC .Thent
anA =
.
Ch
i
naMa
t
hema
t
i
c
a
lCompe
t
i
t
i
on
So
l
u
t
i
on.Ass
i
nA
37
-c
i
nC -c
sC)=
o
sA = 10(
s
i
nBs
osBco
-1
0co
s(
B +C)=10cosA ,wehaves
r
e
f
or
e
i
nA =11c
osA .The
t
anA = 11.
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
Thean
swe
ri
s11.
4
Suppo
s
et
hes
i
deo
ft
heba
s
eandt
hehe
i
fr
egu
l
a
r
ghto
t
r
i
angu
l
a
rpy
r
ami
dP
ABC a
r
e1and 2,r
e
s
t
i
ve
l
pec
y.
Thent
her
ad
i
u
so
ft
hei
n
s
c
r
i
beds
r
eo
ft
hepyr
ami
di
s
phe
.
So
l
u
t
i
on.Ass
eeni
nF
i
.4
.1,s
uppo
s
et
he
g
o
e
c
t
i
on
so
ft
hei
n
s
c
r
i
beds
r
e
􀆳
scen
t
e
rO
pr
j
phe
on f
ace
s ABC and ABP a
r
e H , K,
sM ,and
r
e
s
c
t
i
ve
l
he mi
dpo
i
n
to
fAB i
pe
y,t
t
her
ad
i
u
soft
hes
r
ei
sr.ThenP ,K ,M
phe
π
a
r
eco
l
l
i
nea
r,∠PHM = ∠PKO = ,and
2
OH = OK =r,PO = PH -OH = 2 -r,
MH =
3
3,
AB =
PM =
6
6
MH2 +PH2 =
F
i
.4
.1
g
1
53
+2 =
.
12
6
Thenwehave
r
OK
MH
1
=
=s
=
.
i
n∠KPO =
PM
5
2 -r PO
2
The
r
e
f
or
e,
r=
.
6
Thean
swe
ri
s
5
2
.
6
Le
ta,b ber
ea
lnumbe
r
s,andf(
x) = ax +bs
a
t
i
s
f
i
e
s
x)| ≤1foranyx ∈ [
0,1].Thent
hemax
imumo
fab
|f(
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
38
i
s
.
So
l
u
t
i
on.I
ti
sea
s
of
i
nd t
ha
ta
yt
0).Then
f(
= f(
1) - f(
0),b =
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
1
æ
ö2
2
0)- f(
1)÷ + 1 (
ab = f(
0)·(
1)-f(
0))= - çf(
1))
f(
f(
2
è
ø
4
≤
1 ( ( ))
1
2
≤
.
f1
4
4
1
1
a =b = ± ,wege
When2f(
0)=f(
1)= ±1,
i.
e.,
tab = .
2
4
1
The
r
e
f
or
e,t
hemax
imumo
fabi
s .
4
1
Thean
swe
ri
s .
4
6
Taker
andoml
i
ved
i
f
f
e
r
en
tnumbe
r
sf
rom 1,2,...,
yf
20.Then t
he pr
obab
i
l
i
t
ha
tt
he
r
ea
r
ea
tl
ea
s
ttwo
yt
ad
ac
en
tnumbe
r
samongt
hemi
s
j
So
l
u
t
i
on.Suppos
ea1
.
< a2 < a3 < a4 < a5 t
akenf
rom 1,
2,...,20.I
fa1 ,a2 ,a3 ,a4 ,a5 a
r
e no
tad
acen
tt
o each
j
o
t
he
r,t
henwehave
1 ≤ a1 < a2 -1 < a3 -2 < a4 -3 < a5 -4 ≤ 16,
f
r
om wh
i
ch weknow t
ha
tt
henumbe
rof way
st
os
e
l
e
c
tf
i
ve
numbe
r
sno
tad
ac
en
tt
oeacho
t
he
rf
r
om 1,2,...,20i
st
he
j
s
amea
ss
e
l
ec
t
i
ngf
i
ved
i
f
f
e
r
en
tnumbe
r
sf
rom 1,2, ...,16,
i.
e.,C5
The
r
e
for
e,t
her
equ
i
r
edpr
obab
i
l
i
t
s
16 .
yi
5
C5
C5
232
20 - C
16
16
=1- 5 =
.
5
C20
C20 323
232
Thean
swe
ri
s
.
323
Ch
i
naMa
t
hema
t
i
c
a
lCompe
t
i
t
i
on
39
Suppo
s
er
ea
lnumbe
r
sx,ys
a
t
i
s
f
yx -4 y = 2 x -y .
7
Thent
her
angeo
fxi
s
So
l
u
t
i
on.Le
ty
.
=a, x -y =b(
a,b ≥0).Thenx =y +
(
x -y)= a2 +b2 .Theequa
t
i
oni
nt
heque
s
t
i
onbecome
sa2 +
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
b2 -4a =2
b,wh
i
chi
sequ
i
va
l
en
tt
o
2
2
(
+(
=5 (
a -2)
b -1)
a,b ≥ 0).
Ass
eeni
nF
i
.7
.1,t
het
r
ac
eo
f
g
i
n
t(
a,b)i
np
l
aneaObi
st
hepa
r
t
po
(
,
)
oft
hec
i
r
c
l
ewi
t
hc
en
t
e
r 2 1 and
a
t
i
s
f
i
nga,b ≥ 0,i.
r
ad
i
u
s 5s
e.,
y
r
c
t
he un
i
on of po
i
n
t O and a
︵
ACB .Then
F
i
.7
.1
g
a2 +b2 ∈ {
0}∪ [
2,2 5].
0}∪
The
r
e
f
or
e,x =a2 +b2 ∈ {
[
4,20].
Thean
swe
ri
s{
0}∪ [
4,20].
8 Suppo
s
es
e
en
c
e{
an }c
on
s
i
s
t
so
fn
i
net
e
rms,wh
i
chs
a
t
i
s
f
qu
y
1
ai+1
∈ 2,1,a1 =a9 =1and
f
o
ranyi ∈ {
1,2,...,
2
ai
{
}
8}.Thent
henumb
e
ro
fs
equ
en
c
e
sl
i
ket
h
i
si
s
So
l
u
t
i
on.Le
tbi
=
.
ai+1 (
1 ≤ i ≤ 8).Then foreach {
an }
ai
s
a
t
i
s
f
i
ngt
heg
i
vencond
i
t
i
on,wehave
y
8
∏b
i=1
i
=
8
ai+1 a9
1 (
=
= 1,w
i
t
hbi ∈ 2,1,1 ≤i ≤ 8).
2
a
a
i
1
i=1
∏
{
}
①
Conve
r
s
e
l
equenceo
fe
i
e
rms{
bn }
s
a
t
i
s
f
i
ng ① can
y,as
ghtt
y
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
40
un
i
l
t
e
rmi
neas
equenc
e{
an }
i
nt
heque
s
t
i
on.
que
yde
1
bn },t
Ineach {
he
r
ea
r
eobv
i
ou
s
l
rof - and
yevennumbe
2
t
hes
amenumbe
ro
f2,wi
t
ht
her
ema
i
nde
rbe
i
ng1.Or,
i
no
t
he
r
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
word
s,t
he numbe
r
so
f-
1
i
l
et
he
and 2 a
r
e bo
t
h2
k,wh
2
numbe
rof1i
s8 -4
k.He
r
e,i
ti
sea
s
oche
ckt
ha
tkcanon
l
yt
y
k 2k
be0,1,2.Onceki
sg
i
ven,t
he
r
ea
r
eC2
ay
st
ocons
t
r
uc
t
8 C
8-2k w
{
bn }.The
bn }s
r
e
for
e,t
het
o
t
a
lnumbe
ro
f{
a
t
i
s
f
i
ng ①i
s
y
2
4 4
N = 1 + C2
8 ×15 +70 ×1 = 491.
8C
6 +C
8C
4 = 1 +2
Thean
swe
ri
s491.
Pa
r
tI
I Wo
r
dPr
ob
l
ems (
56ma
rk
si
nt
o
t
a
lf
o
rt
hr
e
equ
e
s
t
i
on
s)
9
(
xn }
16 ma
rk
s) Suppo
s
e po
s
i
t
i
ve numbe
rs
equenc
e {
s
a
t
i
s
f
i
e
sSn ≥2Sn-1 ,n =2,3,...,whe
r
eSn =x1 + … +
xn .Provet
ha
tt
he
r
eex
i
s
t
sacons
t
an
tC > 0,s
ucht
ha
t
xn ≥ C ·2n ,n = 1,2,....
So
l
u
t
i
on.Whenn
≥ 2,Sn ≥ 2
Sn-1i
sequ
i
va
l
en
tt
o
xn ≥ x1 + … +xn-1 .
Le
tC =
1
l
lpr
ove
x1 .Wewi
4
xn ≥ C ·2n ,n = 1,2,....
①
②
byi
nduc
t
i
on.
Whenn = 1,
i
ti
sobv
i
ou
s
l
r
ue.Whenn = 2,wehavex2
yt
≥ x1 = C ·2 .
2
Whenn ≥ 3,a
s
s
umexk ≥ C ·2k ,k = 1,2,...,n -1.
Thenf
rom ① ,wehave
Ch
i
naMa
t
hema
t
i
c
a
lCompe
t
i
t
i
on
41
xn ≥ x1 + (
x2 + … +xn-1)
≥ x1 + (
C ·22 + … +C ·2n-1)
= C(
22 +22 +23 + … +2n-1)= C ·2n .
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
The
r
e
f
or
e,② ho
l
d
sf
oreve
r
yn.
2
x2 y
10 (
20ma
rk
s) Gi
venane
l
l
i
s
eequa
t
i
on 2 + 2 = 1(
a >b
p
a b
> 0)
l
e
tA1 ,
i
nap
l
aner
e
c
t
angu
l
a
rcoord
i
na
t
es
s
t
emxOy,
y
A2 ,F1 ,F2 bei
t
sl
e
f
tandr
i
-po
i
n
t
s,l
e
f
tandr
i
ghtend
ght
focu
s
e
s,r
e
s
t
i
ve
l
i
n
tont
hee
l
l
i
s
e
pec
y,andP beanypo
p
s
et
he
r
ea
r
e po
i
n
t
sQ ,R
d
i
f
f
e
r
en
tf
r
om A1 ,A2 .Suppo
s
a
t
i
s
f
i
ngQA1 ⊥ PA1 ,QA2 ⊥ PA2 ,RF1 ⊥ PF1 ,RF2 ⊥
y
ndandpr
ovet
her
e
l
a
t
i
onsh
i
tweent
hel
eng
t
h
PF2 .Fi
pbe
o
fs
egmen
tQR andb.
So
l
u
t
i
on.Le
tc
=
a2 -b2 .ThenA1(- a,0),A2(
a,0),
F1(-c,0),F2(
c,0).
x2
0
Deno
t
eP (
x0 ,y0),Q (
x1 ,y1),R (
x2 ,y2),whe
r
e 2 +
a
2
y0
= 1,y0 ≠ 0.
b2
Fr
omQA1 ⊥ PA1 ,QA2 ⊥ PA2 ,wehave
A1→
Q ·A1→
P =(
x1 +a)(
x0 +a)+y1y0 = 0,
A2→
Q ·A2→
P =(
x1 -a)(
x0 -a)+y1y0 = 0.
①
②
Sub
t
r
ac
t
i
ng ① and ② ,wehave2
a(
x1 +x0)=0,
i.
e.
x1 =
-x0 .
Sub
s
t
i
t
u
t
i
ngi
ti
n
t
o ① ,wege
t-x0 +a +y1y0 = 0,or
2
2
2
2
x2
æ
x2
0 -a ö
0 -a
÷
.ThenQ ç -x0 ,
.
è
y0 ø
y0
Fr
omRF1 ⊥ PF1 ,RF2 ⊥ PF2 ,
i
nt
hes
amewayweob
t
a
i
n
y1 =
2
x2
æ
0 -c ö
÷
.The
r
e
f
or
e,
R ç -x0 ,
è
y0 ø
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
42
|QR |=
2
2
x2
x2
0 -a
0 -c
b2
=
.
y0
y0
|y0 |
S
i
nc
e|y0 |∈ (
0,b],t
hen|QR |≥ b,whe
r
et
heequa
l
i
t
y
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
ho
l
d
si
fandon
l
f|y0 |=b (
i.
e.,P (
0,±b)).
yi
11 (
20ma
rk
s)F
i
nda
l
lt
hepo
s
i
t
i
ver
ea
lnumbe
rpa
i
r
s(
a,b),
s
ucht
ha
tf(
x)= ax2 +bs
a
t
i
s
f
i
e
s
xy)+f(
x +y)≥ f(
x)
f
o
ranyr
e
a
lnumbe
r
sx,y).
f(
f(
y)(
So
l
u
t
i
on.Theg
i
vencond
i
t
i
oni
sequ
i
va
l
en
tt
o
2
(
+b)≥ (
ax2y2 +b)+ (
a(
x +y)
ax2 +b)(
ay2 +b). ①
·b,or
ax2 +b)≥ (
ax2 +b)
In① ,l
e
ty =0.Wehaveb + (
(
1 -b)
ax2 +b(
2 -b)≥ 0.
Asa > 0andax2canbes
u
f
f
i
c
i
en
t
l
a
r
hen1 -b ≥ 0,
yl
ge,t
i.
e.,0 <b ≤ 1.
2
,or
In ① ,l
e
ty = -x.Wehave(
ax4 +b)+b ≥ (
ax2 +b)
(
a -a2)
x4 -2abx2 + (
2
b -b2)≥ 0.
②
sg(
x).I
ti
sobv
i
ou
st
ha
t
Deno
t
et
hel
e
f
t
-hands
i
deo
f② a
o
t
he
rwi
s
e,f
r
oma >0weknowa =1.Theng(
a -a2 ≠0(
x)=
-2
bx2 +(
2
b - b2)wi
t
hb > 0,wh
i
ch meansg(
x)can be
nega
t
i
ve.A con
t
r
ad
i
c
t
i
on).Then
2
(
ab ö÷2
æ 2
ab)
+(
x)= (
a -a2)çx b -b2)
2
g(
2
è
a -a ø
a -a2
b ö÷2
b (
+
2 -2
a -b)
1 -a ø
1 -a
2
=(
a -a2)çx -
æ
è
≥0
ho
l
d
sf
oranyr
ea
lnumbe
rx.Sowehavea -a2 > 0,
i.
e.,0 <
a < 1.
Ch
i
naMa
t
hema
t
i
c
a
lCompe
t
i
t
i
on
43
b
> 0a
Fu
r
t
he
rmor
e,f
rom
nd
1 -a
æ
b ö÷ = b (
2 -2
a -b)≥ 0,
gç
è 1 -a ø 1 -a
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by 91.124.253.25 on 05/31/18. For personal use only.
wehave2
a +b ≤ 2.
Sof
a
r,wege
tt
hene
c
e
s
s
a
r
i
t
i
ont
ha
ta,
b mu
s
ts
a
t
i
s
f
ycond
y
a
sf
o
l
l
ows:
0 <b ≤ 1,0 < a < 1,2
a +b ≤ 2.
③
a,b)
Wea
r
ego
i
ngt
opr
ovet
ha
tf
oranypa
i
r(
s
a
t
i
s
f
i
ng ③
y
andanyr
ea
lnumbe
r
sx,y,① ho
l
d
s,orequ
i
va
l
en
t
l
y,
h(
x,y)= (
a -a2)
x2y2 +a(
x2 +y2)+
1 -b)(
2
axy + (
b -b2)≥ 0.
2
Asama
t
t
e
ro
ff
ac
t,when ③ ho
l
d
s,wet
henhave
b (
a(
1 -b)≥ 0,a -a2 > 0and
2 -2
a -b)≥ 0.
1 -a
Comb
i
n
i
ngi
twi
t
hx2 +y2 ≥ -2xy,wege
t
h(
x,y)≥ (
a -a2)
x2y2 +a(
1 -b)(-2xy)+2
axy + (
2
b -b2)
=(
a -a2)
x2y2 +2abxy + (
2
b -b2)
b ö÷2
b (
+
2 -2
a -b)≥ 0.
1 -a ø
1 -a
=(
a -a2)çxy +
æ
è
The
r
e
for
e,t
hes
e
tofa
l
lt
hepa
i
r
s(
a,b)mee
t
i
ngt
heg
i
ven
cond
i
t
i
oni
s
{(
a,b)|0 <b ≤ 1,0 < a < 1,2a +b ≤ 2}.
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
Ch
i
naMa
thema
t
i
ca
l
Compe
t
i
t
i
on
(
Comp
l
ement
aryTe
s
t)
1
2010
(
F
u
i
a
n)
j
(40 ma
rk
s) As s
een i
n
F
i
.1
.1,t
he c
i
r
cumc
en
t
e
r
g
o
facu
t
et
r
i
ang
l
eABCi
sO ,
K i
s a po
i
n
t (no
tt
he
mi
dpo
i
n
t)ont
hes
i
deBC ,
Di
sapo
i
n
tont
heex
t
ended
l
i
ne o
fs
egmen
t AK ,l
i
ne
s
BD and AC i
n
t
e
r
s
ec
t a
t
i
n
tN ,andl
i
ne
sCD and
po
F
i
.1
.1
g
ABi
n
t
e
r
s
e
c
ta
tpo
i
n
tM .Pr
ovei
fOK ⊥ MN ,
t
henA ,B ,
Ch
i
naMa
t
hema
t
i
c
a
lCompe
t
i
t
i
on (
Comp
l
emen
t
a
r
s
t)
yTe
45
D ,C a
r
econcyc
l
i
c.
So
l
u
t
i
on. By reduc
t
i
on t
o
ab
s
u
rd
i
t
s
s
umet
ha
tA ,B ,D ,
y,a
Ca
r
eno
tconcyc
l
i
c.Le
tt
hec
i
r
cu
-
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
mc
i
r
c
l
e (wi
t
hr
ad
i
u
sr)of ABC
i
n
t
e
r
s
e
c
tAD a
tpo
i
n
tE .J
o
i
nBE
andex
t
endi
tt
oi
n
t
e
r
s
e
c
tl
i
neAN
a
tpo
i
n
tQ ;j
t
endi
t
o
i
nCE andex
s
t
oi
n
t
e
r
s
ec
tAM a
tP .J
o
i
nPQ ,a
F
i
.1
.2
g
s
eeni
nF
i
.1
.2.
g
Wehave
PK2 =t
hepowe
rofP wi
t
hr
e
s
tt
o ☉O +
pec
t
hr
e
s
tt
o ☉O
t
hepowe
rofQ wi
pec
=(
PO2 -r2)+ (
KO2 -r2).
(Wewi
l
lpr
ovei
ti
nt
heappend
i
x)
Int
hes
ameway,
QK2 = (
QO2 -r2)+ (
KO2 -r2).
Thenwehave
PO2 -PK2 = QO2 -QK2 .
The
r
e
f
or
e,OK ⊥ PQ .Byt
heg
i
vencond
i
t
i
onOK ⊥ MN ,
wege
tt
ha
tPQ ‖MN .Thenwehave
AQ
AP
=
.
QN
PM
①
By Mene
l
au
s
􀆳Theor
em,weob
t
a
i
n
NB ·DE ·AQ
= 1,
BD EA QN
②
MC ·DE ·AP
= 1.
CD EA PM
③
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
46
NB
MC , ND
MD
=
=
or
Fr
om ① ,② ,③ ,wege
t
.Then
BD
CD
BD
DC
i
chimp
l
i
e
s ∠DMN = ∠DCB .Then
△DMN ∽ △DCB ,wh
ha
t means K i
BC ‖MN .The
r
e
f
or
e,OK ⊥ BC ,andt
st
he
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
i
chi
sacon
t
r
ad
i
c
t
i
on.Th
i
scomp
l
e
t
e
st
he
mi
dpo
i
n
tofBC ,wh
r
econcyc
l
i
c.
ft
ha
tA ,B ,D ,C a
proo
Append
i
x.Wearego
i
ngt
opr
ove
PK2 =t
hepowe
rofP wi
t
hr
e
s
tt
o ☉O +
pec
t
hepowe
rofQ wi
t
hr
e
s
tt
o ☉O .
pec
Ex
t
endPK t
opo
i
n
tF ,
s
ucht
ha
t
PK ·KF = AK ·KE
④
(
s
eeF
i
.1
.3).ThenP ,E ,F ,A
g
a
r
econcyc
l
i
c,andwehave
∠PFE = ∠PAE = ∠BCE .
r
e
Then E , C , F , K a
concyc
l
i
c,andwehave
PK ·PF = PE ·PC .
⑤
Fr
om ⑤ and④ ,weg
e
tPK2 =
PE ·PC -AK ·KE =t
hepowe
r
F
i
.1
.3
g
o
fP wi
t
hr
e
s
c
tt
o ☉O +t
hepowe
ro
fQ wi
t
hr
e
s
c
tt
o ☉O .
pe
pe
Remark.I
fEi
sont
heex
t
endedl
i
neofAD ,t
hent
hepr
oofi
s
s
imi
l
a
r.
1
2 (
40ma
rk
s)Gi
venpo
s
i
t
i
vei
n
t
ege
rk,
l
e
tr =k + .De
f
i
ne
2
(
()
(
1)
l-1)
(
r)= f(
r)=rr ,f l (
r)= f(
r)),x ∈ R+ ,l≥ 2.
f (
f
Ch
i
naMa
t
hema
t
i
c
a
lCompe
t
i
t
i
on (
Comp
l
emen
t
a
r
s
t)
yTe
47
(
He
r
e x deno
t
e
st
he mi
n
imumi
n
t
ege
rno
tl
e
s
st
hanx;e.
g.,
1
)Pr
= 1,1 = 1.
ovet
ha
tt
he
r
eex
i
s
t
sapo
s
i
t
i
vei
n
t
ege
rm
2
( )
s
ucht
ha
tf m (
r)
i
sani
n
t
ege
r.
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
So
l
u
t
i
on.Def
i
nev2(
n)a
st
heexponen
tof2i
npo
s
i
t
i
vei
n
t
ege
r
( )
n.Wewi
l
lpr
ovet
ha
tf m (
r)
i
sani
n
t
ege
rform =v2(
k)+1.
Weu
s
ema
t
hema
t
i
ca
li
nduc
t
i
ononv2(
k)=v.
Whenv = 0,ki
soddandk +1i
seven.Then
1ö
1 ö÷ (
æ
æ
()
1
= çk +
r)= f 1 (
r)= çk + ÷ k +
k +1)
f(
2ø
2ø
è
è
2
i
sani
n
t
ege
r.
v ≥1).Thenforv
As
s
umet
hepropo
s
i
t
i
oni
st
r
uef
orv -1(
≥ 1,
l
e
t
k = 2v +αv+1 ·2v+1 +αv+2 ·2v+2 + …,
whe
r
eαi ∈ {
0,1}f
ori =v +1,v +2,....Wehave
1ö
1 ö÷ (
æ
æ
1
= çk +
r)= çk + ÷ k +
k +1)
f(
2ø
2ø
è
è
2
=
=
1 k
2
+
+k +k
2 2
1
v 1
+2 - + (
αv+1 +1)·2v + (
αv+1 +αv+2)·
2
2v+1 + … +22v + …
=k
'+
1,
2
①
wi
t
h
k
' = 2v-1 + (
αv+1 +1)·2v + (
αv+1 +αv+2)·2v+1 + … +22v + … .
Obv
i
ou
s
l
k
') = v - 1.Le
tr
' = k
' +
y,v2(
1
.By
2
()
r
')i
a
s
s
ump
t
i
on,weknowf v (
sani
n
t
ege
r,wh
i
chi
sequa
lt
o
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
48
(
r)by ①.Theproofi
st
hencomp
l
e
t
ed.
(
v+1)
f
3 (
50 ma
rk
s)Gi
veni
n
t
ege
rn > 2,s
uppo
s
e po
s
i
t
i
ver
ea
l
numbe
r
sa1 ,a2 ,...,ans
a
t
i
s
f
yak ≤1,k =1,2,...,n.
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
Le
tAk =
Prove
a1 +a2 + … +ak ,
k = 1,2,...,n.
k
n
n
k=1
k=1
∑ ak - ∑ Ak <
n -1
.
2
So
l
u
t
i
on.For1 ≤k ≤n -1,wehave0 < ∑i=1ai
∑
k
≤ka
nd0 <
a ≤n -k.Byu
s
i
ngt
hef
ac
tt
ha
t|x -y|< max{
x,y}
n
i=k+1 i
f
orx,y > 0,wege
t
k
n
æç 1 1 ö÷
1
ai + ∑ ai
∑
èn k ø i
n
i=k+1
=1
|An - Ak | =
n
=
< ma
x
≤
k
æ1 1 ö
1
ai - ç - ÷ ∑ ai
è k n ø i=1
ni∑
=k+1
n
{
1
n
max { (
n
=1-
k
æ1 1 ö
1
ai ,ç - ÷ ∑ ai
è k n ø i=1
ni∑
=k+1
}
æ 1 1 ÷ö
k
èk n ø
,ç
-k)
}
k
.
n
The
r
e
f
or
e,
n
n
k=1
k=1
n
∑ ak - ∑Ak = nAn - ∑ Ak
k=1
=
<
n-1
∑ (An -Ak ) ≤
k=1
n-1
k ö÷
∑ è1 - n ø =
æç
k=1
Th
i
scomp
l
e
t
e
st
hepr
oo
f.
n-1
∑ |A
k=1
n -1
.
2
n
- Ak |
Ch
i
naMa
t
hema
t
i
c
a
lCompe
t
i
t
i
on (
Comp
l
emen
t
a
r
s
t)
yTe
49
4 (
50ma
rk
s)Thecodes
e
t
t
i
ngo
fac
i
rl
ocki
se
s
t
ab
l
i
shed
phe
-r
egu
l
a
r
l
t
hve
r
t
i
ce
sA1 ,A2 , ...,An :
onann
po
ygon wi
eachve
r
t
exi
sa
s
s
i
r(
0or1)andaco
l
or (
r
ed
gnedanumbe
orb
l
ue),s
ucht
ha
te
i
t
he
rt
henumbe
r
sort
heco
l
or
son
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
eachpa
i
rofad
acen
tve
r
t
i
ce
sa
r
et
hes
ame.Wea
sk:How
j
manycode
s
e
t
scanber
ea
l
i
z
edfort
h
i
sl
ock?
So
l
u
t
i
on.Gi
ven an a
rb
i
t
r
a
r
s
e
tf
ort
hel
ock,i
ftwo
y code
ad
ac
en
tve
r
t
i
c
e
shave d
i
f
f
e
r
en
tnumbe
r
s,wel
abe
lt
hes
i
de
s
j
i
ft
heyhaved
l
i
nk
i
ngt
hembyl
e
t
t
e
ra;
i
f
f
e
r
en
tco
l
or
s,wel
abe
l
i
fbo
t
ht
henumbe
r
sandco
l
or
sa
r
et
hes
ame,wel
abe
li
t
i
tbyb;
byc.Onc
et
henumbe
randco
l
oronve
r
t
exA1a
r
es
e
t(
t
he
r
ea
r
e
)
,
,
,
,
fou
rd
i
f
f
e
r
en
ts
e
t
sf
ori
t wecant
hens
e
tA2 A3 ... An one
byoneac
cord
i
ngt
ot
hel
e
t
t
e
r
sl
abe
l
l
edoneachs
i
de.Inorde
rt
o
l
e
ti
tr
e
t
urnt
ot
hei
n
i
t
i
a
ls
e
tofA1f
i
na
l
l
henumbe
r
sofs
i
de
s
y,t
s
tbebo
t
heven.Sot
henumbe
rofcode
s
e
t
s
l
abe
l
l
edaandb mu
f
ort
he l
ock i
s fou
rt
ime
so
ft
he numbe
r of l
abe
l
l
ed
s
i
de
t
i
s
f
hecond
i
t
i
ont
ha
tt
henumbe
r
sofs
i
de
s
s
equenc
e
swh
i
chs
a
yt
l
abe
l
l
edbyaandba
r
ebo
t
heven.
n ö÷
æ
Suppos
et
he
r
ea
r
e2
iç0 ≤i ≤
s
i
de
sl
abe
l
l
edbya,
2 ø
è
[ ]
n -2
i ö÷
æ
and2j ç0 ≤ j ≤
s
i
de
sl
abe
l
l
edbyb.Thent
he
r
ear
e
2
è
ø
[
]
2i
2j
Cn
way
st
ol
abe
l2
is
i
de
sbyaf
r
omn one
s,Cn
ay
st
ol
abe
l
-2i w
2js
i
de
sbyb f
r
om n - 2
i one
s,andt
her
ema
i
n
i
ngs
i
de
sar
e
l
abe
l
l
ed byc.The
r
e
f
or
e, by t
he Mu
l
t
i
l
i
ca
t
i
on Pr
i
nc
i
l
e,
p
p
2i 2j
t
he
r
e ar
e Cn
Cn-2i way
st
ol
abe
la
l
lt
he s
i
de
s. So t
he
r
e
a
r
et
ot
a
l
l
y
[ n2 ] æ
4∑ çç C
i=0 è
2
i
n
[n-22i ]
∑
j=0
ö
2
j
Cn
i÷
÷
-2
ø
①
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
50
code
s
e
t
sf
ort
hel
ock.He
r
ewes
t
i
l
a
t
eC0
0 = 1.
pu
sodd,wehaven -2
i > 0,andt
Whenni
hen
[n-22i ]
∑
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
j=0
2
n-2
i-1
j
Cn
.
i =2
-2
②
Sub
s
t
i
t
u
t
i
ngi
ti
n
t
o ① ,wege
t
[ n2 ] æ
4∑ çç C
i=0 è
2
i
n
[n-22i ]
∑
j=0
n
C
2
j
n-2
i
n
[2 ]
[2 ]
ö
2
2
i n-2
i-1
i n-2
÷÷ = 4
)= 2
(
(
C
2
Cn
2 i)
n
∑
∑
i
i
=0
=0
ø
n
=
n
k n-k
k n-k
k
∑Cn2 + ∑Cn2 (-1)
k=0
k=0
n
=(
2 +1) + (
2 -1)
n
= 3 +1.
n
seven,i
fi <
Whenni
n,
n
t
hen ② r
ema
i
nst
r
ue;i
fi = ,
2
2
ha
t
t
hena
l
lt
hes
i
de
so
ft
he po
l
r
el
abe
l
l
ed bya,andt
ygona
meanst
he
r
ei
son
l
ol
abe
lt
hes
i
de
s.The
r
e
for
e,t
he
r
e
yonewayt
a
r
et
o
t
a
l
l
y
[ n2 ] æ
4∑ çç C
i=0 è
2
i
n
[n-22i ]
∑
j=0
C
2
j
n-2
i
[ n2 ] -1
ö
æ
ö
2
i n-2
÷÷ = 4 × çç1 +
(
Cn
2 i-1)÷÷
∑
i=0
ø
è
ø
[ n2 ]
∑ (C 2
= 2 +4
i n-2
i-1
2
n
i=0
code
s
e
t
sfort
hel
ock.
Ins
umma
r
y,
t
henumbe
rofcode
s
e
t
sf
ort
hel
ock =
)= 3n +3
sodd,
3n +1whenni
{
seven.
3n +3whenni
Ch
i
naMa
t
hema
t
i
c
a
lCompe
t
i
t
i
on (
Comp
l
emen
t
a
r
s
t)
yTe
1
2011
51
(
Hu
b
e
i)
(
r
e,
40 ma
rk
s) As s
een i
nF
i
.1
.1, po
i
n
t
s P,Q a
g
r
e
s
c
t
i
ve
l
he mi
dpo
i
n
t
s of AC , BD — t
he two
pe
y,t
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
d
i
agona
l
sofcyc
l
i
c quadr
i
l
a
t
e
r
a
lABCD .Le
t ∠BPA =
∠DPA .P
r
ove ∠AQB = ∠CQB .
F
i
.1
.1
g
F
i
.1
.2
g
So
l
u
t
i
on.Asshownin Fi
.1
.2,weex
t
ends
egmen
tDP t
o
g
i
n
t
e
r
c
ep
twi
t
ht
hec
i
r
c
l
ea
tpo
i
n
tE .Then ∠CPE = ∠DPA =
︵
︵
∠BPA .S
i
nc
ePi
st
hemi
dpo
i
n
to
fAC ,wege
tAB =CE ,wh
i
ch
mean
s ∠CDP = ∠BDA .Fur
t
he
rmor
e, ∠ABD = ∠PCD .
AB
PC ,
=
The
r
e
f
or
e,△ABD ∽ △PCB .Then
i.
e.,AB ·
BD
CD
CD =PC ·BD .
Thenwehave
AB ·CD =
æ1
ö
1
AC ·BD = AC · ç BD ÷ = AC ·BQ ,
è2
ø
2
AB
BQ
=
or
.Comb
i
n
i
ngi
twi
t
h ∠ABQ = ∠ACD ,wede
r
i
ve
AC CD
t
ha
t△ABQ ∽ △ACD .So ∠QAB = ∠DAC .
Ex
t
end
i
ngs
egmen
tAQ t
oi
n
t
e
r
c
ep
twi
t
ht
hec
i
r
c
l
ea
tpo
i
n
t
F ,wet
henhave
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
52
∠CAB = ∠QAB - ∠QAC = ∠DAC - ∠QAC = ∠DAF ,
︵
︵
wh
i
ch meansBC = DF .Fu
r
t
he
rmor
e,a
sQ i
st
he mi
dpo
i
n
tof
BD ,
t
hen ∠CQB = ∠DQF .
S
i
nc
e ∠AQB = ∠DQF ,wet
henhave ∠AQB = ∠CQB .
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
Thepr
oo
fi
scomp
l
e
t
ed.
2 (
40 ma
rk
s)Pr
ovef
oranyi
n
t
ege
rn ≥ 4,t
he
r
eex
i
s
t
sa
l
a
lofdeg
r
een,
po
ynomi
x)= xn +an-1xn-1 + … +a1x +a0
f(
wi
t
ht
hef
o
l
l
owi
ngprope
r
t
i
e
s.
(
1)a0 ,a1 ,...,an-1 a
r
ea
l
lpo
s
i
t
i
vei
n
t
ege
r
s;
(
2)Foranypo
s
i
t
i
vei
n
t
ege
rm anda
rb
i
t
r
a
r
k ≥ 2)
yk(
s
i
t
i
vei
n
t
ege
r
sr1 ,r2 , ...,rk t
ha
ta
r
ed
i
f
f
e
r
en
tf
rom
po
eacho
t
he
r,wehave
m )≠ f(
r1)
r2)…f(
rk ).
f(
f(
So
l
u
t
i
on.Le
t
x)= (
x +1)(
x +2)…(
x +n)+2.
f(
①
Obv
i
ou
s
l
x)i
sa mon
i
cpo
l
a
lofdeg
r
ee n wi
t
h
y,f(
ynomi
s
i
t
i
vei
n
t
ege
rcoe
f
f
i
c
i
en
t
s.Wea
r
ego
i
ngt
oprovet
ha
tf(
x)
po
ha
spr
ope
r
t
2).
y(
Foranyi
n
t
ege
rt,s
i
nc
en ≥ 4,weknowt
ha
tt
he
r
eex
i
s
t
s
de
f
i
n
i
t
e
l
l
t
i
l
eo
f4i
nanyn con
s
ecu
t
i
venumbe
r
st +1,
t
yamu
p
+2,.
..,
t +n.Thenf
r
om ① ,wehavef(
t)≡ 2(
mod4).
s
i
t
i
vei
n
t
ege
r
sr1 ,
Thenf
oranyk (
k ≥2)po
r2 ,...,
rk ,we
have
mod4).
r1)
r2)…f(
rk )≡ 2k ≡ 0(
f(
f(
Ont
heo
t
he
rhand,f
oranypo
s
i
t
i
vei
n
t
ege
r m ,wehave
Ch
i
naMa
t
hema
t
i
c
a
lCompe
t
i
t
i
on (
Comp
l
emen
t
a
r
s
t)
yTe
53
m )≡ 2(
mod4).The
r
e
f
or
e,
f(
mod4),
m )≢ f(
r1)
r2)…f(
rk )(
f(
f(
wh
i
chimp
l
i
e
st
ha
tf(
m )≠ f(
r1)
r2)…f(
rk ).Wet
henf
i
nd
f(
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
t
her
equ
i
r
edf(
x)andcomp
l
e
t
et
heproof.
3 (
s
i
t
i
ver
ea
l
50 ma
rk
s)Le
ta1 ,a2 ,...,an (
n ≥ 4)bepo
numbe
r
swi
t
ha1 < a2 < … < an .Foranypo
s
i
t
i
ver
ea
l
numbe
r r,t
he numbe
ro
ft
e
rna
r
r
oups (
i,j,k)
yg
aj -ai
=r (
1 ≤i <j < k ≤ n)i
sdeno
t
eda
s
s
a
t
i
s
f
i
ng
y
ak -aj
r).Provefn (
r)<
fn (
So
l
u
t
i
on.Gi
1 <j
venj(
n2
.
4
,t
< n)
henumbe
roft
e
rna
r
r
oups
yg
(
i,j,k)s
a
t
i
s
f
i
ng1 ≤i <j <k ≤ nand
y
aj -ai
=r
ak -aj
①
i
sdeno
t
eda
sgj (
r).Forf
i
xedi,j wi
t
hi <j,t
he
r
ei
sa
tmo
s
t
;
,
oneks
st
ochoo
s
ei wh
a
t
i
s
f
i
ng ① s
ot
he
r
ea
r
ej -1way
i
ch
y
meansgj (
r)≤j -1.
t
hk >
Inas
imi
l
a
rway,forf
i
xedj,k wi
he
r
ei
sa
tmo
s
toneis
a
t
i
s
f
i
ng ① ;s
ot
he
r
ea
r
en -j way
st
o
j,t
y
choo
s
ek,wh
i
ch meansgj (
r)≤ n -j.The
r
e
for
e,
r)≤ mi
n{
gj (
j -1,n -j}.
Then,whenni
seven (
i.
e.,
n = 2m ),wehave
r)=
fn (
≤
n-1
r)=
∑gj (
j=2
m
m-1
2m-1
j=2
j=m
r)+ ∑gj (
r)
∑gj (
2m-1
2m -j)=
j -1)+ ∑ (
∑(
j=m+1
j=2
2
2
= m -m < m =
n2
.
4
m(
m -1) m (
m -1)
+
2
2
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
54
Whenni
sodd (
i.
e.
n = 2m +1),wehave
r)=
fn (
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
≤
n-1
r)=
∑gj (
j=2
m
r)+
∑gj (
j=2
m
j -1)+
∑(
2
r)
∑g (
j=m+1
j
∑ (2m +1 -j)
j=m+1
j=2
=m <
2m
2m
n2
.
4
Thepr
oo
fi
scomp
l
e
t
ed.
4 (
50ma
rk
s)Gi
vena3×9a
r
r
ayA wi
t
heachce
l
lcon
t
a
i
n
i
ng
apo
s
i
t
i
vei
n
t
ege
r,wes
ayam ×n (
1 ≤ m ≤3,1 ≤n ≤9)
sa “
e
c
t
ang
l
e”i
ft
hes
um oft
he
s
uba
r
r
ayo
fA i
goodr
numbe
r
si
ni
t
sc
e
l
l
si
samu
l
t
i
l
eof10,andca
l
la1×1ce
l
l
p
o
fA “
bad”i
fi
ti
sno
tcon
t
a
i
nedi
nany “
ec
t
ang
l
e”.
goodr
F
i
ndt
hemax
imumnumbe
ro
f“
badce
l
l
s”i
nA .
So
l
u
t
i
on.Wef
i
r
s
tc
l
a
imt
ha
tt
henumbe
rof “
badce
l
l
s”i
nAi
s
no mor
et
han25.Ot
he
rwi
s
e,t
he
r
ewi
l
lbea
tmo
s
tonec
e
l
li
nA
t
ha
ti
sno
t“
bad”.Wi
t
hou
tl
o
s
so
fgene
r
a
l
i
t
s
s
umet
he
y,wea
c
e
l
l
si
nt
hef
i
r
s
tr
owo
fA a
r
ea
l
l“
bad”.Thenl
e
tt
henumbe
r
s
f
r
omt
op t
o bo
t
t
om i
nt
heit
hco
l
umn beai ,bi ,ci(
i = 1,
2,...,9)
i
nt
u
rn,andde
f
i
ne
Sk =
k
∑ai ,Tk =
i=1
k
b
∑(
i=1
i
,k = 1,2,...,9,
+ci )
wi
t
hS0 = T0 = 0.Wea
r
ego
i
ngt
o pr
ovet
ha
tt
hr
eenumbe
r
r
oup
sS0 ,S1 ,...,S9 ,T0 ,T1 ,...,T9 ,andS0 +T0 ,S1 +
g
T1 , ...,S9 + T9 each form a comp
l
e
t
es
e
to
fr
e
s
i
due
s
modu
l
o10:
I
ft
he
r
eex
i
s
tm ,n,0 ≤ m <n ≤9s
ucht
ha
tSm ≡Sn (
mod
10),t
hen
Ch
i
naMa
t
hema
t
i
c
a
lCompe
t
i
t
i
on (
Comp
l
emen
t
a
r
s
t)
yTe
n
∑a
i=m+1
i
55
= Sn -Sm ≡ 0(
mod10),
wh
i
ch meanst
ha
tt
hec
e
l
l
si
nt
hef
i
r
s
tr
ow andf
rom co
l
umns
m +1t
onf
orma “
e
c
t
ang
l
e”.Bu
ti
ti
sacon
t
r
ad
i
c
t
i
ont
o
goodr
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
t
hea
s
s
ump
t
i
ont
ha
tt
hec
e
l
l
si
nt
hef
i
r
s
trowa
r
ea
l
l“
bad”.
I
ft
he
r
eex
i
s
tm ,n,0 ≤ m <n ≤9s
ucht
ha
tT m ≡Tn (
mod
10),t
hen
n
b
∑(
i=m+1
i
+ci )= Tn -T m ≡ 0(
mod10).
Sot
hec
e
l
l
sr
ang
i
ngf
r
omrows2t
o3andco
l
umnsm +1t
o
n forma “
ec
t
ang
l
e”,wh
i
ch meanst
he
r
ea
r
ea
tl
ea
s
ttwo
goodr
c
e
l
l
st
ha
ta
r
eno
t“
bad”.Bu
ti
ti
sa
l
s
oacon
t
r
ad
i
c
t
i
on.
Inas
imi
l
a
rway,wecana
l
s
opr
ovet
ha
tt
he
r
ea
r
enom ,n,
0 ≤ m < n ≤ 9s
ucht
ha
t
Sm +T m ≡ Sn +Tn (
mod10).
The
r
e
f
or
e,wehave
9
∑Sk ≡
k=0
9
∑Tk ≡
k=0
9
∑ (S
k=0
k
+Tk )≡ 0 +1 +2 + … +9
≡ 5(
mod10).
Then
9
∑ (Sk +Tk )≡
k=0
9
9
k=0
k=0
∑ Sk + ∑Tk ≡ 5 +5 ≡ 0(mod10).
I
ti
saga
i
nacon
t
r
ad
i
c
t
i
on! The
r
e
for
e,t
henumbe
rof “
bad
c
e
l
l
s”i
nAi
snomor
et
han25.
Ont
heo
t
he
rhand,wecancons
t
r
uc
ta3 × 9a
r
r
ayi
nt
he
fo
l
l
owi
ngandche
ckt
ha
teachc
e
l
li
ni
tt
ha
tdoe
sno
tcon
t
a
i
n
numbe
r10i
s“
bad”.
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
56
1
1
1
2
1
1
1
1
1
10
1
1
1
1
1
1
1
1
1
1
10
1
1
2
1
1
1
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
The
r
e
f
or
e,wef
i
ndou
tt
ha
tt
hemax
imum numbe
rof “
bad
c
e
l
l
s”i
nAi
s25.
2012
(
Sh
a
a
n
x
i)
1 (
40ma
rk
s)Ass
eeni
nF
i
.1
.1,i
nacu
t
et
r
i
ang
l
e△ABC ,
g
AB > AC ,M ,N a
r
etwod
i
f
f
e
r
en
tpo
i
n
t
sonBCs
ucht
ha
t
∠BAM = ∠CAN ,a
ndO1 ,O2 a
r
et
hec
i
r
cumcen
t
e
r
sof
△ABC , △AMN ,r
e
s
c
t
i
ve
l
ove O1 ,O2 , A a
r
e
pe
y.Pr
co
l
l
i
nea
r.
F
i
.1
.1
g
F
i
.1
.2
g
So
l
u
t
i
on.AsshowninFi
.1
.2,weconne
c
tAO1 ,AO2 ,and
g
t
hr
oughA dr
awal
i
nepe
rpend
i
cu
l
a
rt
oAO1 andi
n
t
e
r
s
ec
twi
t
h
t
heex
t
endedl
i
neo
fBCa
tpo
i
n
tP .ThenAPi
sat
angen
tl
i
neof
☉O1 ,wh
i
ch mean
s ∠B = ∠PAC .
As ∠BAM = ∠CAN ,wehave
∠AMP = ∠B + ∠BAM = ∠PAC + ∠CAN = ∠PAN .
ThenAPi
sa
l
s
oat
angen
tl
i
neo
f☉O2 t
hec
i
r
cumc
i
r
c
l
eof
Ch
i
naMa
t
hema
t
i
c
a
lCompe
t
i
t
i
on (
Comp
l
emen
t
a
r
s
t)
yTe
57
△AMN .The
r
e
f
or
e,AP ⊥AO2 ,
andt
ha
tmeansO1 ,O2 ,A a
r
e
co
l
l
i
nea
r.
Thepr
oo
fi
scomp
l
e
t
e.
2 (
40ma
rk
s)Le
tA = {
2,22 ,...,2n ,...}.Prove:
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
(
1)Foranya ∈ A ,b ∈ N* ,
i
fb < 2
a -1,
t
henb(
b +1)
wi
l
lno
tbeamu
l
t
i
l
eof2
a.
p
(
a
t
i
s
f
i
nga ≠ 1,t
2)Foranya ∈ A (= N* - A )s
he
r
e
y
ex
i
s
t
sb ∈ N* s
a
t
i
s
f
i
ngb < 2
a -1,
s
ucht
ha
tb(
b +1)
i
sa
y
a.
mu
l
t
i
l
eof2
p
So
l
u
t
i
on.(
1)Foranya
k
∈ A ,a = 2 (
k ∈ N* ).Then2a =
s
i
t
i
vei
n
t
ege
rs
t
r
i
c
t
l
e
s
st
han2
a -1.Then
2k+1 .Le
tbbeanypo
yl
(
b +1)≤ 2a -1.
Be
tweenbandb +1,onei
sanoddnumbe
rt
ha
tcon
t
a
i
nsno
imef
ac
t
or2,andt
heo
t
he
ri
sanevennumbe
rt
ha
tcon
t
a
i
nsa
t
pr
mo
s
tt
hekt
hpowe
ro
f2.The
r
e
f
or
e,
b(
b +1)
i
sde
f
i
n
i
t
e
l
ta
yno
mu
l
t
i
l
eo
f2
a.
p
(
2)Fora ∈ Aanda ≠1,
s
uppo
s
ea =2km whe
r
eki
sanon
-
nega
t
i
vei
n
t
ege
randm i
sanoddnumbe
rg
r
ea
t
e
rt
han1.Then
2
a = 2k+1m . We wi
l
l pr
e
s
en
tt
hr
ee d
i
f
f
e
r
en
t proof
si
nt
he
f
o
l
l
owi
ng.
Proo
f1.Le
tb = mx,
b +1 =2k+1y.El
imi
na
t
i
ngb,wehave
2k+1y - mx = 1.S
i
nc
e(
2k+1 ,m )= 1,
t
heequa
t
i
onha
si
n
t
eg
r
a
l
s
o
l
u
t
i
onst
ha
tcanbeexpr
e
s
s
eda
s
x = x0 +2k+1t,
(
whe
r
et ∈ Z,and (
x0 ,y0)i
sas
i
a
l
pec
y = y0 + mt
{
s
o
l
u
t
i
ono
ft
heequa
t
i
on).
Deno
t
et
hesma
l
l
e
s
ts
o
l
u
t
i
on amongt
hem a
s(
x* ,y* ).
Thenx* < 2k+1 .
The
r
e
f
o
r
e,
i
samu
l
t
i
l
eo
f2
b = mx* <2
a -1andb(
b +1)
a.
p
Pr
oo
f2.S
i
nc
e(
2k+1 ,m ) = 1,byt
heCh
i
ne
s
e Rema
i
nde
r
58
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
Theor
em,t
hecong
r
uenc
eequa
t
i
on
x ≡ 0(
mod2k+1),
{
x ≡ m -1(
modm )
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
ha
sas
o
l
u
t
i
onx =b wi
0,2k+1m ).
t
hb ∈ (
I
ti
sea
s
os
eet
ha
tb
yt
<2
a -1andb(
b +1)
i
samu
l
t
i
l
eof2
a.
p
t
hent
he
r
eex
i
s
t
sr ∈ N* ,
Pr
oo
f3.S
i
nc
e(
2k+1 ,m )=1,
r≤
m -1,s
ucht
ha
t2r ≡ 1(
modm ).
Taket ∈ N* s
ucht
ha
tt
modm ).
r >k +1.Then2tr ≡ 1(
I
t
i
sea
s
os
eet
ha
tt
he
r
eex
i
s
t
s
yt
2tr -1)-q·2k+1m > 0(
b=(
q ∈ N),
s
ucht
ha
t0 < b < 2
a - 1.Then wehavem |b,2k+1 |b + 1.
The
r
e
for
e,
b(
b +1)
i
samu
l
t
i
l
eof2a.
p
3 (
50ma
rk
s)Le
tP0 ,P1 ,P2 ,...,Pn ben +1po
i
n
t
sona
l
ane,andt
hemi
n
imumd
i
s
t
ancebe
tweeneachtwopo
i
n
t
s
p
oft
hemi
sd(
d > 0).Prove
æ d ön
|P0P1 |·|P0P2 |·…·|P0Pn |> ç ÷
è3 ø
(
n +1)! .
So
l
u
t
i
on1.Wemaya
s
s
umet
h
a
t|P0P1|≤|P0P2|≤ … ≤|P0Pn |.
Atf
i
r
s
t,wewi
l
lpr
ovet
ha
t|P0Pk |>
s
i
t
i
vei
n
t
ege
rn.
po
Obv
i
ou
s
l
y,|P0Pk|≥d ≥
d
k +1forany
3
d
k +1fork =1,2,...,8,
3
andt
hes
e
condequa
l
i
t
l
d
son
l
l
yho
y whenk = 8.Then weon
y
needt
opr
ovet
ha
t|P0Pk |≥ d ≥
d
k +1fork ≥ 9.
3
TakeeachPi(
i = 0,1,2,...,k)a
st
hecen
t
e
rt
odr
awa
c
i
r
c
l
ewi
t
hr
ad
i
u
s
d
.Thent
he
s
ec
i
r
c
l
e
sa
r
ee
i
t
he
rex
t
e
rna
l
l
y
2
Ch
i
naMa
t
hema
t
i
c
a
lCompe
t
i
t
i
on (
Comp
l
emen
t
a
r
s
t)
yTe
59
t
angen
tt
oorapa
r
tf
rom eacho
t
he
r.TakeP0 a
st
hec
en
t
e
rt
o
dr
awac
i
r
c
l
ewi
t
hr
ad
i
u
s|P0Pk |+
d
.Thent
hepr
ev
i
ou
sk +1
2
sma
l
l
e
rc
i
r
c
l
e
sa
r
ea
l
ll
oca
t
edi
nt
h
i
sl
a
r
rone.
ge
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
d ö2
æ
æ d ö2
k +1)
Thenπç|P0Pk |+ ÷ > (
πç ÷ ,f
r
om wh
i
ch we
2ø
è
è2 ø
have|P0Pk |>
d(
k +1 -1).
2
I
ti
sea
s
oche
ckt
ha
t
yt
Then|P0Pk |>
k +1 -1
>
2
d
k +1fork ≥ 9.
3
k +1
fork ≥ 9.
3
d
Ove
ra
l
l,wehave|P0Pk |>
k +1fork ≥ 9.
3
The
r
e
for
e,
|P0P1 |·|P0P2 |·…·|P0Pn |>
æç d ö÷n
è3 ø
(
n +1)! .
So
l
u
t
i
on2.Wemaya
s
s
ume|P0P1|≤|P0P2|≤ … ≤|P0Pn|.
i = 0,1,2,...,k)a
TakeeachPi(
st
hecen
t
e
rt
odr
awa
c
i
r
c
l
ewi
t
hr
ad
i
u
s
d
.Thent
he
s
ec
i
r
c
l
e
sa
r
ee
i
t
he
rex
t
e
rna
l
l
y
2
t
angen
tt
oorapa
r
tf
r
omeacho
t
he
r.
Le
tQ beanypo
i
n
ton☉Pi .S
i
nc
e
|P0Q | ≤|P0Pi |+|PiQ |=|P0Pi |+
≤|P0Pk |+
d
2
1
3
|P0Pk |= |P0Pk |,
2
2
3
weg
e
tt
ha
tt
hec
i
r
c
l
ewi
t
hc
en
t
e
rP0andr
ad
i
u
s |P0Pk|c
ov
e
rt
he
2
ö2
æ3
r
e
v
i
ou
sk + 1sma
l
l
e
rc
i
r
c
l
e
s.Then wehav
eπç |P0Pk |÷ >
p
è2
ø
æ d ö2
(
k +1)
πç ÷ ,andt
ha
ti
s
è2 ø
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
60
|P0Pk |>
The
r
e
for
e,
d
k +1(
i = 0,1,2,...,k).
3
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
æ d ön
|P0P1 |·|P0P2 |·…·|P0Pn |> ç ÷
è3 ø
(
n +1)! .
1
1
4 (
50ma
rk
s)Le
tSn =1+ + … + ,whe
r
eni
sapo
s
i
t
i
ve
2
n
i
n
t
ege
r.Pr
ovet
ha
tforanyr
ea
lnumbe
r
sa,
b wi
t
h0 ≤a <
b ≤1,
t
he
r
ea
r
ei
nf
i
n
i
t
emanyt
e
rmsi
nt
hes
equenc
e{
Sn -
[
Sn ]}t
a,b). (He
x]deno
ha
ta
r
e wi
t
h
i
n(
r
e[
t
e
st
he
l
a
r
s
ti
n
t
ege
rno
tg
r
ea
t
e
rt
hanr
ea
lnumbe
rx.)
ge
So
l
u
t
i
on1.Foranyn
S2n = 1 +
*
∈ N ,weh
ave
1 ö÷
æ 1
1 1 … 1
1
+
+
+
+ n =1+
+ç 1
+
è2 +1 22 ø
2 3
2
2
1ö
æç 1
+… + n÷
è2n-1 +1
2 ø
>1+
=1+
Le
tN0 =
1ö
æ1 1 ö
æ1
1
+ ç 2 + 2 ÷+ … + ç n + … + n ÷
è2 2 ø
è2
2 ø
2
1 1 … 1
1
+
+
+
> n.
2 2
2
2
[b 1-a ] +1,m = [S
N0
]+1.Then 1 < N0 ,
b -a
1
<b -a,
andSN0 < m ≤ m +a.
N0
Le
tN1 = 22 m+1 .ThenSN1 = S22(m+1) > m +1 ≥ m +b.
(
)
u
cht
ha
t
Wec
l
a
imt
ha
tt
he
r
ee
x
i
s
tn ∈ N* wi
t
hN0 <n < N1s
m +a < Sn < m +b (
o
r,i
no
t
he
rwo
r
d
s,Sn - [
Sn ]∈ (
a,b)).
Ot
he
rwi
s
e,a
s
s
umi
ngt
hec
l
a
im i
sf
a
l
s
e,t
hent
he
r
e mu
s
t
ex
i
s
tk > N0s
ucht
ha
tSk-1 ≤ m +aandSk ≥ m +b.
ThenSk - Sk-1 ≥ b - a.Bu
ti
tcon
t
r
ad
i
c
t
st
hef
ac
tt
ha
t
Ch
i
naMa
t
hema
t
i
c
a
lCompe
t
i
t
i
on (
Comp
l
emen
t
a
r
s
t)
yTe
Sk -Sk-1 =
61
1
1
<
<b -a.Th
e
r
e
f
or
e,t
hec
l
a
imi
st
r
ue.
k
N0
Fu
r
t
he
rmor
e,a
s
s
umet
he
r
ea
r
e on
l
i
n
i
t
e numbe
r of
y af
a
t
i
s
f
i
ng
s
i
t
i
vei
n
t
ege
r
sn1 ,...,nk s
y
po
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
Snj - [Snj ]∈ (
a,b)(
1 ≤j ≤k).
De
f
i
nec = mi
Snj - [Snj ]}.Thent
n{
he
r
ee
x
i
s
t
snon ∈ N*
1≤j≤k
Sn ]∈ (
a,c).
s
u
cht
ha
tSn - [
I
tc
on
t
r
ad
i
c
t
st
heabov
ec
l
a
im.
Sn The
r
e
for
e,t
he
r
ea
r
ei
nf
i
n
i
t
et
e
rmsi
nt
hes
equenc
e{
[
Sn ]}t
a,b).
ha
ta
r
ewi
t
h
i
n(
Thepr
oofi
scomp
l
e
t
e.
So
l
u
t
i
on2.Foranyn
S2n = 1 +
*
∈ N ,weh
ave
1 ö÷
æ 1
1 1 … 1
1
+
+
+
+ n =1+
+ç 1
+
è2 +1 22 ø
2 3
2
2
1ö
æç 1
+… + n÷
è2n-1 +1
2 ø
>1+
=1+
1ö
æ1 1 ö
æ1
1
+ ç 2 + 2 ÷+ … + ç n + … + n ÷
è2 2 ø
è2
2 ø
2
1 1 … 1
1
+
+
+
> n.
2 2
2
2
The
r
e
f
or
e,Sn canbel
a
r
rt
hananypo
s
i
t
i
venumbe
ra
s
ge
l
onga
snbe
come
ss
u
f
f
i
c
i
en
t
l
a
r
yl
ge.
Le
tN0 =
[b 1-a ] +1.ThenN1 <b -a,andwhenk > N ,
0
wehave
Sk -Sk-1 =
0
1
1
<
<b -a.
k
N0
Sof
oranypo
s
i
t
i
vei
n
t
ege
rm > SN0 ,t
he
r
eex
i
s
t
sn > N0
a,b),or,i
s
ucht
ha
tSn - m ∈ (
no
t
he
rword
s,m +a < Sn <
m +b.Ot
he
rwi
s
e,t
he
r
emu
s
tbek > N0s
ucht
ha
tSk-1 ≤ m +a
andSk ≥ m +b,
i.
e.,Sk -Sk-1 ≥b -a.Bu
ti
tcon
t
r
ad
i
c
t
st
he
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
62
f
ac
tt
ha
tSk -Sk-1 =
1
1
<
<b -a.
k
N0
SN0 ]+i(
i = 1,2,3,...).Thent
Nowl
e
tmi = [
he
r
e
ucht
ha
tmi +a < Sni < mi +b,i.
e.,Sni ex
i
s
t
sni > N0s
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
[
Sni ]∈ (
a,b).
The
r
e
for
e,t
he
r
ea
r
ei
nf
i
n
i
t
et
e
rmsi
nt
hes
equenc
e{
Sn -
[
Sn ]}t
a,b).
ha
ta
r
ewi
t
h
i
n(
2013
(
J
i
l
i
n)
1 (
40ma
rk
s)Ass
eeni
nF
i
.1
.1,ABi
sachordo
fc
i
r
c
l
eω,
g
Pi
sa po
i
n
tona
r
cAB ,andE ,F a
r
e2 po
i
n
t
son AB
s
a
t
i
s
f
i
ngAE = EF = FB .Connec
tPE ,PF andex
t
end
y
t
hemt
oi
n
t
e
r
s
e
c
twi
t
hωa
tC ,D ,r
e
s
t
i
ve
l
pec
y.Prove
EF ·CD = AC ·BD .
F
i
.1
.1
g
F
i
.1
.2
g
So
l
u
t
i
on.Asshownin Fi
.1
.2,weconnec
tAD ,BC ,CF ,
g
DE .S
i
nc
eAE = EF = FB ,wehave
Ch
i
naMa
t
hema
t
i
c
a
lCompe
t
i
t
i
on (
Comp
l
emen
t
a
r
s
t)
yTe
63
BC ·s
i
n∠BCE
d
i
s
t
anc
ebe
tweenB andCP
BE
=
=
= 2.
AC ·s
i
n∠ACE
d
i
s
t
ancebe
tweenA andCP AE
①
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
Int
hes
ameway,
AD ·s
AF
i
n∠ADF
d
i
s
t
anc
ebe
tweenA andPD
=
=
= 2.
BD ·s
BF
i
n∠BDF
d
i
s
t
ancebe
tweenB andPD
Ont
heo
t
he
rhand,s
i
nc
e
②
∠BCE = ∠BCP = ∠BDP = ∠BDF ,
∠ACE = ∠ACP = ∠ADP = ∠ADF ,
BC ·AD
= 4,o
mu
l
t
i
l
i
ng ① by ② ,wehave
r
p
y
AC ·BD
BC ·AD = 4AC ·BD .
③
AD ·BC = AC ·BD + AB ·CD .
④
ByPt
o
l
emy
􀆳
sTheor
em,wehave
Comb
i
n
i
ng ③ and ④ ,wege
tAB ·CD = 3AC ·BD ,and
t
ha
ti
s
EF ·CD = AC ·BD .
Thepr
oofi
scomp
l
e
t
e.
2 (
t
hes
equenc
e{
an }
40ma
rk
s)Gi
venpo
s
i
t
i
vei
n
t
ege
r
su,v,
i
sde
f
i
neda
s:
a1 = u +v,andform ≥ 1,
a2m = am +u,
{
a2m+1 = am +v.
Deno
t
eSm =a1 +a2 + … +am (
m =1,2,...).Prove
t
ha
tt
he
r
ea
r
ei
nf
i
n
i
t
et
e
rmsi
ns
equence {
Sn }t
ha
ta
r
e
s
r
enumbe
r
s.
qua
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
64
So
l
u
t
i
on.Forpos
i
t
i
vei
n
t
ege
rn,wehave
S2n+1-1 = a1 + (
a2 +a3)+ (
a4 +a5)+ … + (
a2n+1-2 +a2n+1-1)
= u +v + (
a1 +u +a1 +v)+ (
a2 +u +a2 +v)+ … +
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
(
a2n-1 +u +a2n-1 +v)
n
=2 (
u +v)+2S2n-1 .
Then
S2n-1 = 2n-1(
u +v)+2S2n-1-1
n 1
=2- (
u +v)+2(
2n-2(
u +v)+2S2n-2-1)
n 1
= 2·2 - (
u +v)+22S2n-2-1
= … =(
n -1)·2n-1(
u +v)+2n-1(
u +v)
=(
u +v)n·2n-1 .
Suppo
s
eu +v = 2k ·q,whe
r
eki
sanon
-nega
t
i
vei
n
t
ege
r,
andqi
sanoddnumbe
r.Taken =q·l2 ,whe
r
eli
sanypo
s
i
t
i
ve
2
2 2
k-1+q·
l
n
,
i
n
t
ege
rs
a
t
i
s
f
i
ngl ≡k -1(
mod2).ThenS2 -1 =ql ·2
y
and
2
k -1 +q·l2 ≡k -1 +l2 ≡k -1 + (
k -1)
=k(
mod2).
k -1)≡ 0(
The
r
e
for
e,S2n-1 i
sas
r
e numbe
r.S
i
nce t
he
r
ea
r
e
qua
i
nf
i
n
i
t
el
􀆳s,t
he
r
ea
r
ei
nf
i
n
i
t
et
e
rmsi
n{
Sn }t
ha
ta
r
es
r
e
qua
numbe
r
s.Theproo
fi
scomp
l
e
t
e.
3
(50 ma
s
t
i
ons i
n an
rk
s) Suppo
s
et
he
r
e a
r
e m que
exami
na
t
i
ona
t
t
endedbyns
t
uden
t
s,whe
r
em ,n ≥ 2a
r
e
i
ven na
t
ur
a
l numbe
r
s. The ma
rk
i
ng r
u
l
e for each
g
s
t
i
oni
sa
sfo
l
l
ows:i
ft
he
r
ea
r
e exac
t
l
t
uden
t
s
que
yx s
f
a
i
l
i
ngt
oanswe
rt
he que
s
t
i
oncor
r
e
c
t
l
hent
hey wi
l
l
y,t
eachge
t0ma
rk
s,andt
ho
s
ewhoan
swe
ri
tcor
r
ec
t
l
l
l
y wi
eachge
tx ma
rk
s.Thet
o
t
a
lma
rksofas
t
uden
ta
r
et
he
Ch
i
naMa
t
hema
t
i
c
a
lCompe
t
i
t
i
on (
Comp
l
emen
t
a
r
s
t)
yTe
65
s
um o
f ma
rk
she/s
he ge
t
sf
r
om t
he m que
s
t
i
on
s.Now
t
uden
t
sa
sp1 ≥ p2 ≥ … ≥
r
ankt
het
o
t
a
lma
rk
soft
hens
ndt
hemax
imum po
s
s
i
b
l
eva
l
ueo
fp1 +pn .
pn .Fi
= 1,2,.
..,m ,a
s
s
umi
ngt
he
r
ea
r
exk
So
l
u
t
i
on.Foranyk
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
s
t
uden
t
sf
a
i
l
i
ngt
oan
swe
rt
hekt
hque
s
t
i
onco
r
r
e
c
t
l
hent
he
r
e
y,t
swhoanswe
ri
tco
r
r
e
c
t
l
a
chge
t
sxk ma
rks
a
r
en -xk one
yande
f
r
omi
ta
c
co
rd
i
ng
l
et
hesum o
ft
hen s
t
uden
t
s
􀆳t
o
t
a
l
y.Suppos
ma
rksi
sS.Thenwehave
n
∑
pi = S =
i=1
m
m
m
k=1
k=1
k=1
2
∑xk (n -xk )=n∑xk - ∑xk .
As e
a
ch s
t
uden
t ge
t
sa
t mos
t xk ma
rks f
r
om t
he kt
h
s
t
i
on,wehave
que
p1 ≤
m
∑x
k
k=1
p2
S
i
nc
ep2 ≥ … ≥ pn ,t
henpn ≤
The
r
e
f
o
r
e,
p1 +pn ≤ p1 +
≤
.
+p3 + … +pn
n -1
S -p1 n -2
S
=
p1 +
n -1
n -1
n -1
m
m
m
S -p1
.
n -1
n -2·
1 ·
xk +
(nk∑ xk - k∑ xk2 )
∑
n -1 k
n -1
=1
=1
=1
m
∑x
=2
k=1
k
m
1 ·
2
xk
.
∑
n -1 k
=1
-
Byt
heCauchyI
nequa
l
i
t
y,wehave
m
∑x
k=1
Then
=
2
k
≥
m
2
1
( ∑ xk ) .
m k
=1
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
66
m
∑ xk -
p1 +pn ≤ 2
k=1
=-
m
2
1
· ( ∑ xk )
m(
n -1) k
=1
m
2
1
· ( ∑ xk - m (
n -1)) + m (
n -1)
m(
n -1) k
=1
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
≤ m(
n -1).
Ont
heo
t
he
rhand,i
ft
he
r
ei
sas
t
uden
twhoanswe
r
sa
l
lt
he
s
t
i
onsc
o
r
r
e
c
t
l
i
l
et
heo
t
he
rn -1s
t
uden
t
sf
a
i
lt
oanswe
r
que
y,wh
anyque
s
t
i
ons,t
henwehave
p1 +pn = p1 =
m
∑ (n -1)= m (n -1).
k=1
The
r
e
f
o
r
e,t
he max
imum pos
s
i
b
l
eva
l
ueo
fp1 + pn i
sm
(
n -1).
4 (
50ma
rks)Le
tn,kbei
n
t
ege
r
sg
r
e
a
t
e
rt
han1ands
a
t
i
s
f
yn
< 2 .P
r
ovet
ha
tt
he
r
ea
r
e2
ki
n
t
ege
r
sno
td
i
v
i
s
i
b
l
ebyn,
k
sucht
ha
ti
f wed
i
v
i
det
hem i
n
t
otwo g
r
oups,t
hent
he
r
e
mus
tex
i
s
tag
r
oupi
nwh
i
cht
hesumo
fsomei
n
t
ege
r
sc
anbe
d
i
v
i
dedbyn.
So
l
u
t
i
on.Atf
i
r
s
t,wecon
s
i
de
rt
heca
s
et
ha
tn
= 2 ,r ≥ 1.
r
Obv
i
ou
s
l
tt
h
i
st
imer <k.Wet
aket
hr
ee“
2r-1”sand2
k -3
y,a
“
1”
s — each o
ft
hem canno
tbe d
i
v
i
ded byn.I
ft
he
s
e2
k
numbe
r
sa
r
ed
i
v
i
dedi
n
t
otwog
r
oup
s,
t
hent
he
r
emu
s
te
x
i
s
tag
r
oup
t
ha
tc
on
t
a
i
n
stwo“
2r-1”
s,who
s
es
umi
s2r — d
i
v
i
s
i
b
l
ebyn.
Nex
t,wecon
s
i
de
rt
heca
s
et
ha
tni
sno
tapowe
rof2.At
t
h
i
st
ime,t
he2
ki
n
t
ege
r
swet
akea
r
e
2
-1,-1,-2,-2 ,.
..,-2k-2 ,1,2,22 ,...,2k-1 .
Thent
heyeachcanno
tbed
i
v
i
dedbyn.
As
s
umet
he
s
enumbe
r
scanbed
i
v
i
dedi
n
t
otwog
roups,s
uch
t
ha
tanypa
r
t
i
a
ls
umo
fnumbe
r
si
noneg
roupi
sno
td
i
v
i
s
i
b
l
eby
Ch
i
naMa
t
hema
t
i
c
a
lCompe
t
i
t
i
on (
Comp
l
emen
t
a
r
s
t)
yTe
67
n.Wemays
ayt
ha
t“
1”i
si
nt
hef
i
r
s
tg
roup.S
i
nce(-1)+1 =
0i
sd
i
v
i
s
i
b
l
ebyn,
t
hetwo “-1”
smu
s
tbei
nt
hes
econdg
roup;
s
i
nc
e(-1)+ (-1)+2 = 0,
t
he “
2”i
si
nt
hef
i
r
s
tg
roup;t
hen
t
he “-2”i
si
nt
hes
e
condg
r
oup.
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
Nowbyi
nduc
t
i
on,a
s
s
umi
ng1,2,...,2l a
r
ei
nt
hef
i
r
s
t
nt
hes
econdone(
1 ≤l <
roupand -1,-1,-2,...,-2li
g
k -2),s
i
nce
(-1)+ (-1)+ (-2)+ … + (-2l )+2l+1 = 0
i
sd
i
v
i
s
i
b
l
ebyn,wege
tt
ha
t2l+1i
si
nt
hef
i
r
s
tg
roup,andt
hen 2l+1i
nt
hes
e
cond.
The
r
e
f
or
e,1,2,22 ,...,2k-2i
si
nt
hef
i
r
s
tg
r
oupand -1,
-1,-2,-2 ,.
..,-2 - i
nt
hes
e
cond.F
i
na
l
l
i
nc
e
y,s
2
k 2
(-1)+ (-1)+ (-2)+ … + (-2k-2)+2k-1 = 0,
t
hen2k-1i
si
nt
hef
i
r
s
tg
roup.The
r
e
for
e,1,2,22 ,...,2k-1a
r
e
a
l
li
nt
hef
i
r
s
tg
r
oup.
Ont
heo
t
he
rhand,t
heknowl
edgeabou
tt
heb
i
na
r
r
ynumbe
s
s
t
emt
e
l
l
su
st
ha
teve
r
s
i
t
i
vei
n
t
ege
rwh
i
chi
sno
tg
r
ea
t
e
r
y
ypo
k
t
han2 - 1can ber
epr
e
s
en
t
ed a
st
he pa
r
t
i
a
ls
um of1,2,
22 ,...,2k-1 .S
i
ncen ≤2k -1,
t
heni
ti
st
hepa
r
t
i
a
ls
umof1,2,
22 ,...,2k-1 t
ha
ti
so
fcou
r
s
ed
i
v
i
s
i
b
l
ebyn i
t
s
e
l
f.Th
i
si
sa
con
t
r
ad
i
c
t
i
ont
ot
hea
s
s
ump
t
i
on.
The
r
e
f
or
e,wehavefound ou
t2
ki
n
t
ege
r
st
ha
t mee
tt
he
r
equ
i
r
emen
ti
nt
heque
s
t
i
on.Theproo
fi
st
hencomp
l
e
t
e.
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
Ch
i
naMa
thema
t
i
ca
l
Ol
i
ad
ymp
The Ch
i
na Ma
t
hema
t
i
ca
lO
l
i
ad, o
r
i
zed by t
he Ch
i
na
ymp
gan
Ma
t
hema
t
i
ca
lO
l
i
adCommi
t
t
ee,i
she
l
di
nJanua
r
r
r.
ymp
yeve
yyea
Abou
t150wi
n
ne
r
so
ft
heCh
i
naMa
t
hema
t
i
ca
lCompe
t
i
t
i
ont
akepa
r
t
i
ni
t.The compe
t
i
t
i
onl
as
t
sf
o
rtwo days,andt
he
r
ea
r
et
h
r
ee
r
ob
l
emst
obecomp
l
e
t
edwi
t
h
i
n4
.5hou
r
seachday.
p
2011
(
Ch
a
n
c
h
u
n,J
i
l
i
n)
g
F
i
r
s
tDay
8:
00~12:
30Janua
r
y15,2011
1
Le
ta1 ,a2 ,...,an (
n ≥ 3)ber
ea
lnumbe
r
s.Pr
ovet
ha
t
Ch
i
naMa
t
hema
t
i
c
a
lOl
i
ad
ymp
n
∑a
2
i
i=1
n
-
∑ aa
≤
i i+1
i=1
69
[ n2 ] (M -m ),
2
whe
r
ean+1 =a1 ,M = max1≤i≤nai ,m = mi
n1≤i≤nai .[
x]
i
st
he
l
a
r
s
ti
n
t
ege
rno
texc
eed
i
ngx.
ge
=2
k (ki
sapo
s
i
t
i
vei
n
t
ege
r),t
hen
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
So
l
u
t
i
on.I
fn
n
n
i=1
i=1
2( ∑ ai2 - ∑ aiai+1 ) =
n
∑ (a
i=1
t
he
r
e
f
or
e,
n
n
i=1
i=1
2
∑ ai - ∑ aiai+1 ≤
i
-ai+1) ≤ n(
M - m ),
2
2
n (
n(
2
2
=
M -m )
M -m )
.
2
2
[ ]
I
fn = 2
k + 1(
ki
sa po
s
i
t
i
vei
n
t
ege
r),t
henfor2
k +1
numbe
r
sa
r
r
angedi
nacyc
l
i
c way,onecana
lway
sf
i
ndt
hr
ee
con
s
e
cu
t
i
vei
nc
r
ea
s
i
ng or dec
r
ea
s
i
ng t
e
rms (
a
s
ai-1)(
ai+1 -ai)=
∏
2k+1
i=1
∏
2k+1
i=1
(
ai -
2
(
≥ 0,
ai -ai-1)
s
oi
ti
sno
tpo
s
s
i
b
l
e
t
ha
tf
oreve
r
i
ngoppo
s
i
t
es
i
s).
yi,ai -ai-1 andai+1 -ai hav
gn
Wi
t
hou
tl
o
s
so
f gene
r
a
l
i
t
s
s
ume t
ha
ta1 ,a2 ,a3 a
r
e
y, we a
mono
t
on
i
c,t
hen
2
2
2
(
+(
≤(
a1 -a2)
a2 -a3)
a1 -a3)
.
Henc
e,
n
2( ∑
i=1
2
i
a -
n
n
∑ aa ) ∑ (a
i=1
i i+1
=
i=1
i
-ai+1)
2
2
+
≤(
a1 -a3)
n
∑ (a
i=3
i
-ai+1),
2
knumbe
r
s.We
wh
i
cht
r
an
s
formedt
heque
s
t
i
oni
n
t
ot
heca
s
eof2
have
n
n
i=1
i=1
n
2
2
+ ∑(
2( ∑ ai2 - ∑ aiai+1 ) ≤ (
a1 -a3)
ai -ai+1)
i=3
≤2
k(
M - m ),
2
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
70
i.
e.,
n
( ∑a
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
i=1
2
2
i
n
-
∑ aa ) ≤k(M
i i+1
i=1
-m ) =
2
[ n2 ] (M -m ).
2
Ass
howni
nF
i
.2
.1,D i
st
he
g
mi
dpo
i
n
to
fa
r
c BC o
ft
he
c
i
r
cumc
i
r
c
l
eo
ft
r
i
ang
l
eABC ,
Xl
i
e
s on a
r
c BD ,E i
st
he
i
e
son
mi
dpo
i
n
tofa
r
cAX ,Sl
a
r
cAC ,SD i
n
t
e
r
s
e
c
t
sBC a
t
R ,SE i
n
t
e
r
s
e
c
t
s AX a
t T.
Pr
ovet
ha
ti
fRT ‖DE ,t
hen
F
i
.2
.1
g
t
hei
nc
en
t
e
ro
ft
r
i
ang
l
e ABC
l
i
e
sonl
i
neRT .
Proo
f.Connec
tAD ,deno
t
et
hei
n
t
e
r
s
e
c
t
i
onofAD andRT by
I,
t
henAIi
st
heb
i
s
e
c
t
oro
f ∠BAC .Connec
tAS,SI,t
henby
RT ‖DE ,wehave
∠STI = ∠SED = ∠SAI,
s
oA ,T ,
IandSa
r
econcyc
l
i
c,andwedeno
t
et
h
i
sc
i
r
c
l
ebyω1 .
Conne
c
tCE ,deno
t
et
hei
n
t
e
r
s
e
c
t
i
onofCE andRT byJ,
t
hen
conne
c
tSC ,
∠SRJ = ∠SDE = ∠SCE ,
r
econcyc
l
i
c,andwedeno
t
et
h
i
sc
i
r
c
l
ebyω2 .
s
oS,J,RandCa
Deno
t
ebyK t
hei
n
t
e
r
s
ec
t
i
onpo
i
n
tofω1 andω2 o
t
he
rt
han
S,weprovenex
tt
ha
tK i
st
hei
n
t
e
r
s
ec
t
i
ono
fAJ andCI.
Deno
t
eby K1 t
hei
n
t
e
r
s
ec
t
i
on ofω1 and AJ o
t
he
rt
han
A,
t
hen
Ch
i
naMa
t
hema
t
i
c
a
lOl
i
ad
ymp
∠SK1A = ∠STA =
71
1
1(
SA + XE )= (
SA + AE )
2
2
= ∠SDE = ∠SRT = ∠SRJ,
s
oS,K1 ,J and R a
r
econcyc
l
i
c,i.e.,K1 be
l
ong
st
oω2 .
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
t
he
rt
han
S
imi
l
a
r
l
t
ebyK2t
hei
n
t
e
r
s
e
c
t
i
onofω2andCIo
y,deno
C ,t
s
henK2 be
l
ong
st
oω1 .Henc
e,K1andK2co
i
nc
i
de,andK i
t
hei
n
t
e
r
s
ec
t
i
onofAJ andCI.
As ∠CAD = ∠CAI,and ∠TJE = ∠CJR = ∠CED =
∠CAD ,
s
oA ,I,J andC a
r
econcyc
l
i
c,t
he
r
e
f
or
e,∠ACI =
∠AJI.
Ont
heo
t
he
rhand,byt
heconcyc
l
i
c
i
t
yofC ,K ,J andR ,
s
oIi
wehave ∠BCI = ∠ICR = ∠AJI,and ∠ACI = ∠BCI,
s
t
hei
nc
en
t
e
ro
ft
het
r
i
ang
l
eABC .
3
Le
tA1 ,A2 ,...,An bennon
emp
t
ub
s
e
t
so
faf
i
n
i
t
es
e
t
ys
A ofr
ea
lnumbe
r
ss
a
t
i
s
f
i
ngt
hefo
l
l
owi
ngcond
i
t
i
on
s:
y
(
sequa
lt
o0;
1)Thes
umofe
l
emen
t
so
fAi
(
2)P
i
cka
rb
i
t
r
a
r
i
l
rf
romeachAi ,andt
he
i
rs
um
yanumbe
i
ss
t
r
i
c
t
l
s
i
t
i
ve.
ypo
Pr
ovet
ha
tt
he
r
eex
i
s
ts
e
t
sAi1 ,Ai2 ,...,Aik ,1 ≤i1 <i2
< … <ik ≤ n,
s
ucht
ha
t
k
|Ai1 ∪ Ai2 ∪ … ∪ Aik |< |A |.
n
t
e
st
henumbe
rofe
l
emen
t
so
faf
i
n
i
t
es
e
tX .
|X |deno
So
l
u
t
i
on.Le
tA
={
a1 ,...,am }wi
t
ha1 > … >am .By (
1)we
s
i
de
rt
hesma
l
l
e
s
te
l
emen
tofeach
havea1 + … +am = 0.Con
Ai ,t
hes
um o
ft
he
s
enumbe
r
si
sg
r
ea
t
e
rt
han0.As
s
umet
ha
t
t
he
r
ea
r
eexac
t
l
e
t
samong A1 , ...,An who
s
e mi
n
ima
l
yki s
e
l
emen
ti
sai ,
i = 1,2,...,m .Then,oneha
s
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
72
By (
2),wehave
k1 + … +km = n.
k1a1 + … +kmam > 0.
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
e
t
s,
Fors =1,2,...,m -1,
t
he
r
ea
r
ei
nt
o
t
a
lk1 + … +kss
who
s
e mi
n
ima
le
l
emen
t
sa
r
eg
r
ea
t
e
rt
han or equa
lt
o as .
The
r
e
f
or
e,t
heun
i
ono
ft
he
s
es
e
t
si
scon
t
a
i
nedi
n{
a1 ,...,as },
whenc
et
henumbe
rofe
l
emen
t
sdoe
sno
texceeds.
1,2,...,m - 1}
Nex
t,wepr
ovet
ha
tt
he
r
eex
i
s
t
ss ∈ {
s
n
s
ucht
ha
tk = k1 + … + ks >
.We provet
h
i
sc
l
a
im by
m
con
t
r
ad
i
c
t
i
on.Suppo
s
et
ha
t
s
n
k1 + … +ks ≤ ,s = 1,2,...,m -1.
m
Wi
t
ht
hehe
l
heAbe
lt
r
an
s
f
ormandt
hef
ac
tt
ha
tas poft
as+1 > 0,1 ≤s ≤ m -1,weknowt
ha
t
0<
=
≤
m
∑ka
j j
j=1
m-1
∑ (a
s
s=1
m-1
∑ (a
s
s=1
(
-as+1)
k1 + … +ks )+am (
k1 + … +km )
s
n
+amn
m
-as+1)
m
=
n
aj = 0.
∑
mj
=1
Wet
hen ge
tacon
t
r
ad
i
c
t
i
on.Fors
uchans,wet
aket
hes
e
t
s
amongA1 ,...,An ,who
s
e mi
n
ima
le
l
emen
t
sa
r
eg
r
ea
t
e
rt
han
as ,s
ay Ai1 ,Ai2 , ...,Aik .Then,byt
heabover
e
s
u
l
t
s,we
s
n
knowt
ha
tt
het
o
t
a
lnumbe
rofs
uchs
e
t
si
sk =k1 + … +ks > ,
m
andt
henumbe
ro
fe
l
emen
t
so
ft
he
i
run
i
ondoe
sno
texceeds,
Ch
i
naMa
t
hema
t
i
c
a
lOl
i
ad
ymp
73
km
k
=
i.
e.,|Ai1 ∪ Ai2 ∪ … ∪ Aik |≤s <
|A |.
n
n
S
e
c
ondDay
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
8:
00~12:
30,Janua
r
y16,2011
4
Gi
venpo
s
i
t
i
vei
n
t
ege
rn,
l
e
tS = {
ndt
he
1,2,...,n}.Fi
mi
n
imum of|AΔS |+|BΔS |+|CΔS |fornonemp
t
y
fr
ea
lnumbe
r
s,whe
r
eC = {
a +b|a
f
i
n
i
t
es
e
t
sA andB o
∈ A,
b ∈ B },XΔY = {
x|xbe
l
ong
st
oexac
t
l
yoneofX
andY},|X |deno
t
e
st
henumbe
rofe
l
emen
t
so
faf
i
n
i
t
e
s
e
tX .
So
l
u
t
i
on.Theminimumi
sn +1.
F
i
r
s
t,byt
ak
i
ngA = B = S,wehave
|AΔS|+|BΔS|+|CΔS|= n +1.
Se
cond,wecanpr
ovet
ha
tl =|AΔS|+|BΔS|+|CΔS|≥
n +1.Le
Y ={
x|x ∈ X ,x ∉Y}.Wehave
tX\
l =|A\S|+|B\S|+|C\S|+|S\A |+|S\B |+|S\C |.
Al
lweneedt
opr
ovea
r
et
hef
o
l
l
owi
ng:
(
i)|A\S|+|B\S|+|S\C |≥ 1,
(
i
i)|C\S|+|S\A |+|S\B |≥ n.
Fo
r(
i).I
nf
a
c
t,i
f|A\S|=|B\S|= 0,
t
henA,B ⊆S.
So
1c
anno
tb
eane
l
eme
n
to
fC,
t
h
e
r
e
f
o
r
e(
i)
i
sv
a
l
i
d.
h
en
c
e|S\C|≥1,
For (
i
i).I
fA ∩ S = ⌀ ,t
hen|S\A |≥ n,t
hec
l
a
imi
s
s
s
umet
ha
tt
he max
ima
l
a
l
r
eadyva
l
i
d.I
fA ∩ S ≠ ⌀ ,wea
e
l
emen
to
fA ∩ Si
t
hen
sn -k,0 ≤k ≤ n -1,
|S\A |≥k.
①
Ont
heo
t
he
rhand,fori =k +1,k +2,...,n,e
i
t
he
ri ∉
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
74
B(
t
heni ∈ S\B )ori ∈ B (
t
henn -k +i ∈ C ,
i.
e.,
n -k +
i ∈ C\S ),hence
|C\S|+|S\B |≥ n -k.
②
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
From ① and ② ,weob
t
a
i
n(
i
i).
Inconc
l
u
s
i
on,(
i)and (
i
i)a
r
eva
l
i
d,s
ol ≥n +1.Hence,
t
hemi
n
imumi
sn +1.
5
Gi
ven i
n
t
ege
r n
∑
∑
n
≥
4. F
i
nd t
he max
imum of
a(
ai +bi)
f
or non
-nega
t
i
ve r
ea
l numbe
r
s a1 ,
b(
ai +bi)
i=1 i
n
i=1 i
a2 ,...,an ,b1 ,b2 ,...,bn s
a
t
i
s
f
i
ng
y
a1 +a2 + … +an =b1 +b2 + … +bn > 0.
So
l
u
t
i
on.The max
imum i
sn
- 1.By homo
i
t
gene
y,wecan
a
s
s
umewi
t
hou
tl
o
s
sofgene
r
a
l
i
t
ha
t∑i=1ai =
yt
n
∑
n
i=1 i
b = 1.
Fi
r
s
t,i
ti
sc
l
ea
rt
ha
ti
fa1 = 1,a2 =a3 = … =an = 0and
b1 =0,b2 =b3 = … =bn =
∑
b(
ai +bi)=
n
i=1 i
n
1 ,
ai +bi)=1,
t
hen ∑i=1ai(
n -1
1 ,
henc
e
n -1
n
∑a (a
i=1
n
i
i
∑b (a
i=1
i
i
+bi )
+bi )
= n -1.
Now wepr
ovet
ha
tf
oranyr
ea
lnumbe
r
sa1 ,a2 ,...,an ,
b1 ,b2 ,...,bn s
a
t
i
s
f
i
ng ∑i=1ai =
y
n
n
∑a (a
i=1
n
i
i
+bi )
∑bi(ai +bi)
i=1
∑
b = 1,wehave
n
i=1 i
≤ n -1.
Ch
i
naMa
t
hema
t
i
c
a
lOl
i
ad
ymp
75
No
t
et
ha
tt
hedenomi
na
t
ori
spo
s
i
t
i
ve,i
ti
sequ
i
va
l
en
tt
o
s
howt
ha
t
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
i.
e.,
n
n
i=1
i=1
∑ ai(ai +bi)≤ (n -1)∑bi(ai +bi),
n
n
i=1
i=1
(
n -1)∑bi2 + (
n -2)∑ aibi ≥
n
∑a .
i=1
2
i
Bys
t
r
s
s
umet
ha
tb1 i
st
hesma
l
l
e
s
tone
ymme
y,wecana
amongb1 ,b2 ,...,bn .Then
n
n
(
n -1)∑bi2 + (
n -2)∑ aibi
i=1
i=1
n
n
i=2
i=1
2
∑bi + (n -2)∑ aib1
≥(
n -1)
b2
n -1)
1 +(
≥(
n -1)
b2
1 +
n
( ∑b )
i=2
i
2
+(
n -2)
b1
2
=(
+(
n -1)
b2
1 -b1)
n -2)
b1
1 +(
=n
b1 + (
n -4)
b1 +1
2
≥1 =
6
n
∑ ai ≥
i=1
n
∑a .
i=1
2
i
Pr
ovet
ha
tf
oranyg
i
ven po
s
i
t
i
vei
n
t
ege
r
sm ,n,t
he
r
e
ex
i
s
ti
nf
i
n
i
t
e
l
i
r
so
fcopr
imepo
s
i
t
i
vei
n
t
ege
r
sa,
y manypa
b,s
ucht
ha
ta +b|ama +bnb .
So
l
u
t
i
on.I
fmn =1,
t
hent
hec
l
a
imi
sva
l
i
d.Formn ≥2,
s
i
nce
a
a b
,
-n + )
na (
ama +bnb )= (
a +b)
na+b +a ((
mn)
i
ti
ss
u
f
f
i
c
i
en
tt
oprovet
heex
i
s
t
enceofi
nf
i
n
i
t
e
l
ime
y manycopr
numbe
rpa
i
r
sa,b,
s
ucht
ha
t
a
a b
(
-n + ,
a +b| (
mn)
a +b,n)= 1.
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
76
Le
tp = a + b,we on
l
o provet
ha
tt
he
r
ea
r
e
y needt
s
i
t
i
vei
n
t
ege
r1 ≤ a ≤
i
nf
i
n
i
t
e
l
imenumbe
r
sp andpo
y manypr
ucht
ha
t
p -1s
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
a
-np .
mn)
p| (
ByFe
rma
t
􀆳
st
heor
em,i.
e.,whena1 ≡ a2(
modp -1),a1
≥ 1,a2 ≥ 1,(
mn)1 ≡ (
mn)2 (
modp).
a
a
So weon
l
o pr
ovet
ha
tt
he
r
ea
r
ei
nf
i
n
i
t
e
l
y needt
y many
imenumbe
r
sp andpo
s
i
t
i
vei
n
t
ege
ras
ucht
ha
t
pr
a
-n.
mn)
p| (
①
I
ft
he
r
ea
r
e on
l
i
n
i
t
e
l
uch pr
ime
s,s
ay p1 ,
yf
y many s
a
s mn ≥ 2,t
he ex
i
s
t
ence of s
uch pr
ime
si
s
p2 ,...,pr (
s).Suppo
s
et
ha
t
obv
i
ou
2
α
α
α
(
-n = p11p22 .
..
mn)
r
enon
-nega
t
i
vei
n
t
ege
r
s
prr ,αi􀆳sa
(
1 ≤i≤ r).
②
α2
αr
1
Le
ta = pα
1 p2 …pr (
p1 - 1)…(
pr - 1) + 2,and
s
uppo
s
et
ha
t
a
βr
1 β2
(
-n = pβ
mn)
r
enon
-nega
t
i
vei
n
t
ege
r
s
1 p2 …pr ,
βi􀆳sa
③
)
(
1 ≤i ≤r .
I
fpi |n,t
hen,by ③ anda ≥ 2,weknowt
ha
tpiβi |n,
2
-n,
henc
epiβi | (
mn)
andby ② wehaveβi ≤αi .
I
fpi n,t
henpi
α +1
m ,s
o(
l
e
r
􀆳
s
pii ,mn) = 1.By Eu
α +1
α
Theor
em (
a
sφ(
i
saf
ac
t
orofa -2 )
pii )= pii (
pi -1)
a
2
(
-n ≡ (
-n(
mn)
mn)
modpiαi+1).
Becau
s
epiαi+1
2
(
-n,t
mn)
hecong
r
uencer
e
l
a
t
i
onabove
a
-n.
imp
l
i
e
st
ha
tpiαi+1 (
mn)
Soβi ≤αi .Hence,
Ch
i
naMa
t
hema
t
i
c
a
lOl
i
ad
ymp
77
α
α
α
a
2
βr
1 β2
(
-n = pβ
≤ p11p22 …prr = (
-n,
mn)
mn)
1 p2 …pr
he
r
ea
r
ei
nf
i
n
i
t
e
l
wh
i
chi
si
ncon
t
r
ad
i
c
t
i
on wi
t
ha > 2.Sot
y
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
a
-n.
manypr
ime
sp andpo
s
i
t
i
vei
n
t
ege
r
sas
ucht
ha
tp| (
mn)
2012
(
X
i
a
n,Sh
a
a
n
x
i)
F
i
r
s
tDay
8:
00~12:
30Janua
r
y15,2012
1
Ass
howni
nF
i
.1
.1,∠A i
st
heb
i
s
tang
l
ei
nt
r
i
ang
l
e
g
gge
ABC .Ont
hec
i
r
cumc
i
r
c
l
eo
f△ABC ,t
hepo
i
n
t
sD andE
a
r
et
hemi
dpo
i
n
t
so
fABC andACB ,r
e
s
t
i
ve
l
t
e
pec
y.Deno
by ☉O1t
hec
i
r
c
l
epa
s
s
i
ngt
hr
oughA andB ,
andt
angen
tt
o
l
i
neAC ,by ☉O2t
hec
i
r
c
l
epa
s
s
i
ngt
hroughA andE ,and
t
angen
tt
ol
i
neAD .☉O1i
n
t
e
r
s
e
c
t
s☉O2 a
tpo
i
n
t
sA and
P .Provet
ha
tAPi
st
heb
i
s
e
c
t
oro
f ∠BAC .
So
l
u
t
i
on.Jo
i
nr
e
s
c
t
i
ve
l
he
pe
yt
i
r
so
f po
i
n
t
sEP ,AE ,BE ,
pa
BP , CD . For t
he s
ake of
conven
i
ence,we deno
t
e by A ,
B, C t
he ang
l
e
s
∠BAC ,
∠ABC , ∠ACB ,t
henA + B +
C = 180
°. Take an a
rb
i
t
r
a
r
y
i
n
tX ont
heex
t
en
s
i
onofCA ,
po
F
i
.1
.1
g
apo
i
n
tY ont
heex
t
en
s
i
ono
fDA .I
ti
sea
s
os
eet
ha
tAD =
yt
DC ,AE = EB .By t
hef
ac
tt
ha
t A ,B ,C ,D and E a
r
e
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
78
concyc
l
i
c,wege
t
∠BAE = 9
0
°-
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
=9
0
°-
1∠
C
AEB = 90
°- ,∠CAD
2
2
B
1∠
ADC = 90
°- .
2
2
Asl
i
neAC and ☉O1 a
r
et
angen
ta
tpo
i
n
tA ,l
i
neAD and
☉O2 a
r
et
angen
ta
tpo
i
n
tA ,wege
t
∠APB = ∠BAX = 1
80
°- A ,∠ABP = ∠CAP ,
and
∠APE = ∠EAY = 1
8
0
°- ∠DAE = 1
8
0
°- (∠BAE + ∠CAD -A)
°=1
80
°- ç90
æ
è
C ö÷ æç
Bö
A
0
°- ÷ + A = 90
- 9
°+ .
2ø è
2ø
2
Bycompu
t
a
t
i
on,weob
t
a
i
n
∠BPE = 3
60
°- ∠APB - ∠APE = 90
°+
A
= ∠APE .
2
In △APE and △BPE ,weapp
l
i
ne,andt
ake
y Law ofS
i
n
t
oac
coun
tt
ha
tAE = BE ,weob
t
a
i
n
s
i
n∠PAE
PE
PE s
i
n∠PBE
=
=
=
.
∠
BE
s
i
n APE AE
s
i
n∠BPE
The
r
e
f
or
e,s
i
n∠PAE = s
i
n∠PBE .Ont
heo
t
he
rhand,
∠APE a
nd ∠BPE a
r
ebo
t
hob
t
u
s
e,s
o ∠PAE and ∠PBE a
r
e
bo
t
hacu
t
e,t
hu
s ∠PAE = ∠PBE .
Henc
e,∠BAP = ∠BAE - ∠PAE = ∠ABE - ∠PBE =
∠ABP = ∠CAP .
2 Gi
venapr
imenumbe
rp,
l
e
tA beap ×p ma
t
r
i
xs
ucht
ha
t
2
i
t
sen
t
r
i
e
sa
r
eexac
t
l
ns
omeorde
r.The
y1,2,...,p i
fo
l
l
owi
ng ope
r
a
t
i
oni
sa
l
l
owedfora ma
t
r
i
x:addonet
o
Ch
i
naMa
t
hema
t
i
c
a
lOl
i
ad
ymp
79
eachnumbe
ri
nar
ow oraco
l
umn,ors
ub
t
r
ac
tonef
rom
eachnumbe
ri
naroworaco
l
umn.Thema
t
r
i
xAi
sca
l
l
ed
“
fonecant
akeaf
i
n
i
t
es
e
r
i
e
so
fs
uchope
r
a
t
i
ons
good”i
r
e
s
u
l
t
i
ngi
nama
t
r
i
xwi
t
ha
l
len
t
r
i
e
sze
r
o.F
i
ndt
henumbe
r
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
ofgoodma
t
r
i
ce
sA .
So
l
u
t
i
on.Wemaycomb
i
net
heope
r
a
t
i
onsont
hes
amerowor
co
l
umn,t
hu
st
hef
i
na
lr
e
s
u
l
to
fas
e
r
i
e
sofope
r
a
t
i
onscanbe
r
ea
l
i
z
eda
ss
ub
s
t
r
ac
t
i
ngi
n
t
ege
rxif
r
omeachnumbe
rofi
-t
hrow
ands
ub
s
t
r
ac
t
i
ngi
n
t
ege
ryj f
r
om eachnumbe
rofj
-t
hco
l
umn.
sgoodi
fandon
l
ft
he
r
eex
i
s
ti
n
t
ege
r
sxi
Thu
s,t
hema
t
r
i
xAi
yi
ucht
ha
taij = xi +yj f
ora
l
l1 ≤i,j ≤ p.
yj ,s
S
i
ncet
heen
t
r
i
e
sofA a
r
ed
i
s
t
i
nc
t,x1 ,x2 , ...,xp a
r
e
i
rwi
s
ed
i
s
t
i
nc
t,ands
oa
r
ey1 ,y2 ,...,yp .Wemaycons
i
de
r
pa
i
nceswapp
i
ngt
heva
l
ueof
on
l
heca
s
et
ha
tx1 <x2 < … <xps
yt
xi andxjr
e
s
u
l
t
si
nswapp
i
ngt
hei
-t
hr
owandj
-t
hr
ow,wh
i
chi
s
aga
i
nagood ma
t
r
i
x.S
imi
l
a
r
l
i
de
ron
l
heca
s
e
y,we maycons
yt
t
ha
ty1 < y2 < … < yp ,
t
hu
st
hema
t
r
i
xi
si
nc
r
ea
s
i
ngf
roml
e
f
t
t
or
i
t,a
l
s
of
r
omt
opt
obo
t
t
om.
gh
Fr
omt
hea
s
s
ump
t
i
on
sabove,wehavea11 = 1,a12 ora21
i
ncet
he
equa
l
s2.Wemaycon
s
i
de
ron
l
heca
s
et
ha
ta12 = 2s
yt
t
r
ans
s
e of t
he ma
t
r
i
xi
s aga
i
n good. Now we a
r
po
gue by
con
t
r
ad
i
c
t
i
ont
ha
tt
hef
i
r
s
tr
owi
s1,2,...,p.As
s
umeont
he
sont
hef
i
r
s
trow,bu
tk +1i
con
t
r
a
r
ha
t1,2,...,ki
sno
t,2
yt
≤k <p ,
t
he
r
e
f
or
ea21 =k +1.Weca
l
lkcon
s
ecu
t
i
vei
n
t
ege
r
sa
“
b
l
ock”,andwes
ha
l
lprovet
ha
tt
hef
i
r
s
tr
owcons
i
s
t
so
fs
eve
r
a
l
b
l
ock
s,t
ha
ti
s,t
hef
i
r
s
tk numbe
r
si
sa b
l
ock,t
he nex
tk
numbe
r
si
saga
i
nab
l
ock,ands
oon.
I
fi
ti
sno
ts
o,a
s
s
umet
hef
i
r
s
tn g
roupsofk numbe
r
sa
r
e
“
r
si
sno
ta “
b
l
ock”(
ort
he
r
ea
r
e
b
l
ock
s”,bu
tt
henex
tk numbe
noknumbe
r
sr
ema
i
n
i
ng).I
tfo
l
l
owst
ha
tforj = 1,2,...,n,
80
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
sa “
b
l
ock”,t
hef
i
r
s
tnkco
l
umn
sof
y(j-1)k+1 ,y(j-1)k+2 ,...,yjki
ubma
t
r
i
c
e
sai,(j-1)k+1 ,
t
hema
t
r
i
xcanbed
i
v
i
dedi
n
t
opn 1 ×ks
ai,(j-1)k+2 ,...,ai,jk ,
i =1,2,...,p,j =1,2,...,n,each
s
ubma
t
r
i
xi
sa “
b
l
ock”.Now a
s
s
umea1,nk+1 = a,l
e
tb bet
he
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
sno
tont
hef
i
r
s
trow,
sma
l
l
e
s
tpo
s
i
t
i
vei
n
t
ege
r
ss
ucht
ha
ta +bi
t
henb ≤k -1.S
i
nc
ea2,nk+1 -a1,nk+1 =x2 -x1 =a21 -a11 =k,
wehavea2,nk+1 = a + k,t
he
r
e
f
or
ea + bl
i
e
si
nt
hef
i
r
s
tnk
co
l
umn
s.
The
r
e
f
or
e,a + b i
scon
t
a
i
nedi
n one oft
he1 × k
s
ubma
t
r
i
c
e
smen
t
i
onedabove,wh
i
chi
sa “
b
l
ock”,howeve
ra,
a +ka
r
eno
ti
nt
h
i
s“
b
l
ock”,wh
i
chi
sacon
t
r
ad
i
c
t
i
on.
Wes
howed t
ha
tt
he f
i
r
s
trow i
sformed by b
l
ocks,i
n
r
t
i
cu
l
a
rk|p,howeve
r,
1 <k <p,andpi
sapr
ime,wh
i
chi
s
pa
impo
s
s
i
b
l
e.
So weconc
l
udet
ha
tt
hef
i
r
s
trowi
s1,2,...,p,
t
hek
-t
hr
ow mu
s
tbe(
k -1)
k -1)
s
p +1,(
p +2,...,kp.Thu
upt
oi
n
t
e
r
chang
i
ng rows,co
l
umn
sandt
r
an
s
s
e,t
he good
po
2
ma
t
r
i
xi
sun
i
hean
swe
ri
st
he
r
e
f
or
e2(
p!).
que,t
3 Pr
ovet
ha
tf
orany r
ea
lnumbe
r M > 2,t
he
r
eex
i
s
t
sa
s
t
r
i
c
t
l
nc
r
ea
s
i
ngi
nf
i
n
i
t
es
equenceofpo
s
i
t
i
vei
n
t
ege
r
sa1 ,
yi
a2 ,...s
a
t
i
s
f
i
ngbo
t
ht
hef
o
l
l
owi
ngtwocond
i
t
i
ons:
y
(
1)ai > M if
oranypo
s
i
t
i
vei
n
t
ege
ri.
(
2)Ani
n
t
ege
rni
snon
z
e
roi
fandon
l
ft
he
r
eex
i
s
t
sa
yi
s
i
t
i
vei
n
t
ege
rm andb1 ,b2 ,...,bm ∈ {-1,1},wi
t
hn
po
=b1a1 +b2a2 + … +bmam .
So
l
u
t
i
on.For g
i
ven M
> 2,we c
ons
t
r
uc
t by i
nduc
t
i
on a
s
equence{
an }t
ha
t
ha
ts
a
t
i
s
f
i
e
st
her
equ
i
r
emen
t
s.Takea1 ,a2 t
2
s
a
t
i
s
f
uppo
s
ea1 ,a2 ,...,a2k
ya2 -a1 = 1anda1 > M .Nows
a
r
ea
l
r
eadycho
s
en,s
ucht
ha
tai > M i ,i = 1,2,...,2
kand
s
ucht
ha
tt
hes
e
tAk = {
b1a1 + … +bmam |b1 ,...,bm = ±1,1
≤ m ≤ 2
k}doe
s no
t con
t
a
i
n 0.I
ti
s obv
i
ou
st
ha
t Ak i
s
Ch
i
naMa
t
hema
t
i
c
a
lOl
i
ad
ymp
81
s
t
r
i
c,i.
e.,Ak = -Ak .A1 = {
a1 ,-a1 ,1,-1}.Le
tn be
ymme
t
hesma
l
l
e
s
tpo
s
i
t
i
vei
n
t
ege
rno
ti
n Ak ,N =
∑
2k
i=1
ai ,now
choo
s
epo
s
i
t
i
vei
n
t
ege
r
sa2k+1 ,a2k+2s
a
t
i
s
f
i
nga2k+2 -a2k+1 = N +
y
n,a2k+1 > M 2k+2 ,a2k+1 > ∑i=1ai .Wenowshowt
ha
tAk+1doe
s
2k
i
r
s
t,
no
tcon
t
a
i
n0andn ∈ Ak+1 .F
n = - ∑i=1ai -a2k+1 +a2k+2 .
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
2k
Ont
heo
t
he
rhand,i
f∑i=1biai = 0,m ≤ 2
k +2,a
s0 ∉
m
Ak ,wemu
k +1or2
k +2.
s
thavem = 2
I
fm = 2
k +1,
t
hen| ∑i=1biai |≥a2k+1 - ∑i=1ai > 0.
2k+1
2k
I
fm = 2
k +2andb2k+1 andb2k+2 a
r
eoft
hes
ames
i
hen
gn,t
i
fb2k+1andb2k+2a
r
e
| ∑i=1biai|≥a2k+1 +a2k+2 - ∑i=1ai >0;
2k+2
2k
o
fd
i
f
f
e
r
en
ts
i
s,t
hen
gn
k+2
2
∑biai =
i=1
k
2
2
k
i=1
i=1
a2k+1 -a2k+2) ≥|a2k+1 -a2k+2|- ∑ ai
∑biai ± (
= N +n - N = n > 0.
The{
an }t
hu
scon
s
t
r
uc
t
eds
a
t
i
s
f
i
e
st
her
equ
i
r
emen
t
ss
i
nce0
i
sno
tcon
t
a
i
nedi
nanyAk ,andanynon
ze
r
oi
n
t
ege
rbe
tween
-ka
ndki
scon
t
a
i
nedi
nAk .
S
e
c
ondDay
8:
00~12:
30Janua
r
y16,2012
4 Le
tf(
x)= (
x +a)(
x +b)whe
r
eg
i
venpo
s
i
t
i
ve
r
ea,ba
r
ea
lnumbe
r
s,
n ≥ 2beag
i
veni
n
t
ege
r.Fornon
-nega
t
i
ve
r
ea
lnumbe
r
sx1 ,x2 ,...,xn t
ha
ts
a
t
i
s
f
yx1 +x2 + … +
xn = 1,f
i
ndt
he max
imum o
fF =
xj )}.
f(
So
l
u
t
i
on1.As
∑
1≤i<j≤n
mi
n{
xi),
f(
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
82
mi
n{
xi),f(
xj )}= mi
n{(
xi +a)(
xi +b),(
xj +a)(
xj +b)}
f(
(
xi +a)(
xi +b)(
xj +a)(
xj +b)
≤
1 ((
xi +a)(
xj +b)+ (
xi +b)(
xj +a))
2
≤
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
= xixj +
1(
xi +xj )(
a +b)+ab,
2
s
o
F ≤
=
=
≤
=
=
a +b
2
(
·ab
xixj +
xi +xj )+ Cn
∑
2
1≤i<j≤n
1≤i<j≤n
∑
1
[
2
n
( ∑x )
i
i=1
2
n
-
n
n
a +b(
2
·ab
xi2 ] +
n -1)∑ xi + Cn
∑
2
i=1
i=1
-1(
1
2
·ab
a +b)+ Cn
(1 - i∑ xi2 ) +n 2
2
=1
n
2ö
1 æç - 1
2
·ab
1
xi ) ÷ +n 1(
a +b)+ Cn
(
∑
n i=1
ø
2è
2
1 çæ1 - 1 ö÷ n -1(
n(
n -1)
+
a +b)+
ab
n
è
ø
2
2
2
n -1æç 1 +a +b +nab ö÷
.
ø
2 èn
1
Theequa
l
i
t
l
d
swhenx1 = x2 = … = xn = .Sot
he
yho
n
n -1æç 1 +a +b +nab ö÷
.
max
imumo
fFi
s
ø
2 èn
So
l
u
t
i
on2.Weshowthatthemax
imumva
l
uei
sa
t
t
a
i
nedwhen
x1 =x2 = … =xn =
1,
n -1æç 1 +a +b +nab ö÷
.
andFmax =
ø
n
2 èn
Wei
nduc
tonnt
oshowamor
egene
r
a
ls
t
a
t
emen
t:fornon
-
nega
t
i
ver
ea
lnumbe
r
sx1 ,x2 ,...,xns
a
t
i
s
f
i
ngx1 +x2 + … +
y
xn = s (whe
r
es i
saf
i
xed non
-nega
t
i
ver
ea
lnumbe
r),t
he
max
imum va
l
ue of F =
∑
1≤i<j≤n
mi
n{
xi), f(
xj )}i
s
f(
Ch
i
naMa
t
hema
t
i
c
a
lOl
i
ad
ymp
83
s
a
t
t
a
i
nedwhenx1 = x2 = … = xn = .
n
S
i
nc
eFi
ss
t
r
i
c,wemaya
s
s
umex1 ≤ x2 ≤ … ≤ xn .
ymme
No
t
et
ha
t f(
x)i
ss
t
r
i
c
t
l
nc
r
ea
s
i
ng on non
-nega
t
i
ve r
ea
l
yi
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
numbe
r
s,wehave
F =(
n -1)
x1)+ (
n -2)
x2)+ … +f(
xn-1).
f(
f(
æs ö
l
i
t
l
d
swhenx1 =
Whenn =2,F =f(
x1)≤f ç ÷ ,equa
yho
è2ø
s
umet
ha
tt
hes
t
a
t
emen
tho
l
d
sforn,cons
x2 .As
i
de
rt
heca
s
eof
n +1.App
l
i
ngi
nduc
t
i
vehypo
t
he
s
i
sonx2 +x3 + … +xn+1 =
y
s -x1 ,wehave
æs -x1 ÷ö
1
= g(
F ≤ nf(
x1)+ n(
n -1)
x1),
fç
è n ø
2
whe
r
e g(
s a quadr
a
t
i
cf
unc
t
i
on o
f x,t
he l
ead
i
ng
x)i
coe
f
f
i
c
i
en
ti
s1 +
n -1,
andt
hecoe
f
f
i
c
i
en
to
fx i
sa + b 2
n2
n -1æça +b + s ö÷ ,
t
he
r
e
f
or
e,t
heax
i
sofs
t
r
s
ymme
yi
2
nø
2
n è
n -1æça +b + s ö÷
-a -b
2
nø
2
n è
s
≤
.
n -1
2(
n +1)
2+
2
n
(
Theabovei
nequa
l
i
t
sequ
i
va
l
en
tt
o[(
n -1)
s -2n(
n +1)(
a+
yi
b)](
n + 1) ≤ 2
s(
2
n2 + n - 1);obv
i
ou
s
l
e
f
t
-hands
i
de <
y,l
æ s ÷ö
(
n2 -1)
s < r
i
t
-hand s
i
de.) The
r
e
for
e,g ç
i
st
he
gh
èn +1ø
s
max
imumo
fg(
.Thu
s,F a
x)on 0,
t
t
a
i
nsi
t
smax
imum
n +1
[
]
s -x1
s
=
= x1 ,
comp
l
e
t
i
ng
whenx2 = x3 = … = xn+1 =
n
n +1
t
hes
o
l
u
t
i
on.
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
84
5 Le
tn be as
r
e
f
r
ee po
s
i
t
i
ve even numbe
r,k be an
qua
i
n
t
ege
r,p beapr
imenumbe
r,s
a
t
i
s
f
i
ngp < 2 n ,p n,
y
ha
tncanbewr
i
t
t
ena
sn =ab +b
c +ca,
p|n +k .Provet
whe
r
ea,b,ca
r
ed
i
s
t
i
nc
t
i
vepo
s
i
t
i
vei
n
t
ege
r
s.
2
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
So
l
u
t
i
on.S
i
nc
eni
seven,wehavep
≠ 2.Asp n,weh
ave
s
s
umewi
t
hou
tl
o
s
so
fgene
r
a
l
i
t
t
p k.Wemaya
y0 <k < p.Se
2
n -k(
p -k) n +k
=
-k.
t
henc =
a =k,b = p -k,
p
p
By a
s
s
ump
t
i
on,c i
s an i
n
t
ege
r,and a,b a
r
ed
i
s
t
i
nc
t
s
i
t
i
vei
n
t
ege
r
s.I
tr
ema
i
n
st
obes
hownt
ha
tc >0,andc ≠a,
po
n
t
hu
s
b.Byt
heAM GMi
nequa
l
i
t
y,wehave +k ≥2 n >p,
k
n +k2
-k =k,
n +k2 > pk,hencec > 0.I
fc = a,
t
hen
t
hu
s
p
n =k(
2p -k).S
i
nc
eni
seven,
ki
sa
l
s
oeven,a
sacons
equence
ni
sd
i
v
i
s
i
b
l
eby4,wh
i
chcon
t
r
ad
i
c
t
st
hef
ac
tt
ha
tni
ss
r
e
qua
seven,ki
sodd,
f
r
ee.I
fc = b,t
henn = p2 - k2 .S
i
nceni
imp
l
i
ngt
ha
tni
saga
i
nd
i
v
i
s
i
b
l
eby4,wh
i
chi
sacon
t
r
ad
i
c
t
i
on.
y
a
t
i
s
f
l
lt
he r
equ
i
r
emen
t
s,
Weconc
l
udet
ha
ta,b,c s
ya
comp
l
e
t
i
ngt
heproo
f.
6 F
i
ndt
hesma
l
l
e
s
t po
s
i
t
i
vei
n
t
ege
rk wi
t
ht
hefo
l
l
owi
ng
ope
r
t
oranyk e
l
emen
ts
ub
s
e
tA oft
hes
e
tS = {
1,
pr
y:f
2,...,2012},
t
he
r
eex
i
s
tt
hr
eepa
i
rwi
s
ed
i
s
t
i
nc
te
l
emen
t
s
a,b,cofSs
ucht
ha
ta +b,b +c,c +aa
l
lbe
l
ongt
oA .
So
l
u
t
i
on.Wi
t
hou
tl
o
s
so
fgene
r
a
l
i
t
s
s
umea
y,wemaya
<b <
c.Wr
i
t
ex = a +b,z = b +c,y = a +c,t
henx < y < z,
x +y >z,andx +y +zi
seven.Ont
heo
t
he
rhand,i
ft
he
r
e
ex
i
s
tx,y,z ∈ A s
ucht
ha
tx < y < z,x +y > z,andt
ha
t
x +y + zi
seven,s
e
ta =
x +y -z
x +z -y
,b =
,c =
2
2
Ch
i
naMa
t
hema
t
i
c
a
lOl
i
ad
ymp
85
y +z -x ,
i
ti
sc
l
ea
rt
ha
ta,b,ca
r
epa
i
rwi
s
ed
i
s
t
i
nc
te
l
emen
t
s
2
ofS,andx = a +b,y = a +c,z =b +c.
Ther
equ
i
r
ed pr
ope
r
t
sequ
i
va
l
en
tt
ot
hefo
l
l
owi
ng:f
or
yi
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
anyk
he
r
eex
i
s
tt
hr
eee
l
emen
t
sx,y,
-e
l
emen
ts
ub
s
e
tA o
fS,t
z ∈ As
ucht
ha
t
x < y <z,x +y >z,andx +y +zi
seven. (* )
1,2,3,5,7,...,2011},|A|=1007,andA doe
s
I
fA = {
no
tcon
t
a
i
nt
hr
eee
l
emen
t
ss
a
t
i
s
f
i
ngprope
r
t
r
e
for
e,
y
y (* ).The
k ≥ 1008.
Wenex
tprovet
ha
tany1008
e
l
emen
ts
ub
s
e
to
fS con
t
a
i
ns
t
hr
eee
l
emen
t
ss
a
t
i
s
f
i
ngpr
ope
r
t
y
y (* ).
oveagene
r
a
ls
t
a
t
emen
t:Foranyi
n
t
ege
rn ≥ 4,any
Wepr
(
n + 2)
-e
l
emen
ts
ub
s
e
t of {
1,2, ...,2
n}con
t
a
i
nst
hr
ee
e
l
emen
t
ss
a
t
i
s
f
i
ng (* ).Wei
nduc
tonn.
y
e
l
emen
ts
ub
s
e
tof{
1,2,...,8},
Whenn =4,
l
e
tA bea6
t
henA ∩ {
3,4,5,6,7,8}
con
t
a
i
nsa
tl
ea
s
tfoure
l
emen
t
s.I
fA
∩{
3,4,5,6,7,8}con
t
a
i
nst
hr
eeevennumbe
r
s,t
hen4,6,
8 ∈ As
a
t
i
s
f
i
ng (* ).I
fA ∩ {
3,4,5,6,7,8}con
t
a
i
ns
y
exac
t
l
r
s,t
heni
tcon
t
a
i
n
stwooddnumbe
r
s.
ytwoevennumbe
Foranytwooddnumbe
r
sx,y o
f{
3,5,7},
twoo
f(
4,x,y),
(
6,x,y),(
8,x,y)wou
l
ds
a
t
i
s
f
r
t
hu
soneof
yprope
y (* ),t
t
hemi
scon
t
a
i
nedi
nA .
I
fA ∩ {
3,4,5,6,7,8}
c
on
t
a
i
n
se
x
a
c
t
l
y
onee
v
ennumbe
rx,
t
heni
tc
on
t
a
i
n
sa
l
lt
h
r
e
eoddnumbe
r
s,
t
hen(
x,
5,7)
s
a
t
i
s
f
i
e
s(*).Ther
e
s
u
l
tho
l
d
sf
o
rn = 4.
As
s
umi
ngt
her
e
s
u
l
tho
l
d
sf
orn(
n ≥4),
cons
i
de
rt
heca
s
eof
n +1.Le
tA be(
n +3)
-e
l
emen
t
sof {
1,2,...,2
n +2},
i
f|A
∩{
1,2,...,2
n}
nduc
t
i
vehypo
t
he
s
i
s,t
her
e
s
u
l
t
|≥n +2.Byi
fo
l
l
ows.I
tr
ema
i
n
st
ocon
s
i
de
r|A ∩ {
1,2,...,2
n}
|=n +1,
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
86
and2
n +1,2n +2 ∈ A .I
fA con
t
a
i
n
sanoddnumbe
rxi
n{
1,
n},t
n + 1,2n + 2s
2,...,2
henx,2
a
t
i
s
f
i
fnoodd
y (* );
n}g
r
ea
t
e
rt
han1i
scon
t
a
i
nedi
nA ,
numbe
rof {
1,2,...,2
t
henA = {
1,2,4,6,...,2
n,2n +1,2n +2},and4,6,8 ∈
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
As
a
t
i
s
f
y (* ).
t
ht
her
equ
i
r
edprope
r
t
s1008.
Henc
e,t
hesma
l
l
e
s
tk wi
yi
2013
(
S
h
e
n
a
n
i
a
o
n
i
n
y
g,L
g)
F
i
r
s
tDay8:
00 12:
30
Janua
r
y12,2013
1
Twoc
i
r
c
l
e
sK1 andK2 o
fd
i
f
f
e
r
en
tr
ad
i
ii
n
t
e
r
s
ec
ta
ttwo
i
n
t
sonK1 andK2 ,
i
n
t
sA andB ,
l
e
tC andD betwopo
po
r
e
s
c
t
i
ve
l
ucht
ha
tA i
st
he mi
dpo
i
n
toft
hes
egmen
t
pe
y,s
tano
t
he
rpo
i
n
tE ,
CD .Theex
t
en
s
i
onofDB mee
t
sK1 a
andt
heex
t
en
s
i
ono
fCB mee
t
sK2 a
tano
t
he
rpo
i
n
tF .Le
t
l1 andl2 bet
he pe
rpend
i
cu
l
a
rb
i
s
ec
t
or
so
fCD andEF ,
r
e
s
c
t
i
ve
l
pe
y.
(
1)Show t
ha
tl1 andl2
ha
v
eaun
i
ec
ommon
qu
i
n
t(
d
eno
t
e
db
.
po
yP )
(
2)Pr
ov
et
ha
tt
hel
eng
t
h
s
o
fCA ,APandPEa
r
e
t
hes
i
d
el
eng
t
h
so
fa
r
i
tt
r
i
ang
l
e.
gh
F
i
.1
.1
g
Ch
i
naMa
t
hema
t
i
c
a
lOl
i
ad
ymp
87
So
l
u
t
i
on (
1)S
i
nceC ,A ,B ,E a
r
econcyc
l
i
c,andD ,A ,B ,
het
heor
em o
fpowe
rofa
Fa
r
econcyc
l
i
c,CA = AD ,andbyt
i
n
t,wehave
po
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
CB ·CF = CA ·CD = DA ·DC = DB ·DE .
①
Suppo
s
eont
hecon
t
r
a
r
ha
tl1andl2dono
ti
n
t
e
r
s
e
c
t,t
hen
yt
CF
DE
=
CD ‖EF ,hence
.P
l
ugg
i
ngi
n
t
o ① ,wege
tCB2 =
CB
DB
DB2 ,
tfo
l
l
owst
ha
tCB and
t
hu
sCB = DB ,henceBA ⊥ CD .I
DB a
r
et
hed
i
ame
t
e
r
so
fK1andK2 ,
r
e
s
c
t
i
ve
l
pe
y,henceK1and
K2 haves
amer
ad
i
i,wh
i
chcon
t
r
ad
i
c
t
swi
t
ha
s
s
ump
t
i
on.Thu
s,
l1 andl2 haveaun
i
i
n
t.
quecommonpo
(
2)J
o
i
nAE ,AF andPF ,wehave
∠CAE = ∠CBE = ∠DBF = ∠DAF .
st
heb
i
s
e
c
t
orof ∠EAF .S
i
ncePi
son
S
i
nc
eAP ⊥CD ,APi
t
he pe
rpend
i
cu
l
a
rb
i
s
e
c
t
or o
ft
hes
egmen
tEF ,P i
son t
he
c
i
r
cumc
i
r
c
l
eo
f△AEF .Wehave
∠EPF = 1
80
°- ∠EAF = ∠CAE + ∠DAF
= 2∠CAE = 2∠CBE .
Henc
e,B i
sont
hec
i
r
c
l
e wi
t
hcen
t
e
rP andr
ad
i
u
sPE ,
deno
t
i
ngt
h
i
sc
i
r
c
l
e byΓ.Le
tR bet
her
ad
i
u
so
fΓ.By t
he
t
heor
emofpowe
rofapo
i
n
t,wehave
2CA2 = CA ·CD = CB ·CF = CP2 -R2 ,
t
hu
s
AP2 = CP2 -CA2 = (
2CA2 +R2)-CA2 = CA2 +PE2 .
I
tfo
l
l
owst
ha
tCA ,AP ,PE f
orm t
hes
i
del
eng
t
hso
fa
r
i
tt
r
i
ang
l
e.
gh
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
88
F
i
nda
l
lnon
emp
t
e
t
sS o
fi
n
t
ege
r
ss
ucht
ha
t3m -2
n∈
ys
2
Sfora
l
l(
no
tnec
e
s
s
a
r
i
l
i
s
t
i
nc
t)m ,n ∈ S.
yd
So
l
u
t
i
on Ca
l
las
e
tS “
fi
ts
a
t
i
s
f
i
e
st
heprope
r
t
ss
t
a
t
ed
good”i
ya
i
nt
hepr
ob
l
em.
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
(
1)I
fS ha
son
l
l
emen
t,Si
s“
yonee
good”.
(
2)Now we can a
s
s
ume t
ha
t S con
t
a
i
n
sa
tl
ea
s
t two
e
l
emen
t
s.Le
t
n{
d = mi
|m -n|∶m ,n ∈ S,m ≠ n}.
Thent
he
r
ei
sani
n
t
ege
ra,s
ucht
ha
ta +d,a +2d ∈ S.
No
t
et
ha
t
a +4d = 3(
a +2d)-2(
a +d)∈ S,
a -d = 3(
a +d)-2(
a +2d)∈ S,
a +5d = 3(
a +d)-2(
a -d)∈ S,
a -2d = 3(
a +2d)-2(
a +4d)∈ S.
Sowehavepr
ovedt
ha
ti
f
a +d,a +2d ∈ S,
t
hen
a -2d,a -d,a +4d,a +5d ∈ S.
Con
t
i
nu
i
ngt
h
i
spr
oc
edur
e,wecandeduc
et
ha
t
{
a +kd|k ∈ Z,3 k}⊆ S.
Le
tS0 = {
a +kd|k ∈ Z,3 k},
i
ti
sea
s
ove
r
i
f
ha
tS0
yt
yt
i
s“
good”.
(
3)Now wehaveprovedt
ha
tS0 ⊆ S.I
fS ≠ S0 ,p
i
cka
numbe
rb ∈ S\S0 ,
t
hent
he
r
eex
i
s
t
sani
n
t
ege
rl,s
ucht
ha
ta +
ld ≤ b < a + (
l + 1)
d.S
i
nc
ea
tl
ea
s
toneofl andl + 1i
s
l+
i
nd
i
v
i
s
i
b
l
eby3,weknowt
ha
ta
tl
ea
s
toneofa +ld,a + (
1)
di
scon
t
a
i
nedi
nS0 .I
fa +ld ∈ S0 ,no
t
et
ha
t0 ≤|b - (
a+
Ch
i
naMa
t
hema
t
i
c
a
lOl
i
ad
ymp
89
ld)|< d,byt
hede
f
i
n
i
t
i
ono
fd,wemu
s
thaveb = a +ld.I
f
a +(
l +1)
d ∈ S0 ,no
t
et
ha
t
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
0 <|a + (
l +1)
d -b|≤ d,
byt
hede
f
i
n
i
t
i
ono
fd,wea
l
s
ohaveb = a +ld.
Inbo
t
hca
s
e
s,wehaveprovedt
ha
tt
he
r
ei
sanumbe
rb ∈
S\S0oft
hef
ormb =a +ld.Th
i
slmu
s
tbed
i
v
i
s
i
b
l
eby3,hence
a +ld,a + (
l +1)
d,a + (
l +2)
d ∈ S,
a+(
l -2)
d,a + (
l -1)
d ∈ S.
So
a+(
l +3)
d = 3(
a+(
l +1)
d)-2(
a +ld)∈ S,
a+(
l -3)
d = 3(
a+(
l -1)
d)-2(
a +ld)∈ S.
Con
t
i
nu
i
ngt
h
i
spr
oc
edur
e,wehavea + (
l +3
d ∈S,j ∈
j)
l
i
e
st
ha
t{
a +kd|d ∈ Z}⊆S.Wec
l
a
imt
ha
tS =
Z,wh
i
chimp
{
a +kd ∣k ∈ Z},
a +kd|d ∈ Z},
s
i
nc
ef
oranynumbe
rx ∉ {
t
he
r
ei
sane
l
emen
ti
ny ∈ {
a +kd|k ∈ Z}s
ucht
ha
t0 <|x hede
f
i
n
i
t
i
ono
fd,we mu
s
thavex ∉ S.SoS =
y|< d.Byt
{
a +kd ∣k ∈ Z},andi
ti
sea
s
ove
r
i
f
ha
ts
uchSi
s“
yt
yt
good”.
Weconc
l
udet
ha
tt
he
r
ea
r
et
hr
eec
l
a
s
s
e
sof “
e
t
s:
good”s
(
1)S = {
a};
(
2)S = {
a +kd ∣k ∈ Z,3 k};
(
3)S = {
a +kd ∣k ∈ Z},he
r
ea,d ∈ Z,d > 0.
3
F
i
nd a
l
l po
s
i
t
i
ve r
ea
l numbe
r
st wi
t
ht
he fo
l
l
owi
ng
r
t
he
r
eex
i
s
t
sani
nf
i
n
i
t
es
e
tX o
fr
ea
lnumbe
r
s
prope
y:t
s
ucht
ha
tt
hei
nequa
l
i
t
y
max{
a -d)|,|y -a|,|z - (
a +d)|}>td
|x - (
ho
l
d
sf
ora
l
l(
no
tnec
e
s
s
a
r
i
l
i
s
t
i
nc
t)x,y,z ∈ X ,a
l
l
yd
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
90
r
ea
lnumbe
r
saanda
l
lpo
s
i
t
i
ver
ea
lnumbe
r
sd.
1
So
l
u
t
i
onTheansweri
s0 <t < .
2
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
1 -2
t ö÷ ,
æ
1
F
i
r
s
t
l
or0 <t < ,choo
l
e
txi =
s
eλ ∈ ç0, (
y,f
è 2 1 +t)ø
2
λi ,X = {
x1 ,x2 ,...}.Wec
l
a
imt
ha
tfora
l
l(
no
tnece
s
s
a
r
i
l
y
l
lr
ea
lnumbe
r
sa anda
d
i
s
t
i
nc
t)x,y,z ∈ X ,a
l
lpo
s
i
t
i
ver
ea
l
hef
o
l
l
owi
ngi
nequa
l
i
t
numbe
r
sd,wehavet
y:
max{
a -d)|,|y -a|,|z - (
a +d)|}>td.
|x - (
Suppo
s
eont
hecon
t
r
a
r
ha
tt
he
r
eex
i
s
ta ∈ R,d ∈ R+ and
yt
xi ,xj ,xk ,s
ucht
ha
t
max{
a -d)|,|xj -a|,|xk - (
a +d)|}≤td.
|xi - (
Henc
e,
d ≤ xi - (
a -d)≤td,
ìï -t
ï
d ≤ xj -a ≤td,
í -t
ïï
î -t
d ≤ xk - (
a +d)≤td,
i.
e.,
1 -t)
d ≤ a ≤ xi + (
1 +t)
d,
ìïxi + (
ï
d ≤ a ≤ xj +td,
íxj -t
ïï
îxk - (
1 +t)
d ≤ a ≤ xk - (
1 -t)
d,
wh
i
chimp
l
i
e
st
ha
t
1 +t)
d ≤ a ≤ xi + (
1 +t)
d,
ìïxk - (
ï
1 -t)
d ≤ a ≤ xj +td,
íxi + (
ïï
îxj -t
d ≤ a ≤ xk - (
d,
1 -t)
no
t
et
ha
t0 <t <
1
.I
tf
o
l
l
owst
ha
t
2
(* )
Ch
i
naMa
t
hema
t
i
c
a
lOl
i
ad
ymp
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
xk -xi ,
ìï
d ≥ (
2 1 +t)
ï
ï
ï
xj -xi
,
íd ≤
1 -2
t
ï
ï
ïïd ≤ xk xj .
î
1 -2
t
91
①
②
③
By ② ,③ andd > 0,wege
txi < xj < xk ,henc
ei >j >
i+1
k+1
i
j
k,λ +λ ≤λ +λ ,wege
t
xj -xi λj -λi
=
≤λ.
xk -xi λk -λi
④
xj -xi
xk -xi ,
≥
By ① and ② ,wege
t
hence
1 -2
t
2(
1 +t)
xj -xi
1 -2
t
≥
>λ,
xk -xi 2(
1 +t)
wh
i
chcon
t
r
ad
i
c
t
s④ ! Thu
sourea
r
l
i
e
rc
l
a
imabou
tXi
sproved.
Se
cond
l
y,fort ≥
1,
wes
howt
ha
tf
oranyi
nf
i
n
i
t
es
e
tX ,
2
f
oranyx < y <zi
nX ,wecanchoo
s
ea ∈ Randd ∈ R+ s
uch
t
ha
t
max{
a -d)|,|y -a|,|z - (
a +d)|}≤td.
|x - (
Inf
ac
t,l
e
td =
z -x ,
henc
ex + (
1 -t)
d =z - (
1 +t)
d.
2
1
Le
ta = max{
x +(
1 -t)
d,y -td}.S
i
ncet ≥ ,weob
t
a
i
n
2
1 +2
t)
d,
y -x < 2d ≤ (
2
x -y < 0 ≤ (
t -1)
d,
{
i.
e.,
1 +t)
d,
y -td ≤ x + (
x +(
1 -t)
d ≤ y +td,
{
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
92
henc
e
1 -t)
d ≤a ≤ x + (
1 +t)
d,
ìïx + (
ï
d ≤ a ≤ y +td,
íy -t
ïï
îz - (
1 +t)
1 -t)
d ≤ a ≤z - (
d,
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
f
r
om wh
i
chweconc
l
udet
ha
t
max{
a -d)|,|y -a|,|z - (
a +d)|}≤td.
|x - (
Soeve
r
yt ≥
ob
l
em.
pr
1
doe
sno
ts
a
t
i
s
f
her
equ
i
r
emen
toft
he
yt
2
1ö
æ
s ç0, ÷ .
Inconc
l
u
s
i
on,t
hes
e
to
fa
l
lr
equ
i
r
edti
2ø
è
S
e
c
ondDay8:
00 12:
30
Janua
r
y13,2013
4
Gi
venani
n
t
ege
rn ≥ 2,s
uppo
s
eA1 ,A2 ,...,An a
r
en
nonemp
t
i
n
i
t
es
e
t
ss
a
t
i
s
f
i
ng|AiΔAj|=|i -j|fora
l
l
yf
y
i,j ∈ {
1,2,...,n}.
F
i
ndt
hemi
n
imum va
l
ueo
f|A1 |+|A2 |+ … +|An |.
(He
t
e
st
henumbe
rofe
l
emen
t
sofaf
i
n
i
t
es
e
t
r
e|X |deno
X andXΔY = {
a|a ∈ X ,a ∉Y}∪ {
a|a ∈Y ,a ∉ X }
f
oranys
e
t
sX andY .)
So
l
u
t
i
on For each pos
i
t
i
ve i
n
t
ege
r k, we prove t
ha
tt
he
sk2 + 2;t
s
mi
n
imumva
l
ueo
fS2k i
he mi
n
imum va
l
ueofS2k+1 i
k(
k +1)+2.
F
i
r
s
t
l
f
i
net
hes
e
t
sA1 ,A2 ,...,A2k ,A2k+1a
sf
o
l
l
ows:
y,de
Ai = {
i,
i +1,...,k},
i = 1,2,...,k;Ak+1 = {
k,k +1};
Ak+j = {
k +1,k +2,...,k +j -1},j = 2,3,...,k +1.
Ch
i
naMa
t
hema
t
i
c
a
lOl
i
ad
ymp
93
Fort
h
i
sf
ami
l
fs
e
t
s,i
ti
sea
s
ove
r
i
f
ha
t|AiΔAj|=
yo
yt
yt
l
d
si
nt
hef
o
l
l
owi
ngca
s
e
s:
j -i =|i -j|ho
(
1)1 ≤i <j ≤k;
(
2)1 ≤i <j =k +1;
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
(
3)1 ≤i <k +1 <j ≤ 2
k +1;
(
4)k +1 =i <j ≤ 2
k +1;
(
5)k +2 ≤i <j ≤ 2
k +1.
i =ji
st
r
i
v
i
a
l,andt
hec
a
s
eo
f
i >jc
an
Mor
eove
r,t
hec
a
s
eo
f
b
er
edu
c
edt
ot
hec
a
s
eo
fi < j.Thu
s,f
o
ra
l
li,j ∈ {
1,2,...,
2
k +1},wehaveve
r
i
f
i
edt
ha
t
|AiΔAj |=j -i =|i -j|.
Fort
heabove(
2
k +1)s
e
t
s,wecanea
s
i
l
l
cu
l
a
t
et
ha
t
yca
S2k+1 =
k(
k +1)
k(
k +1)
+2 +
=k(
k +1)+2;
2
2
i
fwechoo
s
et
hef
i
r
s
t2
ks
e
t
s,wege
tt
ha
t
S2k = S2k+1 -k =k2 +2.
Se
cond
l
ha
tS2k ≥k2 +2andS2k+1 ≥k(
k +1)+
y,weshowt
2.No
t
et
hef
o
l
l
owi
ngf
ac
t
s:
Fa
c
t1.Foranytwof
i
n
i
t
es
e
t
sX ,Y ,wehave|X |+|Y |
≥|XΔ
Y |.
i
f|XΔY |
Fa
c
t2.Foranytwonon
emp
t
i
n
i
t
es
e
t
sX ,Y ,
yf
= 1,
t
hen|X |+|Y |≥ 3.
Whenn = 2
k,
i
tf
o
l
l
owsf
r
om Fac
t1t
ha
t
k +1 -2
i,
i
|Ai |+|A2k+1-i | ≥|AiΔA2k+1-i |= 2
= 1,2,.
..,k -1.
By|AkΔAk+1|= 1andFa
c
t2,weha
v
e|Ak |+|Ak+1|≥ 3.So
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
94
k-1
S2k =|Ak |+|Ak+1 |+ ∑ (
|Ai |+|A2k+1-i |)
i=1
≥3+
k-1
∑ (2k +1 -2i)=k
2
i=1
+2.
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
tt
ha
t
S
imi
l
a
r
l
k +1,wege
y,whenn = 2
k +2 -2
i,
i
|Ai |+|A2k+2-i | ≥|AiΔA2k+2-i |= 2
= 1,2,.
..,k -1.
S
i
nce|AkΔAk+1 |= 1,wehave
(
|Ak |+|Ak+1 |)+|Ak+2 |≥ 3 +1 = 4,
s
o
k-1
S2k+1 =|Ak |+|Ak+1 |+|Ak+2 |+ ∑ (
|Ai |+|A2k+2-i |)
i=1
≥4+
k-1
k +1)+2.
∑ (2k +2 -2i)=k(
i=1
Inconc
l
u
s
i
on,t
hemi
n
imumva
l
ueofS2k i
sk2 +2,andt
he
mi
n
imumva
l
ueofS2k+1i
sk(
k +1)+2.Equ
i
va
l
en
t
l
y,foranyn
≥ 2,
t
hemi
n
imumva
l
ueo
fSni
s
5
2
[n4 ] +2.
Foreachpo
s
i
t
i
vei
n
t
ege
rnandeachi
n
t
ege
ri(
0 ≤i ≤n),
l
e
tCin ≡ c(
n,i) (
mod2),whe
r
ec(
n,i) ∈ {
0,1},
andde
f
i
ne
n,q)=
f(
n
q.
∑c(n,i)
i
i=0
tapowe
r
Le
tm ,nandqbepo
s
i
t
i
vei
n
t
ege
r
swi
t
hq +1no
o
f2.Suppo
s
et
ha
tf(
m ,q)|f(
n,q).Provet
m,
ha
tf(
r)|f(
n,r)foreve
r
s
i
t
i
vei
n
t
ege
rr.
ypo
So
l
u
t
i
on Foreach pos
i
t
i
vei
n
t
ege
rn,we wr
i
t
en i
nb
i
na
r
y
Ch
i
naMa
t
hema
t
i
c
a
lOl
i
ad
ymp
95
r
epr
e
s
en
t
a
t
i
ona
sn =2a1 +2a2 + … +2ak ,whe
r
e0 ≤a1 <a2 < …
< ak .De
f
i
neas
e
tT (
n)= {
2a1 ,...,2ak },T (
0)
i
scons
i
de
r
ed
anemp
t
e
t.
ys
ByLuca
s
􀆳Theor
em,Ci
soddi
fandon
l
fT (
i)⊆ T (
n),
ni
yi
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
henc
e
n,q)=
f(
∑q
A)
σ(
A ⊆T (
n)
=
∏
(
1 +qa ),
a∈T (
n)
whe
r
eσ(
t
e
st
hes
umofa
l
le
l
emen
t
sofA .
A )deno
Form ,nandqa
sg
i
venbya
s
s
ump
t
i
on,weshowt
ha
ti
f
m ,q)=
f(
∏
(
1 +qa )
a∈T (
m)
∏
(
1 +qa )= f(
n,q),
a∈T (
n)
t
henT (
m )⊆ T (
n),andcons
equen
t
l
m ,r)|f(
n,r)for
y,f(
eve
r
yr.
Foranyi
n
t
ege
r
si,j,0 ≤ i < j,wehavet
hefo
l
l
owi
ng
f
ac
t
or
i
za
t
i
on:
2
2
q -1 = (
q
j-1
j
t
he
r
e
f
or
e,
…(
+1)
q
i
2
(
+1)
q
i
2
,
-1)
2
2
2
(
q +1,q +1)= (
q +1,2)|2.
j
i
i
k)bet
Le
ts(
hel
a
r
s
toddd
i
v
i
s
oro
fapo
s
i
t
i
vei
n
t
ege
rk,
ge
2
2
r
ecopr
ime.Cl
ea
r
l
fi
t
hens(
q +1)ands(
q +1)a
q > 1.I
y,
i
> 0,
q
i
2
j
+1 ≡1o
r2(
mod4),andq
i
2
+1 >2,
t
hu
ss(
q
i
2
+1)>
1.I
fi = 0,
s
i
nc
eq +1i
sno
tapowe
rof2,wehaves(
q +1)>
a
b
m ),s(
i
nce
1.Foranya ∈ T (
q + 1)| ∏b∈T(n)s(
q + 1).S
s(
1 +qa )> 1,wehavea ∈ T (
n),henceT (
m )⊆ T (
n),wh
i
ch
comp
l
e
t
e
st
hepr
oof.
6
Gi
venpo
s
i
t
i
vei
n
t
ege
r
sm andn,f
i
ndt
hesma
l
l
e
s
ti
n
t
ege
r
N (≥ m )wi
l
emen
ts
e
t
t
ht
hef
o
l
l
owi
ngpr
ope
r
t
fanN-e
y:i
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
96
o
fi
n
t
ege
r
scon
t
a
i
n
sacomp
l
e
t
er
e
s
i
dues
s
t
em modu
l
om ,
y
t
heni
tha
sanon
emp
t
ub
s
e
ts
ucht
ha
tt
hes
um o
fi
t
s
ys
e
l
emen
t
si
sd
i
v
i
s
i
b
l
ebyn.
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
So
l
u
t
i
onTheansweri
s
N = max m ,m +n -
{
1 [( , ) ]
m m n +1 .
2
}
F
i
r
s
t,wes
howt
ha
tN ≥ ma
x m,m +n -
{
1 [
m (
m,n)+1] .
2
}
Le
td = (
m ,n),andwr
I
fn >
i
t
em =dm 1 ,n =dn1 .
1 (
m d+
2
1),t
he
r
e ex
i
s
t
s a comp
l
e
t
er
e
s
i
due s
s
t
em modu
l
o m ,x1 ,
y
x2 ,...,xm ,
s
ucht
ha
tt
he
i
rr
e
s
i
duemodu
l
oncons
i
s
t
sexac
t
l
yof
r
oup
so
f1,2, ...,d.Forexamp
m1 g
l
e,t
hefo
l
l
owi
ng m
numbe
r
shavet
her
equ
i
r
edprope
r
t
y:
i +dn1j,
i = 1,2,...,d,j = 1,2,...,m 1 .
F
i
nd
i
ngano
t
he
rs
e
to
fk = n -
1 (
m d + 1)- 1numbe
r
sy1 ,
2
ha
ta
r
econg
r
uen
tt
o1modu
l
on,
t
hes
e
t
y2 ,...,yk t
A ={
x1 ,x2 ,...,xm ,y1 ,...,yk }
r,noneof
con
t
a
i
n
sacomp
l
e
t
er
e
s
i
dues
s
t
em modu
l
om ,howeve
y
i
t
snon
emp
t
ub
s
e
t
sha
si
t
ss
um o
fe
l
emen
t
sd
i
v
i
s
i
b
l
ebyn.In
ys
f
ac
t,t
hes
umo
ft
he (
sma
l
l
e
s
tnon
-nega
t
i
ve)r
e
s
i
duemodu
l
onof
a
l
le
l
emen
t
sofA i
sg
r
ea
t
e
rt
hanz
e
r
oandl
e
s
st
hanorequa
lt
o
m 1(
1 +2 + … +d)+k = n -1.Thu
s,
N ≥ m +n -
i.
e.,
1 (
m d +1),
2
N ≥ max m ,m +n -
{
1 [( , ) ]
m m n +1 .
2
}
Ch
i
naMa
t
hema
t
i
c
a
lOl
i
ad
ymp
97
1 (, ) ]
m n +1
Ne
x
t,wes
howt
ha
tN = ma
x m,m +n - m[
2
{
}
ha
st
her
equ
i
r
edpr
ope
r
t
y.
Thef
o
l
l
owi
ng key f
ac
ti
sf
r
equen
t
l
s
edi
nt
he pr
oof:
yu
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
amonganyki
n
t
ege
r
s,onecanf
i
nda (
non
emp
t
ub
s
e
twho
s
e
y)s
ta1 ,a2 ,...,ak bei
n
t
ege
r
s,Si =a1 +
s
umi
sd
i
v
i
s
i
b
l
ebyk.Le
a2 + … +ai .
I
fs
omeSii
sd
i
v
i
s
i
b
l
ebyk,
t
hent
her
e
s
u
l
ti
st
r
ue.
Ot
he
rwi
s
e,t
he
r
eex
i
s
t1 ≤i <j ≤k,
s
ucht
ha
tSi ≡Sj (
modk),
t
henSj -Si =ai+1 + … +aji
sd
i
v
i
s
i
b
l
ebyk,
t
her
e
s
u
l
ti
saga
i
n
t
r
ue.Thef
o
l
l
owi
ngf
ac
ti
sanea
s
l
l
a
r
he pr
ev
i
ou
s
y coro
y oft
r
e
s
u
l
t:amonganyki
n
t
ege
r
s,eacho
fwh
i
chi
samu
l
t
i
l
eofa,
p
onecanf
i
nda (
non
emp
t
ub
s
e
twho
s
es
umi
sd
i
v
i
s
i
b
l
ebyka.
y)s
Re
t
u
rn
i
ngt
ot
heprob
l
em,wesha
l
ld
i
s
cu
s
stwoca
s
e
s.
1
Ca
s
e1:
n ≤ m(
d +1),andN = m .
2
-s
e
ti
ft
hes
um ofa
l
li
t
s
Weca
l
laf
i
n
i
t
es
e
to
fi
n
t
ege
r
sak
e
l
emen
t
si
sd
i
v
i
s
i
b
l
ebyk.Le
tx1 ,x2 ,...,xm beacomp
l
e
t
e
r
e
s
i
dues
s
t
em modu
l
om .Cl
ea
r
l
i
v
i
det
he
s
enumbe
r
s
y,wecand
y
i
n
t
om 1 g
r
oup
s,each g
r
oup con
s
i
s
t
i
ng ofacomp
l
e
t
er
e
s
i
due
ty1 ,y2 , ...,yd beacomp
l
e
t
er
e
s
i
due
s
s
t
em modu
l
od.Le
y
s
s
t
em modu
l
od,andyi ≡i (
modd).I
fdi
sodd,wec
and
i
v
i
de
y
d +1
e
a
chg
r
oupi
n
t
o
d
-s
e
t,
f
o
re
x
amp
l
e,{
y1,yd-1},...,{
yd2-1 ,
2
1
1
t m 1(
d +1)d
-s
e
t
s.S
i
ncen1 ≤ m 1(
d+
yd2+1 },{
yd }.Wege
2
2
-s
e
t
ss
ucht
ha
tt
hes
um of
1),wecanchoo
s
es
omeoft
he
s
ed
t
he
i
re
l
emen
t
si
sd
i
v
i
s
i
b
l
ebyn1d(=n).
seven,s
imi
l
a
r
l
I
fdi
y,
acomp
l
e
t
er
e
s
i
dues
s
t
em modu
l
o d can be d
i
v
i
dedi
n
t
o
y
d
2
d
-s
e
t
s,wi
t
hyd2 r
ema
i
n
i
ng.Twor
ema
i
n
i
ng numbe
r
sc
anf
o
rm
1
-s
e
t.
I
nt
heend,wed
i
v
i
d
ex1,x2,...,xmi
n
t
o m1d +
ano
t
he
rd
2
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
98
[m2 ] d-sets(possiblywithanumberleftifm isodd).
1
1
S
i
nc
en1 ≤
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
m 1d +
m1 ,
1
1
1
wehaven1 ≤
m 1(
d +1)= m 1d +
2
2
2
2
[m2 ] ,againwecanfindsomeofthesed-setssuchthat
1
t
hes
umo
fa
l
lt
he
i
re
l
emen
t
si
sd
i
v
i
s
i
b
l
ebyn1d = n.
1
1
Ca
s
e2:
n > m(
d +1),N = m +n - m (
d +1).
2
2
Le
tA beanN-e
l
emen
ts
e
t,con
t
a
i
n
i
ngacomp
l
e
t
er
e
s
i
due
t
hs
omeo
t
he
rn s
s
t
em modu
l
om ,x1 ,x2 ,...,xm ,wi
y
1
m
2
(
d +1)numbe
sodd,a
ss
howni
n ca
s
e1,we may
r
s.I
fd i
d
i
v
i
dex1 ,x2 , ...,xm i
n
t
o
r
ema
i
n
i
ngn -
1
m 1(
d + 1)d
-s
e
t
s.Di
v
i
det
he
2
1 (
1
m d +1)numbe
r
sa
rb
i
t
r
a
r
i
l
n
t
on1 - m 1
yi
2
2
(
d +1)g
roup
s,eachwi
t
hd numbe
r
s.Amongeachg
roupo
fd
numbe
r
s,one may f
i
ndad
-s
e
t,t
he
r
e
for
e,we haveano
t
he
r
n1 -
1
m 1(
d +1)d
-s
e
t
s,andt
o
t
a
l
l
-s
e
t
s.I
fdi
seven,a
s
yn1 d
2
d
i
s
cu
s
s
edi
nca
s
e1,we mayd
i
v
i
dex1 ,x2 ,...,xm i
n
t
o
d+
1
m1
2
[m2 ]d-sets.Ifm isodd,weareleftwithanumberx with
1
d|xi -
1
i
d
1
.Di
v
i
det
heo
t
he
rn - m (
d +1)numbe
r
sa
rb
i
t
r
a
r
i
l
y
2
2
d
i
n
t
o2
n1 -m 1(
d +1)g
r
oup
s,eachwi
t
h numbe
r
s.Fromeach
2
r
oup,wecanf
i
nda
g
d - ;
d
e
t
s.wecan
s
e
t f
r
om anytwo -s
2
2
f
i
ndad
-s
e
t.I
fm 1 i
seven,t
hen wecanf
i
nd ano
t
he
rn1 -
1
sodd,{
i
sa
m 1(
d +1)d
-s
e
t
s,andt
o
t
a
l
l
-s
e
t
s.
I
fm 1i
xi}
yn1d
2
Ch
i
naMa
t
hema
t
i
c
a
lOl
i
ad
ymp
99
d
d
-s
e
t,wehave2
n1 - m 1(
d + 1)+ 1 -s
e
t
s,anda
l
s
on1 2
2
1
1
m 1(
d +1)+ d
-s
e
t
s.Aga
i
n,wecanf
i
ndn1d
-s
e
t
s.Fi
na
l
l
y,
2
2
wecanchoo
s
es
omeoft
he
s
en1 d
-s
e
t
s,s
ucht
ha
tt
hes
um ofa
l
l
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
t
he
i
re
l
emen
t
si
sd
i
v
i
s
i
b
l
ebyn1d(= n).
2013
(
Na
n
i
n
i
a
n
s
u)
j
g,J
g
F
i
r
s
tDay
30,Decembe
r21,2013
8:
00 12:
1 Inanacu
t
et
r
i
ang
l
eABC ,AB >
AC ,t
he b
i
s
e
c
t
or ofang
l
e BAC
ands
i
deBCi
n
t
e
r
s
e
c
ta
tpo
i
n
tD ,
two po
i
n
t
sE and F a
r
ei
ns
i
de
s
AB and AC ,r
e
s
t
i
ve
l
uch
pec
y,s
t
ha
tB ,C ,F ,E a
r
econcyc
l
i
c.
Prove t
ha
tt
he c
i
r
cumcen
t
e
ro
f
t
r
i
ang
l
e DEF co
i
nc
i
de
s wi
t
ht
he
f
i
nne
r
c
en
t
e
ro
ft
r
i
ang
l
e ABC i
F
i
.1
.1
g
andon
l
fBE +CF = BC .
yi
So
l
u
t
i
on.Le
tIbet
hei
nne
r
c
en
t
e
rof△ABC .
(
Suf
i
c
i
enc
s
eBC = BE +CF .Le
tK bet
hepo
i
n
t
f
y)Suppo
onBC s
ucht
ha
tBK = BE ,t
hu
sCK = CF .S
i
nceBI b
i
s
ec
t
s
∠ABC ,CI b
i
s
e
c
t
s ∠ACB , △BIK and △BIE a
r
er
e
f
l
e
c
t
i
on
wi
t
hr
e
s
c
tt
o BI, △CIK and △CIF a
r
er
e
f
l
ec
t
i
on wi
t
h
pe
r
e
s
c
tt
oCI,wehave ∠BEI = ∠BKI = π - ∠CKI = π pe
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
100
∠CFI = ∠AFI.Th
e
r
e
f
or
e,A ,E ,I,
Fa
r
econcyc
l
i
c.
S
i
nceB ,E ,F ,C a
r
e
concyc
l
i
c,wehave ∠AIE = ∠AFE =
∠ABC ,a
nd hence B ,E ,I,D a
r
e
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
concyc
l
i
c.
S
i
nc
et
he b
i
s
e
c
t
oro
f ∠EAF and
t
hec
i
r
cumc
i
r
c
l
eo
f △AEF mee
ta
tI,
IE =IF .S
i
nc
et
heb
i
s
e
c
t
oro
f ∠EBD
and t
he c
i
r
cumc
i
r
c
l
e of △BED a
l
s
o
F
i
.1
.2
g
mee
ta
tI,IE =ID .So,
ID = IE = IF ,t
ha
ti
s,Ii
sa
l
s
ot
he
c
i
r
cumc
en
t
e
ro
f△DEF .
Q.
E.
D.
(
Ne
c
e
s
s
i
t
st
hec
i
r
c
umc
en
t
e
ro
f△DEF.S
i
nc
eB,
s
eIi
y)Suppo
E,F,Ca
r
ec
on
c
c
l
i
c,AE·AB = AF·AC,AB > AC,weha
v
e
y
AE < AF.The
r
e
f
o
r
e,t
heb
i
s
e
c
t
o
ro
f ∠EAFandt
hepe
r
i
c
u
l
a
r
pend
b
i
s
e
c
t
o
ro
fEF me
e
ta
tI,wh
i
chl
i
e
sont
hec
i
r
c
umc
i
r
c
l
eo
f△AEF.
S
i
nceBIb
i
s
e
c
t
s ∠ABC ,
l
e
tK bet
hes
t
r
i
cpo
i
n
tofE
ymme
wi
t
hr
e
s
c
tt
oBI,
t
henwehave ∠BKI = ∠BEI = ∠AFI >
pe
∠ACI = ∠BCI.Th
e
r
e
f
or
e,K l
i
e
sonBC , ∠IKC = ∠IFC ,
∠ICK = ∠ICF ,
and△IKC ≌ △IFC .
Henc
eBC = BK +CK = BE +CF .
2 Foranyi
n
t
ege
rn wi
t
hn > 1,
l
e
t
D(
n)= {
a -b|a,ba
r
epo
s
i
t
i
vei
n
t
ege
r
swi
t
hn
=a
banda >b}.
Provet
ha
tf
oranyi
n
t
ege
rk wi
he
r
eex
i
s
tk
t
hk > 1,t
i
rwi
s
ed
i
s
t
i
nc
ti
n
t
ege
r
sn1 ,n2 ,...,nk wi
t
hni >1(
1≤
pa
i ≤k),s
n1)∩ D (
n2)∩ … ∩ D (
nk )ha
ucht
ha
tD (
sa
t
l
ea
s
ttwoe
l
emen
t
s.
Ch
i
naMa
t
hema
t
i
c
a
lOl
i
ad
ymp
Proo
f.Le
ta1 ,a2 ,...,ak+1 bek
101
+ 1d
i
s
t
i
nc
tpo
s
i
t
i
veodd
s,
whe
r
e each o
ft
hem i
ssma
l
l
e
rt
hant
he pr
oduc
tofo
t
he
rk
numbe
r
s.Wr
i
t
eN =a1a2 …ak+1 .Foreachi =1,2,...,k +1,
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
l
e
txi =
æN
ö
1 æç N + ö÷ ,
ai yi = 1 ç -ai ÷ ,t
henxi2 - yi2 = N .
ø
ø
2 èai
2 èai
N
>ai ,(
S
i
nc
eaiaj < N and
xi ,yi)(
1 ≤i ≤k +1)a
r
ek +1
ai
s
i
t
i
vei
n
t
ege
rs
o
l
u
t
i
on
so
fequa
t
i
onx2 -y2 = N .Wi
t
hou
tl
o
s
s
po
,
{
,
,
,
}
ofgene
r
a
l
i
t
uppo
s
exk+1 = mi
n x1 x2 ... xk+1 .Foreach
ys
2
2
i∈{
1,2,...,k},
s
i
nc
exi2 -yi2 = xk
wehave
+1 -yk+1 ,
2
2
2
(
xi +xk+1)(
xi -xk+1)= xi2 -xk
+1 = yi -yk+1
=(
yi +yk+1)(
yi -yk+1).
Le
tni = (
xi +xk+1)(
xi -xk+1)= (
t
hen
yi +yk+1)(
yi -yk+1),
xi +xk+1)- (
xi -xk+1)∈ D (
ni),
2xk+1 = (
2yk+1 = (
ni).
yi +yk+1)- (
yi -yk+1)∈ D (
Soxk+1 > yk+1 ,2xk+1 and2yk+1 a
r
etwod
i
f
f
e
r
en
tmembe
r
sof
D(
n1)∩ D (
n2)∩ … ∩ D (
nk ).
3 Le
tN* bet
hes
e
to
fa
l
lpo
s
i
t
i
vei
n
t
ege
r
s.Pr
ovet
ha
tt
he
r
e
ex
i
s
t
saun
i
unc
t
i
onf:N* → N* s
a
t
i
s
f
i
ngf(
1) =
quef
y
2)= 1and
f(
n)= f(
n -1))+f(
n -f(
n -1)),n = 3,4,....
f(
f(
Fors
uchf,f
i
ndt
heva
l
ueoff(
2m )fori
n
t
ege
rm ≥ 2.
1
So
l
u
t
i
on.S
i
nc
ef(
1)= 1,wehave
2
≤ f(
1)≤ 1.
Weshowbyi
nduc
t
i
ont
ha
tf
oranyi
n
t
ege
rn > 1,f(
n)i
s
un
i
l
t
e
rmi
nedbyt
heva
l
ueo
ff(
1),f(
2),...,f(
nque
yde
n
≤ f(
1),and
n)≤ n.
2
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
102
Forn = 2,f(
2)= 1,
t
hec
l
a
imi
st
r
ue.
n ≥3),f(
k)
As
s
umet
ha
tf
oranyk,1 ≤k <n(
i
sun
i
l
que
y
k
n -1
≤ f(
≤ f(
k)≤k,
n -1)≤
de
t
e
rmi
ned,and
t
hen1 ≤
2
2
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
n - 1,and1 ≤ n - f(
n - 1) ≤ n - 1,hencebyi
nduc
t
i
on
hypo
t
he
s
i
s,t
heva
l
ueo
ff(
n - 1))andf(
n - f(
n - 1))i
s
f(
n),byde
f
i
n
i
t
i
on,i
s
de
t
e
rmi
ned,andt
heva
l
ueo
ff(
n)= f(
n -1))+f(
n -f(
n -1)),
f(
f(
wh
i
chi
sun
i
l
t
e
rmi
ned.Fu
r
t
he
rmor
e,wehave
que
yde
①
1 (
n -1))≤ f(
n -1),
f n -1)≤ f(
f(
2
1(
n -f(
n -1))≤ f(
n -f(
n -1))≤ n -f(
n -1).
2
n
n)≤ f(
n -1)+ (
n -f(
n -1))=
Equa
l
i
t
l
i
e
s ≤ f(
y ①imp
2
n.Thec
l
a
imi
sa
l
s
ot
r
uef
orn.Byi
nduc
t
i
on,weprovedt
ha
t
t
he
r
eex
i
s
t
s a un
i
unc
t
i
on f: N* → N* s
a
t
i
s
f
i
ng t
he
que f
y
n
≤ f(
r
equ
i
r
edprope
r
t
i
e
s,and
n)≤ n.
2
Nex
t,wes
howbyi
nduc
t
i
ont
ha
tforanypo
s
i
t
i
vei
n
t
ege
rn,
wehave
n +1)-f(
n)∈ {
0,1}.
f(
Whenn = 1,②i
st
r
ue.
②
As
s
umet
ha
t②i
st
r
uef
orn ≤k.By ① ,wehave
k +2)-f(
k +1)
f(
=(
k +1))+f(
k +2 -f(
k +1)))- (
k))+
f(
f(
f(
f(
k +1 -f(
k)))
f(
=(
k +1))-f(
k)))+ (
k +2 -f(
k +1))f(
f(
f(
f(
k +1 -f(
k))).
f(
③
Ch
i
naMa
t
hema
t
i
c
a
lOl
i
ad
ymp
103
Byi
nduc
t
i
onhypo
t
he
s
i
s,f(
k +1)-f(
k)∈ {
0,1}.
k +1)= f(
k)+1,s
k)≤ k,i
I
ff(
i
nc
e1 ≤ f(
tf
o
l
l
ows,
f
r
om ③ andi
nduc
t
i
onhypo
t
he
s
i
s,t
ha
t
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
0,1}.
k +2)-f(
k +1)= f(
k)+1)-f(
k))∈ {
f(
f(
f(
k +1)=f(
k),
k)≤k,
I
ff(
s
i
nce1 ≤k +1 -f(
i
tf
o
l
l
ows
f
r
om ③ andt
hei
nduc
t
i
onhypo
t
he
s
i
st
ha
t
k +2)-f(
k +1)= f(
k +2 -f(
k))f(
k +1 -f(
k))∈ {
0,1}.
f(
Thu
s,②i
st
r
uef
orn =k +1.Byi
nduc
t
i
on,② i
st
r
uefor
anypo
s
i
t
i
vei
n
t
ege
rn.
Fi
na
l
l
nduc
t
i
ont
ha
tf
oranypo
s
i
t
i
vei
n
t
ege
r
y,weshowbyi
m ,wehavef(
2m )= 2m-1 .
Form = 1,
t
her
e
s
u
l
ti
sc
l
ea
r.
e.,f(
2k ) =
As
s
umet
ha
tt
her
e
s
u
l
ti
st
r
uef
orm = k,i.
2k-1 ,con
s
i
de
rt
heca
s
ef
orm =k +1.
2k+1)≠ 2k ,
s
i
ncef(
2k+1)≥
As
s
umeont
hecon
t
r
a
r
ha
tf(
yt
2k ,andf(
i
sani
n
t
ege
r,wehavef(
i
nce
2k+1)
2k+1)≥ 2k +1.S
1)=1,by ② ,l
e
tn bet
hesma
l
l
e
s
ti
n
t
ege
rs
ucht
ha
tf(
n)=
f(
2k +1,wehaven ≤2k+1 ,byt
hemi
n
ima
l
i
t
fn,f(
n -1)=2k .
yo
No
t
i
c
et
ha
tn -2k ≤ 2k ,wehave
2k +1 = f(
n)= f(
n -1))+f(
n -f(
n -1))
f(
= f(
2k )+f(
n -2k )≤ 2f(
2k )= 2k ,
wh
i
chi
sacon
t
r
ad
i
c
t
i
on.I
tf
o
l
l
owst
ha
tf(
2k+1)=2k ,
t
her
e
s
u
l
t
i
sa
l
s
ot
r
ueform =k +1.Byi
nduc
t
i
on,f(
2m )= 2m-1 forany
s
i
t
i
vei
n
t
ege
rm .
po
104
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
S
e
c
ondDay
8:
00 12:
30Decembe
r22,2013
αt
1
4 Foranyi
e
tn = pα
n
t
ege
rn wi
t
hn > 1,l
ei
t
s
1 …pt b
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
s
t
anda
rdf
ac
t
or
i
za
t
i
on,wr
i
t
e
ω(
n)=t,Ω(
n)=α1 + … +αt .
Pr
ove or d
i
s
ove t
he fo
l
l
owi
ng s
t
a
t
emen
t: Gi
ven any
pr
s
i
t
i
vei
n
t
ege
rk andanypo
s
i
t
i
ver
ea
lnumbe
r
sα andβ,
po
t
he
r
eex
i
s
t
sapo
s
i
t
i
vei
n
t
ege
rn wi
t
hn > 1s
ucht
ha
t
ω(
n +k)
Ω(
n +k)
>αa
<β.
nd
ω(
n)
n)
Ω(
So
l
u
t
i
on.Theansweri
sYES.
Fromt
hede
f
i
n
i
t
i
onofωandΩ,wehave
ω(
ab)≤ ω(
a)+ω(
b),
Ω(
ab)= Ω(
a)+ Ω(
b),
①
②
f
oranypo
s
i
t
i
vei
n
t
ege
r
sa,b.Gi
venaf
i
xedpo
s
i
t
i
vei
n
t
ege
rk
andpo
s
i
t
i
ver
ea
lnumbe
r
sα,β,wet
akeapo
s
i
t
i
vei
n
t
ege
rm >
(
ω(
k)+1)
α.Ast
he
r
ea
r
ei
nf
i
n
i
t
e
l
imenumbe
r
s,we
y manypr
Ω(
k)+1
+l
ogp2
cant
akeas
u
f
f
i
c
i
en
t
l
a
r
imeps
ucht
ha
t
yl
gepr
m
p
<β,a
ndt
akem pa
i
rwi
s
ed
i
s
t
i
nc
tpr
imenumbe
r
sq1 ,q2 ,...,
ha
ta
r
ea
l
lg
r
ea
t
e
rt
hanp.Wewi
l
lshowt
ha
tn = 2q1q2
qm t
…q
m
k
ha
st
hede
s
i
r
edprope
r
t
y.
…
ω(
n +k)
n +k
>α.Le
=2q1q2 qm +
F
i
r
s
t,weprove
tn1 =
ω(
n)
k
r
ea
l
loddpr
imenumbe
r
s,2qi +1|n1
1.Asq1 ,q2 ,...,qm a
when1 ≤i ≤ m ,
t
hendi =
2qi +1
i
sani
n
t
ege
rg
r
ea
t
e
rt
han1.
3
Ch
i
naMa
t
hema
t
i
c
a
lOl
i
ad
ymp
105
No
t
et
ha
t
(, )
(
l
lpo
s
i
t
i
vei
n
t
ege
r
sr,s,③
2r -1,2s -1)= 2r s -1fora
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
and (
i ≠j),wehave
qi ,qj )= 1(
1 qi
1 2qi
(
di ,dj )= (
2 +1,2qj +1)≤ (
2 -1,22qj -1)
3
3
=
22qi
(
,2
qj )
3
-1
=
22 -1
= 1.
3
d1 ,d2 , ...,dm a
r
et
he pa
i
rwi
s
ecopr
imef
ac
t
or
sofn1 ,and
eachoft
hemi
sg
r
ea
t
e
rt
han1.Henc
e,ω(
n1) ≥ m .From ①
andt
hecho
i
ceofm ,wehave
n1)
ω(
n1)
ω(
n +k) ω(
m
≥
≥
≥
>α.
(
)
(
)
(
ωn
ωn
ω k)+1 ω(
k)+1
Ω(
n +k)
< β.A
Ne
x
t,wep
r
ov
e
sq1q2…qm i
saoddnumbe
r
Ω(
n)
…
andc
anno
tbed
i
v
i
d
edby3,weha
v
en1 =2q1q2 qm +1 ≡±3(
mo
d9),
n1
t
ha
ti
s,
3‖n1.S
uppo
s
eqi
sap
r
imef
a
c
t
o
ro
f andq ≤ p,
t
he
n
3
22q1q2
…q
m
…
-1 = (
2q1q2 qm -1)·n1 ≡ 0(
modq).
Fr
omt
heFe
rma
t
􀆳
sLi
t
t
l
eTheor
em,2q-1 ≡ 1(
modq).From ③ ,
(
…
, -1)
2
q|2 q1q2 qm q -1.From (
q -1,2
q1q2 …qm )= (
q -1,2)≤
2,q -1 <p <qi(
i = 1,2,...,m ),henceq|22 -1,q = 3.
n1
Th
i
scon
t
r
ad
i
c
t
st
ha
t i
sno
tamu
l
t
i
l
eo
f3.The
r
e
for
e,each
p
3
n1
n1
Ω(
n /3)
> p 1 .F
imef
ac
t
oro
f i
sl
a
r
rt
hanp.So
r
om ②
pr
ge
3
3
andt
hecho
i
c
eofpr
ime
sp andq1 ,q2 ,...,qm ,wehave
æn1 ÷ö
æn1 ÷ö
< Ω(
Ω(
n +k)= Ω(
k)+ Ω(
3)+ Ωç
k)+1 +l
ogp ç
è3ø
è3ø
< Ω(
k)+1 +l
n1 -1)
ogp (
= Ω(
k)+1 +q1q2 …qml
ogp2,
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
106
k)+1 +q1q2 …qml
ogp2 Ω(
Ω(
n +k) Ω(
k)+1
<
<
+l
ogp2 <β.
m
…
n)
Ω(
q1q2 qm
p
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
5 Gi
venX = {
1,2,...,100},cons
i
de
rf
unc
t
i
onf:X → X
s
a
t
i
s
f
i
ngbo
t
ht
hefo
l
l
owi
ngcond
i
t
i
ons:
y
(
1)f(
x)≠ xfora
l
lx ∈ X ;
(
2)A ∩ f(
A )≠ ⌀fora
l
lA ⊆ X wi
t
h|A |= 40.
Fi
ndt
hesma
l
l
e
s
tpo
s
i
t
i
vei
n
t
ege
rk,
s
ucht
ha
tforanys
uch
he
r
eex
i
s
t
sas
e
tB ⊆ X s
a
t
i
s
f
i
ng|B|=kand
f
unc
t
i
onft
y
B ∪ f(
B )= X .
Remark.Forasubs
e
tT o
fX ,wede
f
i
nef(
T)= {
x |t
he
r
e
ex
i
s
t
st ∈ T s
ucht
ha
tx = f(
t)}.
So
l
u
t
i
on.Fi
r
s
t,wede
f
i
neaf
unc
t
i
onf:X → X wi
t
h
i -2)= 3
i -1,f(
i -1)= 3
i,f(
i)= 3
i -2,
3
3
3
f(
i = 1,2,...,30,
100)= 99.
f(
j)= 100,91 ≤j ≤ 99,f(
Obv
i
ou
s
l
a
t
i
s
f
i
e
scond
i
t
i
on (
1).ForanyA ⊆ X wi
t
h|A |
y,fs
=4
0,
i
f
(
ucht
ha
t|A ∩
i)t
he
r
eex
i
s
t
sani
n
t
ege
riwi
t
h1 ≤i ≤30s
{
3
i -2,3
i -1,3
i}|≥ 2,
t
henA ∩ f(
A )≠ ⌀ ;or
(
i
i)91,92,...,100 ∈ A ,
t
henA ∩f(
A )≠ ⌀a
l
s
oho
l
d
s.
Inbo
t
hca
s
e
s,fs
a
t
i
s
f
i
e
scond
i
t
i
on (
2).I
fas
ub
s
e
tB o
fX
3
s
a
t
i
s
f
i
e
sf(
B)∪B = X ,
t
henweha
v
e|B ∩ {
i -2,3
i -1,3
i}|
≥ 2f
ora
l
l1 ≤i ≤ 30,{
91,92,...,98}⊂ B ,andB ∩ {
99,
100}≠ ⌀.Hence,|B |≥ 69.
Nex
t,wewi
l
ls
howt
ha
t,f
oranyf
unc
t
i
onfs
a
t
i
s
f
i
ngt
he
y
de
s
c
r
i
bedcond
i
t
i
on
s,t
he
r
eex
i
s
t
sas
ub
s
e
tB ⊆ X wi
t
h|B|≤69
B )∪ B = X .
s
ucht
ha
tf(
Ch
i
naMa
t
hema
t
i
c
a
lOl
i
ad
ymp
107
Amonga
l
lt
hes
ub
s
e
t
sU ⊆ X wi
t
hU ∩ f(
U )= ⌀ ,choo
s
e
smax
ima
l.I
ft
he
r
ea
r
e manyU ⊆ X wi
t
h
ones
ucht
ha
t|U |i
i
ng max
ima
l,choo
s
eones
ucht
ha
t|f(
U)
smax
ima
l.
|U |be
|i
Theex
i
s
t
enc
eo
fU i
sgua
r
an
t
eedby cond
i
t
i
on (
1).Le
tV =
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
U ),W = X\(
U ∪ V ).No
r
e pa
i
rwi
s
e
t
et
ha
tU ,V ,W a
f(
d
i
s
o
i
n
tandX = U ∪ V ∪ W .Fromcond
i
t
i
on (
2),|U |≤ 39,
j
hefo
l
l
owi
nga
s
s
e
r
t
i
on
s:
|V |≤ 39,|W |≥ 22.Wemaket
(
i)f(
w )∈ U ,fora
l
lw ∈ W .Ot
he
rwi
s
e,l
e
tU' = U ∪
{
i
nc
ef(
w },s
U )= V ,f(
w )∉ U ,f(
w )≠ w ,wehaveU' ∩
ti
sacon
t
r
ad
i
c
t
i
ont
o|U |be
i
ng max
ima
l.
U')= ⌀.I
f(
(
w 1) ≠ f(
w 2)fora
i
i)f(
l
lw 1 ,w 2 ∈ W ,w 1 ≠ w 2 .
t
henbycond
i
t
i
on (
1),
Ot
he
rwi
s
e,l
e
tu =f(
w 1)=f(
w 2)
u∈
s
i
nc
ef(
U .Le
tU' = (
U\{
u})∪ {
w 1 ,w 2},
U')⊆V ∪ {
u},U'
∩ (
V ∪ {
u}) = ⌀ ,we have U' ∩ f(
U') = ⌀.I
ti
sa
con
t
r
ad
i
c
t
i
ont
o|U |be
i
ng max
ima
l.
w 1 ,w 2 ,...,w m },ui =f(
wi),1 ≤i ≤ mt
hen
Le
tW = {
by (
i)and (
i
i),u1 ,u2 ,...,um a
r
ed
i
s
t
i
nc
te
l
emen
t
so
fU .
(
i
i
i)f(
ui)≠ f(
uj )fora
l
l1 ≤i <j ≤ m .Ot
he
rwi
s
e,l
e
t
v = f(
ui)= f(
uj )∈V ,U' = (
U\{
ui})∪ {
wi},
U')
t
henf(
=V ∪ {
ui},U' ∩f(
U')= ⌀.Howeve
U')
U)
r,
|f(
|>|f(
|.
I
ti
sacon
t
r
ad
i
c
t
i
ont
o|f(
U )|be
i
ng max
ima
l.
The
r
e
for
e, f(
u1), f(
u2), ..., f(
um ) a
r
e d
i
s
t
i
nc
t
e
l
emen
t
sofV .Inpa
r
t
i
cu
l
a
r,|V |≥|W |.As|U |≤ 39,we
tB =U ∪ W ,
have|V|+|W |≥61and|V|≥31.Le
t
hen|B|≤
69andf(
B )∪ B ⊇ V ∪ B = X .Ove
r
a
l
l,t
hede
s
i
r
edsma
l
l
e
s
t
s69.
i
n
t
ege
rki
6 Fornon
emp
t
e
t
sS,T o
fnumbe
r
s,wede
f
i
ne
ys
S +T = {
s +t|s ∈ S,
t ∈ T },2S = {
2
s|s ∈ S}.
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
108
Le
tnbeapo
s
i
t
i
vei
n
t
ege
r,andA ,B benon
emp
t
ub
s
e
t
s
ys
o
f{
1,2,...,n}.Pr
ovet
ha
tt
he
r
eex
i
s
t
sas
ub
s
e
tD ofA +
Bs
ucht
ha
t
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
A ·B
D + D ⊆ 2(
A +B ),and|D |≥ | | | |,
2
n
whe
r
e|X |deno
t
e
st
henumb
e
ro
fe
l
emen
t
so
faf
i
n
i
t
es
e
tX .
So
l
u
t
i
on.Le
tSy
n-1
∑ |S
y=1-n
y
(
={
i
nce
a,b)
b ∈ B }.S
|a -b =y,a ∈ A ,
t
he
r
eex
i
s
t
sani
n
t
ege
ry0s
ucht
ha
t1|=|A|·|B|,
A ·B
A ·B
n ≤ y0 ≤ n -1and|Sy0 |≥ | | | | > | | | |.
2
2
n -1
n
Le
tD = {
2
b +y0 | (
a,b)∈ Sy0 },
t
hen
|A |·|B |.
|D |=|Sy0 |>
2
n
Fr
omt
hede
f
i
n
i
t
i
ono
fSy0 ,foreachd ∈ D ,t
he
r
eex
i
s
t
s
(
ucht
ha
td = 2
a,b)∈ Sy0 s
b +y0 =a +b ∈ A +B .SoD ⊆
e
td1 = 2
A +B .Foranyd1 ,d2 ∈ D ,l
b1 +y0 = 2a1 -y0 ,
d2 =2
b2 +y0(
b1 ,b2 ∈ B ,a1 ∈ A ),
t
hen
d1 +d2 = 2a1 -y0 +2
b2 +y0 = 2(
a1 +b2)⊆ 2(
A +B ).
The
r
e
f
or
e,D s
a
t
i
s
f
i
e
st
hecond
i
t
i
on.
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
Ch
i
naNa
t
i
ona
l
TeamSe
l
e
c
t
i
onTe
s
t
2011
(
F
u
z
h
o
u,F
u
i
a
n)
j
F
i
r
s
tDay
8:
00 12:
30,Ma
r
ch27,2011
1 Gi
venani
n
t
ege
rn ≥3,
f
i
ndt
hemax
imumr
ea
lnumbe
rM ,
s
ucht
ha
tf
oranypo
s
i
t
i
venumbe
r
sx1 ,x2 ,...,xn ,t
he
r
e
ex
i
s
t
sape
rmu
t
a
t
i
ony1 ,y2 ,...,yn o
fx1 ,x2 ,...,xn
t
ha
ts
a
t
i
s
f
i
e
s
n
∑y
i=1
2
i+1
2
yi
≥ M,
2
-yi+1yi+2 +yi+2
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
110
whe
r
eyn+1 = y1 ,yn+2 = y2 .(
s
edby QuZhenhua)
po
So
l
u
t
i
on.Le
t
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
F(
x1 ,...,xn )=
n
∑x
i=1
2
i+1
xi2
2 .
-xi+1xi+2 +xi+2
F
i
r
s
t,t
akex1 = x2 = … = xn-1 = 1,xn = ε,t
hena
l
l
rmu
t
a
t
i
on
sa
r
et
hes
amei
nt
hes
ens
eofc
i
r
cu
l
a
t
i
on.Int
h
i
s
pe
ca
s
e,wehave
2
2
+ε .
1 -ε +ε2
F(
x1 ,...,xn )= n -3 +
Le
tε →0+ ,F → n -1,
s
oM ≤ n -1.
Nex
t,wes
howt
ha
tforanypo
s
i
t
i
venumbe
r
sx1 ,...,xn ,
a
t
i
s
f
i
ngF (
t
he
r
eex
i
s
t
sape
rmu
t
a
t
i
ony1 ,...,yns
y1 ,...,yn )
y
≥ n -1.
Inf
ac
t,t
aket
hepe
rmu
t
a
t
i
ony1 ,...,yn wi
t
hy1 ≥y2
2
2
≥ … ≥yn a
ndbyt
hei
nequa
l
i
t
a2 ,b2),we
ya -ab +b ≤ max(
s
eet
ha
t
2
2
2
y1 y2
yn-1
F(
y1 ,...,yn )≥ 2 + 2 + … + 2 ≥ n -1,
y2 y3
y1
whe
r
et
he l
a
s
ti
nequ
a
l
i
t
s ob
t
a
i
ned by AM-GM i
nequa
l
i
t
yi
y.
Summi
ngup,M = n -1.
2 Le
tn > 1beani
n
t
ege
r,
kbet
henumbe
rofd
i
s
t
i
nc
tpr
ime
f
ac
t
or
sofn.Pr
ovet
ha
tt
he
r
eex
i
s
t
sani
n
t
ege
ra,1 <a <
n
+1,
s
ucht
ha
tn|a2 -a.(
s
edby YuHongb
i
ng)
po
k
αk
1
So
l
u
t
i
on.Le
tn =pα
et
hes
t
anda
rdf
ac
t
or
i
za
t
i
onofn.
1 …pk b
αk
1
S
i
nc
epα
..,pk
a
r
epa
i
rwi
s
ecopr
ime,byt
heCh
i
ne
s
e
1 ,.
Rema
i
nde
r Theor
em,f
or each i,1 ≤ i ≤ k,cong
r
uence
equa
t
i
on
s
Ch
i
naNa
t
i
ona
lTe
amS
e
l
e
c
t
i
onTe
s
t
111
x ≡ 1(
modpiαi )
{
αj
),j ≠i
x ≡ 0(
modpj
haves
o
l
u
t
i
onxi .
Foranys
o
l
u
t
i
onofx2
modn),wes
eet
ha
tx0(
x0 -1)
0 =x0 (
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
≡0(
mod
modn).Thenf
oreachi =1,2,...,k,e
i
t
he
rx0 ≡0(
α
modpiαi ).Fu
r
t
he
r,l
e
tS(
A )bet
hes
um of
pii )orx0 ≡ 1(
{
,
,
,
}(
,
e
l
emen
t
sofs
ub
s
e
tA o
f x1 x2 ... xk pa
r
t
i
cu
l
a
r
l
y S(⌀ )
= 0)
.Obv
i
ou
s
l
y,wehave
S(
A )(
S(
A )-1)≡ 0(
modn).
(
Th
i
si
s be
cau
s
eo
ft
he s
e
l
ec
t
i
on of xi ,s
uch t
ha
t S(
A)
α
mod(
A )≢
i
se
i
t
he
r0or1.)Mor
eove
ri
fA ≠ A',t
henS(
pii )
S(
A')(
x1,x2,...,
modn).The
r
e
f
o
r
e,t
hes
umo
fa
l
ls
ub
s
e
t
so
f{
xn }
i
se
x
a
c
t
l
l
ls
o
l
u
t
i
on
so
fx(
x -1)≡ 0(
modn).
ya
Le
tS0 =n,Sr b
et
hel
e
a
s
tnon
-n
e
a
t
i
v
er
ema
i
nd
e
ro
fx1 +x2 +
g
… +xr modu
l
l1 ≤r
l
en,r = 1,2,...,k.Thu
sSk = 1.Fora
≤k -1,Sr ≠0.
r
ei
n[
1,
S
i
ncek +1numbe
r
sS0 ,S1 ,...,Ska
n],byDi
r
i
ch
l
e
t
􀆳
sDr
awe
rPr
i
nc
i
l
e,t
he
r
eex
i
s
t0 ≤l < m ≤k,
p
n ,(
æjn (
j +1)
s
ucht
ha
tSl ,Smi
nt
hes
amei
n
t
e
r
va
lç ,
0 ≤j ≤
k
èk
]
k -1),whe
r
el = 0andm =kdono
tho
l
ds
imu
l
t
aneou
s
l
y.
Thu
s,|Sl -Sm |<
n
.Deno
t
ey1 = S1 ,yr = Sr - Sr-1
k
(
r = 2,3, ...,k).Soanys
um o
fyr ≡ xr (
modn)(
r = 1,
2,...,k)mee
t
st
her
equ
i
r
emen
t.
I
fSm -Sl >1,
t
hena =yl+1 +yl+2 + … +ym =Sm -Sl ∈
æç ,n ö÷
1
i
st
hes
o
l
u
t
i
ono
ft
heequa
t
i
onx2 -x ≡ 0(
modn).
è kø
henn | (
I
fSm - Sl = 1,t
y1 + y2 + … + yl )+ (
ym+1 +
x1 + x2 + … + xl )+ (
xm+1 +
ha
ti
s,n | (
ym+2 + … +yk ),t
xm+2 + … +xk ).No
t
i
c
et
ha
tm > l,wh
i
chcon
t
r
ad
i
c
t
st
ot
he
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
112
de
f
i
n
i
t
i
ono
fxi .
ha
ti
s,n
I
fSm -Sl = 0,t
henn|yl+1 +yl+2 + … +ym ,t
i
chcon
t
r
ad
i
c
t
st
hede
f
i
n
i
t
i
ono
fxi .
|xl+1 +xl+2 + … +xm ,wh
I
fSm -Sl < 0,
t
hen
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
a=(
y1 +y2 + … +yl )+ (
ym+1 + … +yk )
= Sk - (
Sm -Sl )= 1 - (
Sm -Sl )
i
st
hes
o
l
u
t
i
ono
fe
t
i
onx2 -x ≡0(
modn),and1 <a <1+
qua
Summi
ngup,t
he
r
eex
i
s
t
sas
a
t
i
s
f
i
ngt
hecond
i
t
i
on.
y
n
.
k
3 Le
t3
n2 bet
heve
r
t
exnumbe
ro
fas
imp
l
eg
r
aphG (
i
n
t
ege
r
I
ft
hedeg
r
eeo
feachve
r
t
exi
sno
tg
r
ea
t
e
rt
han4
n ≥2).
n,
t
he
r
eex
i
s
t
sa
tl
ea
s
toneve
r
t
ex wi
t
hdeg
r
ee1,andt
he
r
e
ex
i
s
t
sarou
t
ewi
t
hl
eng
t
hno
tg
r
ea
t
e
rt
han3be
tweenany
twove
r
t
i
ce
s.Pr
ovet
ha
tt
hemi
n
imum numbe
rofedge
sof
3
7
Gi
s n2 - n.
2
2
Remark.A rout
ebe
tweentwod
i
s
t
i
nc
tve
r
t
i
ce
su andv wi
t
h
l
eng
t
hki
sas
equenc
eo
fve
r
t
i
c
e
su = v0 ,v1 ,...,vk = v,
whe
r
eviandvi+1 ,
i =0,1,...,k -1,a
r
ead
ac
en
t.(
s
edby
j
po
Leng Gang
s
ong)
So
l
u
t
i
on.Foranytwod
i
s
t
i
nc
tve
r
t
i
c
e
suandv,wes
ayt
ha
tt
he
d
i
s
t
ancebe
tweenu andv i
st
hes
hor
t
e
s
tl
eng
t
h oft
herou
t
e
be
tweenu andv.Cons
i
de
ra g
r
aph G * wi
x1 ,
t
h ve
r
t
exs
e
t{
x2 ,...,x3n2-n ,y1 ,y2 ,...,yn },whe
r
eyiandyja
r
ead
ac
en
t
j
(
1 ≤i <j ≤n),xiandxj a
r
eno
tad
acen
t(
1 ≤i <j ≤3
n2 j
n),xiandyja
r
ead
ac
en
ti
fandon
l
fi ≡j(
modn).Thu
s,t
he
j
yi
deg
r
eeo
feachxii
s1,andt
hedeg
r
eeofyi doe
sno
texceed
3
n2 -n
=4
n -2.
n
n -1 +
Ch
i
naNa
t
i
ona
lTe
amS
e
l
e
c
t
i
onTe
s
t
113
I
ti
sea
s
os
eet
ha
tt
hed
i
s
t
anc
ebe
tweenxi andxj i
sno
t
yt
r
ea
t
e
rt
han 3.So g
r
aph G * s
a
t
i
s
f
i
e
st
he cond
i
t
i
on o
ft
he
g
2
=
sN = 3
l
em.G * ha
n2 -n + Cn
prob
7 2 3
n - nedge
s.
2
2
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
Int
hefo
l
l
owi
ng,wes
howt
ha
tanyg
r
aphG = G (
V ,E )
s
a
t
i
s
f
i
ngt
hecond
i
t
i
ono
ft
heprob
l
emha
sa
tl
ea
s
tN edge
s.Le
t
y
X ⊆ V bet
hes
e
tofve
r
t
i
c
e
swi
t
hdeg
r
ee1,Y ⊆ (
V\X )bet
he
s
e
to
fr
ema
i
n
i
ngve
r
t
i
c
e
sad
acen
tt
oX ,andZ ⊆V\(
X ∪Y)be
j
t
hes
e
to
fr
ema
i
n
i
ngve
r
t
i
ce
sad
ac
en
tt
oY .Le
tW =V\(
X ∪Y
j
∪ Z)
.Wewi
l
lpo
i
n
tou
tt
hefo
l
l
owi
ngf
ac
t
s.
Proper
ty1.Anytwover
t
i
ce
si
nYa
r
ead
acen
t.Th
i
si
sbecau
s
e
j
oft
hef
ac
tt
ha
ti
fy1 ,y2 ∈Ya
r
etwov
e
r
t
i
c
e
s,
t
he
r
ee
x
i
s
tx1,x2 ∈
Xt
ha
ta
r
ead
ac
en
tt
oy1 andy2 ,r
e
s
t
i
ve
l
j
pec
y;hencey1 andy2
a
r
ead
ac
en
ts
i
nc
et
hed
i
s
t
ancebe
tweenx1 andx2i
sno
tg
r
ea
t
e
r
j
t
han3.
Proper
ty2.Thed
r
t
exi
nY
i
s
t
ancebe
tweenve
r
t
exi
nW andve
i
s2.Th
i
si
sb
e
c
au
s
eo
ft
hef
a
c
tt
ha
ti
ft
hed
i
s
t
anc
ebe
twe
enw0 ∈W
andy0 ∈Yi
sg
r
ea
t
e
rt
han2 (
obv
i
ou
s
l
i
s
t
ance >1),s
uppo
s
e
y,d
t
ha
tx0 ∈ Xi
sad
ac
en
tt
oy0 ,
t
hent
hed
i
s
t
anc
ebe
tweenw 0and
j
x0i
sg
r
ea
t
e
rt
han3,wh
i
chi
sacon
t
r
ad
i
c
t
i
on.Fur
t
he
rmor
e,we
knowt
h
i
sPr
ope
r
t
seachve
r
t
exi
nW i
sad
acen
tt
os
ome
y2mean
j
ve
r
t
exi
nZ .
Deno
t
ebyx,y,zandwt
henumbe
r
sofe
l
emen
ti
ns
e
t
sX ,
Y ,Z and W ,r
e
s
c
t
i
ve
l
tt
henumbe
ro
fedge
s:
pe
y.Now coun
2
t
he
r
ea
r
eCy
edge
sbe
tweenpo
i
n
t
si
nY ,xedge
sf
rompo
i
n
t
sofX
t
oY ,a
tl
ea
s
tzedge
sf
r
om po
i
n
t
so
fZt
oY ,anda
tl
ea
s
tw edge
s
f
r
om po
i
n
t
so
fW t
oZ .So,i
fy ≥ n,
t
hen
2
2
2
-y ≥ 3
-n = N ,
n2 + Cy
n2 + Cn
|E |≥ Cy +x +z + w = 3
i
nc
eeachdeg
r
eeofve
r
t
exi
sa
t mo
s
t4
n,
andi
fy ≤ n - 1,s
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
114
wehave
4
4
x +z ≤ y(
n-(
n +1 -y)
y -1))= y(
≤(
n -1)(
n +2)= 3n2 -n -2,
3
w ≥ 3n2 -y -y(
n +1 -y)≥ 3.
4
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
nW s
ucht
ha
tP i
sad
acen
ta
sl
e
s
sa
s
Se
l
e
c
tave
r
t
exP i
j
s
s
i
b
l
et
ove
r
t
i
c
e
si
nZ .Suppo
s
et
hel
ea
s
tnumbe
ri
sa,a > 0
po
(
byPr
ope
r
t
t
et
hes
e
to
ft
he
s
eave
r
t
i
ce
sbyNP ⊆ Z .
y2).Deno
2
Coun
t
i
ngt
he numbe
ro
ft
heedge
saga
i
n,t
he
r
ea
r
eCy
edge
s
sf
rom po
i
n
t
sofX t
oY ,a
tl
ea
s
ty
be
tweenpo
i
n
t
si
nY ,x edge
edge
sf
r
om po
i
n
t
sofNP t
oY (
byPrope
r
t
hed
i
s
t
ancef
rom
y2,t
Pt
ove
r
t
exi
nYi
s2),a
tl
ea
s
tz -aedge
sf
rom po
i
n
t
sofZ\NP
tl
ea
s
taw edge
t
oY ,anda
sf
r
om po
i
n
t
sofW t
oZ .Thu
s,
2
|E | ≥ Cy +x +y +z -a +aw
=3
n -1 + Cy + (
a -1)(
w -1).
2
2
I
fa > 1,
t
hen
2
+(
n2 -1 + Cy
w -1)
|E | ≥ 3
≥3
n -2 + Cy +3n -y -y(
4
n +1 -y)> N .
2
2
2
I
fa = 1,
s
i
nc
et
hedeg
r
eeo
feachve
r
t
exi
nW i
sa
tl
ea
s
t2,
whenwecoun
tt
heedge
sf
r
om po
i
n
t
sofW t
oZ ,wes
hou
l
dadd
a
tl
ea
s
tw/2edge
s,s
o
2
+
n2 -1 + Cy
|E | ≥ 3
≥3
n -1 + Cy +
2
2
1
w
2
1( 2
3
n -y -y(
4
n +1 -y))> N .
2
Summi
ngup,t
hel
ea
s
tnumbe
ro
fedge
si
sN =
7 2 3
n - n.
2
2
Ch
i
naNa
t
i
ona
lTe
amS
e
l
e
c
t
i
onTe
s
t
115
S
e
c
ondDay
8:
00 12:
30,Ma
r
ch28,2011
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
4 Le
t H bet
heor
t
hoc
en
t
e
rofa
cub
i
t
ang
l
ed △ABC , P be a
︵
i
n
tonBC oft
hec
i
r
cumc
i
r
c
l
e
po
︵
n
t
e
r
s
e
c
t
sAC a
t
o
f△ABC .PH i
M .The
r
e ex
i
s
t
sa po
i
n
t K on
︵
AB s
uch t
ha
tt
hel
i
ne i
s KM
r
a
l
l
e
lt
ot
heS
ims
onl
i
neo
fP
pa
wi
t
h r
e
s
c
tt
o △ABC , t
he
pe
chordQP ‖BC ,t
hechord KQ i
n
t
e
r
s
ec
t
sBC a
tpo
i
n
tJ.
Pr
ovet
ha
t△KMJi
si
s
o
s
ce
l
e
s.(
s
edby Xi
ongBi
n)
po
So
l
u
t
i
on.WeshowthatJK
= JM .
Dr
awl
i
nef
rom P andl
e
ti
tbe
rpend
i
cu
l
a
rt
oBC andi
n
t
e
r
s
e
c
tt
he
pe
c
i
r
cumc
i
r
c
l
eandBCa
tpo
i
n
tSandL ,
r
e
s
c
t
i
ve
l
t N be t
he pr
o
e
c
t
pe
y.Le
j
i
n
to
fP onAB .S
i
nc
eB ,P ,L and
po
Na
r
econcyc
l
i
c,
∠SLN = ∠NBP = ∠ABP = ∠ASP .
Thu
s,NL ‖AS.S
i
nc
eNL ‖KM ,
t
henKM ‖SA .
Le
tT bet
hei
n
t
e
r
s
e
c
t
i
onpo
i
n
tofBCandPH .S
i
ncepo
i
n
t
s
K ,Q ,P andM a
r
econcyc
l
i
candBC ‖PQ ,
s
oa
r
eK ,J,T and
M .Suppo
s
et
ha
tt
heex
t
en
s
i
ono
fAH i
n
t
e
r
s
ec
t
st
hec
i
r
cumc
i
r
c
l
e
a
tpo
i
n
tD .Thenwehave
∠JKM = ∠MTC , ∠KMJ = ∠KTJ.
I
ts
u
f
f
i
c
e
st
oshowt
ha
t ∠MTC = ∠KTJ.
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
116
I
ti
sea
s
os
eet
ha
tD and H a
r
es
t
r
i
c ove
rl
i
ne
yt
ymme
BC .Then
∠SPM = ∠SPH = ∠THD = ∠HDT .
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
Fur
t
he
rmor
e KS
Con
s
equen
t
l
y,
=
o ∠ADM
AM , s
=
∠KPS.
∠TDM = ∠HDT + ∠ADM = ∠SPM + ∠KPS
= ∠KPM = ∠KDM ,
wh
i
ch mean
st
ha
tpo
i
n
t
sK ,T andD a
r
eco
l
l
i
nea
r.Thu
s
∠KTJ = ∠DTC = ∠MTC .
So ∠JKM = ∠KMJ.Con
s
equen
t
l
yJK = JM .
5 Le
rmu
t
a
t
i
onofa
l
lpo
s
i
t
i
vei
n
t
ege
r
s.
ta1 ,a2 ,...beape
Provet
ha
tt
he
r
eex
i
s
ti
nf
i
n
i
t
e po
s
i
t
i
vei
n
t
ege
r
si
􀆳s,s
uch
3
t
ha
t(
ai ,ai+1)≤ i.(
s
edbyChenYonggao)
po
4
So
l
u
t
i
on. We provethi
s pr
ob
l
em by con
t
r
ad
i
c
t
i
on.I
ft
he
conc
l
u
s
i
ono
ft
hepr
ob
l
emi
sno
tt
r
ue,t
hent
he
r
eex
i
s
t
si0 ,and
3
wehave(
ai ,ai+1)> ifori ≥i0 .
4
oi
fi ≥ 4M ,t
ai ,
Takeapo
s
i
t
i
venumbe
rM > i0 ,s
hen (
3
ai+1)> i ≥ 3M .
4
So,i
fi ≥4M ,ai ≥ (
ai ,ai+1)>3M ,
t
hen{
1,2,...,3M }
⊆{
a1 ,a2 ,...,a4M-1}.
Henc
e
1,2,...,3M }∩ {
a2M ,a2M+1 ,...,a4M-1}|
|{
≥ 3M - (
2M -1)= M +1.
ByDi
r
i
ch
l
e
t
􀆳
sDr
awe
rPr
i
nc
i
l
e,t
he
r
ee
x
i
s
t
s2M ≤j0 < 4M p
Ch
i
naNa
t
i
ona
lTe
amS
e
l
e
c
t
i
onTe
s
t
117
1s
ucht
ha
taj0 ,aj0+1 ≤ 3M .Thu
s,
1
3M
3·
3
(
=
aj0 ,aj0+1)≤ max{
aj0 ,aj0+1}≤
2M ≤ j0 ,
2
2
4
4
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
wh
i
chi
sacon
t
r
ad
i
c
t
i
on.
6
Weca
l
lapo
i
n
ts
equenc
e(
A0 ,A1 ,...,An )
i
n
t
e
r
e
s
t
i
ng,
i
f
t
heab
s
c
i
s
s
aandord
i
na
t
ea
r
eequa
lforeachAi ,andt
he
t
r
i
c
t
l
nc
r
ea
s
e
s
l
ope
so
fs
egmen
tOA0 ,OA1 ,...,OAn s
yi
(Oi
st
heor
i
i
n),andt
hea
r
eaofeach△OAiAi+1(
0 ≤i ≤
g
1
n -1)
i
s .
2
A0 ,A1 ,...,An ),
Forapo
i
n
ts
equenc
e(
i
ns
e
r
tapo
i
n
tA
→
→
ad
a
c
en
tt
otwopo
i
n
t
sAi ,Ai+1s
a
t
i
s
f
i
ngOA = OAi +OAi→
+1 ,
j
y
t
henwec
a
l
lt
hu
sob
t
a
i
nednewpo
i
n
ts
equ
en
c
e(
A0,...,Ai ,
A ,Ai+1 ,...,An )anexpans
i
onof(
A0 ,A1 ,...,An ).
A0 ,A1 ,...,An )and(
B0 ,B1 ,...,Bm )beanytwo
Le
t(
i
n
t
e
r
e
s
t
i
ngpo
i
n
ts
equence
s.Pr
ovet
ha
ti
fA0 = B0 andAn
= Bm ,
t
hen wecanexpandbo
t
hpo
i
n
ts
equence
st
os
ome
s
amepo
i
n
ts
equence (
C0 ,C1 , ...,Ck ).(
s
edby Qu
po
Zhenhua)
So
l
u
t
i
on.Wes
eet
ha
tbyt
hecond
i
t
i
on oft
he prob
l
em,an
expans
i
onofani
n
t
e
r
e
s
t
i
ngs
equenc
ei
ss
t
i
l
li
n
t
e
r
e
s
t
i
ng.
Fi
r
s
t,wecons
t
r
uc
tt
hei
n
t
e
r
e
s
t
i
ngs
equence(
C0 ,C1 ,...,
Ck )con
t
a
i
n
i
nga
l
lpo
i
n
t
sofs
equenc
e
s(
A0 ,A1 ,...,An )and
(
B0 ,B1 ,...,Bm ),andC0 = A0 = B0 ,Ck = An = Bm .
Byt
heP
i
ck Theor
em,weknowt
ha
tt
hea
r
eaoft
r
i
ang
l
e
equa
l
s1/2i
fandon
l
ft
he
r
ei
snog
r
i
dpo
i
n
tont
het
r
i
ang
l
e
yi
excep
tt
r
i
ang
l
e ve
r
t
i
ce
s. Henc
et
he
r
ei
s no g
r
i
d po
i
n
t on
△OAiAi+1 exc
ep
ti
t
sve
r
t
i
ce
s.The
r
e
for
e,i
ft
hes
l
ope
sofOAi
andOBj a
r
eequa
l,t
henAi = Bj .
118
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
Deno
t
et
hes
l
ope
so
fs
egmen
t
s
f
r
om po
i
n
t
so
f{
Ai}and {
Bj }t
ot
he
or
i
i
ni
ns
t
r
i
c
t
l
nc
r
ea
s
i
ngorde
rby
g
yi
D0 ,D1 ,...,Dl ,whe
r
eD0 =C0 =
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
A0 =B0andDl =Ck = An =Bm .
I
f
Di , Di+1) i
s no
t
a s
equence (
i
n
t
e
r
e
s
t
i
ng, t
hen we can i
ns
e
r
t
ucht
ha
t
s
eve
r
a
lpo
i
n
t
sE1 ,...,Ess
t
he s
equence (
Di , E1 , ..., Es ,
F
i
.6
.1
g
i
si
n
t
e
r
e
s
t
i
ng.Inf
ac
t,con
s
i
de
rt
heconvexhu
l
lP o
Di+1)
ft
he
ep
tt
he or
i
i
n.P i
sa convex
r
i
d po
i
n
t
son △ODiDi+1 ,exc
g
g
l
egmen
tDiDi+1 (
adegene
r
a
t
edpo
l
he
po
ygonors
ygon).Thent
s
equenc
eo
f ve
r
t
i
c
e
so
fP i
si
n
t
e
r
e
s
t
i
ng. Thu
s, we have
C0 ,C1 ,...,Ck ).
cons
t
r
uc
t
edt
hei
n
t
e
r
e
s
t
i
ngs
equenc
e(
F
i
na
l
l
ts
u
f
f
i
c
e
st
os
how t
ha
tt
hei
n
t
e
r
e
s
t
i
ngs
equence
y,i
(
A0 ,A1 ,...,An )canbeexpandedt
o(
C0 ,C1 ,...,Ck ),and
t
hes
amei
st
r
uef
or(
B0 ,B1 ,...,Bm ).Weon
l
oprove
yneedt
t
h
i
sf
ort
heca
s
eo
fn =1,
s
i
nc
ewecanapp
l
heconc
l
u
s
i
onfor
yt
n =1t
Ai ,Ai+1),
i =0,1,...,n -1s
o(
uc
ce
s
s
i
ve
l
tC0 =
y.Le
A0 andCk = A1 .Byi
nduc
t
i
ononk,fork = 1,weneedno
expans
i
on.Suppo
s
et
ha
tt
heconc
l
u
s
i
oni
st
r
uefora
l
lpo
s
i
t
i
ve
i
n
t
ege
r
sl
e
s
st
hank.
Then deno
t
et
he g
r
i
d po
i
n
tA
→
→
→
s
a
t
i
s
f
i
ngOA = OA0 + OA1 ,and we
y
s
tb
eapo
i
n
to
fC1,...,
s
e
et
ha
tA mu
Ck-1 .S
i
nc
ei
fno
t,t
he
r
ei
sno g
r
i
d
i
n
toni
n
t
e
r
i
oro
fs
egmen
tOA ,and
po
t
he
r
eex
i
s
t
si,0 ≤i <k,
s
ucht
ha
tA
l
oca
t
e
si
nt
heang
l
emadebyr
ay
sOCi
uppo
s
et
ha
ti >
andOCi+1 .Wemays
F
i
.6
.2
g
Ch
i
naNa
t
i
ona
lTe
amS
e
l
e
c
t
i
onTe
s
t
119
0,o
t
he
rwi
s
et
aket
he g
r
aphs
t
r
i
cove
rt
hel
i
nex = y.
ymme
oca
t
e
s
S
i
nc
et
hea
r
eao
ft
hepa
r
a
l
l
e
l
og
r
am ▱OA0AA1i
s1,Ci l
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
ou
t
s
i
deof▱OA0AA1 ,Ci+1l
oca
t
e
sou
t
s
i
deof▱OA0AA1orCi+1
→ +O→
= A1 .
Inany way,wet
akeBs
ucht
ha
tO→
B = OC
Ci+1 and
i
ucht
ha
tCi+1B'‖OA0 ,CiB'‖A0A ,t
henAl
oca
t
e
son
t
akeB's
▱OCi+1B'Ci .Thu
s,A l
oca
t
e
si
ns
i
de o
f ▱OCiBCi+1 ,wh
i
ch
con
t
r
ad
i
c
t
st
hef
ac
tt
ha
tt
hea
r
eaof▱OCiBCi+1i
s1.The
r
e
f
or
e
o(
A0 ,A1)
forexpans
i
oni
ss
omeCi .Then
t
hei
ns
e
r
t
edpo
i
n
tAt
weu
s
et
hei
nduc
t
i
on hypo
t
he
s
e
st
o(
A0 ,A )and (
A ,A1),
r
e
s
c
t
i
ve
l
pe
y.
2012
(
Na
n
c
h
a
n
i
a
n
x
i)
g,J
F
i
r
s
tDay
8:
00 12:
30,Ma
r
ch25,2012
1 Le
heor
t
hoc
en
t
e
ro
fan
tH bet
acu
t
e
ang
l
ed△ABC wi
t
h ∠A >
60
°.Le
tpo
i
n
t
s M and N beon
e
s
c
t
i
ve
l
s
i
de
sAB and AC ,r
pe
y,
s
uch t
ha
t ∠HMB
= 6
0
° =
∠HNC.L
e
tOb
et
hec
i
r
c
umc
en
t
e
r
o
f△HMN .Le
tpo
i
n
t
sD andA
beont
hes
ames
i
deo
fl
i
neBC ,
s
ucht
ha
t△DBC i
sr
egu
l
a
r(
s
ee
F
i
.1
.1
g
F
i
.1
.1).Pr
ovet
ha
tpo
i
n
t
s H ,O and D a
r
eco
l
l
i
nea
r.
g
(
s
edbyZhangS
i
hu
i)
po
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
120
So
l
u
t
i
on.Le
tT bet
heor
t
hoc
en
t
e
rof△HMN .Ex
t
endedl
i
ne
s
ofHM andCAi
n
t
e
r
s
ec
ta
tpo
i
n
tP .Ex
t
endedl
i
ne
sHN andBA
i
n
t
e
r
s
e
c
ta
tpo
i
n
tQ .
I
ti
sea
s
os
eet
ha
tpo
i
n
t
sN ,M ,P andQ
yt
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
a
r
econcyc
l
i
c.
F
i
.1
.2
g
eet
ha
t ∠PQH - ∠OHN =
By ∠THM = ∠OHN ,wes
∠NMH - ∠THM = 9
0
°,
t
ha
ti
s,
HO ⊥ PQ .
①
Le
tpo
i
n
tR bes
t
r
i
ct
opo
i
n
tC ove
rHP .ThenHC =
ymme
HR .
By ∠HPC + ∠HCP = (∠BAC -60
°)+ (
90
°- ∠BAC)=
30
°,wes
eet
ha
t ∠CHR = 60
°.Hence△HCRi
sr
egu
l
a
r.
By ∠HPC = ∠HQB and ∠HCP = ∠HBQ ,wes
eet
ha
t
△PHC ∽ △QHB .Then △PHR ∽ △QHB ,s
o △QHP ∽
△BHR .
Deno
t
e by ∠ (
UV ,XY)t
he ang
l
e be
tween U→
V and X→
Y
(
s
i
t
i
vean
t
i
c
l
ockwi
s
e).
po
S
i
nc
e ∠PHR = 150
°,wehave ∠ (
PQ ,RB ) = ∠ (
HP ,
HR ) = 150
°, △BCD and △RCH a
r
er
egu
l
a
r.So △BRC ≌
△DHC . Henc
e ∠(
RB , HD ) = ∠ (
CR , CH ) = - 60
°.
Ch
i
naNa
t
i
ona
lTe
amS
e
l
e
c
t
i
onTe
s
t
121
Con
s
equen
t
l
y,
∠(
°-60
° = 90
°,
PQ,HD )= ∠ (
PQ,RB)+ ∠ (
RB,HD )= 150
t
ha
ti
s
②
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
DH ⊥ PQ .
By ① and ② ,po
i
n
t
sH ,O andD a
r
eco
l
l
i
nea
r.
2 Pr
he
r
eex
i
s
tk
ovet
ha
t,f
orany g
i
veni
n
t
ege
rk ≥ 2,t
d
i
s
t
i
nc
tpo
s
i
t
i
vei
n
t
ege
r
sa1 ,a2 ,...,ak s
ucht
ha
tforany
i
n
t
ege
r
sb1 ,b2 ,...,bk wi
t
hai ≤bi ≤2
ai ,
i =1,2,...,
k,andanynon
-nega
t
i
vei
n
t
ege
r
sc1 ,c2 ,...,ck ,wehave
ci
<
k∏i=1bi
k
∏
b ,prov
i
ded
k
i=1 i
(
s
edbyChenYonggao)
po
∏
k
ci
i=1 i
b
∏
k
i=1 i
<
b.
So
l
u
t
i
on.Wewi
l
lpr
oveas
t
ronge
rpropo
s
i
t
i
on:foranyg
i
ven
s
i
t
i
ve
r
ea
lnumbe
rkandanypo
s
i
t
i
vei
n
t
ege
rn,t
he
r
eex
i
s
tn po
i
n
t
ege
r
sa1 ,a2 ,...,an ,
ai ,1 ≤i ≤ n -1,
s
a
t
i
s
f
i
ngai+1 > 2
y
andf
oranyr
ea
lnumbe
r
sb1 ,b2 ,...,bn ,ai ≤bi ≤2
ai ,
i =1,
2,...,n,andany non
-nega
t
i
vei
n
t
ege
r
sc1 ,c2 ,...,cn ,we
ci
<
havek ∏i=1bi
n
∏
ci
<
b ,prov
i
ded ∏i=1bi
n
i=1 i
n
∏
n
i=1 i
b.
Le
tk >1.Wepr
I
fn
ovet
hepr
opo
s
i
t
i
onbyi
nduc
t
i
ononn.
= 1,
c1 = 0,
t
hent
akea1 >k,
t
heconc
l
u
s
i
oni
st
r
ue.Suppo
s
e
t
ha
tt
heconc
l
u
s
i
oni
st
r
ueforn ≥1.The
r
ea
r
ex1 <x2 < … <
xn s
a
t
i
s
f
i
ngxi+1 >2xi ,1 ≤i ≤n -1.Nowcons
i
de
rt
heca
s
eof
y
n +1.Takeapo
s
i
t
i
vei
n
t
ege
rxn+1 > 2xn ,
s
a
t
i
s
f
i
ng
y
æ2xn ö÷n
xn+1
>k ç
.
è x1 ø
2xn
①
Thenl
e
tai =t
xi ,
i = 1,2,...,n +1,ti
sas
u
f
f
i
c
i
en
t
l
y
l
a
r
n
t
ege
r,s
ucht
ha
t
gei
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
122
n
+1
> 2a2 …an+1 ,
an
1
②
n-1
k·2n-1an
+1 < a1 …an .
③
and
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
Int
hef
o
l
l
owi
ng,wewi
l
ls
howt
ha
tt
he
s
eai(
1 ≤i ≤n +1)
mee
tt
her
equ
i
r
emen
t.Le
tbi ∈ [
ai ,2ai](
he
1 ≤i ≤n +1)bet
r
ea
lnumbe
r(
no
t
i
c
et
ha
twehaveb1 <b2 < … <bn+1 ),andci(
1
≤i ≤ n + 1)b
enon
-nega
t
i
vei
n
t
ege
r
s,s
a
t
i
s
f
i
ng
y
∏
n+1
i=1 i
b.
∏
n+1 c
i
i=1 i
b
<
t
hen
I
f∑i=1ci ≤ n,
n+1
n+1
ci
n
n-1 n-1
≤k
k∏bi
bn
bn+1 < a1 …anbn+1
+1 ≤ k·2 an+1
i=1
≤
∏b
i=1
∏b .(byusing ③ )
i=1
i
I
f∑i=1ci ≥ n +2,
t
hen
n+1
n+1
n+1
ci
i
≥b1+ ≥ a1+ b1 > 2a2 …an+1b1 ≥
n 2
n 1
I
ti
simpo
s
s
i
b
l
e.
n
n+1
∏b .(byusing ② )
i=1
i
I
f∑i=1ci = n +1,wecons
i
de
rt
hr
eeca
s
e
s.
n+1
t
hen
I
fcn+1 ≥ 2,
n+1
∏b
i=1
n+1
ci
i
∏b
i=1
≥
bn+1 · æçb1 ö÷n-1 an+1 · æç a1 ö÷n-1
≥
èbn ø
bn
2
an è2an ø
=
xn+1 · æç x1 ö÷n-1
> 1.(
byu
s
i
ng ① )
2xn è2xn ø
i
I
ti
simpo
s
s
i
b
l
e.
Ch
i
naNa
t
i
ona
lTe
amS
e
l
e
c
t
i
onTe
s
t
123
I
fcn+1 = 1,
t
hen
n+1
∏b
i=1
n+1
ci
i
∏b
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
i=1
i
∏
=
∏
n
ci
i=1 i
n
i=1 i
b
b
.
bi
∈ [
No
t
et
ha
t
xi ,2xi],1 ≤ i ≤ n.By t
hei
nduc
t
i
on
t
hypo
t
he
s
e
s,wes
eet
ha
t
n+1
ci
<
k∏bi
i=1
I
fcn+1 = 0,
t
hen
n+1
∏b .
i=1
i
n+1
∏b
i=1
n+1
i
∏b
i=1
ci
i
≥
bn+1 · æçbn ö÷n an+1 · æç an ö÷n
≥
èb1 ø
bn
an è2a1 ø
2
=
xn+1 · æç xn ö÷n
>k.(
byu
s
i
ng ① )
2xn è2x1 ø
Thu
s,wehaveche
ckedt
ha
ta1 ,a2 , ...,an+1 mee
tt
he
r
equ
i
r
emen
t.
3 Le
tP (
x)=x2012 +a2011x2011 +a2010x2010 + … +a1x +a0be
apo
l
a
lo
fdeg
r
ee2012o
fr
ea
lcoe
f
f
i
c
i
en
t
swi
t
h1a
s
ynomi
i
t
sl
ead
i
ngcoe
f
f
i
c
i
en
t.Fi
ndt
hemi
n
imumo
fr
ea
lnumbe
rc
s
ucht
ha
t|Imz|≤ c|Rez|,whe
r
eRez andImz a
r
e,
r
e
s
c
t
i
ve
l
her
ea
landt
heimag
i
na
r
r
t
so
fanyr
oo
t
pe
y,t
ypa
o
f a po
l
a
l ob
t
a
i
ned by chang
i
ng s
ome of t
he
ynomi
(
)
(
coe
f
f
i
c
i
en
t
sofP x t
ot
he
i
roppo
s
i
t
enumbe
r
s. po
s
edby
ZhuHuawe
i)
So
l
u
t
i
on.Fi
r
s
t,wepo
i
n
tou
tt
ha
tc
π
.Cons
i
de
rt
he
4022
≥c
o
t
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
124
l
a
lP (
x)= x2012 -x.Chang
i
ngt
hes
i
f
f
i
c
i
en
t
s
po
ynomi
gnofcoe
o
fP (
x),weob
t
a
i
nf
ou
rpo
l
a
l
sP (
x),- P (
x),Q (
x)=
ynomi
x2012 + x and - Q (
x).No
x)and - P (
x)havet
t
et
ha
tP (
he
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
1006
1006
s
s
amer
oo
t
s;oneo
ft
her
oo
t
si
sz1 = co
π +is
i
n
π.
2011
2011
Q(
x)and - Q (
x)havet
hes
amer
oo
t
s,anda
r
et
heoppo
s
i
t
e
numbe
ro
ft
heroo
t
sofP (
x).Thu
x)ha
sQ (
sar
oo
tz2 = -z1 .
Then,
æ|Imz1 |,|Imz2 |÷ö
π
=c
nç
c ≥ mi
.
o
t
è|Rez1 | |Rez2 |ø
4022
π
.Forany
Nex
t,wes
howt
ha
tt
hean
swe
ri
sc = co
t
4022
P(
x)= x2012 +a2011x2011 +a2010x2010 + … +a1x +a0 ,
weob
t
a
i
napo
l
a
l
ynomi
R(
x)=b2012x2012 +b2011x2011 +b2010x2010 + … +b1x +b0 ,
x),whe
r
eb2012 = 1,
bychang
i
ngs
i
omecoe
f
f
i
c
i
en
to
fP (
gnofs
andforj = 1,2,...,2011,
bj =
mod4),
|aj |,j ≡ 0,1(
{
-|aj |,
mod4).
j ≡ 2,3(
fR (
x),wehave|Imz|≤
Wes
howt
ha
t,f
oreachroo
tzo
c|Rez|.
Wepr
ovet
h
i
sr
e
s
u
l
tbycon
t
r
ad
i
c
t
i
on.Suppo
s
et
he
r
ei
sa
r
oo
tz0o
fR (
x),
t
henz0 ≠0and
s
ucht
ha
t|Imz0|>c|Rez0|,
e
i
t
he
rt
heang
l
eo
fz0andii
sl
e
s
st
hanθ =
π ,
ort
heang
l
eof
4022
z0 and -ii
sl
e
s
st
hanθ.Suppo
s
et
ha
tt
heang
l
eo
fz0andii
sl
e
s
s
t
hanθ;f
ort
heo
t
he
rca
s
e,weneedon
l
i
de
rt
hecon
uga
t
e
ycons
j
o
fz0 .The
r
ea
r
etwoca
s
e
s:
Ch
i
naNa
t
i
ona
lTe
amS
e
l
e
c
t
i
onTe
s
t
125
I
fz0i
sont
hef
i
r
s
tquadr
an
t(
orimag
i
na
r
i
s),s
uppo
s
e
yax
z0 ,
i)=α <θ,whe
z0 ,i)i
t
ha
t ∠(
r
e ∠(
st
hel
ea
s
tang
l
et
ha
t
oian
t
i
c
l
ockwi
s
e.For0 ≤j ≤2012,
ro
t
a
t
e
sz0t
i
fj ≡0,2(
mod
bjzj0 ,1)=j
α < 2012
θ.
4),
t
hen ∠ (
α ≤ 2012
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
I
fj ≡ 1,3(
mod4),t
hen ∠ (
bjzj0 ,i) = j
α < 2011
θ and
∠(
b1z0 ,i)=α.Thu
s,t
hepr
i
nc
i
la
r
tofbjzj
2π 0 ∈ [
pa
gumen
1
2012
r
t
exang
l
eoft
h
i
sang
l
e
α,2π) ∪ 0, π -α .Theve
2
[
doma
i
ni
s2012
α+
]
1
1
π -α = π +2011
α < π.Andbjzj0 ,0 ≤j
2
2
≤2
012,a
r
eno
ta
l
lze
ro,s
ot
he
r
es
umcanno
tbez
e
ro.
I
fz0i
i,z0)=α
sa
tt
hes
e
condquadr
an
t,s
uppo
s
et
ha
t ∠(
<θ,
θ.
I
fj ≡
i
fj ≡0,2(
mod4),
t
hen ∠ (
1,bjzj
α <2012
0 )=j
π
i,bjzj0)=j
α ≤ 2011
α < .Thu
s,eve
r
1,3(
mod4),
t
hen ∠ (
y
2
π
,π +2011
α .S
i
nc
e +2011
i
nc
i
l
ea
r
to
fbjzj
α
0 ∈ 0
pr
p
gumen
2
2
[
]
< π,a
ndbjzj
012,a
r
eno
ta
l
lze
r
o,s
ot
he
i
rs
um
0 ,0 ≤ j ≤ 2
canno
tbez
e
ro.
π
t
.
Summi
ngup,t
hel
ea
s
tr
ea
lnumbe
rc = co
4022
S
e
c
ondDay
8:
00 12:
30,Ma
r
ch26,2012
4
Gi
venani
n
t
ege
rn ≥ 4,Le
tA ,B ⊆ {
1,2, ...,n}.
Suppo
s
et
ha
tab +1i
sape
r
f
e
c
ts
r
enumbe
rforanya ∈
qua
A andb ∈ B .Provet
ha
t
mi
n{
og2n.
|A |,|B |}≤l
(
s
edby Xi
ongBi
n)
po
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
126
So
l
u
t
i
on.Fi
r
s
tweproveal
emma.
Lemma.Gi
venani
n
t
ege
rn
≥ 4,
l
e
tA ,B ⊆ {
1,2,...,n}.
Suppo
s
et
ha
tab +1i
sape
r
f
e
c
ts
r
enumbe
rforanya ∈ A and
qua
b ∈ B .Le
ta,a
' ∈ A ,b,b
' ∈ B ,anda <a
',b <b
',
t
hena
'
b
'
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
>5
ab.
.5
Proo
fo
ft
hel
emma.Fi
r
s
tno
t
i
c
et
ha
t(
ab +1)(
a
'
b
' +1)>
(
ab
' +1)(
a
'
b +1).So
(
ab +1)(
a
'
b
' +1) >
(
ab
' +1)(
a
'
b +1).
S
i
nc
etwos
i
de
so
fabovei
nequa
l
i
t
r
ea
l
li
n
t
ege
r
s,wehave
ya
2
(
ab +1)(
a
'
b
' +1)≥ ( (
ab
' +1)(
a
'
b +1)+1)
.
Byexpan
s
i
on,weob
t
a
i
n
ab +a
'
b
' ≥ ab
' +a
'
b +2 (
ab
' +1)(
a
'
b +1)+1
>a
b
' +a
'
b +2 ab
'·a
'
b.
Bya <a
',b <b
',wehaveab
' +a
'
b >2ab.Le
ta
'
b
' =λab,
andcomb
i
n
i
ngt
heabovei
nequa
l
i
t
1 +λ)
ab > (
2+
y,wehave(
ab,s
2 λ)
oλ > 3 +2 2 > 5
.5.
Nowt
u
rnt
ot
heor
i
i
n pr
ob
l
em.Le
tA = {
a1 ,a2 ,...,
g
am },B = {
b1 ,b2 ,...,bn },a1 <a2 < … <am ,b1 <b2 < …
<bn .We ma
uppo
s
et
ha
t2 ≤ m ≤ n.S
i
ncea1b1 + 1i
sa
ys
r
f
ec
ts
r
enumbe
r,wehavea1b1 ≥ 3.Byt
hel
emma,a2b2
pe
qua
>5
s,
.5
a1b1 > 4 ,ak+1bk+1 > 4akbk ,k = 2,...,m -1.Thu
2
n2 ≥ ambm ≥ 4m-2a2b2 > 4m .
The
r
e
for
e,m ≤l
og2n.
5 F
i
nda
l
li
n
t
ege
r
sk ≥ 3,wi
t
ht
hefo
l
l
owi
ngprope
r
t
i
e
s:
a
t
i
s
f
i
ng(
m ,k)= (
n,k)=
The
r
eex
i
s
ti
n
t
ege
r
sm andns
y
Ch
i
naNa
t
i
ona
lTe
amS
e
l
e
c
t
i
onTe
s
t
127
1andk| (
m -1)(
n -1)wi
t
h1 < m <k,1 <n <kand
m +n >k.(
s
edby YuHongb
i
ng)
po
So
l
u
t
i
on.I
fkha
saf
ac
t
oro
fs
r
enumbe
rg
r
ea
t
e
rt
han1,l
e
t
qua
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
t2 |k,
t > 1,
t
hent
ak
i
ngm =n =k -
k
+1,wes
eet
ha
ts
uch
t
kha
st
hepr
ope
r
t
i
e
s.
I
fkha
snof
ac
t
oro
fs
r
enumbe
r,
i
ft
he
r
ea
r
etwopr
ime
s
qua
tk =
ucht
ha
t(
p1 ,p2s
p1 -2)(
p2 -2)≥ 4andp1p2 |k.Le
i
rwi
s
ed
i
f
f
e
r
en
t,r ≥ 2.
p1p2 …pr andp1 ,p2 ,...,pr be pa
S
i
ncet
he
r
ei
sa
tl
ea
s
toneo
f(
p1 -1)
p2p3 …pr +1and (
p1 -
2)
scopr
imewi
t
hp1 (
o
t
he
rwi
s
ep1 d
i
v
i
de
st
he
i
r
p2p3 …pr + 1i
d
i
f
f
e
r
enc
ep2p3 …pr ,wh
i
chi
sa con
t
r
ad
i
c
t
i
on),t
ak
i
ng t
h
i
s
m ,k) = 1.
numbe
ra
st
henumbe
rm ,t
hen,1 < m < k,(
S
imi
l
a
r
l
akeanumbe
rn o
f(
p2 -1)
p1p3 …pr +1or
y,wecant
(
ucht
ha
t1 < n < k,(
n,k) = 1.So
p2 -2)
p1p3 …pr + 1s
m -1)(
n -1),and
p1p2 …pr | (
m +n ≥ (
p1 -2)
p2p3 …pr +1 + (
p2 -2)
p1p3 …pr +1
(
=k + (
p1 -2)(
p2 -2)-4)
p3 …pr +2 >k.
Suchm ,n wi
l
ls
a
t
i
s
f
hecond
i
t
i
ons.
yt
I
ft
he
r
ea
r
enotwopr
ime
sp1 ,p2s
ucht
ha
t(
p1 -2)(
p2 -2)
≥ 4,p1p2 |k,
t
heni
ti
sea
s
ove
r
i
f
uchi
n
t
ege
rk ≥ 3can
yt
ys
on
l
sp,2p (
whe
r
epi
sanoddpr
ime).I
ti
sea
s
y
ybe15,30ora
t
os
eet
ha
t,i
fk = p,2p,30,
t
hent
he
r
ea
r
enom ,ns
a
t
i
s
f
i
ng
y
t
hecond
i
t
i
on
s;
i
fk = 15,t
hen m = 11,n = 13s
a
t
i
s
f
he
yt
cond
i
t
i
on
s.
Summi
ngup,i
n
t
ege
rk ≥ 3s
a
t
i
s
f
i
e
st
hecond
i
t
i
onsi
fand
on
l
fki
sno
tanoddpr
ime,nordoub
l
eofanoddpr
imeand
yi
nor30.
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
128
6 Suppo
s
et
he
r
ea
r
ebee
t
l
e
son ache
s
s
boa
rdcons
i
s
t
i
ng of
2012 × 2012 un
i
t s
r
e
s. Each un
i
t s
r
e can
qua
qua
ac
commoda
t
ea
tmo
s
tonebee
t
l
e.Atamomen
t,a
l
lbee
t
l
e
s
f
l
andont
heche
s
s
boa
rdaga
i
n.Forabee
t
l
e,weca
l
l
yandl
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
t
he ve
c
t
orf
r
om i
t
sf
l
i
ng un
i
tt
oi
t
sl
and
i
ng un
i
tt
he
y
bee
t
l
e
􀆳
s“
d
i
s
l
ac
emen
tve
c
t
or”. Weca
l
lt
hes
um ofa
l
l
p
bee
t
l
e
􀆳
s“
d
i
s
l
ac
emen
tve
c
t
or
s”t
he “
t
o
t
a
ld
i
s
l
acemen
t
p
p
ve
c
t
or
s”.
F
i
nd t
he max
imum l
eng
t
ho
f “
t
o
t
a
ld
i
s
l
acemen
t
p
ve
c
t
or”con
s
i
de
r
i
ngt
henumbe
ro
fbee
t
l
e
sanda
l
lpo
s
s
i
b
l
e
s
i
t
i
on
so
ff
l
i
ngandl
and
i
ng.(
s
edby QuZhenhua)
po
y
po
So
l
u
t
i
on.Se
tup a coord
i
na
t
e wi
t
h or
i
i
na
tt
he c
en
t
e
r of
g
che
s
s
boa
rdO andt
heg
r
i
dl
i
nea
st
hecoord
i
na
t
el
i
ne.Deno
t
e
t
hes
e
to
ft
hec
en
t
e
r
so
fs
r
e
sbyS,andt
hes
e
twhe
r
et
he
qua
bee
t
l
e
si
n
i
t
i
a
l
l
t
andonbyM 1 ⊆S,andt
hes
e
tt
ha
tt
hebee
t
l
e
s
ys
l
andonbyM 2 ⊆S.Le
tf:M 1 → M 2bet
heone
t
o
onemapp
i
ng
de
f
i
nedbyabee
t
l
e
􀆳
spo
s
i
t
i
onva
tt
hebeg
i
nn
i
ngt
ot
hepo
s
i
t
i
on
u = f(
v)off
i
s
l
acemen
tvec
t
or
i
r
s
tl
and
i
ng.Thu
s,t
het
o
t
a
ld
p
i
sg
i
venby
V =
v)-v)= ∑ u - ∑ v.
∑ (f(
v∈M 1
u∈M 2
①
v∈M 1
No
t
et
ha
tt
her
i
t
-hands
i
deof①i
si
ndependen
to
ff.We
gh
needon
l
of
i
ndt
hemax
imumo
f|V|=|∑u∈M u - ∑v∈M v|
yt
2
1
f
ora
l
lM 1 ,M 2 ⊆ S,|M 1|=|M 2|.Wemays
uppo
s
et
ha
tM 1
∩ M 2 = ⌀,
s
i
ncee
l
emen
tofM 1 ∩ M 2 doe
sno
tchange|V |.
Suppo
s
et
ha
t|V |a
i
ou
s
l
t
t
a
i
nsi
t
smax
imuma
t(
M 1 ,M 2),obv
y
V ≠ 0.Le
tl
i
nel ⊥ V bea
tpo
i
n
tO .
Lemma1.Lineldoesnotpas
st
hes
e
tof
sanypo
i
n
tofS.M 1i
Sonones
i
deofl,andM 2i
st
hes
e
tofS ont
heo
t
he
rs
i
deofl.
Ch
i
naNa
t
i
ona
lTe
amS
e
l
e
c
t
i
onTe
s
t
Proo
fo
fLemma1.F
i
r
s
t,M 1
129
∪ M 2 =S.O
t
he
rwi
s
e,s
i
nc
e|S|
i
seven,t
he
r
ea
r
ea
tl
ea
s
ttwopo
i
n
t
sa andb wh
i
cha
r
eno
ti
n
M 1 ∪ M 2 .Suppo
s
et
ha
tt
heang
l
ebe
tweena -bandV doe
sno
t
exceed90
°,t
hen|V + (
a -b)|>|V |.Soaddai
n
t
oM 2 ,add
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
t
hen|V |wi
l
li
nc
r
ea
s
e,wh
i
chi
sacon
t
r
ad
i
c
t
i
on.
bi
n
t
oM 1 ,
Se
cond,M 2 = - M 1 .Ot
he
rwi
s
e,t
he
r
eex
i
s
ta,b ∈S,
s
uch
t
ha
ta,-a ∈ M 1 andb,-b ∈ M 2 .Suppo
s
et
ha
tt
heang
l
e
be
tweena -bandV doe
sno
texc
eed90
°.Pu
tai
n
t
oM 2 ,andb
i
n
t
oM 1 ,Vchange
st
oV +2(
a -b),and|V +2(
a -b)
| >|V |,
wh
i
chi
sacon
t
r
ad
i
c
t
i
on.
ldoe
sno
tpa
s
sanypo
i
n
to
fS.Ot
he
rwi
s
e,l
e
tlpa
s
s
Th
i
rd,
a,a ∈ M 1 ,-a ∈ M 2 ,
n
t
oM 2 ,-ai
n
t
oM 1 ,V
t
henchangeai
change
st
oV +4
a.No
t
i
cet
ha
ta ⊥V ,
a|>|V|,wh
i
ch
s
o|V +4
i
sacon
t
r
ad
i
c
t
i
on.
Four
t
h,weshowt
ha
tM 2 i
st
hes
e
tofS onones
i
deofl
(
t
hes
i
det
ha
tV i
st
hes
e
tofS ont
spo
i
n
t
i
ngt
o),and M 1 i
he
he
rwi
s
e,t
he
r
ei
sa ∈ M 1 a
tt
hes
i
det
ha
tVi
s
o
t
he
rs
i
deofl.Ot
i
n
t
i
ngt
o.Andt
he
r
ei
sab ∈ M 2 ont
heo
t
he
rs
i
de.Thent
he
po
ang
l
ebe
tweena -bandVi
sl
e
s
st
han90
°.Changeai
n
t
oM 2and
bi
n
t
oM 1 ,
t
henVchange
si
n
t
oV +2(
a -b),
t
hel
eng
t
hofwh
i
ch
i
sg
r
ea
t
e
r,wh
i
chi
sacon
t
r
ad
i
c
t
i
on.Lemma1i
snow proved.
Lemma2.Le
tSk
=
or|y|=k { (x,y)∈S |x|=k - 1
2
1 ,
k = 1,2,...,1006,lbeal
i
nepa
s
s
i
ngO anddoe
sno
t
2
}
s
spo
i
n
t
so
fSk .Deno
t
ea
l
lpo
i
n
t
so
fSk onones
i
deo
flbyAk ,
pa
heo
t
he
rs
i
debyBk .Deno
t
eVk = ∑u∈A u a
l
lpo
i
n
t
so
fSk ont
k
∑v∈B v,thenthe maximum of|Vk |isobtained whenlis
k
sve
r
t
i
ca
l(
orhor
i
zon
t
a
l).
hor
i
zon
t
a
l(
orve
r
t
i
ca
l),andVki
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
130
Proo
fo
fLemma2.Sk i
sl
oca
t
eda
t
t
hebounda
r
fas
r
ewi
t
h2
kpo
i
n
t
s
yo
qua
oneachs
i
de.Le
tt
hefourve
r
t
i
c
e
sof
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
1
1ö
æ
t
he s
r
e be A çk - ,k - ÷ ,
qua
2
2ø
è
æ
1
1ö
æ
1
B ç -k + ,k - ÷ ,C ç -k + ,2
2ø
è
2
è
k+
1
1ö
æ
1 ö÷
andD çk - ,-k + ÷ .By
2
2ø
è
2ø
F
i
.6
.1
g
n
t
e
r
s
ec
t
sAD a
tpo
i
n
tP
s
t
r
i
c
i
t
uppo
s
et
ha
tli
ymme
y,wemays
wi
t
hnon
-nega
t
i
ves
l
ope.Le
tP bel
oca
t
edbe
tweent
het(
1 ≤t
)
≤kt
t
hofSk
h(
f
romt
opt
obo
t
t
om)o
fSk onAD andt
he(
t +1)
onAD (
t = 3).Thu
s
eeF
i
.6
.1,i
nca
s
eo
fk = 6,
s,
g
→
→
→
Vk = (
k -2)(
k -1)j + (
2
k -t)(- (
2
k -1)
i +tj)+
2
2
→
→
t ((
2
k -1)
i+(
2
k -t)j)
→
→
= -2(
2
k -1)(
k -t)
i +2(- (
k -t) +3
k -3
k +1)j,
→
2
2
→
r
e hor
i
zon
t
a
l and ve
r
t
i
ca
l un
i
t vec
t
or
s,
whe
r
e i and j a
2
2
,
= u,0 ≤ u ≤ (
r
e
s
c
t
i
ve
l
t
e(
k -t)
k -1)
t
hen
pe
y.Deno
1
2
2
2
2
k -1)
u +u2 -2(
3
k2 -3
k +1)
u+(
3
k2 -3
k +1)
|Vk | = (
4
=u - (
3
2
k -2
k +1)
u+(
k -3
k +1).
2
2
2
2
1
Asa quadr
a
t
i
cf
unc
t
i
on ofu,u = k2 - k +
i
st
he
2
ake
si
t
smax
imum
s
t
r
i
cax
i
s.I
ti
sea
s
oknowt
ha
t|Vk|2t
ymme
yt
a
tu = 0.Sot = k,t
shor
i
zon
t
a
l,s
oVk i
sve
r
t
i
ca
l.
ha
ti
s,li
Lemma2i
spr
oved.
Turnt
ot
heor
i
i
na
lprob
l
em.Bys
t
r
i
c
i
t
o
g
ymme
y,weneedt
on
l
s
i
de
rt
ha
tt
hes
l
opeofli
snon
-nega
t
i
veandl
e
s
st
han1.
ycon
Le
tM 1 ,M 2 bel
oca
t
edontwos
i
de
sofl.Deno
t
eM 2 ∩ Sk =
Ch
i
naNa
t
i
ona
lTe
amS
e
l
e
c
t
i
onTe
s
t
Ak ,M 1 ∩ Sk = Bk ,Vk =
|V |=
∑
u - ∑v∈B v,
t
hen
u∈Ak
1006
∑ Vk ≤
k=1
131
k
1006
∑ |V
k=1
k
|.
②
So,|V|max ≤ ∑k=1|Vk|max.
sa
l
lt
he
I
fli
shor
i
zon
t
a
l,M 2i
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
1006
i
n
t
so
fS ont
heuppe
rha
l
f
-p
l
ane,M 1i
sa
l
lpo
i
n
t
sofS ont
he
po
ake
si
t
s max
imum,anda
l
lVk
l
owe
rha
l
f
l
ane;each|Vk |t
p
ndeed
i
n
tupwa
rd.Andt
heequa
l
i
t
f ② ho
l
d
s.So|V |i
po
yo
t
ake
st
hemax
imum|V |max = 2 ×10063 .
2013
(
J
i
a
n
i
n,J
i
a
n
s
u)
gy
g
F
i
r
s
tDay
30,Ma
r
ch24,2013
8:
00 12:
1
Gi
venanyn(> 1)copr
imepo
s
i
t
i
vei
n
t
ege
r
sa1 ,a2 ,...,
an ,deno
t
eA = a1 +a2 + … +an .Le
tdi = (
A ,ai)(
t
he
r
ea
t
e
s
tcommond
i
v
i
s
or),
i = 1,2,...,n.
g
Le
tDi bet
heg
r
ea
t
e
s
tcommond
i
v
i
s
orof {
a1 ,a2 ,...,
an }
ai},i = 1,2, ...,n.Fi
nd t
he mi
n
imum of
\{
∏
n
i=1
A -ai (
. po
s
edbyZhangS
i
hu
i)
diDi
So
l
u
t
i
on.Cons
i
de
r
D1 = (
a2 ,a3 ,...,an )andd2 = (
a2 ,A )
=(
a2 ,a1 +a2 + … +an ).
Le
t(
D1,d2)=d.Thend|a2,d|a3,...,d|an ,d|a1 +
a2 + … +an .Thu
s,d|a1 .Con
s
equen
t
l
y,
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
132
d| (
a1 ,a2 ,...,an ).
S
i
nc
ea1 ,a2 ,...,an a
r
ecopr
ime,wehaved = 1.No
t
e
D1 ,d2)= 1.WehaveD1d2|a2 .So
t
ha
tD1 |a2 ,d2|a2 and (
D1d2 ≤ a2 .S
imi
l
a
r
l
y,wehaveD2d3 ≤ a3 ,...,Dnd1 ≤ a1 .
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
Henc
e,
n
∏dD
i=1
i
i
=(
D1d2)·(
D2d3)·…·(
Dnd1)
≤ a2a3 …ana1
n
∏a .
=
i=1
Con
s
i
de
r
i
ng
n
∏ (A -ai)=
i=1
≥
①
i
n
∏ ( ∑a )
i=1
n
j≠i
j
1
n-1
∏ ( (n -1)( ∏a ) )
i=1
n
·
=(
n -1)
andby ① and ② ,wes
eet
ha
t
n
j≠i
j
∏a
i=1
i
②
n
A -ai
n
≥(
n -1)
.
i=1 diDi
∏
Ont
heo
t
he
rhand,i
fa1 =a2 = … =an = 1,
∏
n
i=1
A -ai
n
=(
n -1)
.
diDi
A -ai (
n
Summi
ngup,t
hemi
n
imumo
f∏i=1
i
s n -1)
.
diDi
n
2
Suppo
s
et
ha
tO andI a
r
et
hec
en
t
r
e
so
ft
hec
i
r
cumc
i
r
c
l
e
t
hr
ad
i
u
sRandr,
andi
nc
i
r
c
l
eo
f△ABC wi
r
e
s
t
i
ve
l
pec
y,P
Ch
i
naNa
t
i
ona
lTe
amS
e
l
e
c
t
i
onTe
s
t
133
︵
tQP bet
i
st
hemi
dpo
i
n
to
fa
r
cBAC .Le
hed
i
ame
t
e
ro
fO .
n
t
e
r
s
e
c
tBCa
tpo
i
n
tD ,andl
e
tt
hec
i
r
cumc
i
r
c
l
eof
Le
tPIi
n
t
e
r
s
e
c
tt
heex
t
endedl
i
neofPA a
tpo
i
n
tF .Le
t
△AIDi
i
n
tE beon PD s
ucht
ha
tDE = DQ .Provet
ha
t,i
f
po
r (
2
. po
s
edbyXi
ong
R
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
∠AEF = ∠APE ,
t
hens
i
n2 ∠BAC =
Bi
n)
F
i
.2
.1
g
F
i
.2
.2
g
So
l
u
t
i
on.S
i
nc
e ∠AEF
= ∠APE ,
t
hen△AEF ∽ △EPF .So
i
nc
epo
i
n
t
sA ,I,D andF a
AF ·PF = EF .S
r
econcyc
l
i
c,
2
PA ·PF =PI·PD .Thu
s,
PF2 = AF ·PF +PA ·PF
= EF +PI·PD .
2
①
S
i
nc
ePQi
st
hed
ime
t
e
ro
fc
i
r
c
l
eOandpo
i
n
tIi
sonAQ ,we
s
eet
ha
tAI ⊥ AP .Cons
equen
t
l
y,
Thu
s,wehave
∠IDF = ∠IAP = 9
0
°.
PF2 -EF2 = PD2 -ED2 .
Comb
i
n
i
ng ① ,wehave
PI·PD = PD2 -ED2 .
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
134
Thu
s
QD2 = ED2 = PD2 -PI·PD =ID ·PD .
Con
s
equen
t
l
y,wehave
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
△QID ∽ △PQD .
②
S
i
ncePQi
st
hed
i
ame
t
e
ro
fc
i
r
c
l
eO ,wes
eet
ha
tBP ⊥BQ .
Suppo
s
et
ha
tPQi
st
hepe
rpend
i
cu
l
a
rb
i
s
ec
t
orofBCa
tpo
i
n
tM .
No
t
et
ha
tIi
st
hei
nc
en
t
r
eof△ABC .WehaveQI2 = QB2 =
QM ·QP .Thu
s,
△QMI ∽ △QIP .
③
By ② and ③ ,wes
eet
ha
t ∠IQD = ∠QPD = ∠QPI =
∠QIM .He
nc
e, MI ‖QD .Le
tIK ⊥ BC be a
t K .Then
IK ‖PM ;
t
hu
s,
PM
PD
PQ
=
=
.
IK
ID
MQ
Byt
he Ci
r
c
l
e
-Powe
rTheor
em andt
heS
i
ne Theor
em,we
knowt
ha
t
PQ ·IK = PM ·MQ = BM ·MC
=
t
hu
s,s
i
n2 ∠BAC =
3
æç 1
ö2
2
,
BC ÷ = (
Rs
i
n∠BAC)
è2
ø
PQ ·IK
2R ·r 2
r
=
=
.
R
R2
R2
Suppo
s
et
he
r
ea
r
e101pe
r
s
on
ss
i
t
t
i
nga
roundar
oundt
ab
l
e
i
nana
rb
i
t
r
a
r
r.Thekt
hpe
r
s
onpo
s
s
e
s
s
e
skp
i
ece
sof
yorde
ca
r
t
s,k = 1, ...,101.Weca
l
li
tat
r
an
s
i
t
i
on i
fone
t
r
ans
i
t
soneofh
i
sca
r
t
st
ooneofh
i
sad
ac
en
tpe
r
s
ons.
j
F
i
ndt
hemi
n
imum po
s
i
t
i
venumbe
rk,s
ucht
ha
twha
t
eve
r
t
heorde
ro
ft
hes
ea
t
i
ng,t
he
r
ei
swayofno mor
et
hank
Ch
i
naNa
t
i
ona
lTe
amS
e
l
e
c
t
i
onTe
s
t
135
t
r
ans
i
t
i
onss
ot
ha
teachpe
r
s
onpo
s
s
e
s
s
e
s51ca
r
t
s.(
s
ed
po
by QuZhenhua)
So
l
u
t
i
on.Theansweri
sk
=4
2925.
Le
tt
hec
i
r
cumf
e
r
enceoft
het
ab
l
ebe101,andt
hed
i
s
t
ance
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
be
tweentwo ad
ac
en
t pe
r
s
on
s be 1.In t
he fo
l
l
owi
ng, we
j
con
s
i
de
rt
hel
ea
s
tt
r
an
s
i
t
i
ont
ime
s.
rd
sby [
iDeno
t
et
he pe
r
s
on whoi
n
i
t
i
a
l
l
s
s
e
s
s
e
sica
ypo
51].So,i
fp >0,
t
henwecant
h
i
nkofpe
r
s
on[
st
hes
our
ce
p]a
st
he
rd
s;andi
fp < 0,pe
r
s
on [
whos
hou
l
ds
endou
tp ca
p]i
s
i
nkwhos
hou
l
dr
e
c
e
i
ve -pca
rd
s.
Suppo
s
et
ha
ta
tt
heendo
ft
r
ans
i
t
i
ons,eachpe
r
s
onha
s51
n
i
t
i
a
l
l
l
ong
i
ng t
o
s
s
e
s
s
e
sa ca
rd u i
ca
rd
s.I
f pe
r
s
on B po
y be
r
s
onA ,wecant
r
r
i
e
sca
rdu t
oB bypa
s
s
i
ng
h
i
nkt
ha
tA ca
pe
︵
t
hr
ought
he mi
nora
r
cAB ,t
hel
eng
t
hoft
herou
t
ei
st
hea
r
c
︵
l
eng
t
h|AB |mean
st
het
ime
so
ft
r
an
s
i
t
i
on
s.
Le
ts
ea
t
i
ng orde
rbea
sshowni
nt
hef
i
r
e.Pe
r
s
on [
i]
gu
t
r
an
s
i
t
sa
l
lh
i
sica
rd
st
ope
r
s
on [-i](
i = 1,2,...,50)wi
t
h
rou
t
el
eng
t
hi.Sot
he
r
ea
r
ea
l
lt
oge
t
he
r12 + 22 + … + 502 =
42925t
r
an
s
i
t
i
on
s.Int
hef
o
l
l
owi
ng,wewi
l
lshowt
ha
tnol
e
s
s
t
r
an
s
i
t
i
on
scanmee
tt
her
equ
i
r
emen
ti
fpe
r
s
on
sa
r
es
ea
t
edi
nt
h
i
s
way.
We u
s
e t
he no
t
i
on o
f
“
t
en
t
i
a
l”.Le
t po
t
en
t
i
a
la
t
po
t
he h
i
s
t po
s
i
t
i
on [
50]be
ghe
50; t
he ne
i
s
i
t
i
on
s
ghbor po
[49 ] and [48 ] each ha
s
t
en
t
i
a
l49,...,t
hel
owe
s
t
po
s
i
t
i
on [- 49]and [- 50]
po
each ha
s po
t
en
t
i
a
l 0. Then,
t
he t
o
t
a
l po
t
en
t
i
a
l a
t t
he
F
i
.3
.1
g
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
136
beg
i
nn
i
ngi
s
S = 101 ×50 + (
100 +99)×49 + … + (
2 +1)×0.
Anda
tt
heendo
ft
r
an
s
i
t
i
on
s,t
het
o
t
a
lpo
t
en
t
i
a
li
s
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
T = 51 ×50 + (
51 +51)×49 + … + (
51 +51)×0.
925.
Thed
i
f
f
e
r
encei
sS -T = 42,
S
i
nc
ea
f
t
e
reacht
r
an
s
i
t
i
on,t
het
o
t
a
lpo
t
en
t
i
a
lchange
sa
t
mo
s
t1,s
oa
tl
ea
s
t42,
925t
r
an
s
i
t
i
onsa
r
eneeded.
Int
hefo
l
l
owi
ng,weshowt
ha
twha
t
eve
rbet
heorde
rof
s
ea
t
i
ng,t
he
r
ei
sa
lway
s a way of no mor
et
han 42,925
t
r
ans
i
t
i
on
ss
ucht
ha
teach pe
r
s
on po
s
s
e
s
s
e
s51ca
rd
s.Toshow
t
h
i
s,weg
i
vetwol
emma
s.
Lemma1.Le
tc,a0 ,a1 ,...,an-1 bei
n
t
ege
r
swi
t
ht
he
i
rs
um
z
e
r
o,andc ≥ 0,a0 ≤ a1 ≤ … ≤ an-1 .
I
fn + 1pe
c],[
a0],[
a1],...,[
an-1],
r
s
on
sdeno
t
edby [
s
s
e
s
sN + c,N + a0 ,N + a1 , ...and N + an-1 ca
rd
s,
po
sapo
s
i
t
i
vei
n
t
ege
r,s
ucht
ha
tN +a0 >
r
e
s
c
t
i
ve
l
r
eN i
pe
y,whe
0.Le
tt
hepe
r
s
on
ss
t
andon0,1,...,n oft
henumbe
rax
i
s,
s
ucht
ha
t[
c]s
t
and
sa
tn.Thent
he
r
ei
sawayofno mor
et
han
cn +
∑
i
ai t
r
ans
i
t
i
ons,s
ucht
ha
teach pe
r
s
on po
s
s
e
s
s
e
sN
n-1
i=0
ca
rd
s.
P
r
oo
fo
fLemma1.Suppo
s
et
ha
tan-1
≥ … ≥as >0 ≥as-1 ≥ …
≥a0 ,
t
heni
nduc
t
i
ononM =an-1 + … +as .
I
fM =0,
t
hen[
c]
s
s
e
scca
rd
st
o[
ai],
ai]ob
rd
s(
0 ≤i ≤
s
ucht
ha
t[
t
a
i
ns-aica
pa
s -1).Suppo
s
et
ha
tpe
r
s
on [
ai]s
t
and
sa
txi(
0 ≤i ≤ n -1),
sape
rmu
t
a
t
i
onof0,1,...,n - 1.
t
henx0 ,x1 ,...,xn-1 i
Thu
s,a ca
rd t
ha
t pa
s
s
e
sf
r
om [
c]t
o [
ai]need
s n - xi
t
r
ans
i
t
i
ons.Sot
het
o
t
a
lt
r
an
s
i
t
i
onsneededa
r
e
Ch
i
naNa
t
i
ona
lTe
amS
e
l
e
c
t
i
onTe
s
t
137
s-1
s-1
s-1
i=0
i=0
i=0
∑ (n -xi)(-ai)=cn + ∑ xiai ≤cn + ∑iai
=c
n+
n-1
∑ia .
i=0
i
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
Nows
uppo
s
et
ha
tt
heconc
l
u
s
i
oni
st
r
uefori
n
t
ege
r
ssma
l
l
e
r
i
de
rt
heca
s
eo
fi
n
t
ege
rM .Suppo
s
et
ha
t
t
hanM .Cons
an-1 = … = an-s > an-s-1 ,al > al-1 = … = a0 .
an-1],...,[
an-s ]andape
Thent
he
r
ei
sape
r
s
oni
n[
r
s
oni
n
[
ucht
ha
tt
he
i
rd
i
s
t
ancei
snomor
et
hann -s
a0],...,[
al-1]s
-l +1.We ma
uppo
s
et
ha
tt
hed
i
s
t
ancebe
tween [
an-s ]and
ys
[
al-1]
i
snomor
et
hann -s -l +1,
e
tpe
r
s
on [
an-s ]pa
s
s
t
henl
aca
rdut
o[
al-1]bynomor
et
hann -s -l+1t
r
an
s
i
t
i
on
s.Nex
t,
byi
nduc
t
i
ononcand
an-1 ≥ … ≥ an-s+1 > an-s -1 ≥ an-s-1
≥ … ≥ al ≥ al-1 +1 > al-2 ≥ … ≥ a0 ,
wes
eet
ha
tbyt
ak
i
ngnomor
et
han
L =cn + (
n -1)
an-1 + … + (
n -s +1)
an-s+1 +
(
n -s)(
an-s -1)+ (
n -s -1)
an-s-1 + … +
l
al + (
l -1)(
al-1 +1)+ (
l -2)
al-2 + … +0·a0
t
r
an
s
i
t
i
ons,each pe
r
s
on po
s
s
e
s
s
e
s N ca
rd
s.Add
i
t
i
on oft
he
t
r
an
s
i
t
i
on
so
fca
rdu,weknowt
ha
tt
he
r
ea
r
enomor
et
han
n-1
lL + (
n -s -l +1)=cn + ∑i
ai
i=0
t
r
ans
i
t
i
ons.Theproo
fo
fLemma1i
scomp
l
e
t
ed.
Lemma2.Foranypermut
a
t
i
ono
f[-50],[-49],...,[
49],
[
c],deno
50]onac
i
r
c
l
e,t
he
r
ea
lway
sex
i
s
t
sa pe
r
s
on [
t
et
he
c]andt
l
i
nepa
s
s
i
ngt
hr
ough [
heo
r
i
i
nbyl,s
u
cht
ha
tt
hes
umo
f
g
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
138
e
a
chs
i
deo
fl (
i
nc
l
udec )i
nt
heb
r
a
cke
t
sha
st
hes
ames
i
fc.
gno
Proo
fo
fLemma2.Le
tt
hepe
rmu
t
a
t
i
onont
hec
i
r
c
l
ebe[
a1],
[
a2],...,[
a101]c
l
ockwi
s
e.Thent
he
r
ei
sad
i
r
ec
t
edd
i
ame
t
e
rl
o
ft
hec
i
r
c
l
es
ucht
ha
t[
a1],[
a2],...,[
a50]a
r
eonones
i
deof
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
land [
a51],[
a52],...,[
a101]a
r
eont
heo
t
he
rs
i
de.
l
s
e,i
f∑i=1ai ≠0,
I
f∑i=1ai = 0,
t
hent
akec =a51;e
t
hen
50
50
t
hes
umso
fe
a
chs
i
deo
flhav
ed
i
f
f
e
r
en
ts
i
fwer
o
t
a
t
el180
°
gn.I
ha
tt
hes
um o
feachs
i
dechange
ss
i
c
l
ockwi
s
e,wes
eet
gn.So
t
he
r
eex
i
s
t
sa[
i
ch mee
t
i
ngt
her
equ
i
r
emen
tofLemma2.
c]wh
Take[
c]
i
nLemma2.Suppo
s
et
ha
tc ≥0(
e
l
s
echangeeach
[
ai]by [-ai]andchangea
l
lt
hed
i
r
ec
t
i
onso
ft
hea
r
c.Le
tc =
s
ucht
ha
tt
hes
umofc1andt
henumbe
r
son
c1 +c2 ,c1 ,c2 ≥ 0,
ones
i
deo
f(
no
ti
nc
l
udec)
li
sze
r
o.Deno
t
e50numbe
r
sont
h
i
s
s
i
debya0 ≤a1 ≤ … ≤a49 ,anddeno
t
e50numbe
r
sont
heo
t
he
r
s
i
debyb0 ≤b1 ≤ … ≤b49 .Thent
hes
umo
fc2andb0 ,b1 ,...,
b49i
sa
l
s
oze
r
o.Us
i
ngLemma1t
oc1 ,a0 ,a1 ,...,a49 andc2 ,
b0 ,b1 , ...,b49 ,r
e
s
t
i
ve
l
t
a
i
nt
ha
tt
het
r
an
s
i
t
i
on
pec
y,weob
t
ime
sa
r
enomor
et
han
49
49
j=0
j=0
L = 50
c1 + ∑jaj +50
c2 + ∑j
bj .
b0 ,...,
b49i
sape
rmu
t
a
t
i
onof-50,
S
i
ncec,a0 ,...,a49 ,
-4
9,...,50,byt
heorde
ri
nequa
l
i
t
y
49
L = 50
c + ∑j(
aj +bj )
j=0
≤5
0 +
2
49
∑j(2j -50 +2j -49)
j=0
=4
2925.
Summi
ngup,t
hel
ea
s
tpo
s
i
t
i
vei
n
t
ege
rk = 42925.
Ch
i
naNa
t
i
ona
lTe
amS
e
l
e
c
t
i
onTe
s
t
139
S
e
c
ondDay
8:
00 12:
30,Ma
r
ch25,2013
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
4
Le
tp beapr
ime,aandk bepo
s
i
t
i
vei
n
t
ege
r
s,s
a
t
i
s
f
i
ng
y
a
a
ha
tt
he
r
eex
i
s
t
spo
s
i
t
i
vei
n
t
ege
rn,n
p <k <2p .Provet
a
2a
k
<p s
modp ).(
s
ed by Yu
ucht
ha
tCn ≡ n ≡ k(
po
Hongb
i
ng)
So
l
u
t
i
on.Wearetoproveanext
endedprob
l
em.
Le
tp beapr
ime,
aandkbepo
s
i
t
i
vei
n
t
ege
r
s,s
a
t
i
s
f
i
ngpa
y
<k < 2
ha
tf
orany non
-nega
t
i
vei
n
t
ege
rb,t
he
r
e
p .Provet
a
ex
i
s
t
spo
s
i
t
i
vei
n
t
ege
rn,n < pa+bs
ucht
ha
tn ≡k(
modpa )and
k
≡k(
Cn
modpb ).
I
fb =0,pb =1,
t
aken =k -pa .Wepr
ovebyi
nduc
t
i
on.
ti
s,
Suppo
s
et
ha
tt
heconc
l
u
s
i
oni
st
r
uef
ori
n
t
ege
rb ≥ 0.Tha
k
≡
t
he
r
eex
i
s
t
sapo
s
i
t
i
vei
n
t
ege
rn <pa+bn ≡k(
modpa ),andCn
k(
modpb ).
Le
t1 ≤t ≤ p -1.Cons
i
de
r
k
a+b =
Cn
+t
p
k-1
n +tpa+b -i
.
k -i
i=0
∏
Fori
n
t
ege
rm ,l
e
tP (
m )= pvp
,r(
m )=
(
m)
m ,
whe
r
e
P(
m)
vp (
m)
i
st
henumbe
rofpi
nt
hes
t
anda
rdf
ac
t
or
i
za
t
i
ono
fm .
k -i)≤ a and
eet
ha
tvp (
S
i
ncek -i < 2pa ≤ pa+1 ,wes
n -i ≡k -i(
modpa ).Hence,
P(
k -i)|n +tpa+b -i.
Con
s
equen
t
l
y,
C
k
a+b
n+t
p
n -i
a+b-vp (
k-i)
+t
p
P(
k -i)
= ∏
.
r(
k -i)
i=0
k-1
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
140
I
fk -i ≠pa ,
t
henvp (
k -i)≤a -1anda +b -vp (
k -i)
≥b +1.
I
fk -i = pa ,
t
henvp (
k -i)= a.Hence,
k a+b
≡
Cn
+t
p
k-1
æ k-1
ö
n -i
n -i
b
ç ∏
÷ ·t
+
p
∏
(
)(
) ç 0≤i≤k-1P(
k -i)
r(
k -i)÷
i=0 P k -ir k -i
è i≠k-pa
ø
r(
n -i)ö÷ · b (
tp modpb+1).
(
r
ç 0≤i≤k-1 k -i)÷
è i≠k-pa
ø
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
æ
k
≡ Cn + ç
k-1
∏
t
henpa | (
Th
i
si
sbecau
s
et
ha
ti
fk -i ≠ pa ,
n -i)- (
k -i).
So
vp (
n -i)=vp (
k -i).
S
i
nc
e
∏
k-1
r(
n -i)
i
s copr
ime t
o p, we s
ee t
ha
t
r(
k -i)
0≤i≤k-1
i≠k-pa
k
a+b (
Cn
0 ≤t ≤p -1)goe
st
hr
ought
hefo
l
l
owi
ngr
ema
i
nde
r
sof
+t
p
modu
l
a
rpb+1 :
k
b
+j
Cn
p ,j = 0,1,...,p -1.
k
≡k(
S
i
nceCn
modpb ),
t
he
r
eex
i
s
t
sj(
0 ≤j ≤ p -1),
s
uch
b
k
+j
t
ha
tCn
modpb+1).Tha
ti
s,t
he
r
eex
i
s
t
st(
0 ≤t ≤
p ≡ k(
k a+b
≡k(
s
u
cht
ha
tCn
modpb+1).Le
tN =n +tpa+b .Then
p -1),
+t
p
N < pa+b+1 ,N ≡ n ≡k(
modpa )andCkN ≡k(
modpb+1).
Theex
t
endedpr
ob
l
emi
spr
ovedbyi
nduc
t
i
on.
5
Le
tn ≥ 2anda1 ,a2 ,...,an ,b1 ,b2 ,...,bn benon
-
nega
t
i
vei
n
t
ege
r
s.Pr
ovet
ha
t
n
n
æç n ö÷n-1 æç 1
ö æ1
ö2
ai2 ÷ + ç ∑bi ÷ ≥
∑
èn -1ø è n i=1
ø è n i=1 ø
(
s
edbyLeng Gang
s
ong)
po
n
∏ (a
i=1
2
i
n
+bi )
.
2
1
①
Ch
i
naNa
t
i
ona
lTe
amS
e
l
e
c
t
i
onTe
s
t
So
l
u
t
i
on.Denot
eλ
=
141
æç n ö÷n-1 ,
n ≥ 2.Obv
i
ou
s
l
λ > 1.
y,
èn -1ø
2
2
+bk f
1, ...,n},f
Forg
i
veni ∈ {
i
xp = ak
ork = 1,
2,...,nandf
i
xaj andbj (
hel
e
f
t
-hands
i
deof
j ≠i).Thent
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
① =
λ(
1
2
2
2
bi + ∑j≠ibj )
i
saquad
r
a
t
i
c
p -bi + ∑j≠iaj )+ 2 (
n
n
0, p ],wi
t
hl
e
ad
i
ngc
oe
f
f
i
c
i
en
tf
un
c
t
i
ono
fbi ,
bi ∈ [
λ 1
+
<
n n2
0.Thu
s,i
t
smi
n
imumi
st
akena
tt
heendpo
i
n
t
s,t
ha
ti
s,
bi = 0o
r
ai = 0.
So,wecans
uppo
s
et
ha
taibi = 0,
i = 1,2,...,n.
Ca
s
e1.Eachai =0,
t
henbyt
hemeanva
l
uei
nequa
l
i
t
y,we
have
n
æç 1
ö2
bi ÷ ≥
∑
è n i=1 ø
n
∏b
i=1
2
n
i
.
Ca
s
e2.Eachbi =0,
t
henbyt
hemeanva
l
uei
nequa
l
i
t
y,we
have
n
n
æ1
1
2ö
λ ç ∑ ai ÷ ≥ ∑ ai2 ≥
è n i=1
ø n i=1
n
∏a
i=1
2
n
i
.
Ca
s
e3.Wemays
uppo
s
et
ha
tb1 = … =bk = 0,ak+1 = … =
an = 0,1 ≤k < n.
Le
ta1a2 …ak =ak ,bk+1 …bn =bn-k ,a,b ≥0.Thenbyt
he
meanva
l
uei
nequa
l
i
t
y,wehave
2
2
a2
a2 ,bk+1 + … +bn ≥ (
n -k)
b.
1 +a2 + … +ak ≥ k
I
ts
u
f
f
i
c
e
st
opr
ovet
ha
t
2
2
k
2(
n-k)
λk 2 (
n -k)
a +
b2 ≥ an ·b n .
2
n
n
Byt
hemeanva
l
uei
nequa
l
i
t
eet
ha
t
y,wes
Thel
e
f
t
-hands
i
deo
f
②
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
142
② =
λ 2 … λ 2 n -k 2 … n -k 2
+ a +
+
a +
b +
b
n
n
n2
n2
􀮩
􀪁􀪁􀪁
􀪁􀮪􀪁􀪁􀪁
􀪁
􀮫
􀮩
􀪁􀪁􀪁􀪁􀪁􀮪􀪁􀪁􀪁􀪁􀪁
􀮫
kt
e
rms
n-kt
e
rms
æn -k ö÷
è n ø
≥λ a · ç
2
k
n
k
n
n-k
n
2(
n-k)
n
·b
.
So,i
ts
u
f
f
i
c
e
st
os
howt
ha
tλn
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
k
æçn -k ö÷
è n ø
n-k
n
≥ 1,t
ha
ti
s,t
o
æ n ö÷n-k
k
≤λ .
s
how ç
èn -k ø
Inf
ac
t,
n · n ·…· n · · ·…·
1 1
1
n -k n -k
n -k 􀮩
􀪁􀪁
􀪁􀮪􀪁􀪁
􀪁
􀮫
􀮩
􀪁􀪁􀪁􀪁􀪁
􀪁􀮪􀪁􀪁􀪁􀪁􀪁
􀪁
􀮫
nk-nt
e
rms
n-kt
e
rms
≤
=
nk -n)÷önk-k
æn + (
è nk -k
ø
ç
(
)
æç n ö÷ n-1 k
k
=λ .
èn -1ø
6 I
na p
l
ane wi
t
hc
a
r
t
e
s
i
anc
oo
r
d
i
na
t
e
s,l
e
tP andQ b
etwo
r
e
i
on
so
fc
onv
e
xpo
l
i
n
c
l
ud
i
ngbounda
r
n
t
e
r
i
o
r)
g
ygon (
yandi
who
s
ev
e
r
t
i
c
e
sa
r
ea
l
li
n
t
e
e
rpo
i
n
t
s(
i.
e.,t
he
i
rcoord
i
na
t
e
s
g
a
r
ea
l
li
n
t
ege
r
s)andT = P ∩ Q .Provet
ha
ti
fT i
sno
t
emp
t
sno
tcon
t
a
i
ni
n
t
ege
rpo
i
n
t,t
henTi
sanon
yanddoe
degene
r
a
t
econvexquadr
i
l
a
t
e
r
a
l.(
s
edby QuZhenhua)
po
So
l
u
t
i
on.S
i
ncet
henon
emp
t
n
t
e
r
s
ec
t
i
onT oftwoconvex
yi
c
l
o
s
ed po
l
si
sa c
l
o
s
ed convex po
l
r
a
t
ed
ygon
ygon or degene
ea
r
et
hr
eepo
s
s
i
b
l
eca
s
e
s.
l
he
r
po
ygon,t
(
1)T i
sa po
i
n
t.ThenT mu
s
tbet
heve
r
t
exofP orQ ,
con
t
r
ad
i
c
t
i
ngt
hef
ac
tt
ha
tT con
t
a
i
n
snoi
n
t
ege
rpo
i
n
t.
(
2)Ti
sas
egmen
t.ThenT mu
s
tbet
hei
n
t
e
r
s
ec
t
i
onofan
edgeo
fP andanedgeofQ ,wh
i
chcon
t
a
i
nst
heve
r
t
exofP or
Q ,wh
i
chi
sacon
t
r
ad
i
c
t
i
on.
Ch
i
naNa
t
i
ona
lTe
amS
e
l
e
c
t
i
onTe
s
t
143
(
3)Ti
sac
l
o
s
edconvexpo
l
ygon.
saquadr
i
l
a
t
e
r
a
l.
So,i
tr
ema
i
n
st
obeshownt
ha
tTi
F
i
r
s
t,weno
t
et
ha
ti
fT ha
stwoad
acen
tedge
sont
heedge
s
j
ofP (
orQ ),
t
hent
hecommonve
r
t
exo
ft
h
i
stwoedge
smu
s
tbe
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
orQ ),wh
i
chi
sacon
t
r
ad
i
c
t
i
on.Thu
s,t
he
t
heve
r
t
exo
fP (
bounda
r
fT i
sf
ormeda
l
t
e
rna
t
e
l
r
to
fanedgeofP
yo
ybyapa
andt
henapa
r
to
fanedgeofQ ,andeachve
r
t
exofT i
st
he
s,t
henumbe
rofedge
s
i
n
t
e
r
s
e
c
tpo
i
n
to
fedge
so
fP andQ .Thu
o
fTi
seven.
Wes
eet
ha
ti
fanedgeeo
fPi
n
t
e
r
s
ec
t
sanedgefo
fQ ,
t
hen
e mu
s
ti
n
t
e
r
s
e
c
tano
t
he
redgeo
fQ ,o
t
he
rwi
s
eT wi
l
lcon
t
a
i
nan
i
n
t
ege
rpo
i
n
t.
In t
he f
o
l
l
owi
ng, we show by con
t
r
ad
i
c
t
i
on t
ha
tt
he
numbe
ro
fedge
so
fT canbe6ormor
e.
I
fT ha
sedge
snol
e
s
st
han6,t
hens
uppo
s
eP con
t
a
i
nsk
i
n
t
ege
rpo
i
n
t
sexcep
tt
heve
r
t
i
c
e
so
fP .
t
henPi
Ca
s
e1.I
fk =0,
sane
l
emen
ti
n
t
ege
rt
r
i
ang
l
e,ora
r
a
l
l
e
l
og
r
am wi
t
ha
r
ea1.So,P canbel
oca
t
edbe
tweentwo
pa
n
ti
nt
heopen
r
a
l
l
e
ll
i
ne
sl1 ,l2 .Andt
he
r
ei
snoi
n
t
ege
rpo
i
pa
doma
i
nΩbe
tweenl1 andl2 .Atl
ea
s
tt
hr
eeedge
sofP a
r
et
he
edge
sofT ,becau
s
eT ha
sa
tl
ea
s
ts
i
xedge
s.
(
a)In ca
s
eo
f P be
i
ng △ABC
(
SeeF
i
.6
.1),DE ,FG and HI a
r
e
g
edge
sofQ .D ,G andE mayco
i
nc
i
de
wi
t
hF ,H andI,r
e
s
t
i
ve
l
ne
s
pec
y.Li
FG ,HI,l1 andl2 form a convex
i
l
a
t
e
r
a
l.S
i
nc
el
i
neDE doe
sno
t
quadr
i
n
t
e
r
s
e
c
ts
egmen
tBC ,wes
eet
ha
tt
he
F
i
.6
.1
g
i
n
t
e
r
s
e
c
tpo
i
n
to
fl
i
neDE andFG orofl
i
neDE andHIi
si
nΩ.
Thu
s,Q ha
si
n
t
ege
rve
r
t
exi
nΩ,acon
t
r
ad
i
c
t
i
on.
144
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
(
b)Inca
s
eo
fP be
i
ngapa
r
a
l
l
e
l
og
r
am ▱ABCD .Le
tAD ,
AB andBC bet
hr
eeedge
so
fP (
s
eeFi
.6
.2).Thei
n
t
e
r
s
e
c
t
i
on
g
oca
t
e
si
nΩ.Le
tAB ,BC andCD be
i
n
to
fl
i
neEF andHGl
po
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
t
hr
eeedge
so
fP (
s
eeF
i
.6
.3),andt
he
r
ei
snoedgeo
fQ on
g
AD .S
imi
l
a
rt
ot
heca
s
eo
f(
a),wecans
eet
hei
n
t
e
r
s
e
c
t
i
on
fl
i
neEF andIJ l
oca
t
e
si
n Ω,
i
n
tofl
i
neEF and HG oro
po
wh
i
chi
sacon
t
r
ad
i
c
t
i
on.
F
i
.6
.2
g
F
i
.6
.3
g
Ca
s
e 2.k ≥ 1.Cons
i
de
r
i
n
t
ege
rpo
i
n
tX onP o
t
he
rt
han
t
he ve
r
t
i
c
e
s.S
i
nce X ∉ T ,
fT
t
he
r
eex
i
s
t
sanedge MN o
s
ucht
ha
tT andX a
r
es
epa
r
a
t
ed
byl
i
neMN (
deno
t
ebyl )(
s
ee
F
i
.6
.4).Thu
s,MN i
sa pa
r
t
g
F
i
.6
.4
g
sont
heedgeAB ofP ,N i
sont
heedge
o
fbounda
r
yofQ .M i
CD ofP .A ,C andX a
r
eont
hes
ames
i
deofl (A andC may
co
i
nc
i
de,bu
tB andD dono
tbyt
hehypo
t
he
s
i
st
ha
tT ha
sa
t
fT onAB ,
l
ea
s
ts
i
xedge
s).Thu
s,t
he
r
ei
sano
t
he
rve
r
t
exU o
andt
he
r
ei
sano
t
he
rve
r
t
exV o
fT onCD .
i
n
t
sX andve
r
t
i
c
e
so
fP be
l
ow
Deno
t
et
heconvexhu
l
lofpo
lbyP'.ThenP'andP co
i
nc
i
debe
l
owBD ,andt
hepa
r
tofP'
upBDi
s△BXD .Compa
r
i
ngT' = P' ∩ Q wi
t
hT ,wes
eet
ha
t
,
T' ⊂ T andt
hebounda
r
fT'i
st
hebounda
r
fT wi
t
hMN ,
yo
yo
Ch
i
naNa
t
i
ona
lTe
amS
e
l
e
c
t
i
onTe
s
t
145
MU andNV r
ep
l
ac
edbyM'N',M'U'andN'V',r
e
s
t
i
ve
l
pec
y.
hes
ame numbe
rofedge
s,andt
he
Tha
ti
s,T' and T havet
numbe
rofi
n
t
ege
rpo
i
n
t
so
fP' o
t
he
rt
hanve
r
t
i
ce
si
sl
e
s
st
han
t
ha
to
fP .By af
i
n
i
t
e procedu
r
el
i
ket
h
i
s,wecan ob
t
a
i
na
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
convexpo
l
t
hnoi
n
t
e
r
i
ori
n
t
ege
rpo
i
n
t.By Ca
s
e1,i
ti
s
ygonwi
impo
s
s
i
b
l
e.
2014
(
Na
n
i
n
i
a
n
s
u)
j
g,J
g
F
i
r
s
tDay
8:
00 12:
30,Ma
r
ch23,2014
1
Le
t O be t
he c
i
r
cumcen
t
e
ro
f △ABC and H A be t
he
t
oBC .Theex
t
ens
i
ono
fAO i
n
t
e
r
s
ec
t
s
e
c
t
i
onofA on
pro
j
tA'.The pro
ec
t
i
onsofA'
t
hec
i
r
cumc
i
r
c
l
eo
f △BOC a
j
r
e
s
t
i
ve
l
tO A bet
on
t
oAB andAC a
r
eD andE ,
he
pec
y.Le
c
i
r
cumc
en
t
e
ro
f △DH AE .De
f
i
ne H B ,OB ,H C andOC
s
imi
l
a
r
l
y.
Pr
ovet
ha
t H AO A , H BOB and
H COC a
r
e concu
r
r
en
t. (po
s
ed
byZhangS
i
hu
i)
So
l
u
t
i
on.Le
t T be t
he s
t
r
ymme
y
i
n
t o
f A ove
r BC , F be t
he
po
,
o
e
c
t
i
ono
fA' on
t
oBC and M be
pr
j
t
hepr
o
e
c
t
i
ono
fT on
t
oAC .
j
S
i
nc
eAC =CT ,weha
v
e ∠TCM =
2∠TAM .S
i
nce ∠TAM
=
π
2
F
i
.1
.1
g
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
146
∠ACB = ∠OAB ,weh
ave
∠TCM = 2∠OAB = ∠A
'OB = ∠A'CF ,
and
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
∠TCH A = ∠A
'CF + ∠A'CT = ∠TCM + ∠A'CT = ∠A'CE .
Be
cau
s
eo
ft
he f
ac
tt
ha
t ∠CH AT , ∠CMT , ∠CEA',
∠CFA
'a
r
er
i
tang
l
e
s,wehave,
gh
c
o
s∠TCH A
CH A
CH A ·CT
cos∠A'CE
=
=
=
CM
CT CM
c
o
s∠TCM
cos∠A'CF
=
CE ·CA' CE ,
=
CA' CF
CF
i.
e.,CH A ·CF = CM ·CE ,s
r
eont
he
o H A ,F ,M andE a
s
amec
i
r
c
l
eω1 .
hepro
ec
t
i
onofT on
t
oAB ,
S
imi
l
a
r
l
e
tN bet
t
henH A ,
j
y,l
F ,N and D a
r
eont
hes
amec
i
r
c
l
eω2 .S
i
nce A'FH AT and
A'EMT a
r
ebo
t
hr
i
r
apezo
i
d,t
hepe
rpend
i
cu
l
a
rb
i
s
ec
t
orof
ghtt
ta
tt
he mi
dpo
i
n
t K oft
he
t
hes
egmen
t
s H AF and EM mee
s
egmen
tA'T ,i.
e.,K i
st
hec
en
t
e
rofc
i
r
c
l
eω1 andKF i
st
he
r
ad
i
u
so
fc
i
r
c
l
eω1 .S
imi
l
a
r
l
r
ea
l
s
ot
hecen
t
e
rand
y,K andKF a
t
her
ad
i
u
sofc
i
r
c
l
eω2 ,r
e
s
t
i
ve
l
s,ω1 andω2 a
r
et
he
pec
y.Thu
s
ame,D ,N ,F ,H A ,E andM a
r
eont
hes
amec
i
r
c
l
e.SoO Ai
s
t
hemi
dpo
i
n
tK o
fA'T ,O AH A ‖AA'.
S
i
nce ∠H CAO + ∠AH CH B =
π ∠
π,
- ACB + ∠ACB =
2
2
we have AA' ⊥ H BH C ,t
hu
s O AH A ⊥ H BH C ,t
he
r
e
for
e,
O AH A ,OBH B andOCH C a
l
lpa
s
st
hrought
heor
t
hocen
t
e
ro
f
△H AH BH C .
2
l
oreve
r
Le
tA1A2 …A101 bear
egu
l
a
r101 gon,andco
y
ve
r
t
exr
ed or b
l
ue.Le
t N be t
he numbe
r of ob
t
u
s
e
Ch
i
naNa
t
i
ona
lTe
amS
e
l
e
c
t
i
onTe
s
t
147
t
r
i
ang
l
e
ss
a
t
i
s
f
i
ng t
hef
o
l
l
owi
ng cond
i
t
i
ons:Thet
hr
ee
y
ve
r
t
i
c
e
so
ft
het
r
i
ang
l
emu
s
tbeve
r
t
i
ce
soft
he101 gon,
bo
t
ht
heve
r
t
i
c
e
swi
t
hacu
t
eang
l
e
shavet
hes
ameco
l
or,
andt
heve
r
t
exwi
t
hob
t
u
s
eang
l
eha
sd
i
f
f
e
r
en
tco
l
or.
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
(
1)F
i
ndt
hel
a
r
s
tpo
s
s
i
b
l
eva
l
ueo
fN .
ge
(
2)F
i
ndt
henumbe
rof way
st
oco
l
ort
heve
r
t
i
ce
ss
uch
t
ha
t max
imum N i
sach
i
eved. (Two co
l
or
i
ng
sa
r
e
heco
l
or
sa
r
ed
i
f
f
e
r
en
ton
d
i
f
f
e
r
en
ti
ffors
omeAi t
t
hetwoco
l
or
i
ngs
cheme
s.)(
s
edby QuZhenhua)
po
So
l
u
t
i
on.Def
i
n
i
ngxi
=0o
sr
edor
r1depend
sonwhe
t
he
rAii
b
l
ue.Forob
t
u
s
et
r
i
ang
l
eAi-aAiAi+b (
ve
r
t
exAii
st
heve
r
t
exof
t
he
s
et
hr
eeve
r
t
i
ce
ss
a
t
i
s
f
t
heob
t
u
s
eang
l
e,i.
e.,
a +b ≤ 50),
y
t
hecond
i
t
i
onso
ft
hepr
ob
l
emi
fandon
l
f
yi
(
xi -xi-a )(
xi -xi+b )= 1,
o
t
he
rwi
s
eequa
l0,he
r
et
hes
ub
s
c
r
i
tmodu
l
e
s101.Thu
s,
p
N =
101
∑ ∑ (x
i=1 (
a,b)
i
①
(
-xi-a )
xi -xi+b ).
He
r
e ∑ (a,b)s
t
and
sfort
hes
umma
t
i
onofa
l
lpo
s
i
t
i
v
ei
n
t
e
e
rpa
i
r
s
g
(
a,b)
s
a
t
i
s
f
i
nga +b ≤50.The
r
ea
r
e49+48+ … +1 =1225s
uch
y
s
i
t
i
vei
n
t
ege
rpa
i
r
s.Expand
i
ng ① ,wehave
po
N =
=
101
∑ ∑ (x
i=1 (
a,b)
101
i
∑ ∑ (x
i=1 (
a,b)
2
i
(
-xi-a )
xi -xi+b )
-xixi-a -xixi+b +xi-axi+b )
101
101
50
2
k -1 -2(
50 -k))
xixi+k
∑ xi + ∑ ∑ (
=1
225
i=1
=1
225
n+
i=1 k=1
101
50
∑ ∑ (3k -101)xx
i=1 k=1
i i+k
.
②
He
r
eni
st
henumbe
ro
ft
heb
l
ueve
r
t
i
c
e
s.Foranytwove
r
t
exe
s
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
148
Ai andAj ,1 ≤i ≤j ≤ 101,
l
e
t
d(
Ai ,Aj )= d(
Aj ,Ai)= mi
n{
j -i,101 -j +i}.
A1 ,A2 ,...,A101}bet
hes
e
to
fa
l
lb
l
ueve
r
t
i
ce
s.
Le
tB ⊆ {
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
Then ② canbewr
i
t
t
ena
s
2
+3
N = 1225n -101Cn
∑
d(
P ,Q ),
{
P ,Q}⊆B
③
whe
r
e{
P,Q}pa
s
st
h
r
ougha
l
lt
hetwo
e
l
emen
ts
ub
s
e
t
so
fB.
Wi
t
hou
tl
o
s
so
fg
ene
r
a
l
i
t
s
s
umet
ha
tni
se
v
en.Ot
he
rwi
s
e,
y,wea
chang
et
hec
o
l
o
ro
fa
l
lv
e
r
t
i
c
e
s,t
hev
a
l
u
eo
fN doe
sno
tchang
e.
Wr
i
t
en = 2
t,0 ≤t ≤ 50,f
r
omonepo
i
n
t,r
enumb
e
ra
l
lt
heb
l
u
e
v
e
r
t
i
c
e
sbyP1,P2,...,P2t c
l
o
ckwi
s
e.Then
∑
d(
P ,Q )=
{
P ,Q}⊆B
t
t
t-1
1
d(
Pi ,Pi+t)+ ∑ ∑ (
d(
Pi ,Pi+j )+
∑
2 i=1 j=1
i=1
d(
Pi+j ,Pi+t)+d(
Pi+t ,Pi-j )+d(
Pi-j ,Pi))
101 (
tt -1).
2
≤5
t+
0
④
He
r
et
hes
ub
s
c
r
i
to
fPi modu
l
e
s2
t,and weu
s
et
hei
nequa
l
i
t
p
y
d(
Pi ,Pi+t)≤ 50and
d(
Pi ,Pi+j )+d(
Pi+j ,Pi+t)+d(
Pi+t ,Pi-j )+d(
Pi-j ,Pi)
≤1
01.
Comb
i
n
i
ng ③ and ④ ,wehave
101
æ
ö
2
0
t + t(
t -1)÷
+3ç5
N ≤ 1225n -101Cn
2
è
ø
101 2 5099
t +
t.
2
2
=-
⑤
⑥
Ther
i
t
-hands
i
deof ⑥ a
t
t
a
i
n
si
t
smax
imum va
l
uewhen
gh
Ch
i
naNa
t
i
ona
lTe
amS
e
l
e
c
t
i
onTe
s
t
149
t = 25,
t
hu
sN ≤ 32175.
Ne
x
t, c
on
s
i
d
e
rt
h
e n
e
c
e
s
s
a
r
u
f
f
i
c
i
en
tc
ond
i
t
i
on o
f
y and s
N =3
21
7
5.F
i
r
s
t,t = 2
5 me
an
st
ha
tt
h
e
r
ea
r
e5
0b
l
u
ev
e
r
t
i
c
e
s.
S
e
c
ond
l
o
r1 ≤i ≤t,weha
v
ed(
Pi,Pi+t)= 5
0.Whend(
Pi,
y,f
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
0,e
u
a
l
i
t
f⑤ ho
l
d
s.Th
e
r
e
f
o
r
e,t
henumb
e
ro
fwa
st
o
Pi+t)= 5
q
yo
y
c
hoo
s
e5
0b
l
u
ev
e
r
t
i
c
e
ss
u
c
ht
ha
tN a
c
h
i
e
v
e
sma
x
imumi
sequ
a
lt
ot
he
numbe
ro
f way
st
o choo
s
e 25 d
i
a
l
sf
r
om t
hel
ong
e
s
t 101
gona
e
r
t
i
c
e
s.
d
i
a
l
ss
u
cht
ha
tanytwod
i
a
l
sdono
thav
ec
ommonv
gona
gona
Edg
i
ngAiandAi+50 ,
i =1,2,...,101,wege
tag
r
aphG .
No
t
et
ha
t50and101a
r
er
e
l
a
t
i
ve
l
ime,s
o1 +50
n(
0 ≤n ≤
ypr
100)f
orm acomp
l
e
t
er
e
s
i
dues
s
t
em modu
l
e101,i.
e.G i
sa
y
c
i
r
c
l
ewi
t
h101edge
s.The
r
e
for
e,t
henumbe
ro
fway
s(
wr
i
t
t
en
i
eve
smax
imumi
sequa
l
a
sS )t
oco
l
or50ve
r
t
i
c
e
sb
l
ueandN ach
t
ot
henumbe
ro
fway
st
ochoo
s
e25edge
so
fGs
ucht
ha
tanytwo
o
ft
hemdono
thavecommonve
r
t
i
c
e
s.Now,f
i
xoneedgeeof
4
G .S
i
nc
et
henumbe
ro
fway
st
ochoo
s
eedge
shav
i
ngei
sC2
no
t
75 ,
5
4
25
sC2
s
oS = C2
S
imi
l
a
r
l
henumbe
ro
fway
s
hav
i
ngei
76 ,
75 + C
76 .
y,t
t
oha
v
e50r
edv
e
r
t
i
c
e
si
sa
l
s
oS,t
hu
st
henumbe
ro
fway
st
oc
o
l
o
r
t
hev
e
r
t
i
c
e
ss
u
cht
ha
tt
hel
a
r
e
s
tv
a
l
u
eo
fNi
sa
ch
i
e
v
edi
s2S.
g
s32175,t
he
Ins
umma
r
hel
a
r
s
tpo
s
s
i
b
l
eva
l
ueofN i
y,t
ge
4
25
numbe
ro
fway
st
oco
l
ori
s2S = 2(
C2
.
75 + C
76 )
3
Show t
ha
tt
he
r
ea
r
e no 2
t
up
l
e
s(
x,y)of po
s
i
t
i
ve
i
n
t
ege
r
ss
a
t
i
s
f
i
ngt
heequa
t
i
on
y
(
x +1)(
x +2)…(
x +2014)= (
y +1)(
y +2)…(
y +4028).
(
s
edbyLiWe
i
po
gu)
Proo
f.Forn
k
= 2 ·m (
ki
sanon
-nega
t
i
vei
n
t
ege
r,m i
sodd),
l
e
tv(
n)= 2k .
We pr
ovet
h
i
s by con
t
r
ad
i
c
t
i
on.As
s
ume (
x,y)i
s one
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
2
Pa
r
tI Sho
r
t
-An
swe
r Qu
e
s
t
i
on
s(
e
s
t
i
on
s1 8,e
i
tma
r
k
s
Qu
gh
e
a
ch)
1
x)=
Ther
angeo
ff(
x -5 - 24 -3x i
s
.
So
l
u
t
i
on.I
ti
sea
s
os
eet
ha
tf(
x)
i
si
nc
r
ea
s
i
ngoni
t
sdoma
i
n
yt
[
5,8].The
r
e
f
or
e,i
t
sr
angei
s [-3, 3].
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
150
2
s
i
nxi
acos2x -3)
s -3.Thent
he
Themi
n
imumo
fy = (
ai
s
.
a
n
eo
fr
e
a
ln
u
m
b
e
r
g
o
s
i
t
i
v
ei
n
t
e
e
rs
o
l
u
t
i
ono
ft
heequa
t
i
on.Le
t
pr
g
=
So
l
u
t
i
on.Le
ts
i
nxv(
hee
r
e
s
s
i
oni
he
o
p
{
(
)nc
}. hangedt
= x
+j
xt+.T
i)
m
a
x
v
xst
1≤j≤2014
t)= (-a
t2 +a -3)
t,or
g(
t
hen
I
f1 ≤j ≤ 2014,j ≠i,
(
)
t3 + (
a -3)
t.
g t = -a
v(
x +j)=v(
x +i + (
j -i))=v(
j -i),
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
t3 + (
a -3)
t ≥ -3,wege
t
F
r
om -a
s
o
)≥ 0,
-(
a
t(
t2 -1)-3(
t -1v 
x +j) =v ((
2014 j)!·(
2013!).
j -1)!)≤v(
∏
i
a
 1≤j≤2014,j≠(
t -1)(t(
t +1)-3)≥ 0.
)
,
(
)=ave -a
)
(
≤
weh
t++
3u
0
o
rf4028!,t
S
i
n
c
et
i
sam
l
t
i
l
eo
hu
s
s
i
n
c
e
y
j1
p
∏-j1=1≤(x0+,j
∏j=1t
2014
4028
a(
t2 +t)≥ -3.
①
4028! 
1007
>2 .
x +i ≥v(
x +i)≥v 
!
2013 
expr
e
s
s
i
on ① a
lway
sho
l
d
s;when0 <t ≤
Whent =0,-1,
4028
4028
The
r
e
f
or
e,x > 21006 .So (
y +4028) >
y2+j)=
1 (
- j=1≤t +
1,wehave0 <t2 +t ≤ 2;andwhen -1 <t < 0,∏
4
2014
)> 21006·2014 .Wehavey +4028 > 2503 ,y > 2502 .
∏j=1(x +j,
3
≤a ≤ 1
t < 0.The
r
e
f
or
e 2.
n
2
1(
1
Lemma.Le
t0 ≤ xi <
1 ≤i ≤n).
I
fx = ∑i=1xi ,y =
n
2
2
{
,
a
x1≤u
x
t
h
e
n
i≤
nb
i}
3 2m
Th
en
m
e
ro
f
i
n
t
e
r
a
lpo
i
n
t
s(
i.
e.,t
hepo
i
n
t
swho
s
ex
g
n
1 )w
-coord
andy
i
na
t
e
sa
r
eb
o
t
hi
n
t
ege
r
s
i
t
h
i
nt
hea
r
ea (
no
t
n
1 -xi) ≥ 1 -x -y.
1 -x ≥  ∏ (
)enc
i
nc
l
ud
i
ngt
hebounda
r
l
o
s
edbyt
her
i
ancho
f
iy
=1
ghtbr
-a
=
=1
xmm
ndl
i
nex
0
0
i
s
.
ho
e
rbf
o
l
a
y.B
Pr
o
fo
l
e
yp
t
h
eAM
GMi
n
e
u
a
l
i
t
hei
n
e
a
l
i
t
y1a
q
y,t
qu
yon
2
2
,
,
So
l
u
t
i
ol
n.
s
mm
e
t
r
n
l
n
e
e
dt
oc
on
s
i
d
rt
h
e
a
r
to
f
t
h
e
e
f
tB
i
s
a
s
t
o
ov
ew
.eo
The
i
ne
u
a
l
i
t
ont
h
e
l
e
f
th
o
l
d
s
s
i
n
c
e
ye
y
y
y
p
y
p
q
y
n
1x
bovet
hex
-a
i
s.Suppo
s
el
i
ney = k i
n
t
e
r
c
ep
t
st
he
t
hea
r
eaa
 i∏ (1 -xi) n ≥ n n 1 ≥ n ( n
2
=1
∑i=1 1 -xi ∑i=1 1 +xi +2xi )
n
n
n +nx +2∑i=1xi2
=
≥
1
1 +x +y
≥ 1 -x -y.
Thel
emmai
spr
oved.
Ch
i
naNa
t
i
ona
lTe
amS
e
l
e
c
t
i
onTe
s
t
151
4029
Backt
ot
hepr
ob
l
em,
l
e
tw =x +2015 >21007 ,z =y +
2
502
>2 ;
t
hent
heequa
t
i
oni
sequ
i
va
l
en
tt
o
1
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
1ö æ
2ö æ
2014ö÷ ö÷ 2014
ææ
w · ç ç1 - ÷ ç1 - ÷ … ç1 wøè
wø è
w øø
èè
1
9 ö æ
1 ö÷ æç
40272 ö÷ ö÷ 2014
1 - 2 ÷ … ç1 .
2
4
4
z øè
z ø è
4
z2 ø ø
2
=z · ç ç1 -
ææ
èè
Byt
hel
emma,
1
2015ö÷
1 ö÷ æç
2ö æ
2014ö÷ ö÷ 2014
æ
ææ
1 - ÷ … ç1 > w · ç ç1 w ç1 2w ø
wøè
wø è
w øø
è
èè
2015 2·20142 ö÷
2w
ø
w2
> w ç1 -
æ
è
2015÷ö 1
.
2w ø 8
> w ç1 -
æ
è
The
r
e
f
or
e,t
he de
c
ima
lo
fw ·
1
ææ
2 ö÷ …
1 ö÷ æç
ç ç1 1 wøè
wø
èè
æ
æ 3 1ö
2014ö÷ ö÷ 2014
ç1 be
l
ong
st
oç , ÷ .
w øø
è
è 8 2ø
Ont
heo
t
he
rhand,byt
hel
emma
12 +32 + … +40272 ö÷
æ
z2 ç1 è
ø
4
z2 ·2014
ææ
èè
12 +32 + … +40272 2·40274 ö÷ ,
2
(
ø
4
z2 ·2014
4
z2)
2
>z ç1 -
æ
è
t
hu
s
1
1 ö÷ æç
9 ö æ
40272 ö÷ ö÷ 2014
1 - 2 ÷ … ç1 2
z øè
4
z ø è
4
z2 ø ø
4
2
>z · ç ç1 -
1
1 ö÷ æç
9 ö æ
40272 ö÷ ö÷ 2014
ææ
4·20142 -1
2
1 - 2 ÷ … ç1 >z · ç ç1 2
èè
4
z øè
4
z ø è
4
z2 ø ø
12
z2 -
4·20142 -1 40274
12
z2
8
2
>z 2
4·20142 -1 1
.
8
12
>z -
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
152
4·20142 -1
S
i
nc
ez2 i
sani
n
t
ege
r,s
ot
hede
c
ima
lpa
r
tof
12
1
ææ
æ7
ö
40272 ö÷ ö÷ 2014
1 öæ
9 ö æ
z · ç ç1- 2 ÷ ç1- 2 ÷ … ç1be
l
ong
st
o ç ,1÷ ,
2
4
4
4
z øè
z ø è
z øø
èè
è8
ø
2
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
wh
i
chi
sacon
t
r
ad
i
c
t
i
on.
The
r
e
f
or
e,t
he
r
ea
r
eno2 t
up
l
e
s(
x,y)o
fpo
s
i
t
i
v
ei
n
t
e
e
r
s
g
s
a
t
i
s
f
i
ng
y
2014
∏ (x +i)=
j=1
4028
∏ (y +i).
j=1
S
e
c
ondDay
8:
00 12:
30,Ma
r
ch24,2014
4
Gi
ven an odd i
n
t
ege
rk > 3.Prove t
ha
tt
he
r
e ex
i
s
t
i
nf
i
n
i
t
e
l
s
i
t
i
vei
n
t
ege
r
sn,s
ucht
ha
tt
he
r
ea
r
e
y many po
n2 +1,
ha
ta
l
ld
i
v
i
de
twopo
s
i
t
i
vei
n
t
ege
r
sd1 ,d2 t
and
2
d1 +d2 =n +k.(
s
edby YuHongb
i
ng)
po
So
l
u
t
i
on.Cons
i
de
rt
heDi
ophan
t
i
neequa
t
i
on
2
2
((
+1)
+1,
k -2)
xy = (
x +y -k)
①
wep
r
ov
et
ha
t① ha
si
n
f
i
n
i
t
e
l
s
i
t
i
v
eodds
o
l
u
t
i
on
s(
x,y).
y manypo
Obv
i
ou
s
l
1,1)i
sapo
s
i
t
i
veodds
o
l
u
t
i
on,l
e
t(
x1 ,y1)=
y,(
(
1,1).As
s
umet
ha
t(
xi ,yi)i
sapo
s
i
t
i
veodds
o
l
u
t
i
onof ① ,
andxi ≤ yi ,
l
e
txi+1 = yi ,yi+1 = (
k -1)(
k -3)
k -xi .
yi +2
S
i
nc
e ① canbewr
i
t
t
ena
s
2
x2 - ((
k -1)(
k -3)
k)
x +(
y +2
y -k) +1 = 0,
by Vi
e
t
a
􀆳
st
heor
em,(
xi+1 ,yi+1)
i
sa
l
s
oai
n
t
ege
rs
o
l
u
t
i
onof①.
,
,
S
i
nc
exi yi andk a
r
ea
l
lpo
s
i
t
i
veoddi
n
t
ege
r
s andk ≥ 5,s
o
xi+1i
sapo
s
i
t
i
veoddi
n
t
ege
r,and
Ch
i
naNa
t
i
ona
lTe
amS
e
l
e
c
t
i
onTe
s
t
153
k -1)(
k -3)
k -xi ≡ -xi ≡ 1(
mod2),
yi+1 = (
yi +2
k -xi > yi > 0.
yi+1 ≥ 8yi +2
i
sapo
s
i
t
i
veodds
o
l
u
t
i
onof① ,andxi +
Thu
s,(
xi+1 ,yi+1)
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
x1 ,y1)andt
hecons
t
r
uc
t
i
onabove,wege
t
yi <xi+1 +yi+1 .By(
as
e
r
i
e
so
fpo
s
i
t
i
veodds
o
l
u
t
i
onso
f① :(
xi ,yi),
i =1,2,...,
s
ucht
ha
tx1 +y1 < x2 +y2 < … .
tn =xi +
Foranyi
n
t
ege
rig
r
ea
t
e
rt
hank,xi +yi >k.Le
sapo
s
i
t
i
veoddi
n
t
ege
r,and
yi -k,d1 =xi ,d2 =yi .Thenni
2
+1i
d1 +d2 =n +k.S
i
nc
e(
k -2)
seven,wecans
howt
ha
td1 ,
n2 +1,
d2a
ss
uchn
r
ebo
t
hd
i
v
i
s
or
so
f
andd1 +d2 =n +k.Thu
2
s
a
t
i
s
f
i
e
sa
l
lt
hecond
i
t
i
on
s,t
he
r
e
f
or
et
he
r
eex
i
s
ti
nf
i
n
i
t
e
l
y many
s
i
t
i
veoddi
n
t
ege
r
sns
a
t
i
s
f
i
ngt
hecond
i
t
i
on
s.
po
y
5
Le
tnbeag
i
veni
n
t
ege
rwh
i
chi
sg
r
ea
t
e
rt
han1.Fi
ndt
he
n)
r
ea
t
e
s
tcons
t
an
tλ(
s
ucht
ha
tforanynon
ze
rocomp
l
ex
g
z1 ,z2 ,...,zn ,wehave
n
∑ |z |
k=1
k
2
≥λ(
n)mi
n{
|zk+1 -zk | },
1≤k≤n
2
whe
r
ezn+1 =z1 .(
s
edbyLeng Gang
s
ong)
po
So
l
u
t
i
on.Le
t
ìïn ,2|n,
ïï4
(
)
λ0 n = í n
,o
t
he
rwi
s
e,
ï
2 π
ï4c
î os 2
n
wepr
oveλ0(
n)
i
st
heg
r
ea
t
e
s
tcons
t
an
t.
I
ft
he
r
eex
i
s
t
sk(
1 ≤k ≤n)
s
ucht
ha
t|zk+1 -zk |= 0,
t
he
i
nequa
l
i
t
l
d
sobv
i
ou
s
l
t
hou
tl
o
s
so
fgene
r
a
l
i
t
yho
y.Sowi
y,wecan
a
s
s
umet
ha
t
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
154
2
mi
n{
|zk+1 -zk | }= 1.
①
1≤k≤n
Unde
rt
h
i
sa
s
s
ump
t
i
on, i
ts
u
f
f
i
ce
st
o show t
ha
tt
he
mi
n
imumva
l
ueo
f∑k=1 |zk |2i
sλ0(
n).
n
Whenni
seven.S
i
nce
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
n
2
∑ |zk | =
k=1
≥
n
n
1
1
2
2
2
(
|zk | +|zk+1 | )≥ ∑ |zk+1 -zk |
∑
2k
4 k=1
=1
n
n
2
mi
n{
|zk+1 -zk | }= ,
4 1≤k≤n
4
andequa
l
i
t
l
d
swhen (
z1 ,z2 ,...,zn )=
yho
æ1
ç
,- 1 ,...,
2
è2
n
1 , 1 ö÷ ,
n
t
hu
st
hemi
n
imumv
a
l
u
eo
f∑k=1|zk|2i
s =λ0(
n).
2
4
2ø
sodd.Le
t
Nex
t,cons
i
de
rt
hecond
i
t
i
onwhenni
zk+1
∈[
θk = a
r
0,2π),k = 1,2,...,n.
g
zk
Fora
l
lk =1,2,...,n,
i
fθk ≤
π
3π
orθk ≥ ,
t
henby ① ,
2
2
2
2
2
sθk
|zk | +|zk+1 | =|zk -zk+1 | +2|zk ||zk+1 |co
≥|zk -zk+1 | ≥ 1.
2
I
fθk ∈
æç π ,3πö÷ ,
t
henbyc
o
sθk < 0and ② ,
è2 2 ø
1 ≤|zk -zk+1 |2
=|zk | +|zk+1 | -2|zk |
|zk+1 |cosθk
2
2
2
2
≤(
1 + (-2c
osθk ))
|zk | +|zk+1 | )(
θk
.
2
2
2
=(
i
n2
|zk | +|zk+1 | )·2s
The
r
e
f
or
e,
②
Ch
i
naNa
t
i
ona
lTe
amS
e
l
e
c
t
i
onTe
s
t
2
2
|zk | +|zk+1 | ≥
155
1
.
θk
2s
i
n2
2
③
Nowcon
s
i
de
rt
hef
o
l
l
owi
ngtwocond
i
t
i
ons.
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
æ π 3πö
(
1 ≤k ≤ n),θk ∈ ç , ÷ ,by ③
1)I
ff
ora
l
lk(
è2 2 ø
n
2
∑ |zk | =
k=1
S
i
nc
e ∏k=1
n
n
n
1
1
2
2
(
|zk | +|zk+1 | )≥ ∑
∑
2k
4 k=1
=1
1
.④
θk
s
i
n2
2
zk+1 zn+1
=
= 1,weh
ave
zk
z1
n
n
zk+1 ö÷
æ
+2mπ = 2mπ,
r
θk = a
gç ∏
∑
è
k=1 zk ø
k=1
⑤
(
π
mπ
n -1)
π
≤s
=c
i
n
o
s .
0 <s
i
n
2
n
2
n
n
⑥
whe
r
emi
sapo
s
i
t
i
vei
n
t
ege
r,andm <n.No
t
et
ha
tni
sodd,s
o
x)=
Le
tf(
1 ,
x ∈
s
i
n2x
π ,3π
.I
ti
sea
s
oshowt
ha
t
yt
[4
4]
x)
i
saconvexf
unc
t
i
on.By ④ andJ
ens
en
􀆳
sInequa
l
i
t
f(
y,and
comb
i
n
i
ng ⑤ and ⑥ ,wehave
n
2
∑ |zk | ≥
k=1
=
l
e
t
n
1
∑
4k
=1
1
n·
1
≥
n
4
θk ö÷
1
2θk
2æ
s
i
n
s
i
n ç ∑k=1
èn
2
2ø
n· 1
n· 1
≥
=λ0(
n).
4
4
π
2 mπ
s
i
n
cos2
n
2
n
æ π 3πö
(
2)I
ft
he
r
eex
i
s
t
sj(
1 ≤j ≤n),
s
ucht
ha
tθj ∉ ç , ÷ ,
è2 2 ø
{
I = j θj ∉
æç π ,3πö÷ ,
j = 1,2,...,n .
è2 2 ø
}
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
156
By ② ,f
orj ∈I,wehave|zj|2 +|zj+1|2 ≥1;andby ③ ,
forj ∉I,wehave
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
2
2
|zj | +|zj+1 | ≥
The
r
e
f
or
e,
n
∑ |z |
k
k=1
2
=
≥
=
1
1
≥
.
θ
2
j
2
2s
i
n
2
1
( ∑I (|zj |2 +|zj+1|2)+ ∑I (|zj |2 +|zj+1|2))
2 j
∈
j∉
1
1
n -|I|)
|I|+ (
2
4
n +1
1(
n +|I|)≥
.
4
4
⑦
No
t
et
ha
t
n +1 n · 1
π
n
≥
≥
⇔c
o
s2
4
n n +1
4
2
2 π
c
o
s
n
2
⇔s
i
n2
n
π
π
1
= 1 -c
≤1=
.
o
s2
n
n
n +1 n +1
2
2
Theequa
l
i
t
l
d
swhenn = 3;whenn ≥ 5,
yho
s
i
n2
æ π ö÷2
π
π2 · 1
1 ,
< ç
<
<
nø
è2
2
n
2
n n +1 n +1
n +1 n ·
≥
t
hei
nequa
l
i
t
l
s
oho
l
d
s.Sof
oroddi
n
t
ege
rn ≥3,
ya
4
4
1
c
o
s2
π
n
2
.Comb
i
n
i
ng ⑦ ,wehave
n
∑ |z |
k=1
k
2
≥
n· 1
=λ0(
n).
4
2 π
c
o
s
2
n
Ont
heo
t
he
rhand,whenzk =
1
π
2co
s
2
n
i(
n-1)
kπ
n
·e
,k = 1,
Ch
i
naNa
t
i
ona
lTe
amS
e
l
e
c
t
i
onTe
s
t
157
2,...,n,wehave|zk -zk+1 |= 1,k = 1,2,...,n,and
∑
n
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
k=1
2
n).
i
eve
si
t
smi
n
imumva
l
ueλ0(
|zk | ach
n)
Summi
ngup,t
heg
r
ea
t
e
s
tλ(
i
s
ìïn ,2|n,
ïï4
λ0(
n)= í n
,o
t
he
rwi
s
e.
ï
2 π
ï4c
o
s
î
2
n
6
Forpo
s
i
t
i
vei
n
t
ege
rk >1,
l
e
tf(
k)bet
henumbe
rofway
s
o
ff
ac
t
or
i
ngk i
n
t
o produc
to
f po
s
i
t
i
vei
n
t
ege
r
sg
r
ea
t
e
r
t
han1. (The orde
r off
ac
t
or
sa
r
e no
tcoun
t
e
r
ed,f
or
examp
l
ef(
12) = 4,a
s12canbef
ac
t
or
edi
nt
he
s
ef
our
way
s:12,2 ×6,3 ×4,2 ×2 ×3.)
Pr
ovet
ha
t,i
fni
sapo
s
i
t
i
vei
n
t
ege
rg
r
ea
t
e
rt
han1,pi
sa
n
imef
ac
t
orofn,
n)≤ .(
s
edby YaoYi
un)
t
henf(
po
j
pr
p
So
l
u
t
i
on.Weus
eP (
n)t
os
t
andf
ort
heb
i
s
tpr
imed
i
v
i
s
or
gge
o
fn,andde
f
i
neP (
1)=f(
1)=1.Wef
i
r
s
tpr
ovetwol
emma
s.
Lemma1.Forpos
i
t
i
vei
n
t
ege
rnandpr
imep|n,wehavef(
n)
≤
∑
d
n
p
d).
f(
Proo
fo
fLemma1.Forconveni
ence,af
ac
t
or
i
ngs
a
t
i
s
f
i
ng
y
t
hecond
i
t
i
oni
sca
l
l
edaf
ac
t
or
i
ngf
orshor
t.
Foranyf
ac
t
or
i
ngo
fn,wr
i
t
en =n1n2 …nk ,
s
i
ncep|n,
s
o
t
he
r
eex
i
s
t
si ∈ {
1,...,k},s
ucht
ha
tp |ni (
i
ft
he
r
ei
smor
e
t
hanones
uchi,choo
s
e any one oft
hem ),wi
t
hou
tl
o
s
sof
h
i
sf
ac
t
or
i
ngt
oaf
ac
t
or
i
ng
r
a
l
i
t
s
s
umet
ha
ti = 1.Mapt
gene
y,a
n,
o
fd =
d = n2n3 …nk .
n1
Fortwod
i
f
f
e
r
en
tf
ac
t
or
i
ng
so
fn,n = n1n2 …nk andn =
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
158
n
'
n
'
'
whe
r
ep d
i
v
i
de
sn1 andn
'1).I
fn1 = n
'1 ,t
hend =
1
2 …n
l(
n2 …nk andd =n
'
'
r
etwod
i
f
f
e
r
en
tf
ac
t
or
i
ng
sofd (di
sa
ka
2 …n
n
n
n
≠
=d
d
i
v
i
s
orof );i
'
t
hend =
',
fn1 ≠n
s
ot
he
s
etwo
1,
n1 n
'
1
p
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
f
ac
t
or
i
ng
smapt
oaf
ac
t
or
i
ngofd andd
' ,r
e
s
t
i
ve
l
pec
y (d and
n
d
'a
r
ed
i
v
i
s
or
so
f ).Thu
s,f(
n)≤
p
oved.
pr
∑
d
d).Lemma1i
s
f(
n
p
d
Lemma2.Forpos
i
t
i
vei
n
t
ege
rn,
n)= ∑d|n ( ),
l
e
tg(
t
hen
Pd
n)≤ n.
g(
Proo
fo
fLemma 2.Induc
t
i
on ont
he numbe
rofd
i
f
f
e
r
en
t
imed
i
v
i
s
or
sofn.I
fn = 1,
1)= 1.I
fn = pa ,pi
sa
t
heng(
pr
,
ime t
hen
pr
a
p -1
a
≤ 1 +p -1 = n.
n)= 1 +1 +p + … +pa-1 = 1 +
g(
p -1
As
s
umet
ha
twhent
henumbe
rofd
i
f
f
e
r
en
tpr
imed
i
v
i
s
or
s
o
fni
sk,wehaveg(
n)≤ n.Cons
i
de
rt
hes
i
t
ua
t
i
onwhenn ha
s
k +1d
i
f
f
e
r
en
tpr
imed
i
v
i
s
or
s.Le
tt
hepr
imef
ac
t
or
i
za
t
i
onofn
ak
k+1
1
ben = pa
whe
r
ep1 < … < pk < pk+1 ,andwr
i
t
en
1 …pk pk+1 ,
a
ak 1
= mpk++1 .
So
a
k+1
k+1
pk+1 -1
dpik+1
(
)
(
)
(
)
(
)
,
=
+
=
+
σm
gn
gm
gm
∑
∑
pk+1 -1
d|m i=1 pk+1
a
m )s
whe
r
eσ(
t
and
sfort
hes
um o
fpo
s
i
t
i
ved
i
v
i
s
or
so
fm .By
a
s
s
ump
t
i
on,g(
m )≤ m ,s
i
nc
e
a
a
k+1
k+1
k
a +1
pk+1 -1
æç
pii -1ö÷pk+1 -1
(
)
= ∏
σm
è i=1 pi -1 ø pk+1 -1
pk+1 -1
≤
a +1
æç
pii -1ö÷ ( ak+1
pk+1 -1)
∏
èi
=1 pi+1 -1 ø
k
Ch
i
naNa
t
i
ona
lTe
amS
e
l
e
c
t
i
onTe
s
t
159
a +1
pii -1ö ak+1
÷(
-1)
p
∏
èi
ø k+1
pi
=1
æ
≤ ç
≤
k
k
( ∏ p ) (p
ai
i=1
ak+1
k+1
i
-1)
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
=n -m ,
n)≤ n.Lemma2i
sproved.
s
og(
Backt
ot
he pr
ob
l
em,i
ts
u
f
f
i
c
e
st
o prove,f
or po
s
i
t
i
ve
i
n
t
ege
rn,f(
n)≤
n
ho
l
d
s.
P(
n)
i
fn =1,
Byi
nduc
t
i
ononn,
t
heequa
l
i
t
l
d
s.As
s
umet
ha
t
yho
n
f
orn = 1,2,...,k,wehavef(
n)≤ ( ).Then,i
fn =k +
Pn
1,byLemma
s1and2andt
hea
s
s
ump
t
i
on,
k +1)≤
f(
d
∑
d)≤
f(
k+1
P(
k+1)
d
∑
d
P(
d)
k+1
P(
k+1)
æ k +1 ö÷
k +1
≤
.
k +1)ø P (
èP (
k +1)
=g ç
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
Ch
i
naGi
r
l
s
􀆳Ma
thema
t
i
ca
l
Ol
i
ad
ymp
2010
Sh
i
i
azhuang
j
F
i
r
s
tDay8:
00~12:
00
Augus
t10,2010
1
Le
tn b
eani
n
t
e
e
rg
r
e
a
t
e
rt
hantwo,andl
e
tA1,A2,...,
g
A2n bepa
i
rwi
s
ed
i
s
t
i
nc
tnonemp
t
ub
s
e
t
so
f{
1,2,...,n}.
ys
De
t
e
rmi
net
hemax
imumv
a
l
u
eo
f∑i=1
n
2
|Ai ∩ Ai+1|
.
|Ai |·|Ai+1|
(
He
r
e,wes
e
tA2n+1 =A1 .Foras
e
tX ,
l
e
t|X|deno
t
et
he
numbe
ro
fe
l
emen
t
si
nX .)
So
l
u
t
i
onTheansweri
sn.
Ch
i
naGi
r
l
s
􀆳Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
Wecons
i
de
reachs
ummandsi =
161
|Ai ∩ Ai+1 |
.
|Ai |·|Ai+1 |
semp
t
e
t,t
hensi = 0.
I
fAi ∩ Ai+1i
ys
I
fAi ∩ Ai+1i
snonemp
t
s
eAi ≠ Ai+1 ,a
tl
ea
s
toneof
y,becau
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
Ai andAi+1 ha
smor
et
hanonee
l
emen
t,t
ha
ti
s,max{
|Ai |,
cau
s
eAi ∩ Ai+1i
sas
ub
s
e
to
feacho
fAi and
|Ai+1 |}≥ 2.Be
Ai+1 ,|Ai ∩ Ai+1 |≤ mi
n{
|Ai |,|Ai+1 |}and
si =
≤
|Ai ∩ Ai+1 |
|Ai |·|Ai+1 |
mi
n{
|Ai |,|Ai+1 |}
1
≤
.
max{
n{
|Ai |,|Ai+1 |}·mi
|Ai |,|Ai+1 |} 2
I
tf
o
l
l
owst
ha
t
2n
|Ai ∩ Ai+1 |
≤
∑
Ai |·|Ai+1 |
|
i=1
2n
1
∑2
i=1
= n.
Th
i
suppe
rboundcanbeach
i
evedwi
t
hs
e
t
s
A1 = {
1},A2 = {
1,2},A3 = {
2},A4 = {
2,3},...,
A2n-2 = {
n -1,n},A2n-1 = {
n},A2n = {
n,1}.
2
In t
r
i
ang
l
e ABC ,AB = AC .
Po
i
n
tD i
st
he mi
dpo
i
n
tofs
i
de
BC .Po
i
n
tE l
i
e
s ou
t
s
i
de t
he
ucht
ha
tCE ⊥ AB
t
r
i
ang
l
eABCs
andBE = BD .Le
t M bet
he
mi
dpo
i
n
to
fs
egmen
tBE .Po
i
n
t
︵
Fl
i
e
sont
he mi
nora
r
cAD o
f
t
hec
i
r
cumc
i
r
c
l
eo
ft
r
i
ang
l
eABD
s
ucht
ha
tMF ⊥ BE .Pr
ovet
ha
t
ED ⊥ FD .
F
i
.2
.1
g
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
162
So
l
u
t
i
on1.Cons
t
r
uc
tpo
i
n
tF1 s
ucht
ha
tEF1
= BF1 a
ndr
ay
DF1i
spe
rpend
i
cu
l
a
rt
ol
i
neED .
I
ts
u
f
f
i
ce
st
oshowt
ha
tF = F1
orABDF1i
scyc
l
i
c;t
ha
ti
s,
①
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
∠BAD = ∠BF1D .
S
e
t ∠BAD = ∠CAD = x.Be
c
a
u
s
eEC ⊥ ABandAD ⊥ BC,
∠ECB = 9
0
°- ∠ABD = ∠BAD = x.
sa mi
d
l
i
neo
f t
r
i
ang
l
eBCE .In pa
r
t
i
cu
l
a
r,
No
t
et
ha
t MD i
MD ‖EC and
②
∠MDB = ∠ECD = x.
In i
s
o
s
c
e
l
e
st
r
i
ang
l
e EF1M ,
wemays
e
t ∠EF1M = ∠BF1M =
s
eEM ⊥ MF1 andMD ⊥
y.Becau
,
DF1
∠EMF1 = ∠EDF1 = 9
0
°,
imp
l
i
ng t
ha
t EMDF1 i
s cyc
l
i
c.
y
Cons
equen
t
l
y,wehave
∠EDM = ∠EF1M = y. ③
F
i
.2
.2
g
Comb
i
n
i
ng ② and ③ ,weob
t
a
i
n
∠BDE = ∠EDM + ∠MDB = x +y.
Be
cau
s
e BE = BD ,we conc
l
ude t
ha
tt
r
i
ang
l
e BED i
s
s
e
i
s
o
s
c
e
l
e
swi
t
h ∠MED = ∠BED = ∠BDE = x + y.Becau
EMDF1i
scyc
l
i
c,wehave ∠MF1D = ∠MED = x +y.I
ti
s
t
henc
l
ea
rt
ha
t
∠BF1D = ∠MF1D - ∠MF1B = x = ∠BAD ,
wh
i
chi
s①.
Ch
i
naGi
r
l
s
􀆳Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
163
So
l
u
t
i
on 2. (Bas
ed on work by She
r
r
y Gong and Inna
Zakha
r
ev
i
ch)Wema
i
n
t
a
i
nt
heno
t
a
t
i
onsu
s
edi
nSo
l
u
t
i
on1.Le
t
ωandO deno
t
et
hec
i
r
cumc
i
r
c
l
eandt
hec
i
r
cumcen
t
e
roft
r
i
ang
l
e
e
tT bes
tween
ABD ,andl
e
condi
n
t
e
r
s
e
c
t
i
on (
o
t
he
rt
hanB )be
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
l
i
neBE andω.Ex
t
ends
egmen
tDE t
hroughE t
o mee
tω a
tS.
ucht
ha
tDF2 ⊥ DE .Wewi
l
ls
howt
ha
tF2 =
i
e
sonωs
Po
i
n
tF2l
F orF2B = F2E .Le
tM 2 deno
t
et
hefoo
to
ft
hepe
rpend
i
cu
l
a
r
f
r
omF2t
ol
i
neBE .I
ts
u
f
f
i
c
e
st
os
howt
ha
tM 2i
st
hemi
dpo
i
n
t
t
ha
ti
s,EM 2 = M 2B .
o
fs
egmen
tBE ,
Be
c
a
u
s
e ∠SDF2 = ∠EDF2 =
90
°,O i
st
he mi
dpo
i
n
tofSF2 .
sc
c
l
i
c,∠BTD =
Be
c
a
u
s
eBTAD i
y
∠BAD = ∠BCE = x.No
t
ea
l
s
o
t
ha
t BD = BE and ∠EBC =
∠DBT .
We
t
r
i
ang
l
e BDT
conc
l
ude
t
ha
t
and BEC a
r
e
cong
r
uen
tt
oeacho
t
he
r,imp
l
i
ng
y
t
ha
tBE = ET .Hence,OE ⊥
F
i
.2
.3
g
BT .Le
tN bet
hefoo
to
ft
hepe
rpend
i
cu
l
a
rf
romSt
ol
i
neBE .
No
t
e t
ha
t s
egmen
t
s NE and EM 2 a
r
e t
he r
e
s
t
i
ve
pec
rpend
i
cu
l
a
rpro
ec
t
i
onsofs
egmen
t
sSOandOF2on
t
ol
i
neBE .
pe
j
Be
cau
s
eSO = OF2 ,NE = EM 2 .Be
cau
s
eTE = EB ,
i
ts
u
f
f
i
c
e
s
t
os
howt
ha
tTN = NE ,wh
i
chi
sev
i
den
ts
i
nce
∠STE = ∠SEB = ∠SDB = ∠EDB = ∠BED = ∠SET
ands
ot
r
i
ang
l
eSETi
si
s
o
s
ce
l
e
swi
t
hSE = ST .
3
Pr
ovet
ha
tf
oreve
r
i
venpo
s
i
t
i
vei
n
t
ege
rn,
t
he
r
eex
i
s
ta
yg
imep andani
n
t
ege
rm s
ucht
ha
t
pr
(
a)p ≡ 5(
mod6);
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
164
(
b)p n;
(
c)n ≡ m 3(
modp).
So
l
u
t
i
on 1. There are inf
i
n
i
t
e
l
ime
sp t
ha
ta
r
e
y many pr
cong
r
uen
tt
o 5 modu
l
o 6. (Th
i
si
sas
c
i
a
l ca
s
e of t
he
pe
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
Di
r
i
ch
l
e
t
􀆳
st
heor
emonpr
ime
si
nana
r
i
t
hme
t
i
cprog
r
e
s
s
i
ont
ha
t
canbeea
s
i
l
i
r
ec
t
l
r
ei
sa
tl
ea
s
tones
uchpr
ime
yprovend
y.The
(
name
l
s
et
he
r
e we
r
e on
l
i
n
i
t
e
l
ime
s
y,5).Suppo
yf
y many pr
cong
r
uen
tt
o5 modu
l
o6,andl
e
tt
he
i
rpr
oduc
tbeP .Then6
P -1,wh
r
uen
tt
o5 modu
l
o6,
i
chi
sl
a
r
rt
han P andcong
ge
mu
s
thave ano
t
he
r pr
ime d
i
v
i
s
orcong
r
uen
tt
o 5 modu
l
o 6,
wh
i
chi
sacon
t
r
ad
i
c
t
i
on.Thu
s,t
he or
i
i
na
la
s
s
ump
t
i
on wa
s
g
wr
ong,and t
he
r
ea
r
ei
nf
i
n
i
t
e
l
ime
st
ha
ta
r
e
y many odd pr
s
cong
r
uen
tt
o5 modu
l
o6.)In pa
r
t
i
cu
l
a
r,ones
uch pr
imep i
l
a
r
rt
hann.Thu
s,
a
t
i
s
f
i
e
sbo
t
hcond
i
t
i
ons(
a)and (
b).We
ps
ge
canwr
i
t
ep = 6
k +5fors
e
tm =
omepo
s
i
t
i
vei
n
t
ege
rk.Wes
n4k+3 .Thent
heFe
rma
t
􀆳
sLi
t
t
l
eTheor
em,wehave
m 3 ≡ n12k+9 ≡ n6k+4 ·n6k+4 ·n ≡ np-1 ·np-1 ·n ≡ n(
modp).
So
l
u
t
i
on2.Se
tm
=n -1.Th
enm
3
-n =n -3
n +2n -1,
3
2
wh
i
chi
sr
e
l
a
t
i
ve
l
imet
on.Anypr
imed
i
v
i
s
orp ofm 3 -ni
s
ypr
r
e
l
a
t
i
ve
l
imet
on,
t
ha
ti
s,ps
a
t
i
s
f
i
e
st
hecond
i
t
i
on
s(
b)and
ypr
(
c).I
tr
ema
i
n
st
of
i
ndap t
ha
ti
scong
r
uen
tt
o5 modu
l
o6.
No
t
et
ha
t
m3 -m = m (
m2 -1)= (
m -1)
m(
m +1),
mod
wh
i
chi
sd
i
v
i
s
i
b
l
eby6.Henc
e,m 3 -n ≡ m -n ≡ -1 ≡ 5(
6).Thu
s,t
he
r
ei
sapr
imed
i
v
i
s
orp o
fm 3 -nt
ha
ti
scong
r
uen
t
t
o5modu
l
o6,andt
h
i
si
st
hepr
imewes
ought.
Comment:Theor
i
i
na
lve
r
s
i
ono
ft
heprob
l
emi
sa
sfo
l
l
ows.
g
Pr
ovet
ha
tf
oreve
r
i
venpo
s
i
t
i
vei
n
t
ege
rn,t
he
r
eex
i
s
ta
yg
Ch
i
naGi
r
l
s
􀆳Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
165
imep andani
n
t
ege
rm s
ucht
ha
t
pr
(
a)p ≡ 3(
mod4);
(
b)p n;
(
c)n ≡ m2(
modp).
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
I
twa
si
n
s
i
r
edbyas
o
l
u
t
i
ont
ot
heprob
l
em3ofIMO2010.
p
4
whe
r
en ≥ 2)ber
Le
tx1 ,x2 ,...,xn (
ea
lnumbe
r
swi
t
h
2
2
x2
1 +x2 + … +xn = 1.
Pr
ovet
ha
t
n
2
2
k
æ
ö2 xk
xk
æçn -1ö÷2
1n
·
≤
.
ç
÷
2
∑
∑
k=1 è
∑i=1ixi ø k èn +1ø k=1 k
n
De
t
e
rmi
newhent
heequa
l
i
t
l
d
s.
yho
Comment: Expand
i
ng t
he l
e
f
t
-hand s
i
de of t
he de
s
i
r
ed
i
nequa
l
i
t
i
ve
s
yg
2
k
æ
ö2 xk
1n
·
ç
÷
2
∑
k=1 è
∑i=1ixi ø k
n
n
=
n
2
xk
-∑
∑
k=1 k
k=1
n
=
2
xk
∑ k=1 k
n
=
2
xk
∑ k=1 k
n
=
2
xk
∑k
k=1
-
2
2xk
∑
n
ixi2
i=1
n
+
n
2
kxk
∑(
∑
n
k=1
2
ixi2)
i=1
n
1
1
1
2
kxk
2 +
n
2∑ 2
2 2∑
x
k
(
)
k=1
k=1
i
x
i
x
i
i
∑i=1
∑i=1
n
2
1
+
n
2
2
i
x
∑i=1 i ∑i=1ixi
n
1
.
2
i
x
i
∑i=1
n
Wewan
tt
os
howt
ha
t
n
2
xk
∑
k=1 k
n
2
xk
æn -1÷ö2
1
≤ ç
=
n
∑
2
+
∑i=1ixi èn 2ø k=1 k
n
n
2
2
xk
xk
n
4
2∑
∑
)
(
n +1 k=1 k
k=1 k
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
166
or
n
xk
n
4
≤
2∑
(
n +1)
k=1 k
2
t
ha
ti
s,
2
2
(
xk
æç
ö÷
n +1)
2
≤
kxk
.
(
)
∑
∑
è k=1 k ø k=1
n
4
n
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
1
,
2
i
x
i
∑i=1
n
n
①
Wepr
e
s
en
ttwopr
oo
f
so
ft
heabovei
nequa
l
i
t
y.
So
l
u
t
i
on1.Werewr
i
t
e① a
s
n
n
2
xk
æ
ö÷
4
nç ∑
( ∑kxk2 ) ≤ (n +1)2.
è k=1 k ø k
=1
Byt
heAM GMi
nequa
l
i
t
y,wehave
n
n
n
n
2
2
xk
nxk
æ
ö÷
æ
ö÷
2
= 4ç ∑
nç ∑
kxk
4
(
)
( ∑kxk2 )
∑
è k=1 k ø k=1
è k=1 k ø k
=1
≤
n
n
2
2
nxk
æç
2ö
+ ∑kxk ÷
∑
è k=1 k
ø
k=1
n
=
I
ts
u
f
f
i
ce
st
os
howt
ha
t
æç
æç n
ö 2 ö÷2
+k ÷xk
.
∑
èk
ø ø
=1 èk
n
+k ≤ n +1
k
or
0 ≤ nk +k -k2 -n = (
n -k)(
k -1),
wh
i
chi
sev
i
den
t.
Now,wecon
s
i
de
rt
heequa
l
i
t
s
e.No
t
et
ha
tt
hel
a
s
t
y ca
i
nequ
a
l
i
t
ss
t
r
i
c
tf
o
r1 <k <n.Hen
c
e,wemu
s
thav
ex2 = … =
yi
xn-1 = 0.Fort
heAM GMi
nequa
l
i
t
oho
l
d,wemu
s
thave
yt
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
2
Pa
r
tI Sho
r
t
-An
swe
r Qu
e
s
t
i
on
s(
e
s
t
i
on
s1 8,e
i
tma
rk
s
Qu
gh
e
a
ch)
1
Ch
i
naGi
r
l
s
􀆳􀆳Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
x -5 - 24 -3x i
s
x)=
Ther
angeo
ff(
167
.
n
ne
So
l
u
t
i
on.I
ti
sea
os
et
ha
tf(
x)
i
si
nc
r
ea
s
i
ngoni
t
sdoma
i
n
yt
2s
nxk
2
2
2
2
= ∑kxk o
rnx2
xn
1 +xn = x1 +n
∑
[
k
5,8].Th
e
r
e
f
o
r
e,i
t
s
r
angei
s [-3, 3].
k
k=1
=1
1
2
2
2
wi
t
hx2
u
s
thavex
andx2 = … =
1 +xn = 1.Wem
1 = xn =
2 Themi
s
i
nx2
acos2x -3)
i
s -3.Thent
he
n
imumo
fy = (
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
xn-1 =
0.
s
r
a
ngeo
fr
ea
lnumbe
rai
.
(
=
So
l
u
t
i
on.
Le
ts
i
n
t
.T
h)
ee
e
s
s
i
oni
o
u
n2.
By
Lx
e
l
l
eY
e
Wx
ew
r
i
t
e
④ st
a
shenchangedt
pr
ynn
n
t)= (-a
t2 +a -3)
t,or n 2
g(
xk 

2
2
)
(
n +1 -4n  ∑
kxk

 ≥ 0.
∑
 ka
=1
=1
+ (
t)= t3k
ak3)
t.
g(
N
o
t
et
ha
tt
el
e
f
t
-h
a
nds
deo
hea
nequa
l
i
t
st
he
yi
)
(
+
≥i
a
t3h
a
3
t
3,ft
we
tbovei
F
r
o
mge
d
i
s
c
r
imi
nan
to
ft
hequa
dr
a
t
i
c(
i
nt):
-a
t(
t2 -1)-3(
t -1)≥ 0,
2
2
2
2
(
)
(
)
…
(
+
+
-0.
t
n +1)
t+
2t
f t =n
(
)2
(x
)x
)≥
(
-11
-a
-n3
tx
t ++
1n
2
xn
 2 x2

2
…-+
+
+
x0
. )
,
(
1,
w
eh
a
v
e
a
t
S
i
nc
et -1 ≤

2
nt +1 -3 ≤ 0 or
2
(
)≥ -3.
+(
ah
t
①
t)ha
sar
ea
lr
oo
t.Be
cau
s
et
h
e
I
ts
u
f
f
i
c
e
st
os
howt
a
tft
2
2
2
(
)
(
,
,
;x
+…
+
=
-1
<
≤
x
n
x①
2
x
i
s
i
c
hi
s
l
ead
i
n
o
e
f
f
i
c
i
e
n
to
f
t
0
ex
e
s
i
on
a
l
w
a
sh
o
l
d
sn
wn
h)
e,
nw
0h
t
Wh
e
n
1 +
2
f
gc
pr
y
t) ≤ 0fors
s
i
t
i
ve,i
tr
ema
i
n
st
o bes
hownt
ha
tf(
1ome2t.
po
,
<t < 0,≤t +
1
wehave0 <t2 +t ≤ 2;andwhen -1
4
2
wehave
Be
cau
s
ex2
1 + … +xn = 1,
3
t < 0.The
r
e
f
or
e,-2 ≤ a ≤ 1
2.
2
2
+ … +nxn )
t)= n(
x2
x22
t2 - (
n +1)(
x2
1 +2
1 +x2 + … +
f(
3
2
x2
xn


2
2
)
+… +
xn
t + x2
1 +

.
2
n
Thenumbe
ro
fi
n
t
eg
r
a
lpo
i
n
t
s(
i
e.,t
hepo
i
n
t
swho
s
ex
n
ord
)wi
ks
2a
2
2n
-co
an
dy
i
n
t
e
sa
r
ebo
t
hi
t
ex
e
r
t
h
i
nt
hea
r
ea (
no
t
=
∑ nkxkt - (n +1)xkt +gk 
k=1 
r
l
o
s
edbyt
her
i
tbr
ancho
f
i
nc
l
ud
i
ngt
hebounda
y)enc
gh
n
2
2 
1 i
2x -y
=
1a
nex = 100i
s
.
hy
rbo
l
a

pe
-ndl
t
=
x
nk
t -1)
.
k(
∑
k


k=1
So
l
u
t
i
on.Bysymme
t
r
l
ocon
s
i
de
rt
hepa
r
tof
y,weon
yneedt
1
p
el
1
=
x
-a
x
i
s
.S
up
o
s
n
eb
k
n
t
e
r
c
ep
t
st
he
t
hea
r
eaa
b
o
v
et
he
y
,
=
≤i
0
e
ca
u
s
ei
f
o
r
t
I
ti
se
a
s
t
o
s
e
e
t
h
a
t
f
y
n 
n
2
eachs
ummand
2
(
1  xk
k -1)(
k -n)

2
(
≤ 0,
xk
nk
t -1)t -  =
k

nk
168
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
comp
l
e
t
i
ng ou
r proo
f.For t
he equa
l
i
t
s
e of t
he g
i
ven
y ca
i
nequa
l
i
t
s
thaveequa
l
i
t
s
efort
heabovei
nequa
l
i
t
y,wemu
yca
y
f
oreve
r
or2 ≤ k ≤ n - 1.I
ti
st
henno
t
ha
ti
s,xk = 0f
yk;t
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
d
i
f
f
i
cu
l
tt
oob
t
a
i
nt
ha
t
2
x2
1 = x2 =
1
.
2
S
e
c
ondDay
8:
00 12:
00,Augus
t11,2010
5
Le
tf(
x)andg(
x)bes
t
r
i
c
t
l
nc
r
ea
s
i
ngl
i
nea
rf
unc
t
i
ons
yi
f
rom Rt
o Rs
ucht
ha
tf(
x)i
sani
n
t
ege
ri
fandon
l
f
yi
x)i
sani
n
t
ege
r.Pr
ovet
ha
tforanyr
ea
lnumbe
rx,
g(
x)-g(
x)
i
sani
n
t
ege
r.
f(
So
l
u
t
i
on.Wecanwr
i
t
ef(
x)=ax +bandg(
x)=cx +dfor
s
omer
ea
lnumbe
r
sa,b,c,d wi
t
ha,c > 0.
Bys
t
r
s
s
umet
ha
ta ≥c.
ymme
y,wemaya
Wec
l
a
imt
ha
ta =c.As
s
umeont
hecon
t
r
a
r
ha
ta >c.
yt
Be
cau
s
ea >c >0,
t
her
ange
so
ffandga
r
ebo
t
hR.The
r
ei
sa
ucht
ha
tf(
x0s
x0)=ax0 +bi
sani
n
t
ege
r.Henceg(
x0)=cx0
+di
sa
l
s
oani
n
t
ege
r.Bu
tt
hen,
1ö
æ
f çx0 + ÷ = ax0 +b +1
aø
è
and
1ö
æ
c
g çx0 + ÷ =cx0 +b + .
aø
è
a
Bu
tt
h
i
si
simpo
s
s
i
b
l
ebe
cau
s
ewecanno
thavetwoi
n
t
ege
r
s
c
ha
thavepo
s
i
t
i
ved
i
f
f
e
r
enc
e wh
x0)andg(
x1)t
i
chi
sl
e
s
s
g(
a
Ch
i
naGi
r
l
s
􀆳Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
169
t
han1.
The
r
e
f
or
e,wecanwr
i
t
ef(
x)=ax +bandg(
x)=ax +d
f
ors
omer
ea
lnumbe
r
sa,b,d wi
t
ha > 0.
s
tbeani
n
t
ege
r,t
ha
ti
s,
Thenb -d = f(
x0)-g(
x0)mu
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
x)-g(
x)=b -d
f(
i
sani
n
t
ege
r.
6 Inacu
t
et
r
i
ang
l
eABC ,
AB > AC .Le
t M be
t
he mi
dpo
i
n
t of s
i
de
BC .Theex
t
e
r
i
orang
l
e
b
i
s
e
c
t
or
o
f
∠BAC
mee
t
sr
ay BC a
t P.
Po
i
n
t
sK and F l
i
e on
F
i
.6
.1
g
t
hel
i
nePA s
ucht
ha
tMF ⊥ BC and MK ⊥ PA .Prove
t
ha
tBC2 = 4PF ·AK .
So
l
u
t
i
on. Le
t ω and O deno
t
et
he c
i
r
cumc
i
r
c
l
e and t
he
c
i
r
cumcen
t
e
roft
r
i
ang
l
eABC ,r
e
s
c
t
i
ve
l
e
tN bet
he
pe
y,andl
︵
mi
dpo
i
n
to
fa
r
cBC (
no
tcon
t
a
i
n
i
ngA ).No
t
et
ha
tl
i
neMN i
s
t
hepe
rpend
i
cu
l
a
rb
i
s
e
c
t
orofs
egmen
tBC .
Inpa
r
t
i
cu
l
a
r,bo
t
hF
andO l
i
eonl
i
ne MN .No
t
ea
l
s
ot
ha
tr
ayAN i
st
hei
n
t
e
r
i
or
l
i
ngt
ha
tNA ⊥ FP or ∠NAF = 90
°.I
t
b
i
s
e
c
t
oro
f ∠BACimp
y
fo
l
l
owst
ha
tNF i
sad
i
ame
t
e
rofω.I
ti
sc
l
ea
rt
ha
tMK ‖AN ,
f
r
om wh
i
chi
tfo
l
l
owst
ha
t
AK
FK
=
.
MN FM
Henc
e,
PK ·AK =
PK ·FK ·MN
.
FM
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
170
No
t
et
ha
t MK i
st
hea
l
t
i
t
udet
ot
he hypo
t
enu
s
ei
nr
i
ght
r
es
imi
l
a
r
t
r
i
ang
l
eFMP ,
imp
l
i
ngt
ha
tt
r
i
ang
l
eFMK andFPM a
y
t
oeacho
t
he
randPF ·FK = FM 2 .Comb
i
n
i
ngt
hel
a
s
ttwo
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
equa
l
i
t
i
e
sy
i
e
l
d
s
PF ·AK =
PF ·FK ·MN
= FM ·MN .
FM
F
i
.6
.2
g
By t
he powe
r
o
f
a
i
n
t t
heor
em
po
(or c
r
o
s
s
chord
t
heor
em),wehaveFM ·MN = BM ·MC =
BC2
.Comb
i
n
i
ng
4
t
hel
a
s
ttwoequa
l
i
t
i
e
sg
i
ve
st
hede
s
i
r
edr
e
s
u
l
t.
7
Le
tn b
e an i
n
t
e
e
rg
r
e
a
t
e
rt
han o
r equ
a
lt
o 3.Fo
ra
g
rmu
t
a
t
i
onp = (
x1,x2,...,xn )o
f(
1,2,...,n),wes
ay
pe
t
ha
txjl
i
e
si
nb
e
twe
enxi andxki
fi <j <k.(
Fo
re
xamp
l
e,
i
nt
hepe
rmu
t
a
t
i
on (
1,3,2,4),3l
i
e
si
nb
e
twe
en1and4,
)S
and4do
e
sno
tl
i
ei
nbe
twe
en1and2.
e
tS = {
p1,p2,...,
on
s
i
s
t
so
f(
d
i
s
t
i
n
c
t)pe
rmu
t
a
t
i
on
spi o
f(
1,2,...,n).
pm }c
Suppo
s
et
ha
t among e
v
e
r
h
r
e
ed
i
s
t
i
n
c
t numbe
r
si
n{
1,
yt
2,...,n},oneo
ft
he
s
enumb
e
r
sdoe
sno
tl
i
ei
nbe
twe
ent
he
o
t
he
rtwonumbe
r
si
ne
v
e
r
rmu
t
a
t
i
on
spi ∈ S.De
t
e
rmi
ne
ype
t
hema
x
imumv
a
l
u
eo
fm .
So
l
u
t
i
on.Theansweri
s2n-1 .
Ch
i
naGi
r
l
s
􀆳Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
171
Wef
i
r
s
ts
howt
ha
tm ≤2n-1 .Wei
nduc
tonn.Theba
s
eca
s
e
n =3i
st
r
i
v
i
a
l.(
Indeed,s
ay3doe
sno
tl
i
ei
nbe
tween1and2,
t
henwecanhaveS = {(
1,2,3),(
3,1,2),(
2,1,3),(
3,2,
whe
r
ek ≥
1)}.)As
s
umet
ha
tt
hes
t
a
t
emen
ti
st
r
ueforn = k (
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
3).Nowcon
s
i
de
rn =k +1andas
e
tSk+1s
a
t
i
s
f
i
e
st
hecond
i
t
i
ons
oft
hepr
ob
l
em.No
t
et
ha
ti
ft
hee
l
emen
tk +1i
sde
l
e
t
edf
rom
eachpe
rmu
t
a
t
i
onpii
nSk+1 ,
t
her
e
s
u
l
t
i
ngpe
rmu
t
a
t
i
on
sqiforma
s
e
tSkt
ha
ts
a
t
i
s
f
i
e
st
hecond
i
t
i
on
so
ft
heprob
l
em (
forn =k).
I
t
s
u
f
f
i
c
e
st
oshow t
hefo
l
l
owi
ng c
l
a
im:t
he
r
ea
r
ea
t mo
s
ttwo
d
i
s
t
i
nc
tpe
rmu
t
a
t
i
onsp andqi
nSk+1 t
ha
tcan mapt
ot
hes
ame
rmu
t
a
t
i
onr i
by de
l
e
t
i
ng t
he e
l
emen
tk + 1i
nt
he
n Sk (
pe
rmu
t
a
t
i
onsp andq).
pe
Indeed,a
s
s
umet
ha
tf
or
x1 ,x2 ,...,xk+1),p2 = (
p1 = (
y1 ,y2 ,...,yk+1),
z1 ,z2 ,...,zk+1)
p3 = (
i
nSk+1 ,q1 =q2 = q3 = q.Bys
t
r
s
s
umet
ha
t
ymme
y,wemaya
1,2,...,k).As
s
umet
ha
txa =yb =zc =k +1.Aga
i
nby
q =(
s
t
r
s
s
umet
ha
t1 ≤ a <b <c ≤ k +1.(
No
t
e
ymme
y,wemaya
t
ha
tbe
cau
s
eq1 = q2 = q3 = q,a,b,c a
r
ed
i
s
t
i
nc
t.) We
con
s
i
de
rt
hr
eenumbe
r
sa,b,k +1.Wehavep1 = (...,k +1,
a,...,b,...)(
i
npa
r
t
i
cu
l
a
r,al
i
e
si
nbe
tweenk +1andb),
i
e
si
n
i
npa
r
t
i
cu
l
a
r,k +1l
p2 = (...,a,...,k +1,b,...)(
be
tweenaandb ),andp3 = (...,a,...,b,...,k +1,...)
(
i
npa
r
t
i
cu
l
a
r,
bl
i
e
si
nbe
tweenaandk +1).Henceeachoneof
t
henumbe
r
sa,b,k +1l
i
ei
nbe
tweent
heo
t
he
rtwonumbe
r
si
n
s
omepe
rmu
t
a
t
i
on
si
nSk ,v
i
o
l
a
t
i
ngt
hecond
i
t
i
onsofSk .Thu
s
ou
ra
s
s
ump
t
i
onwa
swr
onganda
tmo
s
ttwoe
l
emen
t
si
nSk+1can
bemappedt
oae
l
emen
ti
nSk ,e
s
t
ab
l
i
sh
i
ngourc
l
a
im.
I
tr
ema
i
n
st
obeshownt
ha
tm = 2n-1 i
sach
i
evab
l
e.We
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
172
con
s
t
r
uc
tpe
rmu
t
a
t
i
on p i
nduc
t
i
ve
l
1)p
l
ac
e1; (
2)a
f
t
e
r
y:(
la
r
ep
l
ac
ed,wep
l
ac
el +1e
numbe
r
s1,2,...,
i
t
he
rt
ot
hel
e
f
t
ort
her
i
ft
hea
l
lt
henumbe
r
sp
l
aceds
of
a
r.Becau
s
et
he
r
e
ghto
a
r
etwopo
s
s
i
b
l
ep
l
ac
e
sf
oreacho
ft
henumbe
r
s2,3,...,n,we
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
cancon
s
t
r
uc
t2n-1s
uchpe
rmu
t
a
t
i
ons.Foranyt
hr
eenumbe
r
s1 ≤
a <b <c ≤n,
cdoe
sno
tl
i
ei
nbe
tweenaandb.Henc
e,t
h
i
ss
e
t
rmu
t
a
t
i
onss
a
t
i
s
f
i
e
st
hecond
i
t
i
onsoft
he prob
l
em,
of2n-1 pe
comp
l
e
t
i
ngou
rpr
oo
f.
Comment:Theor
i
i
na
lve
r
s
i
ono
ft
heprob
l
emi
sa
sfo
l
l
ows.
g
The
r
ea
r
enbooksa
r
r
angedi
nar
owonashe
l
f.Al
i
br
a
r
i
an
come
spe
r
i
od
i
ca
l
l
ea
r
r
ange
st
hebooksi
naneworde
r.I
t
yandr
t
u
rn
sou
tt
ha
t,among anyt
hr
ee books,t
he
r
ei
sonet
ha
ti
s
neve
rp
l
ac
edanywhe
r
ebe
tweent
heo
t
he
rtwo.Provet
ha
tt
he
t
o
t
a
lnumbe
rofd
i
f
f
e
r
en
torde
r
st
ha
toc
cu
ri
sa
tmo
s
t2n-1 .
Toenhanc
et
hel
eve
lofd
i
f
f
i
cu
l
t
het
e
s
tpape
r,t
he
y oft
l
emde
c
i
de
st
oa
s
kcon
t
e
s
t
an
t
st
of
i
ndt
h
i
smax
imumva
l
ue.
prob
8
De
t
e
rmi
net
hel
ea
s
todd numbe
ra > 5s
a
t
i
s
f
i
ng t
he
y
f
o
l
l
owi
ng cond
i
t
i
ons: The
r
ea
r
e po
s
i
t
i
vei
n
t
ege
r
s m1,
2
2
m 2 ,n1 ,n2 s
ucht
ha
ta = m2
a2 = m2
and
1 +n1 ,
2 +n2 ,
m1 -n1 = m 2 -n2 .
So
l
u
t
i
on.Theansweri
s261.
No
t
et
ha
t
261 = 152 +62 ,2612 = 1892 +1802 ,15 -6 = 189 -180.
Weknowt
ha
tt
he
r
ei
snonumbe
ri
nbe
tween5and261t
ha
t
s
a
t
i
s
f
i
e
st
hecond
i
t
i
onoft
hepr
ob
l
em.As
s
umeont
hecon
t
r
a
r
y
t
ha
tai
ss
uchanumbe
r.Wemays
e
td = m 1 -n1 > 0.Becau
s
e
ai
sodd,m 1 andn1 haved
i
f
f
e
r
en
tpa
r
i
t
od i
sodd.
y,ands
Be
cau
s
em 1 < 261,d ≤ 15;
t
ha
ti
s,t
hepo
s
s
i
b
l
eva
l
ue
so
fda
r
e
Ch
i
naGi
r
l
s
􀆳Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
173
1,3,5,7,9,11,13,15.Wewi
l
le
l
imi
na
t
eeve
r
hem.
yoneoft
2
2
+n2 o
Wecanwr
i
t
em 2 = n2 +danda2 = (
n2 +d)
r
2
2
2
a2 -d2 = (
n2 +d)
.
①
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
I
fd = 1,
t
hen ① be
come
saPe
l
l
􀆳
sequa
t
i
onx2 -2y2 = -1
wi
t
h(
x,y)= (
2
n2 +1,a).Th
i
sPe
l
l
􀆳
sequa
t
i
onha
smi
n
ima
l
2k-1
1+ 2)
s
o
l
u
t
i
on (
x,y)= (
1,1)andx +y 2 = (
f
orpo
s
i
t
i
ve
l
ue
so
ft
hes
o
l
u
t
i
onsoft
h
i
sPe
l
l
􀆳
sequa
t
i
ons
i
n
t
ege
r
sk.They va
a
r
e5,29,169,985,....Thu
s,t
heon
l
s
s
i
b
l
eva
l
ue
sfora
ypo
a
r
e29and169.I
ti
sea
s
oche
ckt
ha
tne
i
t
he
r29nor169can
yt
2
2
+n1 .He
bewr
i
t
t
eni
nt
hef
ormof(
n1 +1)
nced ≠ 1.
I
fd i
sa mu
l
t
i
l
eo
f3,t
hen m 2 ≡ n2(
mod3)anda2 ≡
p
2m 2
mod3).Be
cau
s
e2i
sno
taquadr
a
t
i
cr
e
s
i
duemodu
l
o3,we
2(
2
conc
l
udet
ha
t0 ≡ m 2 ≡ n2 ≡ a(
mod3).Hence,m 2
1 + n1 ≡
0(
mod3),f
r
om wh
i
chi
tf
o
l
l
owst
ha
tm 1 ≡ n1 ≡ 0(
mod3).
2
2
2
sa mu
l
t
i
l
eo
f9andm 2
sa
Thu
s,
a = m2
1 + n1 i
2 + n2 = a i
p
mu
l
t
i
l
eo
f81.Wecanwr
i
t
em 2 =3m',
n2 =3n
',anda =9a
'
p
f
ori
n
t
ege
r
sm 2 ,n3 ,a
'.Wehave m'2 + n
'2 = 9a
'
i
n,
2 .A
ga
becau
s
e -1i
sano
taquadr
a
t
i
cr
e
s
i
duemodu
l
o3,wemu
s
thave
m' ≡ n
' ≡ 0(
mod3).
I
tf
o
l
l
owst
ha
td = 3(
m' -n
')
i
sd
i
v
i
s
i
b
l
e
by9.Thu
s,d = 9.
Becau
s
ea <261 =152 +62 ,n1 <6.The
r
e
for
e,
n1 =3and
2
,
tt
hen ① become
s92·577 = (
2
a =122 +32 =153.Bu
n2 +9)
wh
i
chi
simpo
s
s
i
b
l
e.Hence,d ≠ 3,or9,or15.
I
fd = 11ord = 13,be
cau
s
e2i
sno
taquadr
a
t
i
cr
e
s
i
due
modu
l
od,f
r
oma2 ≡ 2m 2
modd),weconc
l
udet
ha
t0 ≡ m 2 ≡
2(
modd)and0 ≡ m 1
n2 ≡a(
modd).
I
tf
o
l
l
owst
ha
t2m 2
1 ≡a ≡0(
≡ n1 ≡ a(
modd).Inpa
r
t
i
cu
l
a
r,
n1 ≥ d,m 1 ≥ 2dand
2
a = m2
d2 > 261.
1 +n1 ≥ 5
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
174
Henc
e,d ≠ 11or13.
I
fd = 5,wea
l
s
o no
t
et
ha
t2i
sno
ta quadr
a
t
i
cr
e
s
i
de
modu
l
o5.Byt
hes
amer
ea
s
on
i
ngbe
f
or
e,wehave
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
m 1 ≡ n1 ≡ m 2 ≡ n2 ≡ 0(
mod5).
2
I
fn1 ≥ 10,
t
henm 1 ≥ 15anda = m 2
02 +152 >
1 +n1 ≥ 1
261.Thu
s,
n1 =5,m 1 =10,anda =125.Bu
tt
hen ① become
s
2
,
52 ·1249 = (
2
n2 +5)
wh
i
chi
simpo
s
s
i
b
l
e.Henc
e,d ≠ 5.
I
fd =7,
t
henbe
cau
s
ea <261 =152 +62 ,wehaven1 ≤8.
Thepo
s
s
i
b
l
eva
l
ue
sofa a
r
et
hen65,85,109,137,169,205,
2
=2
245.Bu
tt
hen ① be
come
s(
2
n2 +7)
a2 -49.I
ti
sea
s
o
yt
che
ckt
ha
tt
he
r
ei
snos
o
l
u
t
i
oni
nt
h
i
sca
s
e.Henc
e,d ≠ 7.
Comb
i
n
i
ngt
heabove,weconc
l
udet
ha
t261i
st
heanswe
r
o
ft
h
i
sque
s
t
i
on.
2011
(
S
h
e
n
z
h
e
n,Gu
a
n
d
o
n
g
g)
The10th Ch
i
naG
i
r
l
s
􀆳Ma
t
hema
t
i
ca
lO
l
i
ad washe
l
ddu
r
i
ngJu
l
ymp
y
28
Augus
t3,2011 a
tt
he No.Th
r
ee Sen
i
o
rH
i
lo
f
gh Schoo
Shen
z
heni
n Shen
z
hen,Guangdong P
r
ov
i
nce,Ch
i
na.Ar
ound 39
t
eamsf
r
om Ma
i
n
l
andCh
i
na,p
l
us9t
eamsf
r
om Russ
i
a,t
heUn
i
t
ed
,t
S
t
a
t
es,S
i
ngapo
r
e,Japan,e
t
c.
o
t
a
l
l
8g
i
r
ls
t
uden
t
sa
t
t
ended
y18
t
hecompe
t
i
t
i
on.Thecompe
t
i
t
i
oncon
s
i
s
t
so
ftwor
ounds — each
l
as
t
sf
ou
rhou
r
sandcon
t
a
i
n
sf
ou
rp
r
ob
l
ems.Thet
eamf
r
omShangha
i
H
i
lwont
hef
i
r
s
tp
l
acei
nt
eamt
o
t
a
lsco
r
e.20pa
r
t
i
c
i
t
s
ghSchoo
pan
wongo
l
dmeda
l
s,4
0wons
i
l
ve
rmeda
l
s,and8
0b
r
on
zemeda
l
s.
Ch
i
naGi
r
l
s
􀆳Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
175
F
i
r
s
tDay
8:
00 12:
00,Augus
t1,2011
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
1 1
1
=
1 F
i
nda
l
lpo
s
i
t
i
vei
n
t
ege
r
sns
ucht
ha
tequa
t
i
on +
x y
n
ha
sexac
t
l
s
i
t
i
vei
n
t
ege
rs
o
l
u
t
i
ons(
x,y)wi
t
hx ≤
y2011po
s
edby Xi
ongBi
n)
y.(
po
So
l
u
t
i
on.Fromtheg
i
venequa
t
i
on,wehavexy -nx -ny
=
2
0⇒ (
x -n)(
s
i
de
sx = y = 2
n,forany
y -n)= n .Then,be
x -n equa
lt
oa pr
ope
rd
i
v
i
s
oro
fn2 ,we wi
l
lge
ta po
s
i
t
i
v
e
i
n
t
e
e
rs
o
l
u
t
i
on(
x,y)
s
a
t
i
s
f
i
ngt
her
equ
i
r
edc
ond
i
t
i
on.The
r
e
f
o
r
e,
g
y
n2s
hou
l
dha
v
ee
xa
c
t
l
r
ope
rd
i
v
i
s
o
r
st
ha
ta
r
el
e
s
st
hann.
y2010p
αk
1
he
r
e p1 , ...,pk a
Suppo
s
en = pα
r
e pr
ime
1 …pk , w
numbe
r
sd
i
f
f
e
r
en
tf
r
omeacho
t
he
r.Thent
henumbe
rofpr
ope
r
d
i
v
i
s
or
so
fn2l
e
s
st
hanni
s
(
α1 +1)…(
2
αk +1)-1
2
.
2
So (
2
α1 +1)…(
2
αk +1)= 4021.S
i
nce4021i
spr
ime,we
tk = 1,2
α1 +1 = 4021,andα1 = 2010.
ge
The
r
e
for
e,
r
epi
n = p2010 ,whe
sanypr
imenumbe
r.
2 Ass
howni
nF
i
.2
.1,
t
hed
i
a
l
s
g
gona
AC,BD o
f quad
r
i
l
a
t
e
r
a
lABCD
i
n
t
e
r
s
ec
t a
t po
i
n
t E, t
he
mi
dpe
rpend
i
cu
l
a
r
s of AB , CD
(
wi
t
hM ,N b
e
i
ngt
he
i
rmi
dpo
i
n
t
s,
r
e
s
c
t
i
ve
l
n
t
e
r
s
e
c
ta
t po
i
n
t
pe
y)i
F ,andl
i
ne EF i
n
t
e
r
s
e
c
t
s wi
t
h
BC , AD a
t po
i
n
t
s P, Q,
F
i
.2
.1
g
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
176
r
e
s
c
t
i
ve
l
s
eMF ·CD = NF ·AB ,DQ ·BP =
pe
y.Suppo
AQ ·CP .ProvePQ ⊥ BC .(
s
edbyZheng Huan)
po
So
l
u
t
i
on. As shown in Fi
.2
.2,
g
conne
c
tpo
i
n
t
sA F ,B F ,C F ,
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
and D
F .Byt
heg
i
vencond
i
t
i
on,
r
ebo
t
hi
s
o
s
ce
l
e
s
△AFB and△CFD a
t
r
i
ang
l
e
swi
t
hFM andFN be
i
ngt
he
a
l
t
i
t
ude
st
oeacht
r
i
ang
l
e
􀆳
sba
s
e.
S
i
nce MF · CD = NF · AB ,
△AFB ∽ △DFC .Then ∠AFB =
F
i
.2
.2
g
∠CFD a
nd ∠FAB = ∠FDC .Mor
eove
r, ∠BFD = ∠CFA .
Fr
omFB = FA ,FD = FC ,wehave△BFD ≌ △AFC ,wh
i
ch
r
e
for
e,
mean
st
ha
t ∠FAC = ∠FBD and ∠FCA = ∠FDB .The
i
n
t
sA ,B ,F ,E andpo
i
n
t
sC ,D ,E ,F a
r
eeachconcyc
l
i
c.
po
Fromt
heabover
e
s
u
l
t,wege
t
∠FEB = ∠FAB = ∠FDC = ∠FEC ,
wh
i
chimp
l
i
e
st
ha
tl
i
neEPi
st
heang
l
eb
i
s
ec
t
oro
f ∠BEC .Then
EB BP
ED
QD
=
=
.Int
hes
ameway,wehave
.
wehave
EC CP
EA
AQ
I
fDQ ·BP = AQ ·CP ,
t
henEB ·ED = EC·EA ,wh
i
ch
sacyc
l
i
cquadr
i
l
a
t
e
r
a
lwi
t
hF a
st
hec
en
t
e
rofi
t
s
mean
sABCDi
c
i
r
cumc
i
r
c
l
e.Att
h
i
st
ime,s
i
nc
e
∠EBC =
1∠
1∠
DFC =
AFB = ∠ECB ,
2
2
wet
henge
tPQ ⊥ BC .
3 Suppo
a
t
i
s
f
cd =1.
s
epo
s
i
t
i
ver
ea
lnumbe
r
sa,b,c,ds
yab
Prove
1 1 1 1
9
25 (
+
+
+
+
≥
. po
s
edbyZhu
a b c d a +b +c +d 4
Ch
i
naGi
r
l
s
􀆳Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
177
Huawe
i)
So
l
u
t
i
on1.Fi
r
s
t,wewi
l
lprovet
ha
t,wheneve
rt
he
r
ea
r
etwo
numbe
r
samonga,b,c,dt
ha
ta
r
eequa
l,t
hei
nequa
l
i
t
l
d
s.
yho
Wemaya
s
s
umet
ha
ta = b andl
e
ts = a +b +c + d.Then
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
wehave
1 1 1 1
9
+
+
+
+
a b c d a +b +c +d
=
2 c +d 9
2
9
2
+
+
=
+a (
s -2a)+
a
cd
s
a
s
=
9ö
æ 2
2
-2
a3 + ças + ÷ .
sø
è
a
Wede
f
i
net
heexpr
e
s
s
i
onabovea
sf(
s).Thenwes
eet
ha
t
eache
st
hemi
n
imumfors =
s)r
f(
Whena ≥
3
.
a
2,
howeve
r,wehave
2
s = a +b +c +d ≥ 2a +
2
3
≥
.
a
a
2
Att
h
i
st
ime,f(
eache
st
he mi
n
imumfors = 2
s)r
a+ .
a
Wet
henhave
9ö 2
2ö 9
æ 2
æ
2
-2
-2
a3 + ças + ÷ =
a3 +a2 ç2a + ÷ +
sø a
aø s
è
è
a
=
2
9
9
+2
=s +
a+
a
s
s
=
7
9
9
7
9 ·9
≥
×4 +2
s+ s+
s
16 16
16
16 s
s
=
When0 < a <
2
ö
7 9 25æç ∵s = 2
≥ 4÷ .
a+
+
=
a
ø
4 2
4è
2,
wehave
2
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
178
9ö 2
æ 2
2
2
-2
-2
+5
a3 + ças + ÷ ≥
a3 +6a =
a+(
a -2a3)
sø a
è
a
a
>
2
2·
25
+5
a ≥2
a = 2 10 > .
5
a
a
4
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
Se
cond,wecon
s
i
de
rt
heca
s
et
ha
ta,b,c,d a
r
ed
i
f
f
e
r
en
t
ad
f ·
f
r
omeacho
t
he
r.Wemaya
s
s
umet
ha
ta >b >c > d.I
c
s
i
ngt
her
e
s
u
l
tabove,wehave
b·c·c =ab
cd = 1,byu
1
1 1 1
9
25
+
+
+
+
≥
.
ad b c c ad
4
+b +c +c
c
c
The
r
e
f
or
e,weon
l
opr
ovet
ha
t
yneedt
1 1 1 1
9
+
+
+
+
a b c d a +b +c +d
≥
1
1 1 1
9
+
+
+
+
.
ad b c c ad
+b +c +c
c
c
①
Wehave
① ⇔
c
1 1
9
1
9
+
+
≥
+
+
a d a +b +c +d ad c ad
+b +2
c
c
ac +cd -c2 -ad
9
·
≥
⇔
acd
æçad
ö÷
(
)
+b +2
c
a +b +c +d
èc
ø
ad
æç
ö
-c÷
a +d c
è
ø
⇔
(
a -c)(
c -d)
9
·
≥
acd
æçad
ö÷
(
)
+b +2
c
a +b +c +d
èc
ø
(
a -c)(
c -d)
c
⇔
1
9
≥
ad
æad
ö
(
+b +2
c÷
a +b +c +d)ç
èc
ø
Ch
i
naGi
r
l
s
􀆳Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
179
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
æad
ö
+b +2
c÷ ≥ 9ad
⇔(
a +b +c +d)ç
èc
ø
⇐
ad
+b +2
c≥
c
⇐
ad
+3
c≥
c
ad
æ
ö
+b +2
c÷
ad ç ∵a +b +c +d >
9
c
è
ø
ad .
9
Thepr
oo
fi
scomp
l
e
t
e.
So
l
u
t
i
on2.Weprovei
tbyu
s
i
ngt
head
u
s
tmen
tme
t
hod.We
j
f
i
ne
maya
s
s
umet
ha
ta ≤b ≤c ≤ d,andde
1 1 1 1
9
+
+
+
+
a,b,c,d)=
.
f(
a b c d a +b +c +d
F
i
r
s
t
l
l
lpr
ove
y,wewi
a,b,c,d)≥ f( ac ,b, ac ,d).
f(
Asama
t
t
e
ro
ff
ac
t,expr
e
s
s
i
on ②i
sequ
i
va
l
en
tt
o
②
1 1
9
1
1
9
+
+
≥
+
+
a c a +b +c +d
ac
ac 2 ac +b +d
⇔
2
2
(a - c)
9(a - c)
≥
ac
(
a +b +c +d)(
2 ac +b +d)
2
(∵ (a - c)
≥ 0)
③
⇐(
a +b +c +d)(
2 a
c +b +d)≥ 9ac
2 ö
æ
d =
ç ∵b +d ≥ 2 b
÷
è
ac ø
2 öæ
2 ö
æ
c+
÷ ç2 a
÷ ≥9
⇐ ça +c +
ac.
è
ac ø è
ac ø
Fr
om1 = ab
cd ≥a·a·c·c⇒ac ≤ 1⇒
2
≥2 a
c and
ac
a +c ≥ 2 ac ,wehavet
hef
o
l
l
owi
ngcond
i
t
i
on:
2 öæ
2 ö
æ
c+
c+
÷ ç2 a
÷
Thel
e
f
t
-hands
i
deo
f③ ≥ ç2 a
è
ac ø è
ac ø
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
180
≥4 a
her
i
-hands
i
deof③.
c·4 ac =16ac >9ac =t
ght
The
r
e
f
or
e,② ho
l
d
s,wh
i
ch meansf(
a,b,c,d)(wi
t
h
a ≤b ≤c ≤ d )r
eache
si
t
smi
n
imumi
fandon
l
fa =c (
i.
e.a
yi
= b = c)
.So we may a
s
s
ume t
ha
t (
a, b,c, d) =
æ 1 ,1 ,1 , 3 ÷ö (
t t ≥1).Thenweon
l
opr
ovet
ha
t,f
or
yneedt
èt t t
ø
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
ç
a
l
lt ≥ 1,
æ 1 1 1 3 ö÷ 25
t ≥ .
fç , , ,
èt t t
ø
4
④
Wehave
æ 1 1 1 3 ö÷ 25
t ≥
fç , , ,
èt t t
ø
4
1
9
25
≥
⇔3
t+ 3 +
3
4
t
3
t +
t
⇔12
t8 -25
t7 +76
t4 -75
t3 +12 ≥ 0
⑤
2
(
t -1)
12
t6 -t5 -14
t4 -27
t3 +36
t2 +24
t +12)≥ 0
⇔(
⇐12
t6 -t5 -14
t4 -27
t3 +36
t2 +24
t +12 ≥ 0
⇔(
t -1)(
12
t5 +11
t4 -3
t3 -30
t2 +6
t +30)+42 ≥ 0.
t5 +6
t ≥ 2 12
t5 ·6
t = 12 2t3 > 3
t3 ,and
S
i
nc
et ≥ 1,12
t4 +30 ≥ 2 11
t4 ·30 = 2 330t2 > 30
t2 ,
11
t
hen (
t - 1)(
12
t5 + 11
t4 - 3
t3 - 30
t2 + 6
t + 30)+ 42 > 0.
The
r
e
for
e,⑤ ho
l
d
s,wh
i
chj
u
s
t
i
f
i
e
s④.
Thepr
oofi
scomp
l
e
t
e.
4
n(
n ≥ 3) t
ab
l
e t
enn
i
s p
l
aye
r
s have a round
rob
i
n
—
t
ournamen
t eachp
l
aye
rwi
l
lp
l
aya
l
lt
heo
t
he
r
sexac
t
l
y
onc
e,andt
he
r
ei
sno dr
aw game.Suppo
s
e,a
f
t
e
rt
he
t
ou
rnamen
t,a
l
lt
he p
l
aye
r
scanbea
r
r
angedi
nac
i
r
c
l
e
Ch
i
naGi
r
l
s
􀆳Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
181
s
ucht
ha
t,f
oranyt
hr
eep
l
aye
r
sA ,B ,C ,i
fA ,B a
r
e
l
ea
s
e
ad
acen
t,t
hena
tl
ea
s
toneoft
hem de
f
ea
t
edC .P
j
f
i
nda
l
lpo
s
s
i
b
l
eva
l
ue
sofn.(
s
edbyFuYunhao)
po
So
l
u
t
i
on.Wewi
l
lprovet
ha
tncanbeanyoddnumbe
r
sno
tl
e
s
s
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
t
han3.Suppo
s
en =2
k +1,anoddnumbe
rg
r
ea
t
e
rt
han3,and
l
aye
r
sa
r
er
epr
e
s
en
t
edbyA1 ,A2 ,...,A2k+1 .Le
np
tu
sa
r
r
ange
k +1)de
t
hecompe
t
i
t
i
onr
e
s
u
l
ta
sfo
l
l
ows:Ai(
1 ≤i ≤ 2
f
ea
t
ed
Ai+2 ,Ai+4 ,...,Ai+2k (
wes
t
i
l
a
t
et
ha
tA2k+1+j = Aj ,j = 1,
pu
k + 1 )bu
tl
o
s
tt
ot
he o
t
he
rp
l
aye
r
s.Then t
he
s
e
2,...,2
l
aye
r
scanbea
r
r
angedi
nac
i
r
c
l
ei
norde
rA1 ,A2 ,...,A2k+1 ,
p
A1 .Now,g
i
venanyt
hr
ee p
l
aye
r
sA ,B ,C wi
t
hA ,B be
i
ng
ad
ac
en
ti
nt
hec
i
r
c
l
e,wemaya
s
s
umet
ha
tA =At ,B =At+1 ,C
j
= At+r (
k +1,2 ≤r ≤2
k).Thene
san
1 ≤t ≤2
i
t
he
rrorr -1i
evennumbe
rno
tl
e
s
st
han2
i
chimp
l
i
e
st
ha
ta
tl
ea
s
toneof
k,wh
t
hep
l
aye
r
sA ,B de
f
ea
t
edC .
sanevennumbe
rno
tl
e
s
s
Ont
heo
t
he
rhand,s
uppo
s
eni
t
han4,and t
hen p
l
aye
r
scan be a
r
r
angedi
n ac
i
r
c
l
e A1 ,
A2 ,...,An ,A1 t
ha
t mee
t
st
her
equ
i
r
edcond
i
t
i
on.We may
a
s
s
umet
ha
tA1 de
f
ea
t
edA2 .Ac
cord
i
ngt
ot
her
equ
i
r
emen
t,a
t
l
ea
s
toneo
fA2 ,A3 de
f
ea
t
edA1 ,andt
henA3 de
f
ea
t
edA1 ;bu
t
a
tl
ea
s
toneofA1 ,A2 de
f
ea
t
edA3 ,s
oA2 de
f
ea
t
edA3 ,ands
o
f
or
t
h.Wet
henge
tt
ha
t,f
orany1 ≤i ≤n,Aide
f
ea
t
edAi+1and
l
o
s
tt
o Ai-1 (
s
t
i
l
a
t
et
ha
tAn+1 = A1 ,A0 = An ).Wenow
pu
n -2
f
or
eAi-1 i
n
t
o
d
i
v
i
det
hep
l
aye
r
sa
f
t
e
rAi andbe
i
r
s—
pa
2
eachcon
s
i
s
t
so
ftwoad
ac
en
tp
l
aye
r
s.Thent
he
r
ei
sa
tl
ea
s
tone
j
l
aye
ri
neach pa
i
rwhode
f
ea
t
edAi ,andt
ha
tmeans,be
s
i
de
s
p
n -2
Ai-1 ,
t
he
r
ea
r
ea
tl
ea
s
t
l
aye
r
swhode
f
ea
t
edAi .ThenAi
p
2
n
n2
l
o
s
ta
tl
ea
s
t game
s.Sonp
l
aye
r
sl
o
s
tt
o
t
a
l
l
tl
ea
s
t game
s.
ya
2
2
182
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
2
=
Bu
tt
henumbe
roft
o
t
a
lgame
si
sCn
n(
n -1) n2
<
.Th
i
si
sa
2
2
con
t
r
ad
i
c
t
i
on.The
r
e
f
or
e,t
he po
s
s
i
b
l
eva
l
ue
so
fn a
r
ea
l
lt
he
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
oddnumbe
r
sno
tl
e
s
st
han3.
S
e
c
ondDay
00,Augus
t2,2011
8:
00 12:
5 Gi
venr
ea
lnumbe
rα,p
l
ea
s
ef
i
nd
t
he mi
n
imum r
ea
lnumbe
rλ =
λ(
α),s
ucht
ha
tforanycomp
l
ex
numbe
r
sz1 ,z2andr
ea
lnumbe
rx
∈[
0,1],
i
f|z1 |≤α|z1 -z2|
t
hen|z1 -xz2 |≤λ|z1 -z2|.
(
s
edbyLiShenghong)
po
So
l
u
t
i
on.Asshowninthef
i
r
e,i
n
gu
F
i
.5
.1
g
t
hecomp
l
ex p
l
ane,po
i
n
t
s A ,B and C deno
t
et
he comp
l
ex
numbe
r
sz1 ,z2 andxz2 ,r
e
s
t
i
ve
l
sobv
i
ou
s
l
he
pec
y.C i
y ont
→
→
s
egmen
tOB .The Vec
t
or
s BA and CA a
r
er
epr
e
s
en
t
ed by
comp
l
exnumbe
r
sz1 -z2andz1 -xz2 ,
r
e
s
t
i
ve
l
pec
y.As|z1|≤
α|z1 -z2 |,wehave|O→
A |≤α|B→
A |.Then
→
→
→
|z1 -xz2 |max =|AC |max = max {|OA |,|BA |}
= ma
x {|z1 |,|z1 -z2 |}
= ma
x {α|z1 -z2 |,|z1 -z2 |} .
The
r
e
for
e,
λ(
α)= max{
α,1}.
6 Ar
et
he
r
eanypo
s
i
t
i
vei
n
t
ege
r
sm ,ns
ucht
ha
tm 20 +11ni
s
as
r
enumbe
r? Proveyourconc
l
u
s
i
on.(
s
edby Yuan
qua
po
Hanhu
i)
Ch
i
naGi
r
l
s
􀆳Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
183
So
l
u
t
i
on.As
s
umi
ngt
he
r
ea
r
epo
s
i
t
i
vei
n
t
ege
r
sm ,ns
ucht
ha
t
m 20 +11n =k2 wi
t
hk ∈ Z,wet
henhave
11n =k2 - m 20 = (
k - m 10)(
k + m 10),
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
wh
i
ch meanst
ha
tt
he
r
ea
r
ei
n
t
ege
r
sα,
ucht
ha
t
β ≥ 0s
k - m 10 = 11α ,
{
k + m 10 = 11β .
①
②
I
ti
sobv
i
ou
st
ha
tα <β.Sub
t
r
ac
t
i
ng ① f
rom ② ,wehave
2m 10 = 11α (
11β-α -1).
Le
tm = 11γm 1 ,whe
r
eγ,m 1 ∈ N* ,11 m 1 .Then
0
11β-α -1),
1110γ ·2m 1
1α (
1 =1
0
wh
i
chimp
l
i
e
s10
γ =αand2m 1
1β-α -1.
1 =1
0
≡ 1(
ByFe
rma
t
􀆳
sLi
t
t
l
eTheor
em,wehavem 1
mod11),
1
0
mod11).Bu
t11β-α -1 ≡ 10(mod11),wh
t
hen2m 1
i
chi
s
1 ≡ 2(
ac
on
t
r
ad
i
c
t
i
on.Sot
he p
r
ov
ed c
onc
l
u
s
i
oni
st
ha
tt
he
r
ea
r
e no
s
i
t
i
v
ei
n
t
e
e
r
sm ,ns
u
cht
ha
tm20 +11ni
sas
a
r
enumbe
r.
po
g
qu
7 Suppo
s
en sma
l
lba
l
l
shavebeen p
l
acedi
n
t
on numbe
r
ed
boxe
sB1 ,B2 ,...,Bn .Eacht
imewecans
e
l
ec
taboxBk
anddot
hef
o
l
l
owi
ngope
r
a
t
i
on
s:
(
1)I
fk = 1andt
he
r
ei
sa
tl
ea
s
toneba
l
li
nB1 ,moveone
ba
l
lf
r
omB1i
n
t
oB2 .
(
2)I
fk =nandt
he
r
ei
sa
tl
ea
s
toneba
l
li
nBn ,moveone
ba
l
lf
r
omBni
n
t
oBn-1 .
(
3)I
f2 ≤k ≤n -1andt
he
r
ea
r
ea
tl
ea
s
ttwoba
l
l
si
nBk ,
moveoneba
l
lf
r
om Bk i
n
t
o Bk+1 and oneba
l
li
n
t
o
Bk-1 ,r
e
s
c
t
i
ve
l
pe
y.
Pr
ove t
he fo
l
l
owi
ng: no ma
t
t
e
r how t
he ba
l
l
sa
r
e
184
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
d
i
s
t
r
i
bu
t
ed among t
he boxe
s or
i
i
na
l
l
ti
sa
lway
s
g
y, i
r
ea
l
i
zab
l
et
ol
e
teachboxcon
t
a
i
nexac
t
l
l
lbyf
i
n
i
t
e
yoneba
ope
r
a
t
i
ons.(
s
edby Wang Xi
nmao)
po
So
l
u
t
i
on.Foranytwovec
t
or
sx = (
x1 ,x2 ,...,xn )andy =
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
(
i
ft
he
r
eex
i
s
t
s1 ≤k ≤ ns
ucht
ha
t
y1 ,y2 ,...,yn ),
x1 = y1 ,...,xk-1 = yk-1 ,xk > yk ,
x1 ,x2 ,...,xn )r
wet
hendeno
t
ei
ta
sx ≻ y.Le
tx = (
epr
e
s
en
t
t
hed
i
s
t
r
i
bu
t
i
ono
ft
heba
l
l
samongt
heboxe
s.Thenxi
sanon
-
t
i
onde
f
i
nedi
nt
heque
s
t
i
on,
nega
t
i
vei
n
t
ege
rvec
t
or.Theope
r
a
i
fexe
cu
t
ab
l
e,canbeexpr
e
s
s
eda
sx +αk ,whe
r
eα1 = (-1,1,
0,...,0),αk = (
0,...,0,1,-2,1,0,...,0)(
2 ≤k ≤
􀮩
􀪁􀪁􀮪􀪁􀪁
􀮫
k-2
n -1),αn = (
0,...,0,1,-1).Thenfork ≥ 2,wea
lway
s
havex+αk ≻x.Sof
oranyi
n
i
t
i
a
ld
i
s
t
r
i
bu
t
i
onoft
heba
l
l
s,a
f
t
e
r
af
i
n
i
t
enumbe
ro
fope
r
a
t
i
on
soneve
r
ha
tcon
t
a
i
ns
k ≥ 2)t
yBk (
a
tl
ea
s
ttwoba
l
l
s,wecana
r
r
i
vea
taba
l
ld
i
s
t
r
i
bu
t
i
ony = (
y1 ,
s
a
t
i
s
f
i
ngyk ≤1f
ora
l
lk ≥2.
I
fa
tt
h
i
st
imey2 =
y2 ,...,yn )
y
… =yn =1,
t
heprob
l
emi
ss
o
l
ved;o
t
he
rwi
s
e,wehavey1 ≥2.
st
hesma
l
l
e
s
tnumbe
rs
ucht
ha
tyi =0,wecant
hen
As
s
umi
ngii
doas
e
r
i
e
sofope
r
a
t
i
on
sonB1 ,B2 ,...,Bi-1 :
(
y1 ,1,...,1,0,yi+1 ,...,yn )
B1,B2,...,Bi-1
(
y1 ,1,...,1,0,1,yi+1 ,...,yn )
→
B1,B2,...,Bi-2
(
y1 ,1,...,1,0,1,1,yi+1 ,...,yn )→ … →
→
B1
(
y1 ,0,1,...,1,yi+1 ,...,yn ) →
(
y1 -1,1,...,1,yi+1 ,...,yn )
t
o ge
t(
t
i
ng t
he
y1 - 1,1, ...,1,yi+1 , ...,yn ).Repea
ope
r
a
t
i
onsabove,wecanf
i
na
l
l
r
r
i
vea
tt
heba
l
ld
i
s
t
r
i
bu
t
i
on
ya
ve
c
t
ort
ha
tmee
t
st
her
equ
i
r
emen
t.
Ch
i
naGi
r
l
s
􀆳Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
185
8 Ass
howni
nF
i
.8
.1,☉O i
st
hee
s
c
r
i
bedc
i
r
c
l
et
ouch
i
ng
g
f△ABC a
tpo
i
n
tM ,andpo
r
eont
he
s
i
deBC o
i
n
t
sD ,E a
s
egmen
t
s AB , AC ,r
e
s
t
i
ve
l
a
t
i
s
f
i
ng DE ‖BC ;
pec
y,s
y
st
hei
n
s
c
r
i
bedc
i
r
c
l
eo
f△ADEt
☉O1i
angen
tt
os
i
deDE a
t
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
i
n
tN ;O1B ,DO i
n
t
e
r
s
e
c
ta
tpo
i
n
tF ,andO1C ,EO
po
i
n
t
e
r
s
ec
ta
tpo
i
n
tG .P
l
ea
s
epr
ovet
ha
tMN d
i
v
i
de
ss
egmen
t
FG equa
l
l
s
edbyBi
anHongp
i
ng)
y.(
po
F
i
.8
.1
g
So
l
u
t
i
on1.I
fAB
= AC ,t
hent
heg
r
aphi
ss
t
r
i
cabou
t
ymme
t
heb
i
s
ec
t
orof ∠BACandt
heconc
l
u
s
i
oni
sobv
i
ou
s.Sowemay
a
s
s
umet
ha
tAB > AC .Asshowni
n Fi
.8
.2,l
e
tL bet
he
g
mi
dpo
i
n
tofBC ,
l
i
neO1Li
n
t
e
r
s
ec
t
i
ng wi
t
hFG a
tR ,andO1N
beex
t
endedt
oi
n
t
e
r
s
ec
twi
t
hBC a
tK .Dr
awl
i
neAT t
ha
ti
s
rpend
i
cu
l
a
rt
o BC a
tT andi
n
t
e
r
s
ec
t
s wi
t
hl
i
ne DE a
tS.
pe
Conne
c
t
i
ng AO ,obv
s on t
he s
egmen
t AO .By
i
ou
s
l
y O1 i
Mene
l
au
s
􀆳t
heor
em,wehave
F
i
.8
.2
g
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
186
O1F ·BD · AO
O1G ·CE · AO
= 1,
= 1.
FB DA OO1
GC EA OO1
①
O1F O1G ,
BD CE
=
=
.So
wh
i
ch
S
i
nc
eDE ‖BC ,wehave
DA EA
FB
GC
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
FR BL
=
= 1.Th
mean
st
ha
tFG ‖BC .Then
st
he
e
r
e
f
or
e,Ri
GR
CL
mi
dpo
i
n
to
fFG .Wenowon
l
oprovet
ha
tM ,R ,N a
r
e
yneedt
co
l
l
i
nea
r. For t
h
i
s purpo
s
e, by t
he i
nve
r
s
e of Mene
l
au
s
􀆳
t
heor
em,weon
l
oprovet
ha
t
yneedt
O1R ·LM · KN
= 1.
RL MK NO1
②
O1R
O1F
OO1 · AD (
=
=
S
i
nc
eFR ‖BL ,wehave
t
he
RL
FB
AO DB
s
e
cond equa
l
i
t
sj
u
s
t
i
f
i
ed by ① ).So we on
l
o
yi
y need t
ovet
ha
t
pr
OO1 ·AD ·LM · KN
= 1.
AO DB MK NO1
③
S
i
nc
eO1K ⊥ DE ,OM ⊥ BC ,AT ⊥ BC ,DE ‖BC ,t
hen
l
i
ne
sO1K ,OM ,AT a
r
epa
r
a
l
l
e
l.Byt
het
heor
em ofd
i
v
i
d
i
ng
OO1
=
t
hes
egmen
t
si
n
t
opr
opor
t
i
ona
lbypa
r
a
l
l
e
ll
i
ne
s,wehav
e
AO
MK
.Sub
s
t
i
t
u
t
i
ngi
ti
n
t
o ③ ,wet
henon
l
oprove
yneedt
MT
AD ·LM · KN
= 1.
DB MT NO1
④
S
i
nc
e DE ‖BC , KN ⊥ DE ,ST ⊥ BC ,quadr
i
l
a
t
e
r
a
l
KNST i
sar
e
c
t
ang
l
eandt
henKN = ST .Fu
r
t
he
rmor
e,f
rom
AD
AS
=
DS ‖BT wehave
.Sub
s
t
i
t
u
t
i
ngt
he
s
er
e
s
u
l
t
si
n
t
o ④,
DB ST
wenowon
l
opr
ove
yneedt
Ch
i
naGi
r
l
s
􀆳Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
187
NO1
LM
=
.
MT
AS
⑤
Le
tBC = a,AC =b,AB =c.Wehave
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
BM =
a +b -c (
a
t
hepr
ope
r
t
fane
s
c
r
i
bedc
i
r
c
l
e),BL = ,
yo
2
2
a2 +c2 -b2 a2 +c2 -b2
=
BT =ccos∠ABC =c·
.
2
2
ac
a
Then
c -b
LM
BL -BM
2
a
=
= 2
=
.
MT BT -BM
c -b2 +a(
c -b) a +b +c
a
2
Ont
heo
t
he
rhand,
2S△ADE
NO1 AD + DE + AE
DE
a
=
=
=
.
AS
2S△ADE
AD + DE + AE a +b +c
DE
The
r
e
f
or
e,⑤ ho
l
d
s.Thepr
oo
fi
scomp
l
e
t
e.
So
l
u
t
i
on2.Le
tt
he r
ad
i
io
f ☉O and ☉O1 ber andr1 ,
r
e
s
c
t
i
ve
l
i
ou
s
l
r
eco
l
l
i
nea
r.
pe
y.Obv
y,O1 ,O andA a
DE ∥ BC ⇒
AB
AC
=
BD
CE
OF S△BOO1
=
FD S△DBO1
OG S△OO1C
=
GE S△EOO1
üï
ï
ï
A ö÷·
1 æç
ABs
i
n
OO1 ï
2ø
2è
ï
=
ï OF
1 ·
OG
r1 BD
=
ý⇒
2
ï FD GE
ï
A ö÷·
1 æçACs
i
n
OO1 ï
2ø
2è
ï
=
1 ·
ï
r1 CE
ï
þ
2
⇒FG ‖DE ‖BC .
188
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
Conne
c
tON andex
t
endi
tt
oi
n
t
e
r
s
e
c
t wi
t
h BC a
tK .I
f
∠ABC = ∠ACB ,
t
henbys
t
r
hepropo
s
i
t
i
onho
l
d
s.So
ymme
y,t
nt
hefo
l
l
owi
ng.
wemaya
s
s
umet
ha
t ∠ABC < ∠ACBi
e
s
c
t
i
ve
l
s
ee
Weconnec
tOM ,O1M ,OB ,MD ,DO1 ,r
pe
y(
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
F
i
.8
.3).S
i
nceO1N ‖OM ,wehave
g
F
i
.8
.3
g
S△ONM = S△MOO1 =
1 ·
C -B ,
r OO1 ·s
i
n
2
2
①
C
1
i
n
BO ·OO1 ·s
2
OG OF S△BOO1
2
=
=
=
1·
B
GE DF S△BDO1
BD ·DO1 ·s
i
n
2
2
C
r·OO1 ·s
i
n
2
=
B
r1 ·BD ·cos
2
②
B
B ö÷ ,
æç
r = BO ·cos ,r1 = DO1 ·s
i
n
2
2ø
è
S△DMN -S△MEN =
=
1
NK ·DN - NE
2
B
Cö
æ
1
-r1c
t
o
t ÷. ③
i
nB · çr1co
BD ·s
2
2ø
è
2
Fr
om ② and ③ ,wehave
Ch
i
naGi
r
l
s
􀆳Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
189
OG
S△DMN -S△MEN
GE
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
C
i
n
r·OO1 ·s
B
C
æ
ö
2
1 ·
-c
o
t ÷·
o
t
= r1 BD ·s
i
nB · çc
2
2ø
è
B
2
r1 ·BD ·cos
2
=r·OO1 ·s
i
n
=r·OO1 ·s
i
n
B
Cö
B·
C æo
-c
t
o
t ÷
s
i
n · çc
2
2ø
2
2 è
C -B
.
2
Comb
i
n
i
ngi
twi
t
h ① ,wege
t
OG (
S△DMN -S△MEN )= 2S△MON .
GE
OG
OG æçDF + EG ö÷ ,
S
i
nce
t
hen
∶2 =
∶
GE
OE èOD OE ø
æDF EG ö÷·
OF ·
OG ·
+
S△MND S△MEN = ç
S△MON ,
èOD OE ø
OD
OE
OF ·S△MND - DF ·S△MON
OG ·S△MEN +EG ·S△MON
=
.④
OD
OE
Ont
heo
t
he
rhand,
S△NMG =
S△MEN ·OG +EG ·S△MON
.
OE
OF ·S△MND - DF ·S△MON
The
r
e
f
or
e,S△NMG =
.
OD
Int
hes
ameway,
S△NMF =
OF ·S△MND - DF ·S△MON
.
OD
By ④ ,wehaveS△NMG = S△NMF .The
r
e
f
or
e,MN d
i
v
i
de
s
s
egmen
tFG equa
l
l
y.
Thepr
oofi
scomp
l
e
t
e.
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
190
2012
(
Gu
a
n
z
h
o
u,G
u
a
n
d
o
n
g
g
g)
F
i
r
s
tDay
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
8:
00 12:
00,Augus
t,10,2012
1
Le
ta1 ,a2 , ...,an ben non
-nega
t
i
ve r
ea
l numbe
r
s.
Provet
ha
t
a1
a1a2…an-1
1
+
+… +
≤ 1.
(
(
(
1+a1)
1+a1)
1+a1 (
1+a2)
1+a2)…(
1+an )
(
s
edby AiYi
nghua)
po
So
l
u
t
i
on.Le
ta0
= 1.Wep
rovet
hefo
l
l
owi
ngi
den
t
i
t
y:
n
k
n
aj-1
aj
=1- ∏
∑∏
k=1 j=1 1 +aj
j=1 1 +aj
①
byi
nduc
t
i
ononn.
I
ti
sev
i
den
tt
ha
t①i
st
r
uef
orn =1.Suppo
s
et
ha
t①i
st
r
ue
f
orn -1,n ≥ 2,
t
henf
orn,
n
k
aj-1
∑ ∏ 1 +a
k=1 j=1
j
=
n-1
k
n
aj-1
∑ ∏ 1 +a
j
k=1 j=1
=1=1-
+
n-1
aj-1
∏ 1 +a
j=1
j
n
aj
aj-1 ö÷
æç
-∏
∏
+
+aj ø
èj
1
a
1
j
=1
j=1
n
aj
∏ 1 +a .
j=1
j
2 Ass
howni
nt
hef
i
r
e,c
i
r
c
l
e
sΓ1 andΓ2 a
r
et
angen
t
gu
ex
t
e
rna
l
l
tpo
i
n
tT .Po
i
n
t
sA andE a
r
eonc
i
r
c
l
eΓ1 ,
ya
l
i
ne
sAB andDE a
r
et
angen
tt
oc
i
r
c
l
eΓ2 a
tpo
i
n
t
sB and
D ,r
ta
tpo
i
n
tP .Prove
e
s
c
t
i
ve
l
ne
sAE andBD mee
pe
y.Li
t
ha
t
Ch
i
naGi
r
l
s
􀆳Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
191
AB ED ;
(
=
1)
AT
ET
(
2)∠ATP + ∠ETP = 180
°.
(
s
edby Xi
ongBi
n)
po
So
l
u
t
i
on.Le
tt
heex
t
en
s
i
onofAT mee
tc
i
r
c
l
eΓ2 a
tpo
i
n
tH ,
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
andt
heex
t
en
s
i
ono
fET mee
t
tpo
i
n
tG .Theni
c
i
r
c
l
eΓ2a
ti
s
ea
s
os
ee t
ha
t AE ‖GH ,
yt
t
hu
s △ATE
△HTG ,
∽
AT
ET
=
con
s
equen
t
l
.And
y
TH
TG
AH
EG
=
f
u
r
t
he
rwehave
.
TH
TG
Byt
heCi
r
c
l
ePowe
rTheor
em,wehave
F
i
.2
.1
g
AB2
AT ·AH
ET ·EG ED2 ,
=
=
2 =
·
TH TH
TG ·TG
TH
TG2
Henc
e
t
he
r
e
f
or
e,
TH
TG
=
AB ;
ED
AT
HT
AB
=
=
.
ET
GT
ED
By t
he S
i
ne Law, we
have
F
i
.2
.2
g
AP s
i
n ∠ABP s
i
n ∠EDP
EP
=
=
=
.
AB
s
i
n ∠APB s
i
n ∠EPD ED
Henc
e,
AP
AB
AT ,
=
=
EP
ED
ET
t
ha
ti
s,PT i
st
he b
i
s
e
c
t
oro
ft
heex
t
e
r
i
orang
l
e of ∠ATE .
The
r
e
f
or
e,
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
192
∠ATP + ∠ETP = 1
80
°.
3
F
i
nd a
l
lt
he pa
i
r
so
fi
n
t
ege
r
s(
a,b)s
a
t
i
s
f
i
ng t
he
y
fo
l
l
owi
ngcond
i
t
i
on:t
he
r
eex
i
s
t
sani
n
t
ege
rd ≥ 2s
uch
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
t
ha
tan +bn +1i
sd
i
v
i
s
i
b
l
ebydforanypo
s
i
t
i
vei
n
t
ege
rn.
(
s
edbyChenYonggao)
po
So
l
u
t
i
on.I
fa +bi
sodd,t
henan +bn
+1i
seven,t
hu
sd =2.
I
fa +bi
seven,t
hena +b +1i
sodd.
sodd,s
odi
n
n
2
2
2
=a +b +1 +2(
S
i
nced|a +b +1,(
a +b +1)
a +b +
ab -1),andd|a2 +b2 +1,
t
hen,d|2(
ab -1),
s
owe
1)+2(
haved|ab -1.
Wes
eet
ha
ta3 +b3 + 1 ≡ (
a +b)(
a2 +b2 -ab)+ 1 ≡
(-1)(-1-1)+1 ≡3(
modd),
andd|a3 +b3 +1,henced|3,
s
od = 3.
S
i
nce
2
2
2
(
= a +b -2
a -b)
ab ≡ -1 -2 ≡ 0(
mod3),
wehavea ≡b(
mod3).Thu
s,
0 ≡a +b +1 ≡2
a +1(
mod3),we
mod3).
s
eet
ha
ta ≡ 1(
The
r
e
f
or
e,a ≡ b ≡ 1(
mod3).Cons
equen
t
l
y,for any
s
i
t
i
vei
n
t
ege
rn,wehave
po
an +bn +1 ≡ 1 +1 +1 ≡ 0(
mod3).
Summi
ngup,t
her
equ
i
r
edi
n
t
ege
rpa
i
r
sa
r
eoft
heforms:
(
2
r
ekandla
2
k,2
l +1),(
k +1,2
l),(
3
k +1,3
l +1),whe
r
e
i
n
t
ege
r
s.
4 The
r
ei
sas
t
one (
o
fgog
ame)a
te
a
chv
e
r
t
e
xo
fag
i
v
enr
e
l
a
r
gu
13
hec
o
l
o
ro
fe
a
chs
t
onei
sb
l
a
cko
rwh
i
t
e.Pr
ov
e
gon,andt
t
ha
twema
x
chang
et
hepo
s
i
t
i
ono
ftwos
t
one
ss
u
cht
ha
tt
he
ye
Ch
i
naGi
r
l
s
􀆳Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
193
c
o
l
o
r
i
ngo
ft
he
s
es
t
one
sa
r
es
t
r
i
c wi
t
hr
e
s
c
tt
os
ome
ymme
pe
s
t
r
i
ca
x
i
so
ft
he13
s
edbyFuYunhao)
ymme
gon.(
po
So
l
u
t
i
on.Takeanyver
s
s
i
ng
t
exA andt
hes
t
r
i
cax
i
slpa
ymme
i
t.The
r
ea
r
es
i
xpa
i
r
so
fve
r
t
i
ce
ss
t
r
i
ct
ol.
I
ft
heco
l
orof
ymme
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
s
t
one
sa
teachpa
i
ro
fve
r
t
i
c
e
si
st
hes
ame,t
hent
heco
l
or
i
ngi
s
s
t
r
i
ct
ol.
ymme
I
ft
he
r
ei
son
l
i
ro
fs
t
r
i
cve
r
t
i
c
e
st
ha
tha
s
y one pa
ymme
d
i
f
f
e
r
en
tco
l
ors
t
one
s,t
henexchanget
hes
t
onea
toneve
r
t
exof
t
hepa
i
ri
nd
i
f
f
e
r
en
tco
l
ort
oA wi
t
ht
hes
t
oneonA .
I
ft
he
r
ea
r
eexac
t
l
i
r
sofve
r
t
i
ce
si
nd
i
f
f
e
r
en
tco
l
or
s,
ytwopa
t
henexchanget
hewh
i
t
es
t
onei
nve
r
t
exo
fapa
i
rwi
t
ht
heb
l
ack
s
t
onei
nve
r
t
exo
ft
heo
t
he
rpa
i
r.
Nows
uppo
s
et
ha
tf
oranyve
r
t
exA andt
hes
t
r
i
cax
i
s
ymme
s
s
i
ngA ,
t
he
r
ea
r
ea
tl
ea
s
tt
hr
eepa
i
r
sofs
t
r
i
cve
r
t
i
ce
si
n
pa
ymme
d
i
f
f
e
r
en
tco
l
or
s.Wes
ha
l
ls
howt
h
i
si
simpo
s
s
i
b
l
e.
I
ft
he
r
ea
r
exb
l
acks
t
one
sandy wh
i
t
es
t
one
s,t
henx +y =
13 ;wi
t
hou
tl
o
s
sofgene
r
a
l
i
t
e
tx beoddandy beeven.
y,l
I
ft
hes
t
oneonAi
si
nb
l
ack,t
hent
her
ema
i
n
i
ngs
t
one
sa
r
e
eveni
nb
l
ackand wh
i
t
e,r
e
s
c
t
i
ve
l
he
r
ea
r
eeven
pe
y.Hence,t
i
r
so
fve
r
t
i
ce
si
nd
i
f
f
e
r
en
tco
l
or
s,t
ha
ti
s,t
he
r
ea
r
ea
tl
ea
s
t
pa
fou
rpa
i
r
sofve
r
t
i
c
e
si
nd
i
f
f
e
r
en
tco
l
or
s.
S
imi
l
a
r
l
ft
hes
t
oneonA i
si
n wh
i
t
e,t
hent
he
r
ea
r
ea
t
y,i
l
ea
s
tt
hr
eepa
i
r
so
fs
t
r
i
cve
r
t
i
ce
si
nd
i
f
f
e
r
en
tco
l
or
s.
ymme
S
i
nc
eeachpa
i
ro
fve
r
t
i
c
e
si
ss
t
r
i
ct
ooneax
i
s,wes
ee
ymme
t
ha
tt
henumbe
ro
fpa
i
r
si
nd
i
f
f
e
r
en
tco
l
or
si
sa
tl
ea
s
t4x +3y.
Ont
heo
t
he
rhand,t
henumbe
rofpa
i
r
si
nd
i
f
f
e
r
en
tco
l
or
s
t
hu
s
i
sexac
t
l
yxy,
xy ≥ 4x +3y = x +39,
t
ha
ti
s,x(
ti
tcon
t
r
ad
i
c
t
st
o
y -1)≥ 39,bu
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
194
2
æx + (
y -1)ö÷
=3
x(
6.
y -1)≤ ç
2
è
ø
S
e
c
ondDay
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
00,Augus
t,11,2012
8:
00 12:
5
As s
hown i
n F
i
.5
.1, t
he
g
i
n
s
c
r
i
bedc
i
r
c
l
e☉I o
f△ABC
i
st
angen
tt
ot
hes
i
de
sAB and
AC a
t po
i
n
t
s D and E ,
st
he
r
e
s
c
t
i
ve
l
pe
y. And O i
c
i
r
cumc
en
t
r
eo
f△BCI.Pr
ove
t
ha
t ∠ODB = ∠OEC .(
s
ed
po
byZhuHuawe
i)
So
l
u
t
i
on.S
st
hec
i
r
c
umc
en
t
r
e
i
n
c
eOi
o
f△BCI,wes
eet
ha
t
F
i
.5
.1
g
∠BOI = 2∠BCI = ∠BCA .
Int
hes
amemanne
r,∠COI = ∠CBA .Hence,
∠BOC = ∠BOI + ∠COI = ∠BCA + ∠CBA = π - ∠BAC .
Thu
s,fou
rpo
i
n
t
sA ,B ,O andC a
r
econcyc
l
i
c.ByOB =
OC ,weknowt
I
tcana
l
s
obes
eenf
rom
ha
t ∠BAO = ∠CAO .(
t
hewe
l
l
-knownconc
l
u
s
i
ont
ha
tpo
i
n
t
︵
Oi
st
he mi
dpo
i
n
tof a
r
c BC (
no
t
i
r
cumc
i
r
c
l
eo
f
con
t
a
i
npo
i
n
tA )onc
△ABC .) Comb
i
ned wi
t
ht
hef
ac
t
t
ha
tAD = AE ,AO = AO ,wehave
△OAD ≅ △OAE .Hence, ∠ODA
=
∠OEA ,t
he
r
e
f
or
e, ∠ODB
∠OEC .
=
F
i
.5
.2
g
Ch
i
naGi
r
l
s
􀆳Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
6
195
The
r
ea
r
enc
i
t
i
e
s(
n > 3)andtwoa
i
r
l
i
necompan
i
e
si
na
coun
t
r
tweenanytwoc
i
t
i
e
s,t
he
r
ei
sexac
t
l
y.Be
yone2
wayf
l
i
tconne
c
t
i
ngt
hem wh
i
chi
sope
r
a
t
edby oneof
gh
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
t
hetwo compan
i
e
s. A f
ema
l
e ma
t
hema
t
i
c
i
an p
l
ans a
t
r
ave
lr
ou
t
e,s
ot
ha
ti
ts
t
a
r
t
sandend
sa
tt
hes
amec
i
t
y,
s
s
e
st
hr
ougha
tl
ea
s
ttwoo
t
he
rc
i
t
i
e
s,andeachc
i
t
pa
yon
t
her
ou
t
ei
sv
i
s
i
t
edonce.Shef
i
nd
sou
tt
ha
twhe
r
eve
rshe
s
t
a
r
t
sand wha
t
eve
rr
ou
t
es
he choo
s
e
s,s
he mu
s
tt
ake
f
l
i
t
so
fbo
t
hcompan
i
e
s.F
i
ndt
hemax
imumva
l
ueofn.
gh
(
s
edbyLi
ang Yi
ngde)
po
So
l
u
t
i
on.Cons
i
de
reachc
i
t
save
r
t
exandeacha
i
r
l
i
nea
san
ya
edgei
naco
l
orcor
r
e
s
i
ngt
ot
hea
i
r
l
i
necompanyi
tbe
l
ong
s.
pond
Thent
hea
i
r
l
i
ner
ou
t
echa
r
toft
h
i
scoun
t
r
ega
rdeda
sa
ycanber
two
co
l
orcomp
l
e
t
eg
r
aph wi
t
h n ve
r
t
i
ce
s.By t
he prob
l
em
s
t
a
t
e
s,any c
i
r
c
l
econ
t
a
i
n
sedge
so
fbo
t
hco
l
or
s.Tha
ti
s,t
he
s
ubg
r
apho
feachco
l
orha
snoc
i
r
c
l
e.I
ti
swe
l
l
-knownt
ha
tf
or
t
hes
imp
l
eg
r
aphwi
t
hou
tc
i
r
c
l
e,t
henumbe
ro
fedge
si
sl
e
s
st
han
t
henumbe
ro
fve
r
t
i
c
e
s.Thu
s,t
henumbe
ro
fedge
soft
hes
ame
co
l
ori
snomor
et
hann -1,
t
ha
ti
s,t
het
o
t
a
lnumbe
ro
fedge
si
s
nomor
et
han2(
n - 1).Ont
heo
t
he
rhand,t
henumbe
ro
fa
/2.Hence,
comp
l
e
t
eg
r
aphwi
t
hnve
r
t
i
c
e
si
sn(
n -1)
n(
n -1)≤
2(
n -1),
t
ha
ti
s,
n ≤ 4.
I
fn = 4,deno
tt
hr
ee
t
ef
ou
rc
i
t
i
e
sbyA ,B ,C andD .Le
rou
t
e
sAB ,BCandCD beope
r
a
t
edbyt
hef
i
r
s
tcompanyandt
he
o
t
he
rt
hr
eerou
t
e
sAC ,AD andBD byt
hes
e
condcompany.We
s
eet
ha
tt
herou
t
echa
r
to
feachcompanyha
snoc
i
r
c
l
e.So,t
he
max
imumnumbe
ro
fni
s4.
7
Le
ta1 ≤ a2 ≤ … beas
equenc
eofpo
s
i
t
i
vei
n
t
ege
r
ss
uch
t
ha
tr/
ar =k +1fors
omepo
s
i
t
i
vei
n
t
ege
r
skandr.Prove
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
196
t
ha
tt
he
r
eex
i
s
t
sapo
s
i
t
i
vei
n
t
ege
rss
ucht
ha
ts/
as = k.
(
s
edbyJ
ac
ekFabr
i,USA)
po
ykowsk
So
l
u
t
i
on.Le
t)=t -kat .Theng(
r)=r -kar
tg(
=ar > 0.
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
No
t
et
ha
tg(
1)= 1 -ka1 ≤ 0.Sot
hes
e
t{
t|t = 1,2,...,r,
sno
temp
t
ts bet
t)≤ 0}i
he max
ima
le
l
emen
toft
he
g(
y.Le
s
e
t;t
hens <r.Henc
e,g(
s +1)> 0.Ont
heo
t
he
rhand,
s +1)=s +1 -kas+1 ≤s +1 -kas = g(
s)+1 ≤ 1. ①
g(
Thu
s,0 < g(
s +1)≤ 1.Cons
s +1)= 1.And
equen
t
l
y,g(
s +1)≤g(
s)+1 ≤1.Wehaveg(
s)=0,
by ① ,1 =g(
t
ha
ti
s,
s/as =k.
8
F
i
ndt
henumbe
ro
fi
n
t
ege
r
ski
nt
hes
e
t{
0,1,2,...,
æ2012ö
2012}s
uch t
ha
tt
he comb
i
na
t
i
on numbe
r ç
÷ =
è k ø
2012!
i
sa mu
l
t
i
l
eo
f2012. (
s
ed by Wang
p
po
!(
k 2012 -k)!
Bi
n)
So
l
u
t
i
on.Fac
t
or
i
z
i
ng2012 = 4 ×503,wes
eet
ha
tp
ime.I
fki
sno
tamu
l
t
i
l
eo
fp,
t
hen
pr
p
=5
03i
sa
æ4p -1ö
æ2012ö
æ4p ö
(
4p)!
4p
=
×ç
ç
÷= ç
÷= ! (
÷.
)
!
k
èk -1 ø
è k ø
è k ø k × 4p -k
æ2012ö
2012!
Hence ç
i
samu
l
t
i
l
eo
fp.
÷ = !(
p
è k ø k 2012 -k)!
I
fki
samu
l
t
i
l
eo
fp,
t
he
r
ea
r
eon
l
i
veca
s
e
s:
k = 0,p,
p
yf
2p,3p,4p.And wes
eet
ha
ti
na
l
lca
s
e
s,t
hecomb
i
na
t
i
on
numbe
r
s
æ4p ö
æ4p ö
ç
÷= ç
÷ = 1,
è0ø
è4p ø
æ4p ö
æ4p ö 4(
3p +1)(
3p +2)…(
3p + (
p -1))
≡ 4(
modp),
ç
÷= ç
÷=
(
)
!
p -1
èp ø
è3p ø
Ch
i
naGi
r
l
s
􀆳Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
197
and
2p +2)…(
2p + (
6[(
2p +1)(
p -1))]
æ4p ö [(
2p + (
2p + (
2p + (
2p -1))]
p +1))(
p +2))…(
ç
÷=
(
2p -1)]
p -1)![(
p +1)(
p +2)…(
è2p ø
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
≡ 6(
modp)
a
r
eno
tmu
l
t
i
l
eofp.
p
Now wedeno
t
et
heb
i
na
r
r
a
lofnon
-nega
t
i
vei
n
t
ege
r
ynume
nby
n=(
arar-1 …a0)
2 =
r
j
∑ aj2 ,ands(n)=
j=0
whe
r
eaj = 0or1f
orj = 0,1,...,r.
r
∑a ,
j=0
j
Thent
hepowe
rm o
ff
ac
t
or2mi
nf
ac
t
or
i
za
t
i
onofn ! canbe
expr
e
s
s
edby
n
n
n
+
+… + m +…
2
4
2
=(
arar-1 …a2a1)
arar-1 …a3a2)
2 +(
2 + … +ar
= ar × (
2 -1)+ar-1 × (
2- -1)+ … +a1 ×
r
r 1
(
21 -1)+a0 × (
20 -1)
= n -s(
n).
æ2012ö
2012!
=
I
ft
hecomb
i
na
t
i
onnumbe
rç
÷= ! (
è k ø k × 2012 -k)!
(
k + m )!
i
sodd (
m =2012 -k),
t
heni
tmeanst
ha
tt
hepowe
r
s
k! × m !
of2i
nf
ac
t
or
so
ft
henume
r
a
t
orandt
hedenomi
na
t
oroft
he
f
r
ac
t
i
onabovea
r
et
hes
ame.Then
k + m -s(
k + m )=k -s(
k)+ m -s(
m ),
or
s(
k + m )=s(
k)+s(
m ).
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
198
Th
i
smean
st
ha
tt
heb
i
na
r
i
t
i
ono
fk +m =2012ha
sno
yadd
ca
r
r
i
ng.
y
S
i
nc
e2012 = (
11111011100)
i
tcons
i
s
t
sofe
i
t1
􀆳
sand
2,
gh
t
hr
ee0
􀆳
s.I
ft
he
r
ei
snoca
r
r
i
ngi
nt
headd
i
t
i
ono
fk + m =
y
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
(
11111011100)
t
henont
heb
i
tof0i
n(
11111011100)
k,m
2,
2,
a
r
e0;
ont
heb
i
to
f1,onei
s0,t
heo
t
he
ri
s1,s
ot
he
r
ea
r
etwo
cho
i
c
e
s:1 =1 +0and1 =0 +1.Thu
s,t
he
r
ea
r
e28 =256ca
s
e
s
t
ha
tt
heb
i
na
r
i
t
i
ono
ftwonon
-nega
t
i
vei
n
t
ege
r
sk + m =
yadd
2012 ha
s no ca
r
r
i
ng.Tha
ti
s,t
he
r
ea
r
e 256 comb
i
na
t
i
on
y
numbe
r
st
ha
ta
r
eodd,andt
her
ema
i
n
i
ng2013 - 256 = 1757
comb
i
na
t
i
onnumbe
r
sa
r
eeven.
I
ft
hecomb
i
na
t
i
onnumbe
r
æ2012ö
(
k + m )!
2012!
=
ç
÷= ! (
)
!
k! × m !
è k ø k × 2012 -k
i
sevenbu
tno
tamu
l
t
i
l
eo
f4,t
heni
tmeanst
ha
tt
hepowe
rof
p
2i
nt
henume
r
a
t
ori
sg
r
ea
t
e
rt
hant
ha
ti
nt
hedenomi
na
t
orby1.
Thu
s,
k + m -s(
k + m )=k -s(
k)+ m -s(
m )-1,
or
s(
k + m )=s(
k)+s(
m )-1.
Tha
ti
s,t
he
r
ei
son
l
r
r
i
ngi
nt
heb
i
na
r
i
t
i
onof
yoneca
y
yadd
k +m =2012.Theca
r
r
i
nghappen
sa
ttwob
i
t
sa
s01+01 =10.
y
By
k + m = 2012 = (
11111011100)
2,
wes
eet
ha
tt
heca
r
r
i
ngcanon
l
tt
hef
i
f
t
h(
f
romt
he
y
yhappena
h
i
s
tb
i
tt
ot
hel
owe
s
tb
i
t)ands
i
x
t
hb
i
t
sora
tt
hen
i
n
t
hand
ghe
7
i
s
t2 = 128ca
s
e
s.Tha
ti
s,t
he
r
ea
r
e256
t
en
t
hb
i
t
s.Sot
he
r
eex
Ch
i
naGi
r
l
s
􀆳Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
199
comb
i
na
t
i
on
s who
s
e va
l
ue
sa
r
e even numbe
r
s bu
t no
tt
he
mu
l
t
i
l
e
so
f4.
p
Thu
s,t
he
r
ea
r
e2013 - 256 - 256 = 1501comb
i
na
t
i
ons
who
s
eva
l
ue
sa
r
e mu
l
t
i
l
e
so
f4.Now,wegobackt
ocons
i
de
r
p
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
t
heca
s
e
swhe
r
eki
sno
tt
hemu
l
t
i
l
eofp = 503.
p
æ4p ö
æ4p ö
Wes
eet
ha
tç
sno
ta mu
l
t
i
l
eof4.For
÷= ç
÷ = 1i
p
è0ø
è4p ø
æ4p ö
æ4p ö
(
4p)!
he powe
rof2i
ss(
3p)ç
÷= ç
÷ = !( )! ,t
p)+s(
3p
p
èp ø
è3p ø
æ4p ö
(
4p)!
s(
4p)=s(
3p)=7,andf
or ç
t
hepowe
rof
÷ = ( )!( )! ,
2
p 2p
è2p ø
2i
ss(
2p)+s(
2p)-s(
4p)=s(
s,t
he
r
ea
r
et
hr
ee
p)= 8.Thu
comb
i
na
t
i
onnumbe
r
swh
i
cha
r
emu
l
t
i
l
e
sof4bu
tno
tmu
l
t
i
l
e
s
p
p
o
fp = 503,
t
ha
ti
s,t
henumbe
rofks
ucht
ha
tt
hecomb
i
na
t
i
ons
æ2012ö
r
emu
l
t
i
l
e
sof2012i
s1501 -3 = 1498.
ç
÷a
p
è k ø
2013
(
Z
h
e
n
h
a
i,Z
h
e
i
a
n
j
g)
F
i
r
s
tDay
(
8:
00 12:
00Augus
t12,2013)
1
hec
l
o
s
ed doma
i
n ont
he p
l
anede
l
imi
t
ed by
Le
tA bet
t
hr
eel
i
ne
sx = 1,y = 0,andy =t(
2x -t),whe
r
e0 <
t < 1.Provet
ha
tt
hes
u
r
f
aceo
fanyt
r
i
ang
l
ei
n
s
i
det
he
doma
i
nA wi
t
hP (
t,
t2)andQ (
1,0)a
stwoo
fi
t
sve
r
t
i
c
e
s
canno
texc
eed
1
.
4
200
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
So
l
u
t
i
on. I
t i
s ea
s
o
y t
ob
s
e
r
vet
ha
tt
hedoma
i
ni
sa
c
l
o
s
ed t
r
i
ang
l
e. I
t
s t
hr
ee
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
æt
ö
ve
r
t
i
c
e
sa
r
e B ç ,0÷ ,Q (
1,
è2
ø
0)andC(
1,
t(
2-t)).P
i
cka
i
n
tX i
n
s
i
de t
he △BQC ,
po
t
hen t
he a
r
ea o
f △PQX i
s
equa
lt
oha
l
fo
ft
heproduc
to
f
F
i
.1
.1
g
PQ wi
t
ht
hed
i
s
t
anc
ef
r
om X
t
oPQ .Sot
hea
r
ea o
fPQX
t
ake
si
t
smax
imum va
l
ue whent
hed
i
s
t
anc
ef
rom X t
o PQ i
s
max
imi
zed,i.
e.,whenX co
i
nc
i
de
swi
t
hB orC .
Thea
r
eao
f△PQBi
s
1 æç1 - t ö÷ 2
1
1
t = (
2 -t)
t2 ≤ (
2 -t)
t
2ø
2è
4
4
≤
1 æç2 -t +tö÷
1;
=
2
ø
4è
4
2
t
hea
r
eao
f△PQCi
s
1(
1 (
1 -t)(
2
t -t2)= 2
t 1 -t)(
2 -t)
2
4
≤
t +1 -t +2 -tö÷
1 æç2
1
=
.
3
ø
4è
4
3
Henc
e,i
nt
hedoma
i
nA ,anyt
r
i
ang
l
ewi
t
hP ,Q a
stwoof
i
t
sve
r
t
i
c
e
scanno
thaveana
r
eat
ha
texc
eed
s
2
1
.
4
Ass
howni
nF
i
.2
.1,Inat
r
apezo
i
dABCD ,AB ‖CD ,
g
☉O1i
st
angen
tt
ot
hes
egmen
t
sDA ,AB ,BC ,☉O2 i
s
tP bet
he
t
angen
tt
ot
hes
egmen
t
sBC ,CD ,DA .Le
Ch
i
naGi
r
l
s
􀆳Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
201
t
angen
tpo
i
n
to
f ☉O1 wi
t
h AB ,and Q bet
het
angen
t
t
h CD .Pr
i
n
to
f ☉O2 wi
ovet
ha
tAC ,BD ,PQ a
r
e
po
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
concu
r
r
en
t.
F
i
.2
.1
g
F
i
.2
.2
g
So
l
u
t
i
on.Le
hei
n
t
e
r
s
e
c
t
i
onofl
i
ne
sAC ,BD ,andj
o
i
n
tR bet
O1A ,O1B ,O1P ,O2C ,O2D ,O2Q ,PR ,QR .Asshown
i
nF
i
.2
.2.
g
AsBA andBC a
r
et
angen
tl
i
ne
sof☉O1 ,
∠PBO1 = ∠CBO1 =
1∠
ABC .
2
1∠
S
imi
l
a
r
l
BCD .
y,wehave ∠QCO2 =
2
Fr
om AB ‖CD ,weknowt
°.
ha
t ∠ABC + ∠BCD = 180
The
r
e
f
or
e,∠PBO1 + ∠QCO2 = 90
°,anda
sRt△O1BP and
O1P
CQ
=
Rt△CO2Q a
r
es
imi
l
a
r,wehave
.
BP
O2Q
O2Q
AP
=
S
imi
l
a
r
l
.By mu
l
t
i
l
i
ngt
he
s
etwo
y,wehave
p
y
O1P
DQ
AP CQ ,
AP
=
=
i
den
t
i
t
i
e
s,weob
t
a
i
n
wh
i
chi
nt
u
r
nimp
l
i
e
s
BP DQ
AP +BP
CQ
AP CQ
,
=
i.
e.,
.
CQ + DQ
AB CD
r
e
Aga
i
nbyAB ‖CD ,weknowt
ha
t△ABR and △CDR a
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
202
AR CR
AP CQ ,
AR
=
=
=
weha
v
e
s
imi
l
a
r,s
o
.Compa
r
i
ngwi
t
h
AB CD
AB CD
AP
CR
.Meanwh
i
l
e, △PAR i
ss
imi
l
a
rt
o △QCR a
s ∠PAR =
CQ
∠QCR .Thu
s ∠PRA = ∠QRC .So P ,R ,Q a
r
eco
l
l
i
nea
r.
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
The
r
e
for
e,AC ,BD ,PQ a
r
econcu
r
r
en
t.
3 Inag
r
oupo
fm g
s,anytwooft
heme
i
t
he
r
i
r
l
sandn boy
know eacho
t
he
r,ordono
tknow eacho
t
he
r.Forany
twoboy
sandtwog
i
r
l
s,a
tl
ea
s
toneboyandoneg
i
r
ldo
no
tknoweacho
t
he
r.Pr
ovet
ha
tt
henumbe
rofboy
i
r
l
g
n(
n -1)
i
r
st
ha
tknoweacho
t
he
ri
sa
tmo
s
tm +
.
pa
2
So
l
u
t
i
on.Fromthehypothes
i
s,f
oranytwoboy
s,t
he
r
ei
sa
t
henumbe
rof
mo
s
toneg
i
r
lt
ha
tknowsbo
t
ho
ft
hem.Le
txibet
i
r
l
st
ha
tknowexac
t
l
s,1 ≤i ≤n.So ∑i=1xi = m .By
g
yiboy
n
coun
t
i
ng t
he numbe
r o
f t
he above two boy
s
one g
i
r
l
comb
i
na
t
i
on
s,wehave
i(
i -1)
n(
n -1)
xi ≤
.
2
2
∑
i≥2
Thenumbe
ro
fboy
i
r
lpa
i
r
st
ha
tknoweacho
t
he
ri
st
hen
g
i(
i -1)
ixi = m + ∑ (
i -1)
xi ≤ m + ∑
xi
∑
2
i=1
i=2
i=2
n
n
n
n(
n -1)
.
2
≤m +
4
F
i
ndt
henumbe
ro
fpo
l
a
l
sf(
x) = ax3 +bx t
ha
t
ynomi
s
a
t
i
s
f
hefo
l
l
owi
ngcond
i
t
i
onsbe
l
ow:
yt
(
1,2,...,2013};
1)a,b ∈ {
(
2) t
he d
i
f
f
e
r
enc
eo
fany two numbe
r
samong f(
1),
Ch
i
naGi
r
l
s
􀆳Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
2),...,f(
2013)
i
sno
tamu
l
t
i
l
eof2013.
f(
p
So
l
u
t
i
on.2013i
sf
ac
t
or
i
zeda
s2013 =3×11×61.Le
tp1
203
=3,
t
ebyait
her
e
s
i
dueofa modu
l
opi ,
p2 = 11,p3 = 61.Wedeno
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
bybi t
her
e
s
i
dueo
fb modu
l
opi (
i = 1,2,3),a,b ∈ {
1,
2,...,2013}.Byt
heCh
i
ne
s
eRemi
nde
rTheor
em,wehavea
b
i
e
c
t
i
ono
f(
a,b)wi
a1 ,a2 ,a3 ,b1 ,b2 ,b3).
t
h(
j
Now,l
e
tfi(
l
la
x) = aix3 + bix,i = 1,2,3.Weca
l
a
l “good modu
l
o n ”i
ft
he r
e
s
i
due
s of f(
0),
po
ynomi
n -1)modu
l
ona
r
ea
l
ld
i
s
t
i
nc
t.
1),...,f(
f(
I
ff(
x)= ax3 +bxi
sno
tgood modu
l
o2013,t
hent
he
r
e
ex
i
s
t
sx1 ≢ x2 (
mod 2013)s
uch t
ha
tf(
x1) ≡ f(
x2)(
mod
modpi).Le
her
e
s
i
due
s
2013).Suppo
s
ex1 ≢ x2(
tu1 andu2bet
ofx1 andx2 modu
l
opi ,r
e
s
c
t
i
v
e
l
modpi)and
pe
y.Thenu1 ≢ u2(
modpi),
u1)≡ fi(
u2)(
x)
s
ofi(
i
sno
tgoodmodu
l
opi .
fi(
I
ff(
x)=ax3 +bxi
sgoodmodu
l
o2013,t
henforeve
r
yi,
x)i
sgood modu
l
opi .Ther
ea
s
oni
sa
sfo
l
l
ows.Forany
fi (
d
i
s
t
i
nc
tpa
i
rr1 ,r2 ∈ {
0,1,...,pi -1},
t
he
r
eex
i
s
tx1 ,x2 ∈
{
1,2,...,2013}
s
ucht
ha
tx1 ≡r1 ,x2 ≡r2(
modpi)andx1 ≡
2013ö÷
2013ö÷ ,
æ
æ
x2 ç mod
.Nowf (
x1)≡ f(
x2)ç mod
bu
tf(
x1) ≢
è
è
pi ø
pi ø
x2)(
mod2013),s
of(
r1)≢ f (
r2)(
modpi).
f(
Henc
e, we need t
o de
t
e
rmi
ne t
he numbe
r of good
l
a
l
sfi(
x)modu
l
opi .
po
ynomi
Forp1 = 3,byFe
rma
t
􀆳
st
heor
em,agoodpo
l
a
l
ynomi
x)≡ a1x +b1x ≡ (
a1 +b1)
x(
mod3)
f1(
i
sequ
i
va
l
en
tt
os
ayt
ha
ta1 +b1i
sno
td
i
v
i
s
i
b
l
eby3.The
r
ea
r
ei
n
t
o
t
a
ls
i
xs
uchf1(
x).
x)
Fori =2,3,
i
ffi(
i
sgoodmodu
l
opi ,
t
henf
oranyuand
v ≢ 0(
modpi),fi(
u +v)≢ fi(
u -v)(
modpi),
i.
e.,
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
204
u +v)-fi(
u -v)= 2
v[
ai(
3u2 +v2)+bi]
fi(
i
sno
td
i
v
i
s
i
b
l
e bypi .I
fai ≠ 0,t
her
e
s
i
due
s modu
l
opi of
pi -1
e
l
emen
t
si
nt
hes
e
t
sA = 3
and
aiu2 |u = 0,1,...,
2
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
{
}
-1
pi
B = (-bi -aiv2)|v = 1,2,...,
2
{
} do notcoincide,
and|A|+|B|=pi .SoA ∪Bf
ormsacomp
l
e
t
er
e
s
i
dues
s
t
em
y
i
rs
um mu
s
t be a mu
l
t
i
l
eo
f pi ,i.
e.,
modu
l
o pi . The
p
pi-1
2
pi-1
2
2
2
∑u=03aiu + ∑v=1 (-bi -aiv )≡ 0(modpi).
æpi -1ö÷
1·pi -1·pi +1·
=
s
Now,12 +22 + … + ç
pii
2
2
6
è 2 ø
2
pi -1
·bii
amu
l
t
i
l
eo
fpi ,
sa
l
s
oamu
l
t
i
l
eo
fpi .Hence,
s
op
p
2
bii
sd
i
v
i
s
i
b
l
ebypi ,
i.
e.,exac
t
l
s0.
yoneofai ,bii
x) = bix i
sobv
i
ou
s
l
I
fai = 0,bi ≠ 0,t
henfi (
ygood.
The
r
ea
r
epi -1s
uchgoodpo
l
a
l
s.
ynomi
henfi(
x) = aix3 .Forp2 = 11 ,by
I
fai ≠ 0,bi = 0,t
7
21
=x
≡ x(
x3)
mod11),s
oforx1 ≠
Fe
rma
t
􀆳
st
heor
em,(
3
x2(
mod11)andx3
mod11),f2(
x)=a2x3i
sgood.The
r
e
1 ≠x2 (
a
r
ei
nt
o
t
a
l10s
uchpo
l
a
l
s.
ynomi
s43 =64 ≡125 =53(
mod61),f3(
Forp3 =61,a
x)=a3x3
canno
tbegood.
The
r
e
for
e,t
het
o
t
a
lnumbe
rt
ha
twea
r
el
ook
i
ngf
ori
s6 ×
(
10 +10)×60 = 7200.
S
e
c
ondDay
8:
00 12:
00,Augus
t13,2013
5
Gi
venpo
s
i
t
i
ver
ea
lnumbe
r
sa1 ,a2 ,...,an .Provet
ha
t
Ch
i
naGi
r
l
s
􀆳Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
205
t
he
r
eex
i
s
tpo
s
i
t
i
ver
ea
lnumbe
r
sx1 ,x2 ,...,xns
ucht
ha
t
∑
x = 1,andt
ha
tf
oranypo
s
i
t
i
ver
ea
lnumbe
r
sy1 ,
n
i=1 i
a
t
i
s
f
i
ng ∑i=1yi = 1,oneha
s
y2 ,...,yn s
y
n
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
n
n
aixi
1
≥
ai .
∑
∑
2i
i=1 xi +yi
=1
So
l
u
t
i
on.Le
txi
=
n
∑
n
i=1 i
a
aixi
=
i +yi
∑x
i=1
n
ai
.Then ∑xi = 1.Mor
eove
r,
i=1
n
n
xi2
.
i +yi
∑a ∑x
i=1
i
i=1
Foranypo
s
i
t
i
venumbe
r
sy1 ,y2 ,...,yn wi
t
h ∑i=1yi =
n
1.Byt
heCauchy
Schwa
r
zInequa
l
i
t
y,
n
xi2
=
i=1 xi +yi
2∑
Henc
e,
n
n
xi2
≥
i=1 xi +yi
i=1
aixi
=
∑
x
i +yi
i=1
6
n
∑ (xi +yi)∑
n
( ∑x )
n
i=1
i
2
= 1.
n
xi2
1
ai .
i ≥
∑
+
2i
x
i
y
i=1
=1
∑ai ∑
i=1
n
Le
tS beas
ub
s
e
tofm e
l
emen
t
sof{
0,1,2,...,98},m
≥ 3,
s
ucht
ha
tf
oranyx,y ∈S,
t
he
r
eex
i
s
t
sz ∈S wi
t
hx
+y ≡ 2
z(
mod99).F
i
nda
l
lpo
s
s
i
b
l
eva
l
ue
sofm .
So
l
u
t
i
on.Le
tS = {
s1 ,
s2 ,...,
sm }.AsS
'={
0,
s2 -s1 ,...,
sm -s1}s
a
t
i
s
f
i
e
sa
l
s
ot
hehypo
t
he
s
i
s,we maya
s
s
ume wi
t
hou
t
l
o
s
so
fgene
r
a
l
i
t
ha
t0 ∈ S.Foranyx,y ∈ S,50(
x +y)≡
yt
z(
ak
i
ngy = 0,wehavet
ha
tforanyx ∈ S,
mod99)∈ S.Byt
50x ∈ S.As50and99a
r
ecopr
ime,t
he
r
eex
i
s
t
sa po
s
i
t
i
ve
mod99).Hence,
i
n
t
ege
rks
ucht
ha
t50k ≡ 1 (
x +y ≡ 50k (
x +y)(
mod99)∈ S.
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
206
Le
td = gcd(
99,s1 ,s2 , ...,sm ).Theabovea
r
t
gumen
t
henimp
l
i
e
st
ha
td ∈ S,t
he
r
e
for
eS = {
0,d,2d,...}.For
any po
s
i
t
i
ve f
ac
t
or d < 99 of 99,t
h
i
sS s
a
t
i
s
f
i
e
sa
l
lt
he
r
equ
i
r
emen
t
s.Henc
e,a
l
lt
hepo
s
s
i
b
l
eva
l
ue
sofm a
r
e3,9,11,
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
33,99.
7
As s
hown i
n F
i
.7
.1, ☉O1 and ☉O2 a
r
et
angen
t
g
ex
t
e
rna
l
l
t po
i
n
t T . The quadr
i
l
a
t
e
r
a
l ABCD i
s
ya
i
ne
sDA andCB a
r
et
angen
tt
o
i
n
s
c
r
i
bedi
n ☉O1 .Thel
tpo
i
n
t
sE andF ,r
☉O2 a
e
s
c
t
i
ve
l
heb
i
s
ec
tof
pe
y.BN ,t
∠ABF ,
i
n
t
e
r
s
ec
t
st
hes
egmen
tEF a
tpo
i
n
tN .Li
neFT
i
ch doe
sno
tcon
t
a
i
n B )a
t
i
n
t
e
r
s
e
c
t
st
he a
r
c AT (wh
i
n
tM .Pr
ovet
ha
tM i
st
heexocen
t
e
rof△BCN .
po
F
i
.7
.1
g
F
i
.7
.2
g
So
l
u
t
i
on.Le
tP bet
hei
n
t
e
r
s
e
c
t
i
onofl
i
neAM wi
t
hEF .Jo
i
n
AT ,BM ,BP ,BT ,CM ,CT ,ET ,TP .Asshowni
nFi
.7
.2.
g
AsBFi
st
angen
tt
o☉O2 a
tF ,wehave ∠BFT = ∠FET .
As☉O1i
st
angen
tt
o ☉O2 a
tT ,wehave ∠MBT = ∠FET .
Henc
e,∠MBT = ∠BFM .So△MBT and△MFB a
r
es
imi
l
a
r,
t
he
r
e
f
or
eMB2 = MT ·MF .Thes
amea
r
tg
i
ve
sMC2 =
gumen
MT ·MF .
Nowaga
i
nf
romt
ha
t☉O1i
st
angen
tt
o☉O2a
tT ,wehave
∠MAT = ∠FET .S
o A ,E ,P and T a
r
econcyc
l
i
c,wh
i
ch
Ch
i
naGi
r
l
s
􀆳Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
207
imp
l
i
e
st
ha
t ∠APT = ∠AET .AsAEi
st
angen
tt
o☉O2 a
tE ,
wehave ∠AET = ∠EFT .Thu
s, ∠MPT = ∠PFM ,and
ss
imi
l
a
rt
o△MF .The
r
e
f
or
e,MP2 = MT ·MF .
△MPTi
Fr
omt
heabovea
r
t,wehave MC = MB = MP ,
gumen
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
wh
i
ch meanst
ha
tM i
st
heexc
en
t
e
rof △BCP .So ∠FBP =
1∠
CMP .Meanwh
i
l
e, ∠CMP = ∠CDA = ∠ABF ,and we
2
have ∠FBN =
1∠
e.,P
ABF .Hence,∠FBN = ∠FBP ,i.
2
andN co
i
nc
i
de.
8
Le
tn ≥ 4beanevennumbe
r.Att
heve
r
t
i
ce
sofar
egu
l
a
r
n
i
t
ei
n an a
rb
i
t
r
a
r
i
s
t
i
nc
tr
ea
l
gon we wr
y way n d
numbe
r
s.S
t
a
r
t
i
ngf
r
om oneedge,wenamea
l
lt
heedge
s
sca
l
l
ed
i
nac
l
ockwi
s
ewaybye1 ,e2 ,...,en .Anedgei
“po
s
i
t
i
ve”,i
ft
he d
i
f
f
e
r
enc
e of t
he numbe
r
sa
ti
t
s
endpo
i
n
tandi
t
ss
t
a
r
tpo
i
n
ti
spo
s
i
t
i
ve.As
e
toftwoedge
s
{
ei ,
ej }
i +j),andamongt
i
sca
l
l
ed “
c
r
o
s
s
i
ng”,i
f2|(
he
fou
r,t
henumbe
r
s wr
i
t
t
ena
tt
he
i
rve
r
t
i
ce
s,t
hel
a
r
s
t
ge
andt
het
h
i
rdl
a
r
s
tone
sbe
l
ongt
ot
hes
ameedge.Prove
ge
t
ha
tt
henumbe
rofc
r
o
s
s
i
ng
sandt
henumbe
rofpo
s
i
t
i
ve
edge
shaved
i
f
f
e
r
en
tpa
r
i
t
y.
So
l
u
t
i
on1.Wi
t
hou
tl
o
s
so
fgene
r
a
l
i
t
s
s
umet
ha
t
y,we maya
t
henumbe
r
swr
i
t
t
enont
heve
r
t
i
c
e
sa
r
e1,2,...,n.Le
tA be
t
henumbe
ro
fc
r
o
s
s
i
ng
s,andB bet
henumbe
ro
fpo
s
i
t
i
veedge
s.
We wi
l
l pr
ovet
ha
tt
he pa
r
i
t
fS r
ema
i
nst
hes
amei
f we
yo
exchangenumbe
r
siandi +1.Wed
i
s
t
i
ngu
i
shtwoca
s
e
s.
CaseI.The number
si andi
+ 1a
r
e wr
i
t
t
en on ad
ac
en
t
j
ve
r
t
i
ce
s,i.
e.,t
heendpo
i
n
t
so
fedgeek .Once weexchangei
andi +1,t
henumbe
ro
fpo
s
i
t
i
veedge
si
smod
i
f
i
edby1,t
hu
s
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
208
t
hepa
r
i
t
fB i
schanged.Ont
heo
t
he
rhand,t
heon
l
yo
ytwo
edges
ub
s
e
tt
ha
twi
l
lbe
comeanewc
ro
s
s
i
ng (
orchangef
r
om a
ek-1 ,ek+1}(
c
ro
s
s
i
ngt
oanon
c
r
o
s
s
i
ng)i
s{
t
hes
ub
i
nd
i
ce
sa
r
et
o
beunde
r
s
t
ood modu
l
on ),a
l
lt
heo
t
he
rtwo
edges
ub
s
e
t
swi
l
l
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
no
tbea
f
f
e
c
t
ed.Sot
hepa
r
i
t
fA wi
l
lchange.
yo
CaseI
I.Thenumber
siandi +1a
r
ewr
i
t
t
enonnon
ad
ac
en
t
j
ve
r
t
i
c
e
s. As
s
ume t
ha
tt
hey a
r
e wr
i
t
t
en on t
he (
common)
endpo
i
n
t
so
fej ,ej+1 and ofek ,ek+1 ,r
e
s
t
i
ve
l
e we
pec
y.Onc
exchangeiandi+1,
eve
r
s
i
t
i
veedgewi
l
lr
ema
i
npo
s
i
t
i
ve,s
o
ypo
a
r
enon
-po
s
i
t
i
veone
s.The
r
e
f
or
e,B i
sunchanged.Now,f
or
numbe
rofc
ro
s
s
i
ng
s,
i
fatwo
edges
ub
s
e
tdoe
sno
ti
nvo
l
vea
tt
he
s
amet
imeiandi +1,
t
henwhe
t
he
ri
ti
sac
ro
s
s
i
ngorno
ti
sno
t
a
f
f
e
c
t
edbyt
heope
r
a
t
i
on.Sot
heon
l
edges
ub
s
e
t
st
obe
ytwo
con
s
i
de
r
eda
r
et
hetwot
ha
thavebo
t
hiandi+1wr
i
t
t
enont
he
i
r
ve
r
t
i
c
e
sandt
hes
umo
ft
heedgenumbe
ri
seven.Theywi
l
lbo
t
h
rt
heexchangei
ft
heya
r
eno
tbe
for
e,and
be
comec
r
o
s
s
i
nga
f
t
e
v
i
c
e
ve
r
s
a.Henc
e,t
hepa
r
i
t
fA r
ema
i
nst
hes
ame.
yo
Nowobv
i
ou
s
l
r
t
t
e
rncanbeob
t
a
i
nedf
romaf
i
n
i
t
e
y,eve
ypa
numbe
ro
fs
uchexchangei
fwes
t
a
r
tf
rom wr
i
t
i
ng1,2,...,n
con
s
e
cu
t
i
ve
l
nac
l
ockwi
s
e way,andi
nt
hei
n
i
t
i
a
ls
i
t
ua
t
i
on,
yi
B = n -1,A = 0.SoA andB haved
i
f
f
e
r
en
tpa
r
i
t
y.
So
l
u
t
i
on2.St
a
r
t
i
ngf
rom oneve
r
t
ex,wedeno
t
et
henumbe
r
s
wr
i
t
t
enont
heve
r
t
i
c
e
sbyx1 ,x2 ,...,xn i
nac
l
ockwi
s
eway.
Wemaya
s
s
umet
ha
tt
henumbe
r
swr
i
t
t
enont
heendpo
i
n
t
sof
r
exi ,xi+1 ,i = 1,2, ...,n,whe
r
exn+1 = x1 .
edgeei a
Appa
r
en
t
l
spo
s
i
t
i
vei
fandon
l
fxi+1 -xi >0.Now,l
e
tA
yeii
yi
,
bet
he numbe
r of po
s
i
t
i
ve edge
s and B bet
he numbe
r of
c
r
o
s
s
i
ng
s.Wr
i
t
e
n
β=
∏ (x
i=1
i+1
-xi )
.
Ch
i
naGi
r
l
s
􀆳Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
209
A
Asni
seven,t
hes
i
fβi
sj
u
s
t(-1)
.
gno
Ont
heo
t
he
rhand,{
ei ,ej }i
sac
ro
s
s
i
ngi
fandon
l
f2|
yi
i +jand
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
(
xj -xi)(
xj -xi+1)(
xj+1 -xi)(
xj+1 -xi+1) < 0.
hel
e
f
t
-hands
i
deo
fabovei
nequa
l
i
t
Wedeno
t
ebyf(
ei ,ej )t
y,
obv
i
ou
s
l
ei ,
ej )=f(
ej ,
ei).Th
i
squan
t
i
t
snega
t
i
vei
fand
yf(
yi
on
l
ft
hetwo
edges
e
ti
sac
r
o
s
s
i
ng.Now,de
f
i
ne
yi
α=
=
∏
(
xj -xi)(
xj -xi+1)(
xj+1 -xi)(
xj+1 -xi+1)
1≤i<j≤n
2|
i+j
e ,e ),
∏ f(
1≤i<j≤n
2|
i+j
i
j
B
t
hent
hes
i
fαi
s(-1)
.Le
tu
sca
l
cu
l
a
t
et
hes
i
gno
gnofαβ.For
1 ≤i < j ≤n,con
s
i
de
rt
het
ime
sofappea
r
anc
e,andt
hes
i
gn
o
fxj - xi i
e
s
c
t
i
ve
l
i
s
t
i
ngu
i
sh s
eve
r
a
l
nα andβ,r
pe
y. We d
ca
s
e
s.
CaseI.
r
soncei
nβwi
t
hapo
s
i
t
i
ves
i
j -i =1,xj -xiappea
gn,
andonc
ei
nα.
I
fi >1,
i
tappea
r
si
nf(
ei-1 ,
ei+1)wi
t
hapo
s
i
t
i
ve
s
i
fi =1,x2 -x1appea
r
si
nf(
e2 ,
en )wi
t
hanega
t
i
ves
i
gn.I
gn.
Theproduc
toft
he
s
enumbe
r
sha
sanega
t
i
ves
i
gn.
CaseI
I.2 ≤j -i < n -1,thenxj
-xi d
oe
sno
tappea
ri
nβ,
c
e.Among (
i - 1,j - 1)and (
i - 1,j),
andappea
ri
nαtwi
t
he
r
ei
sexac
t
l
i
rt
ha
ti
so
ft
hes
amepa
r
i
t
i,
yonepa
y,among (
i,j),
t
he
r
ei
sa
l
s
oexac
t
l
uchpa
i
r.Thes
i
j -1)and (
yones
gn
o
fxj -xii
neachappea
r
anc
ei
sa
lway
spo
s
i
t
i
ve.Fori = 1,
i
t
s
appea
r
ancei
nf(
ej-1 ,en )orf(
ej ,en )come
swi
t
hanega
t
i
ve
i,j)(
i=
s
i
e,t
he
r
ei
sanega
t
i
ves
i
i
r(
gn.Henc
gnforeachpa
1,j = 3,4,...,n -1).Th
i
spa
r
toft
heproduc
tha
st
hes
i
gn
n-3
(-1)
= -1.
210
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
CaseI
I
I.
i = 1,j
= n,
t
henxn -x1 appea
t
ha
r
soncei
nβ wi
nega
t
i
ves
i
ei
nα (
en-1 ,e1 ))wi
t
ha po
s
i
t
i
ve
i
nf(
gn,andonc
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
s
i
i
spa
r
to
ft
hepr
oduc
tha
sanega
t
i
ves
i
gn.Th
gn.
Inbr
i
e
f,t
hes
i
fα
snega
t
i
ve,i.
e.,A +Bi
sodd.
gno
βi
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
Ch
i
naWe
s
t
e
rn Ma
thema
t
i
ca
l
Ol
i
ad
ymp
2010
(
Ta
i
i)
yuanShanx
28 29Oc
t
ob
e
r,2010
1
Suppo
s
et
ha
tm andka
r
enon
-nega
t
i
vei
n
t
ege
r
s,andp =
m
22 +1i
sapr
imenumbe
r.Provet
ha
t
(
a)22
m+1 k
p
≡ 1(
modp
k+1
);
(
b)2m+1pki
st
hesma
l
l
e
s
tpo
s
i
t
i
vei
n
t
ege
rns
a
t
i
s
f
i
ngt
he
y
cong
r
uenc
eequa
t
i
on2n ≡ 1(
modpk+1).
m+1 k
So
l
u
t
i
on.Wewanttoprovethat22
p
= p +tk +1f
ors
ome
k 1
i
n
t
ege
rtk no
td
i
v
i
s
i
b
l
ebyp.We proceedbyi
nduc
t
i
ononk.
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
212
2
Whenk = 0,
i
tfo
l
l
owsf
r
om22 = p -1t
ha
t22 = (
p -1) =
m
m
t0 = p -2.
i
nt
h
i
sca
s
e,
p(
p -2)+1,
Fori
nduc
t
i
ves
t
ep,s
uppo
s
et
ha
t22
m+1 k
k ≥ 0andp tk ,
t
hen
=(
22
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
m+1 k+1
22
m+1 k
p
p
=
p
æp ö
p
= p +tk +1wh
e
r
e
k 1
k+1
p
)
p =(
p tk +1)
∑ çès ÷ø (p
s
tk )
k+1
s=0
p
æp ö k+1 s
p(
p -1)(k+1 )
2
p tk + ∑ ç ÷ (
p tk ).
2
s=3 ès ø
= 1 +p·p +tk +
k 1
Ask ≥ 0,
t
henforanys ≥ 2,wehave (
k +1)
s ≥ 2(
k +1)=
2
k +2 ≥k +2,
s
o22
m+1 k+1
p
=p +tk+1 +1,wh
e
r
etk+1 ∈ Z+ andp
k 2
tk+1 .I
tf
o
l
l
owsf
r
om ma
t
hema
t
i
ca
li
nduc
t
i
ont
ha
t(
a)ho
l
d
s.
Nex
t,wepr
ove (
b).Wr
i
t
e2m+1pk =n
ℓ +r ,whe
r
eℓ,r ∈
Zand0 ≤r <n.Theni
tfo
l
l
owsf
rom (
a)t
ha
t1 ≡22
m+1 k
p
≡2
n
ℓ+r
ℓ
·2r ≡ 2r (
≡(
modpk+1).As0 ≤r <n,
i
tfo
l
l
owsf
romt
he
2n )
de
f
i
n
i
t
i
ono
fnt
ha
tr =0,
i.
e.,
n|2m+1pk .Byt
heFundamen
t
a
l
Theor
em o
f Ar
i
t
hme
t
i
c,n = 2tps .I
ft ≤ m ,t
hen22
m
(
2
t k
2p
)
m-t
2
≡ 1(
modp).Ont
heo
t
he
rhand,2
m
k
2 p
k
p
= (
2 )
m
2
k
p
=
≡
(-1) ≡ -1(
modp),wh
i
chi
sacon
t
r
ad
i
c
t
i
on,andhencet =
k
p
m +1,i.
e.,n = 2m+1ps .
2
Ass
hown i
nF
i
.2
.1,AB i
sa
g
d
i
ame
t
e
rofac
i
r
c
l
e wi
t
h cen
t
e
r
O .Le
tC andD betwod
i
f
f
e
r
en
t
i
n
t
sont
hec
i
r
c
l
eont
hes
ame
po
,
hel
i
ne
st
angen
t
s
i
deo
fAB andt
t
ot
hec
i
r
c
l
ea
t po
i
n
t
sC and D
mee
ta
tE .Segmen
t
sAD andBC
mee
ta
tF .Li
ne
sEF andAB mee
t
F
i
.2
.1
g
Ch
i
na We
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
213
a
tM .Provet
ha
tE ,C ,M andD a
r
econcyc
l
i
c.
So
l
u
t
i
on1.Asshownin Fi
t
.2
.2,j
o
i
nOC ,OD andOE .I
g
f
o
l
l
owsf
rom ∠OCE + ∠EDO = 90
s
°+90
° = 180
°t
ha
tECODi
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
cyc
l
i
c.I
fO = M ,
t
henECMDi
scyc
l
i
c.Wemaya
s
s
umet
ha
tO
≠ Mi
nt
hefo
l
l
owi
ng.Le
tG bet
hei
n
t
e
r
s
ec
t
i
onofBC andAD ,
tH2 bet
andH1bet
hei
n
t
e
r
s
ec
t
i
onofGF andAB .Le
hefoo
tof
oAB .I
tf
o
l
l
owsf
romAC ⊥ BG andBD ⊥
rpend
i
cu
l
a
ro
fEt
pe
AG t
ha
tF i
st
heor
t
hoc
en
t
e
rof △BAG ,s
oGH2 ⊥ AB .As
∠CH 2D = ∠CBF + ∠DAF = 1
80
°-2∠BGA ,and ∠COD =
180
°180
° - ∠BOC - ∠AOD = 180
°- (
180
° -2∠GBA )- (
2∠GAB )=2(∠GBA + ∠GAB)-1
8
0
°-2∠BGA ,
t
hen ∠CH2D
= ∠COD ,
r
econcyc
l
i
c.I
tfo
l
l
owsf
rom
s
oC ,O ,H2 andD a
∠ECO = ∠EDO = ∠EH 1O =9
0
°t
ha
tE ,C ,O ,H1andD a
r
e
concyc
l
i
c.Henc
e,H1 = H2 ,i.
hey mee
ta
t
e.EF ⊥ AB andt
M .Cons
equen
t
l
r
econcyc
l
i
c.
y,E ,C ,M andD a
So
l
u
t
i
on2.AsshowninFi
.2
.2,j
o
i
n
g
EO ,CO , DO ,CA ,CD .I
tf
o
l
l
ows
f
r
om ∠COE = ∠CAFt
ha
tRt△COE ∽
CE CO
=
Rt△COF ,ands
o
.As ∠ECF
CF CA
=9
0
°- ∠BCO = ∠OCA ,
s
o△ECF ∽
△OCA ,andhenc
e ∠CFE = ∠CAO .
As ∠BFM = ∠CFE ,s
o ∠FBM +
∠BFM = ∠FBM + ∠CAO = 9
0
°.
Hence,EM ⊥ AB ,i
tf
o
l
l
owst
ha
tO ,
F
i
.2
.2
g
M ,D ,E ,C a
r
econcyc
l
i
c.
3
De
t
e
rmi
nea
l
lpo
s
s
i
b
l
eva
l
ue
sofpo
s
i
t
i
vei
n
t
ege
rn,s
uch
i
f
f
e
r
en
t3 e
l
emen
ts
ub
s
e
t
sA1 ,A2 ,...,
t
ha
tt
he
r
ea
r
end
An oft
hes
e
t{
1,2,...,n},wi
t
h|Ai ∩ Aj |≠ 1fora
l
l
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
214
i ≠j.
So
l
u
t
i
on.The s
e
to
f po
s
i
t
i
vei
n
t
ege
r
ss
a
t
i
s
f
i
ng t
he g
i
ven
y
cond
i
t
i
oncon
s
i
s
t
sofa
l
lpo
s
i
t
i
ve mu
l
t
i
l
e
sof4.Wef
i
r
s
tp
r
ov
e
p
t
ha
tn =4
k(
k ∈ Z+ )
s
a
t
i
s
f
i
ngt
hec
ond
i
t
i
on.De
f
i
neA1,A2,...,
y
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
A4k a
sfo
l
l
ows:A4i-j = {
4
i -3,4
i -2,4
i -1,4
i}
i -j},
\{
4
f
or
a
l
l1 ≤i ≤kand0 ≤j ≤ 3.
hens
uchns
ub
s
e
t
s
Se
cond,wewan
tt
oprovet
ha
ti
f4 n ,t
dono
tex
i
s
t.Suppo
s
et
ot
he con
t
r
a
r
ha
tA1 , ...,An be
yt
d
i
f
f
e
r
en
t3 e
l
emen
ts
ub
s
e
t
sf
u
l
f
i
l
l
i
ngt
hecond
i
t
i
ons
t
a
t
edi
nt
he
ob
l
em.Le
tA1 = {
a,b,c},cons
i
de
ra
l
lt
heg
i
ven3 e
l
emen
t
pr
s
ub
s
e
t
swi
t
hnon
emp
t
n
t
e
r
s
e
c
t
i
on,we maya
s
s
umet
ha
tt
hey
yi
a
r
eA2 ,...,Am a
f
t
e
rr
e
l
abe
l
i
ng.Le
tU = A1 ∪ A2 ∪ … ∪ Am .
Wed
i
v
i
dei
n
t
ot
hefo
l
l
owi
ngd
i
f
f
e
r
en
tca
s
e
s:
●
●
●
t
henm = 1 <|U |.
I
f|U |= 3,
æ4ö
I
f|U |= 4,
t
henm ≤ ç ÷ = 4 =|U |.
è3ø
t
henweprovet
ha
tm <|U|a
sf
o
l
l
ows.
I
f|U|≥5,
Suppo
s
et
ha
tm ≥|U|,
t
henf
o
rany2 ≤i,
e|A1 ∩
j ≤ m ,wehav
Ai |=2,
eAi ∩ Aj ≠ ⌀.
|A1 ∩ Aj|=2.As|A1|=3,wehav
Andi
tfo
l
l
owsf
r
om|Ai ∩ Aj |≠ 1t
ha
t|Ai ∩ Aj |= 2.I
t
l
mean
st
ha
tanytwod
i
s
t
i
nc
ts
ub
s
e
t
so
fA1 ,...,Am haveon
y
twocommone
l
emen
t
s.
Con
s
i
de
rt
hef
ou
ri
n
t
e
r
s
e
c
t
i
on
sA1 ∩ A2 ,A1 ∩ A3 ,A1 ∩ A4 ,
A1 ∩ A5 ,i
tf
o
l
l
owsf
romt
hep
i
-ho
l
epr
i
nc
i
l
et
ha
tt
he
r
e
geon
p
a
r
etwoi
n
t
e
r
s
e
c
t
i
on
st
ha
ta
r
eequa
l;byr
e
l
abe
l
i
ng aga
i
n,we
maya
s
s
umet
ha
tt
heya
r
eA2 = {
a,b,d},A3 = {
a,b,e}.
Thenf
orany4 ≤ i ≤ m ,wehavea,b ∈ Ai ;o
t
he
rwi
s
e,Ai
c
on
t
a
i
n
sa
tl
e
a
s
toneo
fao
rb,
andt
heo
t
he
rt
h
r
e
ee
l
emen
t
sc,dand
Ch
i
na We
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
215
i
chi
simpo
s
s
i
b
l
e.He
n
c
e|U|=m +2,
e,
i
nt
h
i
sc
a
s
e,
|Ai|≥4,wh
wh
i
c
hc
on
t
r
ad
i
c
t
st
o|U|= m.
Fr
omt
hea
r
umen
tabov
e,onec
and
i
v
i
det
hes
ub
s
e
t
sA1,...,
g
Ani
n
t
os
eve
r
a
lg
r
oups,andanytwos
ub
s
e
t
si
nt
hes
ameg
r
oup
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
havenon
emp
t
n
t
e
r
s
e
c
t
i
on
s.Mor
eove
r,t
henumbe
rofs
ub
s
e
t
s
yi
i
nt
hes
ame g
roupi
sno
t mor
et
hant
he numbe
rofe
l
emen
t
s
appea
r
edi
nt
h
i
sg
roup.Ast
henumbe
rofs
ub
s
e
t
si
sn,wh
i
chi
s
equa
lt
henumbe
ro
fe
l
emen
t
si
n{
1,2,...,n},s
oeachg
roup
ha
sexac
t
l
ou
rs
ub
s
e
t
s.I
tf
o
l
l
owst
ha
t4|n ,wh
i
chcon
t
r
ad
i
c
t
s
yf
t
heor
i
i
na
la
s
s
ump
t
i
on4 n.
g
4 Le
ta1,a2,...,an ,
b1,
b2,...,
bn benon
-ne
a
t
i
v
enumb
e
r
s
g
s
a
t
i
s
f
i
ngt
hef
o
l
l
owi
ngc
ond
i
t
i
on
ss
imu
l
t
aneou
s
l
y
y:
(
1)∑i=1(
ai +bi)= 1 ;
n
(
ai -bi)= 0 ;
2)∑i=1i(
n
(
3)∑i=1i2(
ai +bi)= 10.
n
Pr
ovet
ha
tmax{
ak ,bk }≤
So
l
u
t
i
on.For any 1
10
f
ora
l
l1 ≤k ≤ n.
10 +k2
≤ k ≤ n,i
tf
o
l
l
owsf
rom t
he g
i
ven
cond
i
t
i
onsandCauchy
􀆳
sInequa
l
i
t
ha
t
yt
2
(
≤
kak )
≤
n
( ∑ia )
i
i=1
n
2
n
=
n
( ∑ib )
i=1
( ∑ib ) ( ∑b )
2
i=1
= 1
0-
(
i
i=1
i
2
i
n
n
i=1
i=1
2
∑iai ) (1 - ∑ai )
≤(
10 -ka2ak )(
1 -ak )
2
=1
0- (
10 +k2)
ak +k2ak
.
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
216
I
tf
o
l
l
owsf
r
omt
ha
tak ≤
10
10 ,
and
.S
imi
l
a
r
l
bk ≤
y,
10 +k2
10 +k2
henc
et
her
e
s
u
l
tf
o
l
l
ows.
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
5
Le
tkbeani
n
t
ege
randk > 1.De
f
i
neas
equence {
an }a
s
f
o
l
l
ows:
a0 = 0,a1 = 1andan+1 =kan +an-1forn = 1,
2,....
De
t
e
rmi
ne,wi
t
h proo
f,a
l
l po
s
s
i
b
l
ek for wh
i
cht
he
r
e
ex
i
s
tnon
-nega
t
i
vei
n
t
ege
r
sℓ,m (
ℓ ≠ m )and po
s
i
t
i
ve
i
n
t
ege
r
sp,qs
ucht
ha
taℓ +kap = am +kaq .
So
l
u
t
i
on.Theansweri
sk
= 2.
I
fk = 2 ,t
hena0 = 0,a1 = 1,a2 = 2,
s
oa0 +2
a2 =a2 +
0,2)and (
2,1).
2
a1 = 4.Hence,(
ℓ,m )= (
p,q)= (
Fork ≥ 3 ,i
tf
o
l
l
owsf
romt
her
ecur
r
en
tr
e
l
a
t
i
ont
ha
tt
he
s
equence{
an }
i
ss
t
r
i
c
t
l
nc
r
ea
s
i
ng,andk|an+1 -an-1fora
l
ln ≥
yi
1.Inpa
r
t
i
cu
l
a
r,f
orn ≥ 0,wehave
a2n ≡ a0 ≡ 0(
modk),a2n+1 ≡ a1 ≡ 1(
modk).
(* )
Suppo
s
et
he
r
eex
i
s
tℓ,m ∈ N,andp,
ucht
ha
tℓ ≠ m and
q ∈ Z+s
aℓ +kap =am +kaq .Wemaya
s
s
umet
ha
tℓ < m ,andd
i
v
i
dei
n
t
o
t
hef
o
l
l
owi
ngca
s
e
s.
(
a)p <ℓ < m :Themaℓ +kap ≤aℓ +kaℓ-1 <kaℓ +aℓ-1 =
aℓ+1 ≤ am
a
s
s
ump
t
i
on.
< am
+ k
aq , wh
i
ch con
t
r
ad
i
c
t
st
he or
i
i
na
l
g
(
b)
ℓ =p < m :
t
henwehaveam +kaq =
I
fℓ =p = m -1,
aℓ +kap = (
k +1)
am-1 ,andmodu
l
ok wehaveam ≡am-1 modk,
wh
i
chcon
t
r
ad
i
c
t
s(* ).
I
fℓ = p < m -1,t
henaℓ +kap < am-2 +kam-2 = am <
am +kaq ,wh
i
chcon
t
r
ad
i
c
t
st
heor
i
i
na
la
s
s
ump
t
i
on.
g
(
c)
ℓ < p < m :Int
h
i
sca
s
e,f
romq wehaveaq > 0,t
hen
Ch
i
na We
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
217
aℓ +kap ≤kap +ap-1 =ap+1 ≤am <am +kaq ,wh
i
chcon
t
r
ad
i
c
t
s
t
heor
i
i
na
la
s
s
ump
t
i
on.
g
(
ℓ < m ≤ p:Thenap >
d)
aℓ +kap -am
=aq .
I
tf
o
l
l
ows
k
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
f
r
om
kaq +am =kap +aℓ ≥kap
①
ap k -1
am
≥ ap =
aq ≥ ap ap .
k
k
k
②
t
ha
t
No
t
et
ha
t
ap =kap-1 +ap-2 ≥kap-ℓ ,
③
hence
ap > aq ≥
k -1
ap ≥ (
k -1)
ap-1 ≥ ap-1 .
k
④
Thenbyi
nc
r
ea
s
i
ngpr
ope
r
t
an }and ④ ,wehaveaq =
yof{
ap-1 ,s
oi
nequa
l
i
t
i
e
s① ③ t
u
rni
n
t
oequa
l
i
t
i
e
s.I
tfo
l
l
owsf
rom
②t
ha
tm = p,andf
r
om ③t
ha
tp = 2.Hence,
aq =ap-1 =a1
= 1.Andi
tf
o
l
l
owsf
rom ① t
ha
tℓ = 0.Fromaℓ +kap =am +
kaq ,wehavek2 =k +k = 2
k,s
ok = 2,wh
i
chi
simpo
s
s
i
b
l
e.
Sok = 2i
st
heon
l
o
l
u
t
i
on.
ys
6 As s
hown i
n F
i
.6
.1,
g
△ABC i
sa r
i
t
ang
l
ed
gh
t
r
i
ang
l
e,∠C =90
°.Dr
aw
ac
i
r
c
l
ec
en
t
e
r
eda
tB wi
t
h
r
ad
i
u
s BC.Le
tD b
ea
i
n
tont
hes
i
deAC,and
po
DE be t
ang
en
tt
ot
he
F
i
.6
.1
g
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
218
c
i
r
c
l
ea
tE.Thel
i
net
h
r
oughC pe
rpend
i
cu
l
a
rt
oAB mee
t
s
tpo
i
n
tF .Li
neAF mee
t
sDE a
tpo
i
n
tG .Thel
i
ne
l
i
neBE a
t
hroughA pa
t
sDE a
tH .Pr
ovet
ha
tGE =
r
a
l
l
e
lt
oBG mee
GH .
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
So
l
u
t
i
on. Le
t K be t
he
i
n
t
e
r
s
e
c
t
i
ono
fABandDE,and
M bet
hei
n
t
e
r
s
e
c
t
i
ono
fABand
CF.
J
o
i
nFK ,AE andME.I
n
i
tf
o
l
l
owsf
r
omCM ⊥
△ABC,
AB t
ha
tBM ·BA = BC2 =
BE2,s
o △BEM ∽ △BAE,
and△BEM = ∠BAE .
F
i
.6
.2
g
As ∠FMK = ∠FEK = 90
°,s
o MFEK i
scyc
l
i
c,and
∠BEM = ∠FKM .I
t fo
l
l
ows f
rom ∠BAE = ∠BEM
=
∠FKM ,
s
oFK ‖AE ,andhenc
e
KA
EF ,
KA ·BF
=
= 1.
i.
e.,
KB
BF
KB FE
①
Ast
hel
i
neEGAi
n
t
e
r
s
e
c
t
s△EBK ,wehave
EG ·KA ·BF
=1
GK AB FE
②
HK
AK ,
=
AsBG ‖AH ,wehave
s
o
KG
KB
HG
AB
=
.
GK
BK
③
EG
= 1,
Fr
om ① ③ ,wehave
ands
oEG = HG .
HG
7
The
r
ea
r
en(
n ≥ 3)p
l
aye
r
si
nat
ab
l
et
enn
i
st
ournamen
t,
i
nwh
i
chanytwop
l
aye
r
shaveama
t
ch.P
l
aye
rAi
sca
l
l
ed
Ch
i
na We
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
219
no
tou
t
r
f
o
rmedbyp
l
ay
e
rB,i
fa
tl
e
a
s
toneo
fp
l
a
e
rA􀆳s
pe
y
o
s
e
r.
l
o
s
e
r
si
sno
taB􀆳sl
De
t
e
rmi
ne,wi
t
hproo
f,a
l
lpo
s
s
i
b
l
eva
l
ue
sofn,
s
ucht
ha
t
t
hef
o
l
l
owi
ngca
s
ecou
l
d happen:a
f
t
e
rf
i
n
i
sh
i
ng a
l
lt
he
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
ma
t
che
s,eve
r
l
aye
ri
sno
tou
t
r
f
ormedbyanyo
t
he
r
yp
pe
l
aye
r.
p
So
l
u
t
i
on.Theansweri
sn
= 3o
rn ≥ 5.
(
1)Forn = 3 ,s
uppo
s
eA ,B andC a
r
et
hr
eep
l
aye
r
s,and
t
her
e
s
u
l
to
ft
hr
eema
t
che
sa
r
ea
sf
o
l
l
ows:A wi
n
sB ,B wi
nsC ,
andC wi
n
sA .The
s
er
e
s
u
l
t
sobv
i
ou
s
l
a
t
i
s
f
hecond
i
t
i
on.
ys
yt
(
uppo
s
et
ha
tt
hecond
i
t
i
onho
l
d
s,i.
e.,i
n
2)I
fn = 4 ,s
v
i
ew o
ft
her
e
s
u
l
t
so
fa
l
l ma
t
che
s,eve
r
l
aye
ri
s no
tou
t
yp
r
f
ormedbyanyo
t
he
rp
l
aye
r.I
ti
sobv
i
ou
st
ha
tnoneoft
he
s
e
pe
f
ourp
l
aye
r
swi
n
si
nh
i
st
hr
eegame
s,o
t
he
rwi
s
e,t
heo
t
he
rt
hr
ee
l
aye
r
s wi
l
lbe no
tou
t
r
f
ormed by t
h
i
sp
l
aye
r.S
imi
l
a
r
l
p
pe
y,
noneo
ft
he
s
et
hr
eep
l
aye
r
sl
o
s
e
si
nh
i
st
hr
eegame
s.I
tf
o
l
l
ows
t
ha
teachp
l
aye
rwi
n
soneortwoma
t
che
s.
Fort
hep
l
aye
rA ,a
nsB andD ,bu
s
s
umet
ha
tA wi
tl
o
s
e
st
o
C,
t
henbo
t
hB andD wi
nC ;o
t
he
rwi
s
e,t
hey wou
l
dno
tou
t
-
r
formedA .Fort
hel
o
s
e
ri
nt
hema
t
chB v
s.D ,heon
l
ns
pe
y wi
,
C ands
ot
hel
o
s
e
ri
simpo
s
s
i
b
l
et
obeno
tou
t
-pe
r
formedbyt
he
wi
nne
r.Con
s
equen
t
l
orn = 4,
t
heg
i
vencond
i
t
i
oncou
l
dno
t
y,f
happen.
(
3) For n = 6,one can
cons
t
r
uc
tt
he t
ou
rnamen
tr
e
s
u
l
t
s
by mean
so
ft
hef
o
l
l
owi
ngd
i
r
ec
t
ed
r
aph,i
n wh
i
ch each b
l
ack do
t
g
r
epr
e
s
en
t
sa p
l
aye
r,and · → 􀳱
r
epr
e
s
en
t
sama
t
ch wi
t
ht
her
e
s
u
l
t
t
ha
tp
l
aye
r·wi
n
sp
l
aye
r􀳱.
F
i
.7
.1
g
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
220
(
4)I
ft
he
r
eex
i
s
tt
ou
rnamen
tr
e
s
u
l
t
ss
ucht
ha
teacho
fn
l
aye
r
sAi(
1 ≤i ≤n)
i
sno
tou
t
-pe
r
formedbyanyo
t
he
rp
l
aye
r,
p
wewi
l
lprovet
ha
tt
hes
ameho
l
d
sforn +2p
l
aye
r
sa
sf
o
l
l
ows:
Suppo
s
et
ha
tM andN a
r
et
headd
i
t
i
ona
lp
l
aye
r
st
ot
heor
i
i
na
ln
g
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
l
aye
r
s.Con
s
t
r
uc
tt
hegamer
e
s
u
l
t
so
fM andN a
sfo
l
l
ows:
p
Ai → M ,M → N ,N → Ai
f
o
ra
l
li = 1,2,...,n,andt
heg
amer
e
s
u
l
t
s
amongAi􀆳sa
r
es
t
i
l
lt
heo
r
i
i
na
lone
s.Now we
g
wan
tt
oche
ckt
ha
tt
he
s
en +2p
l
ay
e
r
ss
a
t
i
s
f
he
yt
i
v
enc
ond
i
t
i
on.Fo
rany p
l
ay
e
rG ∈ {
A1,
g
A2,...,An },t
heni
ts
u
f
f
i
c
e
st
oc
on
s
i
de
rt
he
l
a
e
r
sG,M ,N ,andi
tr
edu
c
e
st
ot
hec
a
s
en
p
y
F
i
.7
.2
g
= 3.
Onec
anche
ckt
ha
te
a
cho
ft
he
s
et
h
r
e
ep
l
ay
e
r
sG,M ,Ni
sno
t
ou
t
r
f
o
rmed by any on
eo
ft
h
eo
t
h
e
rtwo p
l
a
e
r
s.He
n
c
e,t
he
pe
y
t
o
u
r
n
ame
n
tr
e
s
u
l
to
ft
h
e
s
en +2p
l
a
e
r
ss
a
t
i
s
f
i
e
st
her
e
i
r
e
dc
ond
i
t
i
on.
y
qu
Inpa
r
t
i
cu
l
a
r,i
tf
o
l
l
owsf
r
om (
1)andt
hei
nduc
t
i
ons
t
epof
(
4)t
ha
tt
her
equ
i
r
edcond
i
t
i
onho
l
d
sforanyoddn wi
t
hn ≥3.
Mor
eove
r,i
tf
o
l
l
owsf
r
om (
3)andt
hei
nduc
t
i
ons
t
ep of (
4)
t
ha
tt
her
equ
i
r
edcond
i
t
i
onho
l
d
sf
oranyevenn wi
t
hn ≥6,and
i
tcomp
l
e
t
e
st
hepr
oo
f.
8
De
t
e
rmi
nea
l
lpo
s
s
i
b
l
eva
l
ue
so
fi
n
t
ege
rkforwh
i
cht
he
r
e
b +1 a +1
+
=k.
ex
i
s
tpo
s
i
t
i
vei
n
t
ege
r
saandbs
ucht
ha
t
a
b
So
l
u
t
i
on.Theansweri
st
ha
tk
= 3o
r4.
Fi
xa po
s
s
i
b
l
e va
l
uek,among a
l
lt
he pa
i
r
s(
A ,B )of
s
i
t
i
vei
n
t
ege
r
ss
a
t
i
s
f
i
ng
po
y
B +1 A +1
+
=k,
A
B
Ch
i
na We
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
221
choo
s
eany(
a,b)
s
ucht
ha
tbi
st
hesma
l
l
e
s
t.Thent
hequadr
a
t
i
c
equa
t
i
on
x2 + (
1 -kb)
x +b2 +b = 0
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
ha
sani
n
t
eg
r
a
lr
oo
tx = a.Le
tx = a
' bet
hes
e
condroo
t,i
t
f
o
l
l
owsf
roma +a
' =kb -1t
ha
ta
' ∈ Z ,andf
rom
a ·a
' =b(
b +1)
t
ha
ta
' > 0.Hence,wehave
b +1 a
' +1
+
=k.
a
'
b
Andi
tf
o
l
l
owsf
r
omt
hea
s
s
ump
t
i
ononbt
ha
t
a ≥b,a
' ≥b.
Sooneo
faanda
'i
sequa
lt
ob.Wi
t
hou
tl
o
s
so
fgene
r
a
l
i
t
y,we
maya
s
s
umea =b,
s
ok = 2 +
andk = 3or4,r
e
s
c
t
i
ve
l
pe
y.
2,
ands
ob|2i.
e.,
b = 1or2,
b
I
fa = b = 1 ,t
henk = 4;i
fa = b = 2,t
henk = 3.
Cons
equen
t
l
k = 3or4i
st
heon
l
o
l
u
t
i
on.
y,
ys
2011
(
Y
u
s
h
a
n,
J
i
a
n
x
i)
g
F
i
r
s
tDay
8:
00 12:
00,Oc
t
obe
r29,2011
1 Gi
vent
ha
t0 < x,y < 1,de
t
e
rmi
ne,wi
t
h proof,t
he
xy(
1 -x -y)
s
edbyLi
u
max
imumva
l
ueo
f(
.(
po
x +y)(
1 -x)(
1 -y)
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
222
Sh
i
x
i
ong)
So
l
u
t
i
on.Whenx
=y =
1
1,
t
heva
l
ueofexpr
e
s
s
i
oni
s .
8
3
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
xy(
1 -x -y)
1
≤
f
orany
Wewi
l
lpr
ovet
ha
t(
x +y)(
1 -x)(
1 -y)
8
0 < x,y < 1a
sf
o
l
l
ows.
1 -x -y)
xy(
1
≤0 <
I
fx +y ≥ 1,
t
hen (
.
1 -x)(
1 -y)
8
x +y)(
I
fx +y < 1,
t
henl
e
t1 -x -y = z > 0,
i
tfo
l
l
owsf
rom
AM GMInequa
l
i
t
ha
t
yt
xy(
1 -x -y)
xyz
=
(
x +y)(
x +y)(
z +x)
1 -x)(
1 -y) (
y +z)(
≤
xyz
1
=
.
8
·
·
2 xy 2 yz 2 zx
1
Inconc
l
u
s
i
on,t
hemax
imumva
l
ueoft
heexpr
e
s
s
i
oni
s .
8
1,2, ...,2011}beas
ub
s
e
ts
a
t
i
s
f
i
ngt
he
Le
tM ⊆ {
y
2
fo
l
l
owi
ngcond
i
t
i
on:Foranyt
hr
eee
l
emen
t
si
nM ,t
he
r
e
ex
i
s
ttwo o
ft
hem a andb,s
ucht
ha
ta |b orb |a .
De
t
e
rmi
ne,wi
t
h pr
oo
f,t
he max
imum va
l
ueof| M |,
whe
r
e|M |deno
t
e
st
henumbe
ro
fe
l
emen
t
sofM .(
s
ed
po
byFengZh
i
gang)
So
l
u
t
i
on.OnecancheckthatM
={
1,2,22 ,23 ,...,210 ,3,
3 ×2,3 ×22 ,...,3 ×29}s
a
t
i
s
f
i
e
st
hecond
i
t
i
on,and|M |=
21.
Suppo
s
et
ha
t|M |≥ 22,andl
e
ta1 < a2 < … < ak bet
he
e
l
emen
t
so
fM ,whe
r
e|M |=k ≥22.Wef
i
r
s
tprovet
ha
tan+2 ≥
2
an fora
l
ln;o
t
he
rwi
s
e,wehavean < an+1 < an+2 < 2
an for
Ch
i
na We
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
223
s
omen <k +2,
t
henanytwooft
he
s
et
hr
eei
n
t
ege
r
san ,an+1 ,
an+2 dono
thaveany mu
l
t
i
l
er
e
l
a
t
i
onsh
i
i
chcon
t
r
ad
i
c
t
s
p
p,wh
t
hea
s
s
ump
t
i
on.
a2 ≥ 4,a6
I
tf
o
l
l
owsf
r
omt
hei
nequa
l
i
t
ha
ta4 ≥ 2
yabovet
≥2
a4 ≥8,… a22 ≥2a20 ≥2 >2011,wh
i
chi
sacon
t
r
ad
i
c
t
i
on!
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
11
Henc
e,t
hemax
imumva
l
ueo
f|M |i
s21.
3
i
veni
n
t
ege
r.
Le
tn ≥ 2beag
(
1)Pr
ovet
ha
tonecana
r
r
angea
l
lt
hes
ub
s
e
t
soft
hes
e
t
{
1,2, ...,n }a
sas
equenc
eofs
ub
s
e
t
sA1 ,A2 , ...,
A2n ,s
ucht
ha
t|Ai+1|=|Ai|+1or|Ai|-1,whe
r
ei =
1,2,...,2n andA2n+1 = A1 .
(
2)De
t
e
rmi
ne,wi
t
hproo
f,a
l
lpo
s
s
i
b
l
eva
l
ue
soft
hes
um
∑
n
2
i=1
i
(-1)
r
eS (
S(
Ai),whe
Ai)= ∑x∈A xandS(⌀ )
i
= 0,
f
oranys
ub
s
e
ts
equenceA1 ,A2 ,...,A2n s
a
t
i
s
f
i
ng
y
t
hecond
i
t
i
oni
n(
1).(
s
edbyLi
ang Yi
ngde)
po
So
l
u
t
i
on.(
1)Weproveby ma
t
hema
t
i
ca
li
nduc
t
i
ont
ha
tt
he
r
e
ex
i
s
t
sas
equenc
eA1 ,A2 ,...,A2ns
ucht
ha
tA1 = {
1},A2n = ⌀
ands
a
t
i
s
f
i
e
st
hecond
i
t
i
oni
n(
1).
Whenn = 2,t
hes
equenc
e{
1},{
1,2},{
2},⌀ of {
1,2}
work
s.
As
s
umet
ha
twhenn = k,t
he
r
eex
i
s
t
ss
uchas
equenc
eB1 ,
B2 ,...,B2k ofs
ub
s
e
t
sof{
1,2,...,k}.Asf
orn =k +1,one
cancon
s
t
r
uc
tas
equenceo
fs
ub
s
e
t
so
f{
1,2,...,k + 1},a
s
fo
l
l
ows:
A1 = B1 = {
1},
Ai = Bi-1 ∪ {
k +1},
i = 2,3,...,2k +1,
Aj = Bj-2k ,j = 2k +2,2k +3,...,2k+1 .
Onecanea
s
i
l
ha
tt
hes
equencef
u
l
f
i
l
l
st
her
equ
i
r
ed
ycheckt
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
224
cond
i
t
i
on
ss
t
a
t
edabove.Byi
nduc
t
i
onwehaveproved (
1)forn
≥ 2.
(
2) We wi
l
ls
howt
ha
tt
hes
um i
s0,i
ndependen
toft
he
a
r
r
angemen
t.Wi
t
hou
tl
o
s
so
fgene
r
a
l
i
t
s
s
umet
ha
t
y,we maya
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
1},o
t
he
rwi
s
es
h
i
f
tt
hei
ndexcyc
l
i
ca
l
l
tfo
l
l
owsf
rom
A1 = {
y.I
ha
tt
he
i
rpa
r
i
t
i
e
sa
r
ed
i
f
f
e
r
en
t,
|Ai+1 | =|Ai|+1or|Ai|-1t
andhenc
et
hepa
r
i
t
i
e
soft
hei
ndexl
abe
lofanys
ub
s
e
tandi
t
s
ca
rd
i
na
l
i
t
r
et
hes
ame.
ya
i
Ai)= ∑A ∈PS (
A )- ∑A ∈Q
I
tfo
l
l
owst
ha
t∑i=1(-1)
S(
n
2
A ),whe
i
s
t
so
fa
l
ls
ub
s
e
t
so
f{
1,2,...,n}wi
S (
r
eP cons
t
h
i
s
t
sofa
l
ls
ub
s
e
t
sof{
1,2,
evennumbe
r
so
fe
l
emen
t
s,andQcons
...,n}wi
t
hoddnumbe
r
sofe
l
emen
t
s.
l
lk
-e
l
emen
ts
ub
s
e
t
s,
x
Foranyx ∈ {
1,2,...,n},amonga
k-1
appea
r
si
nexac
t
l
ft
hem,hencei
tcon
t
r
i
bu
t
e
st
ot
hes
um
yCn-1 o
∑
s
S(
A )- ∑A ∈Q S (
A )a
A ∈P
- Cn-1 + Cn-1 - Cn-1 + … + (
-1)Cn1 -1)- = 0.
-1 = - (
0
1
2
n
n 1
n 1
i
The
r
e
f
or
e,∑i=1(-1)
S(
Ai)= 0.
n
2
4
Ass
howni
nF
i
.4
.1,AB andCD a
r
e
g
twochord
si
nt
hec
i
r
c
l
e☉O mee
t
i
ng
a
tpo
i
n
tE ,and AB ≠ CD . ☉I i
s
t
angen
tt
o☉Oi
n
t
e
rna
l
l
tpo
i
n
tF ,
ya
andi
st
angen
tt
ot
hechord
sAB and
CD a
tpo
i
n
t
sGandH ,
r
e
s
t
i
ve
l
l
pec
y.
i
sal
i
nepa
s
s
i
ngt
hroughO ,mee
t
i
ng
AB,CD a
tpo
i
n
t
sP,Q,r
e
s
c
t
i
v
e
l
pe
y,
s
ucht
ha
tEP = EQ .Li
neEF mee
t
s
t
hel
i
nela
tpo
i
n
tM .Pr
ovet
ha
tt
he
F
i
.4
.1
g
Ch
i
na We
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
225
l
i
net
hroughM and pa
r
a
l
l
e
lt
ot
hel
i
neAB i
st
angen
tt
o
s
edbyLiQi
u
sheng)
t
hec
i
r
c
l
e☉O .(
po
So
l
u
t
i
on.AsshowninFi
.4
.2,dr
awal
i
nepa
r
a
l
l
e
lt
oAB and
g
i
ch mee
t
st
he common
t
angen
tt
oc
i
r
c
l
e ☉O a
t po
i
n
tL ,wh
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
t
angen
tl
i
net
ot
he
s
etwo c
i
r
c
l
e
sa
ta po
i
n
tS.Le
tR bet
he
o
i
ns
e
t
sLFandGF.
i
n
t
e
r
s
e
c
t
i
ono
fl
i
ne
sFSandBA ,andj
gmen
F
i
.4
.2
g
F
i
r
s
t,wepr
ovet
ha
tt
hepo
i
n
t
sL ,G andF a
r
eco
l
l
i
nea
r.
As
bo
t
hSL andSF a
r
et
angen
tt
o☉O ,SL = SF ;a
sbo
t
hRG and
RF a
r
et
angen
tt
o☉I,RG = RF .
AsSL ‖RG , we have ∠LSF =
∠GRF ,
s
o
∠LFS =
180
°- ∠LSF 180
°- ∠GRF
=
2
2
= ∠GFR ,
andhenc
eL ,G andF a
r
eco
l
l
i
nea
r.
S
imi
l
a
r
l
ss
hown i
n F
i
.4
.3,
y,a
g
dr
awal
i
nepa
r
a
l
l
e
lt
oCD andt
angen
t
t
o☉O a
tpo
i
n
tJ,t
r
e
henF ,H andJ a
F
i
.4
.3
g
226
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
co
l
l
i
nea
r.Le
tt
angen
tl
i
ne
st
ot
hec
i
r
c
l
e
tt
he po
i
n
t
sL andJ mee
tEF a
t
☉O a
i
n
t
sM 1 andM 2 ,r
e
s
c
t
i
ve
l
he
po
pe
y.Int
,
f
o
l
l
owi
ng wepr
ovet
ha
tt
hepo
i
n
t
sM 1
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
and M 2 co
i
nc
i
de.I
tfo
l
l
owsf
r
om t
he
homo
t
he
t
en
t
e
r
eda
tF mapp
i
ng ☉O
yc
hen
t
o☉It
ha
tLJ ‖GH ,t
=
M 1E
LG
=
GF
EF
M 2E ,
JH
=
andhenc
eM 1 and M 2
HF
EF
co
i
nc
i
de.Deno
t
et
h
i
spo
i
n
tbyK .
F
i
na
l
l
tt
o pr
ove t
ha
t
y, we wan
i
n
t
sM andK a
l
s
oco
i
nc
i
de.I
ts
u
f
f
i
ce
s
po
F
i
.4
.4
g
i
e
sont
hel
i
nel.
t
os
howt
ha
tK l
Ass
howni
nF
i
.4
.4,j
o
i
nKO ,a
sKL andKJ a
r
et
angen
t
g
t
o☉O ,
s
o ∠LKO = ∠JKO .
No
t
et
ha
tKO b
i
s
e
c
t
s ∠LKJ,
i
tf
o
l
l
owsf
r
om KL ‖AB and
KJ ‖CD t
ha
tt
hel
i
neKO mee
t
sl
i
ne
sAB andCD wi
t
ht
hes
ame
sj
u
s
tt
hel
i
nel,i.
ang
l
e
so
fi
n
t
e
r
s
e
c
t
i
on,andhenc
eKOi
e.,K
l
i
e
sont
hel
i
nel.
Henc
e,K i
sj
u
s
tt
hei
n
t
e
r
s
e
c
t
i
onpo
i
n
tM ofl
i
neEF andl.
S
e
c
ondDay
8:
00 12:
00,Oc
t
obe
r30,2011
5
De
t
e
rmi
ne,wi
t
hpr
oo
f,whe
t
he
rt
he
r
ei
sanyoddi
n
t
ege
r
n ≥ 3andn d
i
s
t
i
nc
tpr
imenumbe
r
sp1 ,p2 ,...,pn s
uch
t
ha
ta
l
lpi + pi+1(
i = 1,2,...,n,andpn+1 = p1)a
r
e
r
f
ec
ts
r
e
s? (
s
edbyTaoP
i
ng
s
heng)
pe
qua
po
Ch
i
na We
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
227
So
l
u
t
i
on.Theansweri
snega
t
i
ve.Suppo
s
et
ha
tt
he
r
eex
i
s
todd
i
n
t
ege
rn ≥ 3andn d
i
s
t
i
nc
tpr
imenumbe
r
sp1 ,p2 , ...,pn
s
a
t
i
s
f
i
ngt
heg
i
vencond
i
t
i
on.
y
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
I
fa
l
lp1 ,p2 ,...,pn a
r
eodd,t
heni
tf
o
l
l
owsf
rom t
he
i
vencond
i
t
i
ont
ha
ta
l
lt
hes
umspi +pi+1a
r
emu
l
t
i
l
e
so
f4,s
o
g
p
t
hepr
imenumbe
r
sp1 ,p2 ,...,pn modu
l
o4appea
rt
obe1and
sodd.
3a
l
t
e
rna
t
i
ve
l
tcon
t
r
ad
i
c
t
st
hef
ac
tt
ha
tni
y,andi
I
fone o
f p1 ,p2 , ...,pn i
s2,t
hen wi
t
hou
tl
o
s
s of
r
a
l
i
t
s
s
umet
ha
tp1 = 2.Asbo
t
hp1 + p2 and
y,we maya
gene
r
epr
e
f
e
c
ts
r
e
sandbo
t
ha
r
eodd,i
tf
o
l
l
owst
ha
tp2
pn +p1 a
qua
andpn a
r
econg
r
uen
tt
o3modu
l
o4.S
imi
l
a
rt
ot
hed
i
s
cu
s
s
i
oni
n
l
o
t
hef
i
r
s
tca
s
e,weknowt
ha
tt
hepr
ime
sp2 ,p3 ,...,pn modu
sodd,wh
i
chi
sa
4appea
rt
obe1and3a
l
t
e
rna
t
i
ve
l
on -1i
y,s
con
t
r
ad
i
c
t
i
on.
Henc
e,t
he
r
ea
r
e no odd i
n
t
ege
rn ≥ 3 and n pr
ime
s
s
a
t
i
s
f
i
ngt
heg
i
vencond
i
t
i
ons.
y
6
Le
ta,b,c > 0,pr
ovet
ha
t
2
2
2
(
(
(
a -b)
b -c)
c -a)
+
+
(
c +a)(
c +b) (
a +b)(
a +c) (
b +c)(
b +a)
≥
2
(
a -b)
.
2
a +b +c2
2
(
s
edbyLiShenghong)
po
1
1(
2
2
+
+(
So
l
u
t
i
on1.I
tf
o
l
l
owsf
r
om (
a -2
b)
a -2
c)
b-
c) ≥ 0t
ha
t
2
2
2
3(
a2 +b2 +c2)≥ 2a2 +2ab +2
b
c +2ac = 2(
a +b)(
a +c),
s
owe have (
a + b)(
a + c) ≤
wehave
3(2
a + b2 + c2).S
imi
l
a
r
l
y,
2
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
228
3 2
(
b +a)(
b +c)≤ (
a +b2 +c2),
2
3 2
and (
c +a)(
c +b)≤ (
a +b2 +c2).
2
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
Henc
e,
2
2
2
(
(
(
a -b)
b -c)
c -a)
+
+
(
)
(
)
(
)
(
)
(
)
(
c +a c +b
a +b a +c
b +c b +a)
≥
2
2
2
+(
+(
2·(
a -b)
b -c)
c -a)
2
2
2
3
a +b +c
2·
≥
3
=
1(
2
2
(
+
a -b)
b -c +c -a)
2
a2 +b2 +c2
2
(
a -b)
.
2
a +b +c2
2
So
l
u
t
i
on2.I
tf
o
l
l
owsf
r
om CauchyInequa
l
i
t
ha
t
yt
[
2
2
2
(
(
(
a -b)
b -c)
c -a)
·
+
+
(
c +a)(
c +b) (
a +b)(
a +c) (
b +c)(
b +a)
]
[(
c +a)(
c +b)+ (
a +b)(
a +c)+ (
b +c)(
b +a)]
2
≥(
|a -b|+|b -c|+|c -a|)
2
2
≥(
a -b)
.
|a -b|+|b -c +c -a|) = 4(
And
(
c +a)(
c +b)+ (
a +b)(
a +c)+ (
b +c)(
b +a)
=(
a2 +b2 +c2)+3(
ab +b
c +ca)≤ 4(
a2 +b2 +c2),
hence
2
2
2
(
(
(
a -b)
b -c)
c -a)
+
+
(
c +a)(
c +b) (
a +b)(
a +c) (
b +c)(
b +a)
≥
≥
2
4(
a -b)
(
c +a)(
c +b)+ (
a +b)(
a +c)+ (
b +c)(
b +a)
2
2
(
4(
a -b)
a -b)
= 2
.
2
2
2
2
4(
a +b +c ) a +b +c2
Ch
i
na We
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
7
229
Ass
howni
nF
i
.7
.1,AB >
g
AC ,andt
f
hei
nc
i
r
c
l
e ☉I o
△ABCi
st
angen
tt
oBC ,CA
and AB a
t po
i
n
t
sD ,E and
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
e
s
t
i
ve
l
tM bet
F ,r
he
pec
y.Le
mi
dpo
i
n
t o
f s
i
d
e BC, and
AH ⊥ BC a
tt
he po
i
n
t H.
f ∠BAC
The b
i
s
e
c
t
o
r AI o
i
n
t
e
r
s
e
c
t
st
hel
i
ne
sDE ,DF a
t
F
i
.7
.1
g
i
n
t
sK ,L ,r
e
s
c
t
i
ve
l
po
pe
y.
r
econcyc
l
i
c.(
s
edbyBi
an
Provet
ha
tM ,L ,H andK a
po
Hongp
i
ng)
So
l
u
t
i
on.Jo
i
nCL ,BI,DI,BK ,ML andKH .Ex
t
endCLt
o
mee
tAB a
tpo
i
n
tN .
Asbo
t
hCD andCE a
r
et
het
angen
tt
o☉I,s
oCD = CE .
As
∠BIK = ∠BAI + ∠ABI =
=
1 (∠
BAC + ∠ABC)
2
1(
180
°- ∠ACB )= ∠EDC = ∠BD ,
2
s
oB ,K ,D andIa
r
ecyc
l
i
c.
As ∠BKI = ∠BDI = 90
°,i.
e.,BK ⊥ AK ;s
imi
l
a
r
l
y,
CL ⊥ AL .AsALi
st
heb
i
s
e
c
t
oro
f ∠BAC ,
s
oLi
st
hemi
dpo
i
n
t
o
fCN .AsM i
st
hemi
dpo
i
n
to
fBC ,
s
oML ‖AB .
S
i
nce ∠BKA = ∠BHA =90
°,
i
tf
o
l
l
owst
ha
tpo
i
n
t
sB ,K ,
H andA a
r
ecyc
l
i
c,s
o ∠MHK = ∠BAK = ∠MLK ,henc
eM ,
L ,H andK a
r
ecyc
l
i
c.
8
De
t
e
rmi
ne,wi
t
hpr
oo
f,a
l
lpa
i
r
s(
a,b)ofi
n
t
ege
r
s,s
uch
t
ha
tf
oranypo
s
i
t
i
vei
n
t
ege
rn,oneha
sn | (
an +bn+1).
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
230
(
s
edbyChenYonggao)
po
So
l
u
t
i
on.Theso
l
u
t
i
onpa
i
r
scon
s
i
s
tof (
0,0)and (-1,-1).
I
foneo
faandbi
s0,i
ti
sobv
i
ou
st
ha
tt
heo
t
he
ri
sa
l
s
o0.
Nowwea
s
s
umet
ha
tab ≠0,
s
e
l
ec
tal
a
r
imeps
ucht
ha
t
gepr
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
2
i
tf
o
l
l
owsf
r
om Fe
rma
t
􀆳
sLi
t
t
l
eTheor
emt
ha
t
p >|a +b |,
ap +bp+1 ≡a +b2(
modp).
Asp| (
ap +bp+1)andp >|a +b2|,wehavea +b2 = 0.
Thenwes
e
l
ec
tano
t
he
rpr
imeqs
ucht
ha
tq >|b +1|and
(
tn = 2
q,b)= 1.Le
q.Thenwehave
2
2 1
4
2 1
2 1
q
+b q+ =b q +b q+ =b q+ (
an +bn+1 = (-b2)
b2q-1 +1).
I
tf
o
l
l
owsf
r
omn| (
ha
t
an +bn+1)and (
q,b)= 1t
b2q-1 +1).
q| (
2
,
·b +1 ≡b +1(
Asb2q-1 +1 ≡ (
bq-1)
mo
dq)
andq >|b +1|,
i
tf
o
l
l
owst
ha
tb +1 = 0,
i.
e.,
oa =-b2 = -1.
b =-1,ands
Inconc
l
u
s
i
on,t
he
r
ea
r
eon
l
o
l
u
t
i
onpa
i
r
s(
0,0)and
ytwos
(-1,-1).
2012
(
Ho
h
h
o
t,
I
n
n
e
rMo
n
o
l
i
a)
g
F
i
r
s
tDay
8:
00 12:
00,Sep
t
embe
r28,2012
1
F
i
ndt
hel
ea
s
t po
s
i
t
i
vei
n
t
ege
r m ,s
uch t
ha
tforeve
r
y
imenumbe
rp > 3,
pr
2
105|9p -29p + m .
(
s
edby Yang Hu)
po
Ch
i
na We
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
231
So
l
u
t
i
on.As105 =3×5×7,
t
heor
i
i
na
lprob
l
emi
sequ
i
va
l
en
t
g
2
t
ot
ha
to
ff
i
nd
i
ngt
hel
ea
s
tpo
s
i
t
i
vei
n
t
ege
rm s
ucht
ha
t9p i
v
i
deds
imu
l
t
aneou
s
l
29p + m canbed
yby3,5,7.
S
i
nc
ep2 andp havet
hes
ameodd
evencha
r
ac
t
e
r,wehave
p
p
-(
-1)
+m ≡ m (
9p -29p + m ≡ (-1)
mod5).
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
2
2
Thenwege
tm ≡ 0 (
mod5).
Asp > 3i
sanoddnumbe
r,wehave
p
+ m ≡ m +1(
9p -29p + m ≡ - (-1)
mod3).
2
The
r
e
f
or
e,m ≡ 2 (
mod3).
Wehavea
l
s
op2 ≡1(
mod3)
f
orp >3,orp2 =3
k +1.Then
9p -29p + m ≡ 23k+1 -1 + m ≡ 8k ·2 -1 + m
2
≡ m +1(
mod7).
The
r
e
for
e,m ≡ 6 (
mod7).
Ins
umma
r
y,wehave
mod5),
ìïm ≡ 0(
ï
mod3),
ím ≡ 2(
ïï
îm ≡ 6(
mod7).
Theni
ti
sea
s
of
i
ndt
ha
tt
hel
ea
s
tpo
s
i
t
i
vei
n
t
ege
rmi
s20.
yt
2
Pr
ovet
ha
t,among anyn ve
r
t
i
c
e
so
far
egu
l
a
r2
n -1
n ≥ 3),t
he
r
ea
r
et
hr
eeone
s,wh
i
ch a
r
et
he
l
po
ygon (
ve
r
t
i
ce
sofani
s
o
s
ce
l
e
st
r
i
ang
l
e.(
s
edbyZouJ
i
n)
po
So
l
u
t
i
on.S
i
nc
ei
ti
sea
s
ove
r
i
f
i
r
ec
t
l
hea
s
s
e
r
t
i
onfort
he
yt
yd
yt
a pen
t
agon)andn = 4 (
ahep
t
agon),we may
ca
s
e
sn = 3 (
a
s
s
umet
ha
tn > 4i
nt
hef
o
l
l
owi
ngd
i
s
cu
s
s
i
on.
Byr
educ
t
i
ont
oab
s
u
rd
i
t
s
s
umewecans
e
l
e
c
tn ve
r
t
i
c
e
s
y,a
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
232
i
nar
egu
l
a
r2
n -1po
l
ucht
ha
tnot
hr
eeof
ygonA1A2A3 …A2n-1s
t
hem con
s
t
i
t
u
t
e
sani
s
o
s
c
e
l
e
st
r
i
ang
l
e. We ma
rkt
he
s
e po
i
n
t
s
wi
t
h co
l
or r
ed and t
he r
ema
i
nde
r n - 1 one
s wi
t
hb
l
ue,
r
e
s
c
t
i
ve
l
pe
y.
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
ed,andd
i
v
i
det
heo
t
he
r2
i
n
t
s
Wemayl
e
tA1 ber
n - 2po
i
n
t
on - 1pa
i
r
s(
s
eet
hef
i
r
e):(
A2 ,A2n-1),(
A3 ,A2n-2),
gu
...,(
An ,An+1).
Thetwopo
i
n
t
si
neach
i
rcanno
tbebo
t
hr
eda
s
pa
t
hey p
l
u
sA1 cons
t
i
t
u
t
e an
i
s
o
s
c
e
l
e
st
r
i
ang
l
e,andmu
s
t
beoner
edandoneb
l
uef
or
F
i
.2
.1
g
edpo
i
n
t
s.
t
he
r
ea
r
eexac
t
l
ynr
As
s
umi
ngA2i
sr
ed,t
henA2n-1i
s
tbeb
l
ue
sb
l
ue,andA3 mu
a
s△A1A2A3 i
sani
s
o
s
c
e
l
e
st
r
i
ang
l
e.The
r
e
for
e A2n-2 i
sr
ed,
r
e bo
t
h b
l
ue, a
s
f
r
om wh
i
ch we i
nf
e
rt
ha
t A5 , A2n-4 a
△A2n-2A2A5 , △A2n-4A2n-2A1 a
r
etwoi
s
o
s
ce
l
e
st
r
i
ang
l
e
s.Bu
t
r
et
hetwopo
i
n
t
si
napa
i
r,t
hey mu
s
tbeoner
edand
A5 ,A2n-4a
oneb
l
ue.Th
i
si
sacon
t
r
ad
i
c
t
i
on! Thea
s
s
e
r
t
i
onforn >4i
st
hen
a
l
s
ot
r
ue.Thepr
oofi
scomp
l
e
t
e.
3
Le
tE be a g
i
ven s
e
t wi
t
hn e
l
emen
t
s.Suppo
s
e A1 ,
A2 ,...,Ak a
r
ek d
i
s
t
i
nc
tnon
emp
t
ub
s
e
t
sofE ,wi
t
h
ys
t
hep
r
ope
r
t
ha
t,f
o
rany1 ≤i < j ≤k,e
i
t
he
rAi ∩ Aj =
yt
⌀ oronei
nc
l
ude
st
heo
t
he
r(
i.
e.,Ai ⊂ Aj orAj ⊂ Ai ).
Fi
ndt
hemax
imumva
l
ueo
fk.(
s
edbyLengGang
s
ong)
po
So
l
u
t
i
on.Wec
l
a
imt
ha
tt
hemax
imumva
l
ueofki
s2
n -1.To
h
i
s,wea
tf
i
r
s
tg
i
veanexamp
l
et
ha
ts
a
t
i
s
f
i
e
sk =2
n -1.
provet
Wemayl
e
tE = {
1,2,...,n},and
Ch
i
na We
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
Ai =
{
{
i}
233
f
or1 ≤i ≤ n,
{
i -n +1} forn +1 ≤i ≤ 2n -1.
1,2,...,
I
ti
sea
s
os
eet
ha
tt
heypo
s
s
e
s
st
heg
i
venprope
r
t
yt
y.
Now wewi
l
lpr
ovet
ha
tk ≤ 2
n -1byi
nduc
t
i
on.
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
i
ti
sobv
i
ou
s
l
r
ue.
Whenn = 1,
yt
As
s
umet
ha
ti
ti
st
r
uef
orn ≤ m -1.Thenwhenn = m ,we
con
s
i
de
rt
hes
e
tt
ha
tcon
t
a
i
n
st
hemo
s
te
l
emen
t
samongA1 ,A2 ,
...,Ak exc
l
ud
i
ngE .We maya
s
s
umet
ha
ti
ti
sA1 con
t
a
i
n
i
ng
t(≤ m -1)e
l
emen
t
s.Thenwecand
i
v
i
deA1 ,A2 ,...,Aki
n
t
o
t
hr
eeca
t
egor
i
e
s:
(
e
tE ;
1)t
hes
(
2)s
e
t
st
ha
ta
r
ei
nc
l
udedi
nA1 ;and
(
semp
t
3)s
e
t
swho
s
ei
n
t
e
r
s
e
c
t
i
onwi
t
hA1i
y.
(
Ca
t
egor
i
e
s(
1)and (
2)maybeemp
t
y.)
Thent
henumb
e
ro
fs
e
t
si
nc
a
t
e
r
1)i
sno
tg
r
e
a
t
e
rt
han1.
go
y(
Byi
nduc
t
i
on,t
henumbe
ro
fs
e
t
si
nca
t
egor
2)i
sno
t
y(
r
ea
t
e
rt
han2
t -1.
g
Thenumbe
rofe
l
emen
t
scon
t
a
i
nedi
nt
heun
i
onoft
hes
e
t
s
i
nca
t
egor
3)i
sno
tg
r
ea
t
e
rt
hanm -t.Thenbyi
nduc
t
i
on,t
he
y(
numb
e
ro
fs
e
t
si
nt
ha
tc
a
t
e
r
sno
tg
r
e
a
t
e
rt
han2(
m -t)-1.
go
yi
Int
o
t
a
l,
k ≤1+ (
2
t -1)+ [
2(
m -t)-1]= 2m -1.
The
r
e
f
or
e,t
hepr
opo
s
i
t
i
oni
st
r
uef
orn = m .
Byi
nduc
t
i
on,weconc
l
udet
ha
tforanys
e
tE ofne
l
emen
t
s,
wea
lway
shavek ≤ 2
n -1.Th
i
scomp
l
e
t
e
st
heproo
f.
4
Le
tP beanyi
nne
rpo
i
n
to
fanacu
t
e△ABC ;E ,F bet
he
t
ol
i
ne
sAC ,AB ,r
e
c
t
i
onpo
i
n
t
sofP on
e
s
t
i
ve
l
pro
j
pec
y;
and t
he ex
t
ended l
i
ne
s o
f BP , CP i
n
t
e
r
s
ec
tt
he
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
234
c
i
r
cumc
i
r
c
l
eo
f△ABC a
tpo
i
n
t
sB1 ,C1 (
B1 ≠ B ,C1 ≠
C),r
t
et
her
ad
i
ioft
he
e
s
t
i
ve
l
tR andr deno
pec
y.Le
c
i
r
cumc
i
r
c
l
eandi
nc
i
r
c
l
eo
f △ABC ,r
e
s
c
t
i
ve
l
pe
y.Prove
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
EF
r, ,
≥
t
ha
t
and whent
heequa
l
i
t
l
d
s,de
t
e
rmi
ne
yho
B1C1 R
s
edbyLiQi
u
sheng)
comp
l
e
t
e
l
hepo
s
i
t
i
on
so
fP .(
po
yt
So
l
u
t
i
on.Ass
eeni
nF
i
.4
.1,
g
we make PD
⊥
BC wi
t
h
t
endl
i
ne
i
n
t
e
r
s
e
c
t
i
ngpo
i
n
tD ,ex
AP t
o i
n
t
e
r
s
e
c
t wi
t
h t
he
c
i
r
cumc
i
r
c
l
eo
f △ABC a
tpo
i
n
t
A1andconnec
tDE ,DF ,A1B1 ,
A1C1 .
S
i
n
c
e P , D , B, F a
r
e
c
onc
c
l
i
c, we have ∠PDF =
y
F
i
.4
.1
g
∠PBF ;
s
i
nc
eP ,D ,C ,E ,wehave ∠PDE = ∠PCE .Then
∠FDE = ∠PDF + ∠PDE = ∠PBF + ∠PCE
= ∠AA1B1 + ∠AA1C1 = ∠C1A1B1 .
In t
he s
ame way, we have ∠DEF
The
r
e
f
or
e,△DEF ~ △A1B1C1 .
=
∠A1B1C1 .
Ther
ad
i
u
so
ft
hec
i
r
c
umc
i
r
c
l
eo
f
△A1B1C1 i
sa
l
s
o R ,and l
e
tt
he
r
ad
i
u
so
ft
hec
i
r
cumc
i
r
c
l
eo
f△DEF
EF
R'
=
beR'.Wet
henhave
.
B1C1
R
Nowl
e
tt
hei
n
c
en
t
e
ro
f△DEF b
e
O
'.Conne
c
t AO
', BO
', CO
' (
s
e
e
F
i
.4
.2).Weha
v
e
g
F
i
.4
.2
g
Ch
i
na We
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
S△ABC =
235
(
AB +BC +CA )·r
2
= S△O'AB +S△O'BC +S△O'AC
≤
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
=
AB ·O'F BC ·O'D CA ·O'E
+
+
2
2
2
(
AB +BC +CA )·R'
.
2
l
i
t
l
d
si
fandon
l
f
The
r
e
f
or
e,R' ≥r.Theequa
yho
yi
O'D ⊥ BC ,O'E ⊥ CA ,O'F ⊥ AB ,
wh
i
chimp
l
i
e
sP = O'andPi
st
hei
ncen
t
e
rof△ABC .
EF
r
≥
The
r
e
for
e,
andt
heequa
l
i
t
l
d
si
fandon
l
yho
yP
B1C1
R
i
st
hei
nc
en
t
e
rof△ABC .
Thepr
oo
fi
scomp
l
e
t
e.
S
e
c
ondDay
8:
00 12:
00,Sep
t
embe
r29,2012
5
Le
tH andO bet
heor
t
hoc
en
t
e
randc
i
r
c
umc
en
t
e
ro
fa
c
u
t
e
t
r
i
ang
l
e△ABC,r
e
s
c
t
i
v
e
l
r
enon
c
o
l
l
i
ne
a
r).
pe
y (A ,H ,O a
Suppo
s
eD i
st
he pr
o
e
c
t
i
ono
fA on
t
ol
i
neBC ,andt
he
j
rpend
i
cu
l
a
rb
i
s
ec
t
oroft
hes
egmen
tAO mee
t
sl
i
neBCa
t
pe
E .Provet
ha
tt
hemi
dpo
i
n
tN o
fOH i
sont
hec
i
r
cumc
i
r
c
l
e
o
f △ADE . ( po
s
ed by
FengZh
i
gang)
So
l
u
t
i
on.Ass
eeni
nFi
.5
.1,
g
ol
e
ti
ti
n
t
e
r
s
ec
t
weex
t
endHD t
wi
t
ht
hec
i
r
cumc
i
r
c
l
eo
f△ABC
a
t po
i
n
t H',l
i
nk FN , DN ,
BH ,BH',OH',and deno
t
e
F
i
.5
.1
g
236
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
t
hemi
dpo
i
n
tofAO a
sF .
st
heor
t
hoc
en
t
e
r,wehave
AsH i
∠CBH' = ∠CAH' = ∠CBH .
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
st
hemi
dpo
i
n
to
fHH'.Ont
heo
t
he
rhand,
The
r
e
f
or
e,Di
Ni
st
he mi
dpo
i
n
to
f HO ,s
st
he med
i
anof △HOH'.
oDN i
The
r
e
f
or
e,DN =
1
OH'.
2
t
hen
S
i
nc
eOH' = OA andFi
st
hemi
dpo
i
n
to
fOA ,
DN =
1
1
OH' = OA = AF .
2
2
I
ti
sea
s
os
ee FN ‖AH .Then AFND i
sani
s
o
s
ce
l
e
s
yt
t
r
apezo
i
dandA ,F ,N ,D a
r
econcyc
l
i
c.
Fu
r
t
he
rmor
e,f
r
om ∠ADE =90
°= ∠AFE weknowA ,F ,
D ,E a
r
ea
l
s
oconcyc
l
i
c.ThenA ,F ,N ,D ,E a
r
econcyc
l
i
c,
wh
i
chimp
l
i
e
st
ha
tt
hec
i
r
cumc
i
r
c
l
eo
f△ADE c
ro
s
s
e
sN a
tt
he
oofi
scomp
l
e
t
e.
mi
dpo
i
n
tofOH .Thepr
Remark.Bythefac
t
st
ha
tt
her
ad
i
u
soft
hen
i
ne
-po
i
n
t
c
i
r
c
l
eo
fat
r
i
ang
l
ei
sha
l
fo
ft
ha
to
ft
hec
i
r
cumc
i
r
c
l
eandN i
s
t
hec
en
t
e
ro
ft
hen
i
ne
-po
i
n
tc
i
r
c
l
eof △ABC ,wecan ge
ta
l
s
o
sani
s
o
s
c
e
l
e
st
r
ape
zo
i
d.
t
ha
tAFNDi
6
Sequenc
e{
an }i
sde
f
i
nedbya0 =
2
an
1,
,
an+1 = an +
2
2012
n = 0,1,2,....Fi
ndi
n
t
ege
rk,
s
ucht
ha
tak <1 <ak+1 .
(
s
edbyBi
anHongp
i
ng)
po
So
l
u
t
i
on.Fromtheg
i
vencond
i
t
i
on,wehave
1
= a0 < a1 < … < a2012 .
2
Weno
t
et
ha
t
Ch
i
na We
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
237
1
2012
1
1
,
=
=
an+1 an (
an +2012) an an +2012
or
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
1
1
1
=
.
an an+1 an +2012
Byt
het
e
l
e
s
cop
i
ngs
um,wehave
1
1
=
a0 an
Then
1
=
2a2012
The
r
e
f
or
e,
n-1
∑a
i=0
i
2011
1
.
+2
012
1
<
∑
012
i=0 ai +2
2011
1
∑ 2012 = 1.
i=0
a0 < a1 < … < a2012 < 1.
Thenwehave
1
=
2a2013
2012
1
>
∑
012
i=0 ai +2
wh
i
ch mean
sa2013 > 1.
2012
1
∑ 1 +2012 = 1,
i=0
Con
s
equen
t
l
i
ndt
ha
tk = 2012.
y,wef
7
Gi
venann ×ng
r
i
d,weca
l
ltwoc
e
l
l
si
ni
tad
ac
en
ti
ft
hey
j
have a common s
i
de. Att
he beg
i
nn
i
ng,each ce
l
li
s
a
s
s
i
r+1.Anope
r
a
t
i
onont
heg
r
i
di
sde
f
i
ned
gnednumbe
a
sf
o
l
l
ows:onechoo
s
e
sac
e
l
l,andt
henchange
st
hes
i
s
gn
o
fe
v
e
r
ri
ni
t
sad
a
c
en
tc
e
l
l
s(
bu
tno
tchang
et
hes
i
ynumbe
j
gn
o
ft
henumb
e
ri
ni
t
s
e
l
f).F
i
nda
l
lt
hei
n
t
e
e
r
sn ≥2,
s
u
cht
ha
t
g
a
f
t
e
raf
i
n
i
t
eo
fope
r
a
t
i
on
s,a
l
lt
henumbe
r
si
nt
hec
e
l
l
so
ft
he
r
i
da
r
echang
edt
o -1.(
s
edbyShenHuyu
e)
g
po
So
l
u
t
i
on.Wewi
l
lpr
ovet
ha
tn mee
t
st
her
equ
i
r
edcond
i
t
i
oni
f
andon
l
fi
ti
sanevennumbe
r.
yi
Wedeno
t
et
hec
e
l
li
nt
hei
-rowandj
-co
l
umnoft
heg
r
i
da
s
238
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
Aij (
i,j ∈ {
1,2,...,n}).
k,k ∈ N* ,wema
a
t
i
s
f
i
ngi +j ≡
Whenn =2
rkeachAijs
y
0(
mod2)wi
t
hco
l
orr
ed (
e
s
en
t
edbyshadeda
r
ea
s),andt
ha
t
pr
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
s
a
t
i
s
f
i
ngj -i ≡ 3(
mod4)andj -i ≢j +i(
mod4)wi
t
hb
l
ue
y
(
)(
)
e
s
en
t
edbyob
l
i
i
nea
r
ea
s s
eeFi
.7
.1 .
pr
quel
g
F
i
.7
.1
g
F
i
.7
.2
g
I
nt
h
i
swa
ans
e
et
ha
te
v
e
r
e
l
lad
a
c
en
tt
oab
l
u
eonei
s
y,wec
yc
j
r
ed,andt
he
r
ei
se
x
a
c
t
l
l
u
ec
e
l
la
r
ounde
a
chr
edone.
yoneb
Now wedot
heope
r
a
t
i
ononeachb
l
uece
l
l.Thenumbe
ri
n
eachr
edc
e
l
li
st
henchangedf
r
om +1t
o -1,wh
i
l
et
henumbe
r
s
i
nt
her
ema
i
n
i
ngc
e
l
l
sa
r
eunchanged.
S
i
nc
eni
sanevennumbe
r,wecanro
t
a
t
et
heg
r
i
da
roundi
t
s
cen
t
e
rO an
t
i
c
l
ockwi
s
e by 90
°.Then a
l
lt
her
edc
e
l
l
soft
he
r
o
t
a
t
edg
r
i
dcove
rexac
t
l
l
lt
hec
e
l
l
st
ha
ta
r
eno
tr
edi
nt
he
ya
or
i
i
na
lg
r
i
d(
s
eeFi
.7
.2).
g
g
Wedot
heope
r
a
t
i
on
saga
i
nf
ort
heor
i
i
na
lg
r
i
dona
l
lt
he
g
c
e
l
l
st
ha
ta
r
ecove
r
edbyb
l
uec
e
l
l
so
ft
hero
t
a
t
edg
r
i
d.Thenwe
s
eet
ha
ta
l
lt
henumbe
r
swi
t
hva
l
ue +1i
nt
her
ema
i
n
i
ngce
l
l
sof
t
heor
i
i
na
lg
r
i
da
r
echangedt
o -1,wh
i
l
et
henumbe
r
si
nt
he
g
o
t
he
rc
e
l
l
sa
r
eunchanged.
The
r
e
f
o
r
e,whenni
sane
v
ennumbe
r,a
l
lt
henumb
e
r
si
nt
he
c
e
l
l
so
ft
heg
r
i
dc
anb
echang
edt
o -1byaf
i
n
i
t
eo
fope
r
a
t
i
on
s.
Whenni
sodd,wedeno
t
et
henumbe
ri
nce
l
lAiia
sM i(
i=
Ch
i
na We
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
239
1,2,...,
n),anddeno
t
et
henumbe
r
ofope
r
a
t
i
on
soneacho
ft
he
i
rad
a
c
en
t
j
c
e
l
l
sa
sx1,x2,...,xn-1 ,y1,y2,...,
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
e
s
c
t
i
ve
l
s
eeF
i
.7
.3).
yn-1 ,r
pe
y(
g
Af
t
e
rf
i
n
i
t
eope
r
a
t
i
on
s,i
ti
sea
s
y
t
os
eet
ha
t:
M 1i
schangedf
r
om +1t
o -1i
f
andon
l
sodd;
yx1 +y1i
F
i
.7
.3
g
M 2i
schangedf
rom +1t
o -1i
fandon
l
yx1 +y1 +x2 +y2
i
sodd;
M 3i
schangedf
rom +1t
o -1i
fandon
l
yx2 +y2 +x3 +y3
i
sodd;
︙
M n-1i
schangedf
r
om +1t
o -1i
fandon
l
yxn-2 +yn-2 +
sodd,and
xn-1 +yn-1i
M ni
schangedf
r
om +1t
o -1i
fandon
l
sodd.
yxn-1 +yn-1i
S
i
nceni
sodd,t
hes
umo
fnoddnumbe
r
si
ss
t
i
l
lodd.Then,
(x1 +y1 ) + (x1 +y1 +x2 +y2 ) + (x2 +y2 +x3 +y3 )
+ … + (xn-2 +yn-2 +xn-1 +yn-1 ) + (xn-1 +yn-1 )
= 2(
x1 +x2 + … +xn-1 +y1 +y2 + … +yn-1)
i
sodd.I
ti
simpo
s
s
i
b
l
e!
The
r
e
f
or
e,a
l
lt
henumbe
r
si
nt
hec
e
l
l
sofag
i
venn ×ng
r
i
d
canbechangedf
r
om +1t
o -1a
f
t
e
raf
i
n
i
t
eo
fope
r
a
t
i
onsi
f
andon
l
fni
sanevennumbe
r.
yi
8
F
i
nd a
l
lt
he pr
ime numbe
r
s p,for wh
i
ch t
he
r
ea
r
e
n+1
+
i
nf
i
n
i
t
e
l
s
i
t
i
vei
n
t
ege
r
sn,s
ucht
ha
tp |n
y manypo
n
(
n +1)
.(po
s
edbyChenYonggao)
So
l
u
t
i
on.nn+1
n
+ (
n + 1)
i
sa
lway
sanodd numbe
rforany
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
240
s
i
t
i
vei
n
t
ege
rn,
s
ot
her
equ
i
r
edp wi
l
lno
tbe2.Now wea
r
e
po
i
ngt
o pr
ovet
ha
t,f
oranypr
imenumbe
rp ≥ 3,t
he
r
ea
r
e
go
i
nf
i
n
i
t
e many po
s
i
t
i
vei
n
t
ege
r
st
ha
t mee
tt
he cond
i
t
i
on. We
e
s
en
ttwoproo
f
si
nt
hef
o
l
l
owi
ng.
pr
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
Proo
f1.Foranypr
l
e
tn =pk -2beanodd
imenumbe
rp ≥3,
numbe
r.Then
n
k 1
pk-1
pk-2
≡(
-2)
+(
-1)
≡ 2p - -1
nn+1 + (
n +1)
k
·2k-1 -1 ≡ 2k-1 -1(
≡(
2p-1)
modp).
Nex
t,l
e
tk -1 = (
t.
p -1)
n
≡ 0(
modp).
Thennn+1 + (
n +1)
The
r
e
for
e,whenn = p(
t + p - 2 (whe
r
eti
sany
p - 1)
n
s
i
t
i
vei
n
t
ege
r),wehavep|nn+1 + (
n +1)
.
po
Proo
f2.Gi
venanypr
imenumbe
rp
≥3,weh
ave(
2,p)=1.
ByFe
rma
t
􀆳
sLi
t
t
l
eTheor
em,weknow2p-1 ≡ 1(
modp).Le
tn
t
,
,
,
,
= p -2 wh
e
r
et = 1 2 3 ....Wehave
n
p -1
p -2
≡(
-2)
+(
-1)
nn+1 + (
n +1)
t
t
1
p
≡ 2p - -1 ≡ (
2p-1)
t-1
t
t-2 …
+ +p+1
+p
≡ 1 -1 ≡ 0(
modp).
-1
Thepr
oo
fi
scomp
l
e
t
e.
2013
(
L
a
n
z
h
o
u,Ga
n
s
u)
F
i
r
s
tDay
00,Augus
t17,2013
8:
00 12:
1
Dot
he
r
eex
i
s
ti
n
t
ege
r
sa,b andc s
ucht
ha
ta2b
c + 2,
Ch
i
na We
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
241
ab2c +2,ab
c2 + 2 a
r
e pe
r
f
ec
ts
r
e
s. (
s
ed by Li
qua
po
Qi
u
s
heng )
So
l
u
t
i
on. No.Suppos
et
he con
t
r
a
r
ha
tt
he
r
ea
r
es
uch
yt
i
n
t
ege
r
sa,bandc.
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
I
foneo
ft
hemi
seven,s
aya,
c +2 ≡ 2 (
t
hena2b
mod4),
sa pe
r
f
ec
t
wh
i
chcon
t
r
ad
i
c
t
st
he a
s
s
ump
t
i
ont
ha
ta2b
c + 2i
s
r
e.Wemayt
hena
s
s
umet
ha
ta,bandca
r
eodd,s
ot
hey
qua
a
r
ee
i
t
he
r1 or3 (mod4).I
tfo
l
l
owsf
rom t
he P
i
-ho
l
e
geon
Pr
i
nc
i
l
et
ha
ttwooft
hem a
r
econg
r
uen
tmodu
l
o4.Re
l
abe
li
f
p
nec
e
s
s
a
r
s
s
umet
ha
ta ≡b(
mod4),
s
oab
c2 +2 ≡c2 +
y,wemaya
2 ≡ 1 +2 ≡ 3 (
mod 4),wh
i
ch v
i
o
l
a
t
e
st
he pe
r
f
ec
ts
r
e
qua
a
s
s
ump
t
i
on.
2
Le
tnbeani
n
t
ege
r,
n ≥2,andx1 ,x2 ,...,xn ∈ [
0,1].
Provet
ha
t
∑
kxkxl ≤
1≤k<l≤n
n
n -1
kxk .
∑
3 k
=1
(
s
edbyLeng Gang
s
ong )
po
So
l
u
t
i
on.Asx1 ,x2 ,...,xn
3
∑ kx x
1≤k<l≤n
k l
=
∑
∈[
0,1],xixj ≤xi ,
s
owehave
3
kxkxl ≤
1≤k<l≤n
∑
(
kxk +2
kxl ).
1≤k<l≤n
nt
hel
a
s
ts
umi
s
For1 ≤k ≤ n,
t
hecoe
f
f
i
c
i
en
to
fxki
2[
1 +2 + … + (
k -1)]+k(
n -k)=k(
n -1),
s
owehave
3
∑
kxkxl ≤
1≤k<l≤n
∑
(
kxk +2
kxl )=
1≤k<l≤n
n
∑kx
=(
n -1)
k=1
k
,
andhenc
et
hede
s
i
r
edi
nequa
l
i
t
l
d
s.
yho
n
∑k(n -1)x
k=1
k
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
242
3
In △ABC ,po
i
n
tB2 i
st
her
e
f
l
ec
t
i
on oft
hecen
t
e
rof
B-exc
i
r
c
l
ewi
t
hr
e
s
tt
ot
he mi
dpo
i
n
tofs
i
deAC ,and
pec
i
r
c
l
ewi
t
h
i
n
tC2i
st
her
e
f
l
e
c
t
i
ono
ft
hecen
t
e
rofC-exc
po
r
e
s
c
tt
ot
he mi
dpo
i
n
to
fs
i
de AB .The A-exc
i
r
c
l
e
pe
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
t
ouche
ss
i
de BC a
t po
i
n
tD .Pr
ovet
ha
tAD ⊥ B2C2 .
(
s
edbyBi
anHongp
i
ng)
po
So
l
u
t
i
on.Le
tA1bet
hec
en
t
e
rof
A-exc
i
r
c
l
e. By t
he prope
r
t
i
e
s
abou
tc
en
t
e
r
so
f ex
c
i
r
c
l
e
s,t
he
f
o
l
l
owi
ngs
e
t
soft
hr
ee po
i
n
t
sa
r
e
B1 ,A ,C1},{
A1 ,C ,
co
l
l
i
nea
r:{
B1}and{
C1 ,B ,A1},andA1A ⊥
B1C1 .
F
i
.3
.1
g
Ont
hep
l
ane,choo
s
epo
i
n
tP
→
→
hen i
t
s
uch t
ha
t C2P = B2C ,t
→t
→ .AsBC
→ =C →
f
o
l
l
owsf
r
omB2→
C = AB
a
tC2→
P = AB
nd
1 h
1
2
1A a
t
hepo
i
n
t
sC1 ,B ,A1 a
r
eco
l
l
i
nea
r,t
he po
i
n
t
sB ,C2 ,P a
r
e
→ .I
P =C B
tf
o
l
l
owsf
rom
co
l
l
i
nea
r,s
oB→
1
∠AC1B = 1
80
°=
1
°- ∠BAC ö÷ æç180
°- ∠ABC ö÷
æç180
2
2
è
ø è
ø
∠BAC + ∠ABC
2
=
180
°- ∠ACB
= ∠BCA1
2
tA1D andA1A bet
hea
l
t
i
t
ude
sof
t
ha
t△A1BC ∽ △A1B1C1 .Le
t
he △A1BC and △A1B1C1 ,r
e
s
c
t
i
ve
l
t
hr
e
s
c
tt
ot
he
pe
y,wi
pe
B1C1
A1A
=
oppo
s
i
t
es
i
de
s,s
o
.
BC
A1D
BP A1A
→,
=
P =C1B
henA1A ⊥ B1C1 ,
s
o
.
I
fBP ⊥
I
fB→
1 t
BC A1D
A1A ,t
henBC ⊥ A1D ,s
o wehave △BPC ∽ △A1AD ,and
→ = C→
henceCP ⊥ AD .Aga
i
nbyC2→
P = B2→
C ,oneha
sB2C
P,
2
Ch
i
na We
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
243
andhenc
eAD ⊥ B2C2 .
The
r
ea
r
en(
n ≥ 2)co
i
nsi
nar
ow.I
foneoft
heco
i
nsi
s
4
head,s
e
l
e
c
tanoddnumbe
ro
fcons
e
cu
t
i
veco
i
n
s(
oreven
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
1co
i
n)wi
t
ht
heonei
nheadont
hel
e
f
tmo
s
t,andt
hen
f
l
i
l
lt
hes
e
l
e
c
t
ed co
i
n
sups
i
de down s
imu
l
t
aneou
s
l
pa
y.
sa
l
l
owedi
fa
l
lnco
i
nsa
r
et
a
i
l
s.
Th
i
si
samove.Nomovei
Suppo
s
en c
o
i
n
sa
r
ehe
ad
sa
tt
hei
n
i
t
i
a
ls
t
ag
e,de
t
e
rmi
nei
f
2n+1
t
he
r
ei
sawayt
oc
a
r
r
t
mov
e
s.(
s
edbyGuB
i
n)
you
po
3
So
l
u
t
i
on.Theansweri
spo
s
s
i
b
l
e.
Fo
ranyc
on
f
i
u
r
a
t
i
ono
ft
hec
o
i
n
s,wede
f
i
neac
o
r
r
e
s
i
ng
g
pond
01 s
i
ft
hei
equenc
ec1c2 ...
cn ofl
eng
t
hna
sfo
l
l
ows:
ci =1,
-t
h
co
i
nf
r
omt
hel
e
f
ti
shead,o
t
he
rwi
s
e,
ci = 0.I
ti
sea
s
os
ee
yt
i
n
sa
sone
t
o
onecor
r
e
s
o
t
ha
tt
hes
t
a
t
u
so
ft
hen co
pondencet
s
uch01 s
equenc
e
s,s
oi
nt
hef
o
l
l
owi
ng,we wi
l
lcons
i
de
rt
h
i
s
s
equenc
emode
li
n
s
t
ead.
In
i
t
i
a
l
l
hes
equenc
ei
s11…11,deno
t
edby1n (wi
t
hn
y,t
con
s
e
cu
t
i
ved
i
i
t
sof1).S
imi
l
a
r
l
t
edby0n (
wi
t
h
g
y,00…00,deno
nd
i
i
t
so
f0).Forany01 s
equenc
ewi
t
ha
tl
ea
s
tad
i
i
t“
1”,
g
g
con
s
i
de
rt
hef
o
l
l
owi
ng move:l
oca
t
et
hef
i
r
s
td
i
i
t“
1”f
rom
g
r
i
tt
ol
e
f
ti
nt
hes
equenc
e,t
hent
aket
he01 s
ub
s
equence
gh
f
r
oml
e
f
tt
or
i
ts
t
a
r
t
i
ngt
h
i
s“
1”o
fmax
ima
loddl
eng
t
h,and
gh
changet
he01 pa
r
i
t
nt
h
i
ss
ub
s
equencej
u
s
tl
i
kef
l
i
i
ngt
he
yi
pp
co
i
n
si
namove.Deno
t
ebyant
het
o
t
a
lnumbe
rofmove
si
nt
he
ways
t
a
t
edabove.Wec
l
a
im:
an =
t
os
eet
ha
ta1 =1 =
an =
2n+1
.Whenn =1,
i
ti
sea
s
y
3
22 ,
oc
eedbyi
nduc
t
i
on.As
s
umef
ormu
l
a
pr
3
2n+1
2k+1
i.
e.,
ho
l
d
sf
orn =k,
ak =
.
3
3
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
244
Now,wed
i
s
cu
s
st
heca
s
en =k +1,
i.
e.,wewan
tt
of
i
nd
t
het
o
t
a
lnumbe
ro
fmove
sa
sde
s
c
r
i
bedabovei
ft
hes
equencei
s
1k+1 ,
i
nsi
nar
ow.
i.
e,t
he
r
ea
r
ek +1co
I
fki
sodd,t
henbyi
nduc
t
i
onhypo
t
he
s
i
s,t
hes
equence1k+1
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
(
i
i
t
so
f0)a
f
t
e
r
i
i
t
so
f1)change
st
o10k (
wi
t
hkd
wi
t
hk +1d
g
g
ak move
sa
ss
t
a
t
edabove.Af
t
e
ranadd
i
t
i
ona
lmove,i
tchange
s
t
o01k-10 (wi
i
i
t
sof1),t
hena
f
t
e
rapp
l
i
ngak - 1
t
hk - 1d
g
y
move
s,t
hes
equencechange
st
o0k+1 (
wi
t
hk +1d
i
i
t
so
f0).In
g
f
ac
t,r
e
ca
l
lt
ha
ti
ns
equenc
eo
fak move
sf
rom1k t
o0k by,t
he
f
i
r
s
tmovei
sf
r
om1k t
o1k-10.The
r
e
f
or
e,wehave
ak+1 = 2ak = 2
2k+1
2k+1 -1 2k+2 -2 2k+2
= 2·
=
=
.
3
3
3
3
I
fki
seven,byt
hei
nduc
t
i
ona
s
s
ump
t
i
oni
tt
ake
sak move
s
f
r
om1k+1t
henapp
l
i
t
i
ona
lf
rom10k t
o01k ,and
o10k ,t
yanadd
f
i
na
l
l
hei
nduc
t
i
on a
s
s
ump
t
i
on aga
i
n,i
tt
ake
sak move
s
y by t
f
r
om01k t
o0k+1 .Thenwehave
ak+1 = 2ak +1 = 2
=
2k+1
2k+1 -2
+1 = 2·
+1
3
3
2k+2 -1 2k+2
=
.
3
3
Byi
nduc
t
i
ont
ha
tan =
2n+1 ,
hencet
he
r
eex
i
s
t
sa wayt
o
3
maket
her
equ
i
r
ednumbe
ro
fmove
s.
S
e
c
ondDay
8:
00 12:
00,Augus
t18,2013
5
1,2,3,...,n}
Anon
emp
t
e
tA ⊆ {
i
sca
l
l
edagoods
e
t
ys
Ch
i
na We
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
245
nx.Deno
o
r
e
eni
f|A |≤ mi
t
ebyan t
henumbe
rof
fde
g
x∈A
or
e
t
so
fdeg
r
een.Pr
ovet
ha
tan+2 = an+1 +an +1f
goods
anypo
s
i
t
i
vei
n
t
ege
rn.(
s
edbyLiWe
i
po
gu )
So
l
u
t
i
on1.Le
e
tofdeg
r
een,and|A |= k,
tA beagoods
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
oA ⊆ {
he
t
henmi
nx∈Ax ≥ k,s
k,k + 1, ...,n}.Hencet
k
numbe
ro
fgoods
e
t
sofdeg
r
een wi
t
hk e
l
emen
t
si
sCn
I
t
-k+1 .
f
o
l
l
owst
ha
tan =
∑
[ n2+1 ]
k=1
1
2
3
k
Cn
n +C
n-1 + C
n-2 + … .
-k+1 = C
I
fni
t
hen
seven,
n = 2m ,
2
m+1
a2m+2 = C1
2m+2 + C
2m+1 + … + Cm+2
0
1
m
+1
=(
C1
C2
Cm
2m+1 + C
2m+1 )+ (
2m + C
2m )+ … + (
m+1 + Cm+1 )
m+1
2
2
=(
C1
C1
2m+1 + C
2m-1 + …
2m + … + Cm+1 )+ (
2m + C
+ Cm+1)+ C2m+1
0
m
= a2m+1 +a2m +1.
I
fni
sodd,
n = 2m -1,
t
hen
2
m
m+1
a2m+1 = C1
2m+1 + C
2m + … + Cm+2 + Cm+1
0
1
m
m-1
m
=(
C1
C2
Cm
2m + C
2m )+ (
2m-1 + C
2m-1)+ … + (
m+1)+ C
m
+1 + C
2
m
2
=(
C1
C1
2m + C
2m-1 + … + Cm+1 )+ (
2m-1 + C
2m-2 + …
+ Cm2m
+1 + Cm )+ C
m 1
m
0
= a2m +a2m-1 +1.
Ins
umma
r
heequa
l
i
t
l
d
sfora
l
l
y,t
yan+2 = an+1 +an +1ho
s
i
t
i
vei
n
t
ege
r
sn.
po
Remark.Le
tFn bet
hen
-t
ht
e
rmo
fFi
bonac
c
is
equence.From
[ n2 ] k
t
hecomb
i
na
t
or
i
a
li
den
t
i
t
r
i
ve
y ∑k=0 Cn-k = Fn ,onecan de
t
ha
tan = Fn+1 -1.
So
l
u
t
i
on2.I
fn
= 1,
t
he
r
ei
son
l
e
to
fdeg
r
ee1,
yonegoods
name
l
1},
s
oa1 = 1.
y{
hent
he
r
ea
r
eon
l
e
t
sofdeg
r
ee2:
I
fn = 2,t
ytwogoods
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
246
{
1},{
2},s
oa2 = 2.
r
et
henumbe
r
soft
henon
emp
t
Re
ca
l
lt
ha
tan ,an+1a
ygood
r
e
s
t
i
ve
l
s
ub
s
e
t
sA o
1,2,...,n +1},
f{
1,2,...,n}and{
pec
y,
s
a
t
i
s
f
i
ng|A |≤ mi
nx∈Ax.
y
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
Con
s
i
de
rt
heca
s
en +2:Foranynon
emp
t
e
tA of
ygoods
deg
r
een +2,Ai
sas
ub
s
e
to
f{
1,2,...,n +2},
t
henwehave
t
hef
o
l
l
owi
ngt
hr
eeca
s
e
s:
(
sno
tcon
t
a
i
nt
hee
l
emen
tn +2;
a)A doe
(
b)A con
t
a
i
n
sn +2,andha
sa
tl
ea
s
t2e
l
emen
t
s;
(
c)A = {
n +2}.
Int
hefo
l
l
owi
ng,wefocu
sont
henumbe
rofgoods
e
t
sof
n(
a),i
tfo
l
l
owsf
rom
t
s(
a)and (
b).Foranygoods
e
tA i
ype
nx∈Ax andmaxx∈Ax ≤ n +1t
ha
tA i
sagoods
e
tof
|A | ≤ mi
deg
r
een +1.Conve
r
s
e
l
e
tofdeg
r
een +1i
sa
l
s
oa
y,anygoods
t
he
r
e
f
or
e,t
he
r
ea
r
eexac
t
l
e
tofdeg
r
een +2,
yan+1 good
goods
s
e
t
so
ft
a).
ype (
a1 ,a2 ,...,ak ,n +2}ofdeg
r
ee
Foranygoods
e
tA = {
n +2oft
b),whe
r
ea1 < a2 < … < ak < n +2.Asa1 =
ype (
mi
nx∈Ax ≥|A |≥ 2,onecancons
i
de
rt
henon
emp
t
e
tA' =
ys
{
a1 -1,a2 -1,...,ak -1},whe
r
e1 ≤a1 -1 <a2 -1 < …
< ak -1 <n +1,
andA's
a
t
i
s
f
i
e
s|A'|=|A |-1 ≤a1 -1 =
mi
nx∈A'x,henc
sagoods
e
tofdeg
r
een.Conve
r
s
e
l
eA'i
y,any
e
tofdeg
r
eencanber
epr
e
s
en
t
edi
nt
heformA' = {
a1 goods
1,a2 -1,...,ak -1},whe
r
eA = {
a1 ,a2 ,...,ak ,n +2}
i
s
agoods
e
to
fdeg
r
een +2o
ft
b),s
ot
hecor
r
e
s
s
ype (
pondencei
one
t
o
onebe
tweenA andA',andt
he
r
ea
r
eexac
t
l
e
t
s
yan goods
ft
b).
ofdeg
r
een +2o
ype (
Ac
cord
i
ngt
ot
hed
i
s
cu
s
s
i
onont
henumbe
rofgoods
e
t
sof
t
s(
a),(
b)and (
c),wehavean+2 = an+1 +an +1.
ype
Ch
i
na We
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
6
247
Ass
howni
nF
i
.6
.1,PA ,PB a
r
e
g
t
angen
tt
ot
hec
i
r
c
l
e wi
t
hc
en
t
e
rO
a
tA andB ,po
i
n
tC (
d
i
f
f
e
r
en
tf
rom
A ,B )
i
sonmi
nora
r
cAB .Thel
i
ne
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
lt
hr
oughpo
i
n
tC andpe
rpend
i
cu
l
a
r
t
st
he ang
l
eb
i
s
ec
t
or
s
t
o PC mee
∠AOC a
nd ∠BOC a
tpo
i
n
t
sD and
E ,r
e
s
c
t
i
ve
l
ovet
ha
tCD =
pe
y.Pr
CE .(
s
edby HeYi
i
e)
po
j
So
l
u
t
i
on1.AsshowninFi
.6
.2,Li
ne
g
F
i
.6
.1
g
PC mee
t
st
hec
i
r
c
l
e ☉O a
tano
t
he
rpo
i
n
t
F .Jo
i
nBC ,BE ,BF ,OF ,r
e
s
t
i
ve
l
pec
y.
r
e on ☉O , OE b
i
s
ec
t
s
S
i
nc
e B, C a
∠BOC ,a
nd henc
e OE pe
rpend
i
cu
l
a
r
l
y
s
oCE = BE .ByFO = BO and
b
i
s
e
c
t
sBC ,
PC ⊥ DE ,wehave
∠ECB = 9
0
° - ∠FCB
= 9
0
° -
1∠
BOF = ∠OBF ,and s
o△CEB ∽
2
△BOF ,henc
e
CE CB
=
.
BO BF
F
i
.6
.2
g
①
AsPBi
st
ang
en
tt
o☉O,
s
o ∠PBC = ∠PFB,and△PCB ∽
△PBF ,andhenc
e
CB
PC
=
.
BF PB
②
PC
By ① and ② ,we have CE = BO ·
.Bys
t
r
ymme
y,
PB
PC
CD =AO· .
I
tf
o
l
l
owsf
r
omAO =BO,PA =PBt
ha
tCD =CE.
PA
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
248
So
l
u
t
i
on2.Asshownin Fi
.6
.3.Jo
i
n
g
AB ,AC ,BC .OD mee
t
sAC a
tpo
i
n
tM .
As A , C a
r
e on ☉O ,s
o OD b
i
s
ec
t
s
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
∠AOC , ∠DMC = 9
0
°andMC =
1
AC .
2
AsPC ⊥ DE ,
s
oc
os∠ACD =s
i
n∠ACP ,
and
CD =
MC
AC
=
.③
c
os∠ACD
2s
i
n ∠ACP
F
i
.6
.3
g
Le
tR bet
o
her
ad
i
u
sof☉O .AsPA i
st
angentt
o ☉O ,s
∠ABC = ∠CAP ,andt
heni
tfo
l
l
owsf
rom ③ andt
heS
i
ne
Lawt
ha
t
CD =
i
n ∠ABC
CP
2Rs
s
i
n ∠CAP
= R·
= R·
.
2s
i
n ∠ACP
s
i
n ∠ACP
AP
CP ,
Bys
t
r
sCE = R ·
andi
tfo
l
l
owsf
rom
ymme
y,oneha
BP
AP = BPt
ha
tCD = CE .
7
Labe
lt
hes
i
de
so
far
egu
l
a
rn
-goni
nc
l
ockwi
s
ed
i
r
ec
t
i
oni
n
t
e
rmi
nea
l
li
n
t
ege
r
sn (
n ≥ 4)
orde
rwi
t
h1,2,...,n.De
s
a
t
i
s
f
i
ngt
hef
o
l
l
owi
ngtwocond
i
t
i
ons:
y
(
-gona
1)n -3non
i
n
t
e
r
s
e
c
t
i
ngd
i
a
l
si
nt
hen
r
es
e
l
e
c
t
ed,
gona
wh
i
chs
ubd
i
v
i
d
et
hen
-goni
n
t
on - 2non
ov
e
r
l
app
i
ng
t
r
i
ang
l
e
s,and
(
2)eacho
ft
hecho
s
enn -3d
i
agona
l
si
sl
abe
l
edwi
t
han
i
n
t
ege
r,s
ucht
ha
tt
hes
um ofl
abe
l
ed numbe
r
son
t
hr
ees
i
de
so
feacht
r
i
ang
l
e
si
n(
1)i
sequa
lt
ot
he
o
t
he
r.(
s
edbyZouJ
i
n)
po
So
l
u
t
i
on. The requ
i
r
ed i
n
t
ege
r
sa
r
et
ho
s
es
a
t
i
s
f
i
ng bo
t
h
y
cond
i
t
i
on
s:
n ≥4andn ≢2(
mod4).Suppo
s
et
ha
tns
a
t
i
s
f
i
e
st
he
Ch
i
na We
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
249
cond
i
t
i
ons (
1)and (
2),wef
i
r
s
tpr
ovet
ha
tn ≢ 2(
mod4)a
s
hes
umo
ft
hel
abe
l
si
nt
hr
ees
i
de
sofany
fo
l
l
ows.Deno
t
ebySt
t
r
i
ang
l
e,andbym t
hes
um oft
hel
abe
l
si
nt
hen -3d
i
agona
l
s
cho
s
en.Add
i
ng up t
hes
ums o
fl
abe
l
si
nt
hr
ees
i
de
s of a
l
l
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
t
r
i
ang
l
e
si
nt
hes
ubd
i
v
i
s
i
oni
n(
a),eve
r
i
agona
lappea
r
stwi
ce
yd
i
nt
ho
s
et
r
i
ang
l
e
s,i
tf
o
l
l
owst
ha
t(
n -2)
S =(
1+2+ … +n)+
2m .Suppo
s
en ≡2(
mod4),
t
hen(
n -2)
Si
sevenbu
t(
1+2+ …
+n)+2m i
sodd,wh
i
chi
sacon
t
r
ad
i
c
t
i
on,s
on ≢ 2(
mod4).
Le
tu
sr
ema
rkt
ha
tt
hecond
i
t
i
onont
her
egu
l
a
rn
-goni
nt
he
ob
l
emcanber
e
l
axedt
oconvexn
-gon,
s
owecans
imp
l
i
f
he
pr
yt
wr
i
t
i
ng
upo
ft
hes
o
l
u
t
i
on.
F
i
.7
.1
g
Int
hef
o
l
l
owi
ng,wepr
ovet
ha
ta
l
li
n
t
ege
r
sn wi
t
hn ≥4and
n ≢ 2(
mod4)s
a
t
i
s
f
i
t
i
ons (
1)and (
2).
ycond
TheF
i
.7
.1showsl
abe
l
i
ngf
ort
heca
s
en =4,5and7,and
g
onecanve
r
i
f
i
r
ec
t
l
ha
tbo
t
hcond
i
t
i
onsho
l
d.
yd
yt
In t
he f
o
l
l
owi
ng, we show t
ha
ti
fn s
a
t
i
s
f
i
e
s bo
t
h
cond
i
t
i
on
s,s
odoe
sn +4.
Asshowni
nFi
.7
.2,l
abe
loned
i
agona
lwh
i
chs
ubd
i
v
i
de
s
g
n
t
oaconvexn
t
heg
i
ven (
n +4)
-goni
-gonandaconvexhexagon
(
non
r
egu
l
a
ranymor
e).Asns
a
t
i
s
f
i
e
scond
i
t
i
ons (
1)and (
2),
ubd
i
v
i
det
heconvexn
-goni
n - 2)t
onecans
n
t
o(
r
i
ang
l
e
ss
uch
t
ha
tt
hes
umo
ft
het
hr
eel
abe
l
si
neacht
r
i
ang
l
ei
sequa
lt
ot
he
250
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
s
amenumbe
rS.Onecana
l
s
os
ubd
i
v
i
det
hehexagonwi
t
ht
hr
ee
n -1,n +1andS -2n -5.Onecan
d
i
agona
l
swi
t
hl
abe
l
s:S -2
checkt
ha
tt
hes
um oft
het
hr
eel
abe
l
si
neach oft
he
s
ef
our
t
r
i
ang
l
e
si
sa
l
s
oS,henc
en +4a
l
s
os
a
t
i
s
f
i
e
scond
i
t
i
on
s(
1)and
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
(
2).Soi
tf
o
l
l
owst
ha
tanyi
n
t
ege
rns
ucht
ha
tn ≥ 4andn ≢
2(
mod4)s
a
t
i
s
f
i
e
scond
i
t
i
on
s(
1)and (
2).
F
i
.7
.2
g
Ins
umma
r
ho
s
ei
n
t
ege
r
sns
a
t
i
s
f
i
ngcond
i
t
i
on
s(
1)and
y,t
y
(
2)a
r
eexac
t
l
i
venbyn ≥ 4andn ≢ 2(
mod4).
yg
8
ucht
ha
t(
2n -n2)|(
an -na )
F
i
nda
l
lpo
s
i
t
i
vei
n
t
ege
r
sas
s
edbyYang Mi
ng
l
i
ang)
f
ora
l
lpo
s
i
t
i
vei
n
t
ege
r
sn ≥5.(
po
So
l
u
t
i
on.Theonl
swe
r
sf
oraa
r
e2and4.
yan
Fi
r
s
t,weprovet
ha
tai
seven.I
tfo
l
l
owsf
rom t
heg
i
ven
cond
i
t
i
onbychoo
s
i
nganeveni
n
t
ege
rn ≥ 6.
Nex
t,weprovet
ha
ta ha
snoodd pr
imef
ac
t
or.Suppo
s
e
t
hecon
t
r
a
r
e
tpbeanoddpr
imef
ac
t
orofa.
I
fp =3,
l
e
tn =
y,l
sno
td
i
v
i
s
i
b
l
e
8,
t
hen2n -n2 = 192ha
saf
ac
t
or3,bu
tan -nai
by3,con
t
r
ad
i
c
t
i
ngt
o(
2n -n2)| (
an -na ),hencepi
sno
t3.
Ch
i
na We
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
251
I
fp = 5,
l
e
tn = 16,
t
hen2n -n2 = 64110ha
saf
ac
t
or5,
sno
td
i
v
i
s
i
b
l
eby5,con
t
r
ad
i
c
t
i
ng(
2n -n2)|(
an bu
tan -nai
na ),hencepi
sno
t5.
I
fp ≥ 7,l
e
tn = p - 1,i
tf
o
l
l
owsf
rom Fe
rma
t
􀆳
sLi
t
t
l
e
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
Theor
emt
ha
t2p-1 ≡ 1(
modp).
2
As(
modp),
s
op|(
2n -n2).Mor
eove
r,s
i
nce
p -1) ≡1(
a
a
ai
sevenandp|a,
s
ona ≡ (
modp)and
p -1) ≡ (-1) ≡1(
n
sno
td
i
v
i
de (
an - na ),con
t
r
ad
i
c
t
i
ng
p|a ,andhencep doe
(
an -na ).
2n -n2)| (
Fi
na
l
l
ovet
ha
tai
s2or4.Fort
h
i
s,
l
e
ta =2t whe
r
e
y,wepr
ti
sapo
s
i
t
i
vei
n
t
ege
r,t
heni
tf
o
l
l
owsf
rom (
2n -n2)
2tn -n2 )
|(
t
and (
2n -n2)| (
ha
t(
2n -n2)| (
n2 -n2t).
2tn -n2t)t
t
I
fwechoo
s
ent
obes
u
f
f
i
c
i
en
t
l
a
r
tfo
l
l
owsf
romt
he
yl
ge,i
t
t
n2
t
ha
tn2 -n2t =0,hence2t =2
t.
t =1andt =
n =0
n→ ∞ 2
f
ac
tl
im
2a
r
eobv
i
ou
ss
o
l
u
t
i
ons.
I
ft ≥3,
t
henbyt
heBi
nomi
a
lTheor
em,wehavet =2t-1 =
t-1
(
>1 + (
1 +1)
t -1)=t,wh
i
chi
simpo
s
s
i
b
l
e.Atl
a
s
t,one
canea
s
i
l
ha
ta =2anda =4s
a
t
i
s
f
hecond
i
t
i
oni
nt
he
yt
ycheckt
ob
l
em,s
ot
hes
o
l
u
t
i
onsf
oraa
r
e2and4.
pr
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
Ch
i
naSou
thea
s
t
e
rn
Ma
thema
t
i
ca
lOl
i
ad
ymp
2010
(
L
u
k
a
n
h
a
n
h
u
a,T
a
i
wa
n)
g,C
g
F
i
r
s
tDay
8:00 12:00,Augues
t17,2010
1
Le
ta,b,c ∈ {
0,1,2,...,9}.Thequadr
a
t
i
cequa
t
i
on
ax2 +bx +c =0ha
sar
a
t
i
ona
lr
oo
t.Provet
ha
tt
het
hr
ee
d
i
i
tnumbe
rab
ci
sno
tapr
imenumbe
r.
g
So
l
u
t
i
on.Weprovebycont
r
ad
i
c
t
i
on.I
fab
c
= pi
sa pr
ime
numbe
r,t
her
a
t
i
ona
lr
oo
to
fqu
ad
r
a
t
i
ce
a
t
i
onf(
x)=ax2 +bx +
qu
c = 0i
sx1 ,x2 =
-b ±
b2 -4ac
2
.Obv
i
ou
s
l
aci
sa
y,b - 4
2
a
Ch
i
naSou
t
he
a
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
253
r
f
e
c
ts
r
enumbe
r,andx1 ,x2 a
r
ea
l
lnega
t
i
ve,and
pe
qua
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
Thu
s,
So,
x)= a(
x -x1)(
x -x2).
f(
10)= a(
10 -x1)(
10 -x2).
p = f(
ap = (
20
a -2ax1)(
20
a -2ax2).
4
I
ti
sea
s
os
eet
ha
t(
20
a -2ax1)and (
20
a -2ax2)a
r
ea
l
l
yt
s
i
t
i
vei
n
t
ege
r
s.Cons
equen
t
l
20
a -2ax1)orp|(
20
apo
y,p|(
ax2).I
fp | (
20
a - 2ax1),t
henp ≤ 20
a - 2ax1 ,s
o,80 2
8x1 -10x2 +x1x2 ≤ 0,wh
i
ch con
t
r
ad
i
c
t
st
o x1 ,x2 < 0.
20
a -2ax1)
i
sno
tt
r
ue.
S
imi
l
a
r
l
y,p| (
2
Forany s
e
tA = {
a1 ,a2 , ...,am },deno
A) =
t
eP(
a1a2 ...
am .Le
tA1 ,A2 ,...,andAn bea
l
l99 e
l
emen
t
9
s
ub
s
e
t
so
f{
1,2, ...,2010},n = C9
rove t
ha
t
2010 .P
2010
∑
n
P(
Ai).
i=1
So
l
u
t
i
on1.Foreach99
e
l
emen
t
ss
ub
s
e
t,Ai
= {
a1 ,a2 ,...,
1,2,...,2010}un
i
l
r
e
s
st
o99 e
a99}of{
l
emen
t
s
que
ycor
pond
b1,
b2,...,
b99}o
s
ub
s
e
tBi = {
f{
1,2,...,2010}bybk =2011-
ak ,k = 1,2,...,99.
S
i
nc
e∑k=1(
ak +bk )=99×2011i
sodd,wes
eet
ha
tAi ,Bi
99
a
r
ed
i
f
f
e
r
en
ts
ub
s
e
t
so
f{
1,2,...,2010}.WhenAi t
akea
l
l99
e
l
emen
t
ss
ub
s
e
to
f{
1,2,...,2010},
s
oa
r
eBi .Mor
eove
r
P(
Ai)+P (
Bi)
= a1a2 …a99 + (
2011 -a1)(
2011 -a2)…(
2011 -a99)
(-a2)…(-a99)(
≡ a1a2 …a99 + (
-a1)
mod2011)
≡ 0(
mod2011).
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
254
Thu
s,
n
Ai)=
2∑P (
i=1
n
n
i=1
i=1
∑P (Ai)+ ∑P (Bi)≡ 0(mod2011),
∑P (A ).
henc
e2011
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
n
i=1
i
So
l
u
t
i
on2.Le
tf(
n)= (
n -1)(
n -2)…(
n -2010)-n2010 -
2010!,whe
r
en ∈ Z.
S
i
nc
e2011i
spr
ime,by Fe
rma
t
􀆳
sLi
t
t
l
eTheor
em,n2010 ≡
1(
mod 2011). By Wi
l
s
on
􀆳
s Theor
em, we have 2010! ≡
-1(
mod2011).Thu
s,
(
i)I
f2011 n,
t
hen
n)≡ (
n -1)(
n -2)…(
n -2010)≡ 0(
mod2011).
f(
(
i
i)I
f2011|n,
t
hen
n)≡ (
2011 -1)(
2011 -2)…(
2011 -2010)-20112010 -2010!
f(
≡2
010! -2010!(
mod2011)
≡ 0(
mod2011).
Sof(
n)≡ 0(
mod2011)ha
s2011s
o
l
u
t
i
onsi
nt
hes
en
s
eof
mod2011.
S
i
ncef(
i
sapo
l
a
loforde
r2009,andf
ora
l
ln ∈
n)
ynomi
Z,2011|f(
n),wes
eet
ha
teachcoe
f
f
i
c
i
en
toff(
n)canbe
d
i
v
i
dedby2011.
Tu
rn t
o t
he or
i
i
na
l pr
ob
l
em,
g
coe
f
f
i
c
i
en
t of t
e
rm
2011
3
∑
n
P(
Ai).
∑
n
P(
Ai) i
s t
he
i=1
wi
t
h orde
r 1911 of f(
n), t
hu
s
i=1
Ass
howni
nF
i
.3
.1.Le
tt
hei
n
s
c
r
i
bedc
i
r
c
l
eIof△ABC
g
t
ouchBCandABa
tD andF,
n
t
e
r
s
e
c
tt
he
r
e
s
c
t
i
v
e
l
tIi
pe
y.Le
Ch
i
naSou
t
he
a
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
255
s
e
t
sAD andCFa
tH and
gmen
K ,r
e
s
c
t
i
v
e
l
ha
t
pe
y.Prove t
FD × HK
= 3.
FH × DK
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
So
l
u
t
i
on 1. Suppos
et
ha
tt
he
l
eng
t
hso
fs
egmen
t
sa
r
eAF = x,
BF = y, CD = z,t
hen by
S
t
ewa
r
t
􀆳
sTheor
em,wehave
AD2 =
=
F
i
.3
.1
g
BD ·
CD ·
AC2 +
AB2 -BD ·DC
BC
BC
2
2
+z(
x +z)
x +y)
y(
-yz
y +z
2
4xyz
.
y +z
=x +
AF2
x2
=
.
ByTangen
t
Se
can
tTheor
em,wehaveAH =
AD
AD
Thu
s,
HD = AD - AH =
S
imi
l
a
r
l
y,wehave
KF =
4xyz
AD2 -x2
=
.
AD
AD (
y +z)
4xyz
.
CF (
x +y)
S
i
nc
e△CDK ∽ △CFD ,wes
eet
ha
t
DK =
DF ×CD
DF
=
z.
CF
CF
Byt
hef
ac
to
f△AFH ∽ △ADF ,wehave
FH =
DF × AF
DF
=
x.
AD
AD
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
256
Byt
heCo
s
i
neLaw,
DF2 = BD2 +BF2 -2BD ·BFcosB
æ
è
=2
y ç1 2
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
=
2
2
2
(
-(
x +y)
x +z)
ö÷
y +z) + (
2(
x +y)(
ø
y +z)
4xy2z
.
(
x +y)(
y +z)
Thu
s
4xyz
4xyz
·
KF × HD CF (
x +y) AD (
y +z)
=
DF ·DF
FH × DK
x
z
AD
CF
=
16xy2z
= 4.
x +y)(
DF (
y +z)
2
App
l
i
ngPt
o
l
emy
􀆳
sTheor
emt
ocyc
l
i
cquadr
i
l
a
t
e
r
a
lDKHF ,
wehave
KF ·HD = DF ·HK +FH ·DK .
KF × HD
FD × HK
= 4,weob
= 3.
Comb
i
n
i
ngwi
t
h
t
a
i
n
FH × DK
FH × DK
So
l
u
t
i
on 2. Fi
r
s
t we pr
ove a
l
emma.
Lemma.Asshownin Fi
.3
.2.
g
I
ft
hec
i
r
c
l
et
ouche
sAB andACa
t
e
s
c
t
i
ve
l
B and C ,r
sa
pe
y,Q i
n
t
e
r
s
ec
t
s
i
n
tont
hec
i
r
c
l
e.AQ i
po
t
he c
i
r
c
l
e a
t po
i
n
t P, t
hen
F
i
.3
.2
g
wehave
PQ ·BC = 2BP ·QC = 2BQ ·PC .
Proo
fo
ft
hel
emma.ByPto
l
emy
􀆳
sTheor
em,wes
eet
ha
t
PQ ·BC = BP ·QC +BQ ·PC .
Ch
i
naSou
t
he
a
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
257
S
i
n
c
eABt
ang
e
n
t
st
ot
h
ec
i
r
c
l
e,wes
e
et
ha
t ∠ABP = ∠AQB.
Fu
r
t
he
rby ∠BAP = ∠QAB ,wehave△ABP ∽ △AQB .
Con
s
equen
t
l
y,
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
BP
AP
AB
=
=
.
BQ
AB
AQ
Thu
s,
æçBP ö÷2 AP AB
AP
=
×
=
.
èBQ ø
AB AQ
AQ
S
imi
l
a
r
l
y,
æçCP ö÷2 AP
=
.
èCQ ø
AQ
æCP ö÷2
æBP ö÷2 ,
= ç
Thu
s,ç
t
ha
ti
sBP ·QC = BQ ·PC .So
èCQ ø
èBQ ø
PQ ·BC = 2BP ·QC = 2BQ ·PC .
Thel
emmai
spr
oved.
Tu
rnt
ot
heor
i
i
na
lpr
ob
l
em.
g
Le
tc
i
r
c
l
eIi
n
t
e
r
s
e
c
tACa
tpo
i
n
tO
anddr
aws
egmen
t
sHO ,OK ,OD
andFO .Asshowni
nF
i
.3
.3.
g
By Pt
o
l
emy
􀆳
s Theor
em, we
have
Thu
s,
F
i
.3
.3
g
KF ·HD = DF ·HK +FH ·DK .
FD × HK
KF × HD
= 3⇔
= 4.
FH × DK
FH × DK
S
i
n
c
eCQandCDa
r
et
ang
en
tt
oc
i
r
c
l
eI,byLemma,wes
e
et
ha
t
KF ·DO = 2DK ·FO ,
HD ·FO = 2FH ·DO .
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
258
Mu
l
t
i
l
t
i
on
sbyeachs
i
de,wehave
p
yabovetwoequa
KF ·HD ·DO ·FO = 4DK ·FH ·DO ·FO ,
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
KF × HD
= 4.
t
ha
ti
s,
FH × DK
4
Le
taandbbepo
s
i
t
i
vei
n
t
ege
r
ss
ucht
ha
t1 ≤a <b ≤100.
I
ft
he
r
eex
i
s
t
sapo
s
i
t
i
vei
n
t
ege
rks
ucht
ha
tab|(
ak +bk ),
a,b)i
sgo
t
e
rmi
net
he
t
henwes
ayt
ha
tt
hepa
i
r(
od.De
numbe
rofgoodpa
i
r
s.
So
l
u
t
i
on.Le
t(
a,b)=d,a =sd,b =td,(
s,
t)=1,
t >1,
t
hens
td2|dk (
sk +tk ).Sok ≥2ands
t|dk-2(
sk +tk ).S
i
nc
e(
s
t,
sk +tk )= 1,wehaves
t|dk-2 .The
r
e
for
e,anypr
imef
ac
t
orof
s
tcanbed
i
v
i
dedbyd.
I
ft
he
r
ei
sapr
imef
ac
t
orp o
fsortnol
e
s
st
han11,t
henp
d
i
v
i
de
sd.So p2 |a orp2 |b,bu
i
chi
sa
tp2 > 100,wh
con
t
r
ad
i
c
t
i
on.
Sot
hepr
imef
ac
t
oro
fs
t maybe2,3,5or7.
I
ft
he
r
ea
r
ea
tl
ea
s
tt
hr
eepr
imef
ac
t
or
sofs
tamong2,3,5,
e
s
st
han5.Andd >
7,t
hent
he
r
ei
sapr
imef
ac
t
oro
fsortnol
2 × 3 × 5 = 30,s
ot
ha
ta orb ≥ 5d > 100,wh
i
chi
sa
con
t
r
ad
i
c
t
i
on.The pr
imef
ac
t
ors
e
tofs
t canno
tbe {
3,7},
o
t
he
rwi
s
e,
aorb ≥ 7 ×3 ×7 > 100,wh
i
chi
sacon
t
r
ad
i
c
t
i
on.
S
imi
l
a
r
l
hepr
imef
ac
t
ors
e
tofs
tcanno
tbe {
5,7}.
y,t
The
r
e
f
or
e,t
hepr
imef
ac
t
ors
e
to
fs
tcanon
l
2},{
3},
ybe {
{
5},{
7},{
2,3},{
2,5},{
2,7}or {
3,5}.
(
i)I
ft
hep
r
imef
a
c
t
o
rs
e
to
fs
ti
s{
3,5},t
hend c
anon
l
ybe
15.Then,
s =3,
t =5.
Sot
h
e
r
ei
son
eg
oodp
a
i
r(
a,
b)= (
4
5,7
5).
(
i
i)I
ft
hepr
imef
ac
t
ors
e
tofs
ti
s{
2,7},t
hend canon
l
y
be14.Thens =2,
t =7ors =4,
t =7.Sot
he
r
ea
r
etwogood
Ch
i
naSou
t
he
a
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
259
i
r
s(
a,b)= (
28,98)and (
56,98).
pa
(
ti
s{
2,5},t
hend canon
l
i
i
i)I
ft
hepr
imef
ac
t
orofs
ybe
10or20.
Ford = 10,
t
hens = 2,
t = 5;s = 1,
t = 10;s = 4,
t=
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
5;s = 5,
t = 8.
t
hens = 2,
t = 5;s = 4,
t = 5.
Ford = 20,
The
r
ea
r
es
i
xgoodpa
i
r
s.
(
i
v)I
ft
hepr
imef
ac
t
oro
fs
ti
s{
2,3},t
hend canon
l
ybe
6,12,18,24or30.
Ford =6,
s =1,
t =6;
s =1,
t =12;
s =2,
t =3;
s=
2,
t = 9;s = 3,
t = 4;s = 3,
t = 8;s = 3,
t = 16;s = 4,
t
= 9;
s = 8,
t = 9;s = 9,
t = 16.
Ford =12,
s =1,
t =6;
s =2,
t =3;
s =3,
t =4;
s=
3,
t = 8.
Ford = 18,s = 2,
t = 3;s = 3,
t = 4.
t = 3;s = 3,t = 4.d = 30,s = 2,
Ford = 24,s = 2,
t = 3.
The
r
ea
r
e19goodpa
i
r
s.
(
v)I
ft
hepr
imef
ac
t
ors
e
tofs
ti
s{
7},t
hens =1,
t =7,d
canon
l
ybe7or14.
So,t
he
r
ea
r
etwogoodpa
i
r
s.
(
v
i)I
ft
hepr
imef
ac
t
ors
e
to
fs
ti
s{
5},t
hens = 1,
t = 5,
dcanon
l
he
r
ea
r
efourgoodpa
i
r
s.
ybe5,10,15or20.So,t
(
v
i
i)I
ft
hepr
imef
ac
t
ors
e
to
fs
ti
s{
3}t
hen wehavet
he
fo
l
l
owi
ng:
whens = 1,
t = 3,dcanon
l
ybe3,6,...,or33;
whens = 1,
t = 9,dcanon
l
ybe3,6or9;
whens = 1,
t = 27,dcanon
l
ybe3.
The
r
ea
r
e15goodpa
i
r
s.
(
v
i
i
i)I
ft
hepr
imef
ac
t
ors
e
to
fs
ti
s{
2},t
henwehavet
he
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
260
f
o
l
l
owi
ng:
t = 2,dcanon
l
whens = 1,
ybe2,4,...,or50;
whens = 1,
t = 4,
l
t
hendcanon
ybe2,4,...,or24;
whens = 1,
t = 8,
t
hendcanon
l
ybe2,4,...,or12;
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
t
hendcanon
whens = 1,
t = 16,
l
ybe2,4or6;
t = 32,
t
hendcanon
l
whens = 1,
ybe2.
The
r
ea
r
e47goodpa
i
r
s.
The
r
e
for
e,t
he
r
ea
r
ea
l
lt
oge
t
he
r1 +2 +6 +19 +2 +4 +
15 +47 =96goodpa
i
r
s.
S
e
c
ondDay
8:00 12:00,Augues
t18,2010
5
Ass
howni
nF
i
.5
.1.Le
tC
g
be t
he r
i
l
e o
f
ght ang
△ABC . M 1 and M 2 a
r
e
twoa
rb
i
t
r
a
r
i
n
t
si
ns
i
de
y po
△ABC , and M i
s t
he
mi
dpo
i
n
t o
f M 1M 2. The
e
x
t
en
s
i
on
so
fBM 1,BM and
n
t
e
r
s
e
c
tAC a
BM 2i
tN1,N
F
i
.5
.1
g
M 1N1 M 2N2
MN
+
≥2
andN2r
e
s
c
t
i
v
e
l
r
ov
et
ha
t
.
pe
y.P
BM 1
BM 2
BM
So
l
u
t
i
on.AsshowninFi
.5
.2.
g
he
Le
t H1 , H2 and H be t
o
e
c
t
i
onpo
i
n
t
sofM 1 ,M 2 and
pr
j
M onl
i
neBC ,
r
e
s
c
t
i
ve
l
pe
y.Then
M 1N1
H1C ,
=
BM 1
BH1
F
i
.5
.2
g
Ch
i
naSou
t
he
a
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
261
M 2N2
H2C ,
=
BM 2
BH2
H1C + H2C
MN
HC
=
=
.
BM
BH
BH1 +BH2
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
Suppo
s
et
ha
tBC = 1,BH1 = xandBH2 = y.Wehave
M 1N1
H1C 1 -x ,
=
=
BM 1
BH1
x
M 2N2
H2C 1 -y ,
=
=
BM 2
BH2
y
MN
HC 1 -x +1 -y
=
=
.
x +y
BM
BH
Thu
s,t
hei
nequa
l
i
t
r
et
oprovei
sequ
i
va
l
en
tt
o
y wea
1 -x +1 -y
1 -x 1 -y
,
+
≥2
x
x +y
y
wh
i
chi
sequ
i
va
l
en
tt
o
1
1
4 ,
2
+
≥
≥0
x -y)
t
ha
ti
s,(
x
x +y
y
wh
i
chi
sobv
i
ou
s
l
r
ue.
yt
6
Le
tN* bet
hes
e
to
fpo
s
i
t
i
vei
n
t
ege
r
s.De
f
i
nea1 =2,and
f
orn = 1,2,...,
nλ
an+1 = mi
{
1
1 … 1 1
+
+
+
+
< 1,
λ ∈ N* .
a1 a2
an λ
}
2
-an +1f
Pr
ovet
ha
tan+1 = an
orn = 1,2,....
So
l
u
t
i
on.Bya1
= 2,a2 = m
i
nλ
{
1 1
+
< 1,
λ ∈ N* ,
a1 λ
}
1 1
1
1
1,
<1,
=
con
s
i
de
r +
t
hen <1λ >2,hencea2 =
a1 λ
λ
2
2
3.Sot
heconc
l
u
s
i
oni
st
r
uef
orn = 1.
Suppo
s
et
ha
tt
heconc
l
u
s
i
oni
st
r
uefora
l
li
n
t
ege
rn ≤ k -
1 1 … 1 1
+
+
+
+
1(
k ≥ 2).I
fn =k,
t
henak+1 = mi
nλ
a1 a2
ak λ
{
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
262
< 1,
λ ∈N
*
} .Considering
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
1
1 … 1 1
+
+
+
+
< 1,
a1 a2
ak λ
t
ha
ti
s,0 <
1 … 1 ö÷ ,
æ1
1
+
+
+
<1- ç
wehave
ak ø
èa1 a2
λ
λ>
1
.
1
1 … 1
1a1 a2
ak
Int
hef
o
l
l
owi
ng,wes
howt
ha
t
1
= ak (
ak -1).
1
1 … 1
1a1 a2
ak
Byt
hei
nduc
t
i
on hypo
t
he
s
e
s,f
or2 ≤ n ≤ k,an = an-1
(
an-1 -1)+1,wehave
1
1
1
1 ,
=
=
an -1 an-1(
an-1 -1) an-1 -1 an-1
1
1
1
=
t
he
r
e
f
or
e
.Byt
ak
i
ngt
hes
um,wehave
an-1 an-1 -1 an -1
k
1
∑a
i=2
i-1
1 ,
t
ha
ti
s
ak -1
=1k
1
∑a
i=1
i
1
1
1
+
=1.
ak -1 ak
ak (
ak -1)
=1-
Con
s
equen
t
l
y,
The
r
e
for
e,
1
1 … 1
1
1a1 a2
ak
= ak (
ak
- 1)
.
1
1 … 1 1
+
+
+
+
< 1,
λ ∈ N*
ak+1 = mi
n λ|
a1 a2
ak λ
{
= ak (
ak -1)+1.
}
Ch
i
naSou
t
he
a
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
263
Byi
nduc
t
i
ononn,f
ora
l
lpo
s
i
t
i
vei
n
t
ege
rn,wehave,an+1 =
2
-an +1.
an
The
r
ea
r
e2
nr
ea
lnumbe
r
sa1 ,a2 ,...,an ,r1 ,r2 ,...,
7
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
andrn s
a
t
i
s
f
i
nga1 ≤a2 ≤ … ≤an and0 ≤r1 ≤r2 ≤ …
y
∑ ∑
≤rn .P
r
ovet
ha
t
aiaj mi
n(
ri ,rj )≥ 0.
n
n
i=1
j=1
So
l
u
t
i
on.Wr
i
t
eama
t
r
i
xo
fn ×ne
l
emen
t
sa
sfo
l
l
ows:
æa1a1r1
ç
ça2a1r1
ç
A1 = ça3a1r1
ç ︙
ç
èana1r1
a1a2r1 a1a3r1
a2a2r2 a2a3r2
a3a2r2 a3a3r3
︙
︙
ana2r2 ana3r3
… a1anr1 ö
÷
… a2anr2 ÷
… a3anr3 ÷ .
÷
︙ ÷
⋱
÷
… ananrn ø
S
i
nce
n
n
ri ,rj )=
∑ ∑aiajmin(
i=1 j=1
n
n
r1 ,rj )+ ∑a2ajmi
n(
r2 ,rj )
∑a1ajmin(
j=1
j=1
+… +
n
+
i
t
skt
ht
e
rmi
s
n
r ,r )+ …
∑aa min(
j=1
n j
r ,r )= aar
∑aa min(
k j
k
k
j
r ,r ),
∑aa min(
j=1
n
j=1
k j
k 1 1
j
n
j
+aka2r2 + … +akakrk
+akak+1rk + … +akanrk
wh
i
chi
st
hes
um o
fe
l
emen
t
so
ft
hekt
hrow o
fA1 ,k = 1,
2,...,n.
The
r
e
for
e,∑i=1 ∑j=1aiajmi
n(
ri ,rj )i
st
hes
um ofa
l
l
e
l
emen
t
so
fA1 .
n
n
264
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
Ont
he o
t
he
rhand,t
hes
umma
t
i
on can a
l
s
o be donea
s
f
o
l
l
ows:Taket
hee
l
emen
t
so
ff
i
r
s
tco
l
umnandt
hef
i
r
s
trowof
A1 ,
s
umup;deno
t
et
her
e
s
t(
n -1)× (
n -1)e
l
emen
tby ma
t
r
i
x
A2 ,
t
hent
aket
hef
i
r
s
tco
l
umnandt
hef
i
r
s
trowofA2 ,
s
umup,
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
deno
t
et
her
e
s
tby ma
t
r
i
xA3 ,...,s
owege
t
n
n
ri ,rj )=
∑ ∑aiajmin(
i=1 j=1
=
n
∑r (a
k=1
n
n
∑r ( ( ∑a )
k=1
k
i=1
+rn
i
i=k
n
( ∑a )
i
2
n
( ∑a )
i=n
n
r
∑(
k
2
+r2
i
- … -rn-1
k=1
n
∑ai ) -
( ∑a ) )
2
i=k+1
k=1
=r1
=
n
∑rk ( (ak +
n
=
+2
ak (
ak+1 +ak+2 + … +an ))
2
k
k
2
n
-
( ∑a ) )
i=k+1
n
( ∑a )
i
i=2
-r1
n
i
i=2
2
2
n
( ∑a )
i=3
-r2
i
2
+…
n
( ∑a )
i=3
i
2
2
n
i=k
i
i
2
+r3
n
( ∑a )
-rk-1)
2
i
( ∑a )
( ∑a )
i=n
i=k+1
i
2
≥0
(
whe
r
er0 = 0).
8
Gi
vene
i
tpo
i
n
t
sA1 ,A2 ,...,A8onac
i
r
c
l
e,de
t
e
rmi
ne
gh
t
hesma
l
l
e
s
t po
s
i
t
i
vei
n
t
ege
rn s
uch t
ha
tamong anyn
t
r
i
ang
l
e
swi
t
hve
r
t
i
ce
si
nt
he
s
ee
i
i
n
t
s,t
he
r
ea
r
etwo
ghtpo
wh
i
chhaveacommons
i
de.
So
l
u
t
i
on.Fi
r
s
t,wecon
s
i
de
rt
he max
ima
lnumbe
ro
ft
r
i
ang
l
e
s
wi
t
hnocommons
i
de.
Con
s
i
de
rt
hemax
ima
lnumbe
ro
ft
r
i
ang
l
e
swi
t
hnocommon
s
i
depa
i
rwi
s
e.The
r
ea
r
eC2
8chord
sby conne
c
t
i
ng e
i
t
8 = 2
gh
Ch
i
naSou
t
he
a
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
265
i
n
t
s.I
feachchordon
l
l
ong
st
o
po
ybe
onet
r
i
ang
l
e,t
hent
he
s
echord
scan
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
on
l
ormr ≤
yf
[238] =9triangleswith
no common s
i
de pa
i
rwi
s
e. Bu
ti
f
t
he
r
ea
r
en
i
nes
uch t
r
i
ang
l
e
s,t
hen
t
he
r
ea
r
e27ve
r
t
i
c
e
s.So,t
he
r
ei
sone
i
n
ti
ne
i
t po
i
n
t
s, wh
i
chi
st
he
po
gh
common ve
r
t
ex o
ff
ou
rt
r
i
ang
l
e
s.
F
i
.8
.1
g
hen e
i
tedge
sa
r
econne
c
t
edt
o
Suppo
s
et
ha
tpo
i
n
ti
sA8 ,t
gh
s
evenpo
i
n
t
sA1 ,A2 , ...,A7 .So,t
he
r
e mu
s
tex
i
s
tanedge
A8Ak ,wh
i
chi
st
hecommons
i
deo
ftwot
r
i
ang
l
e
s,wh
i
chi
sa
con
t
r
ad
i
c
t
i
on.Sor ≤ 8.
Ont
heo
t
he
rhand,whenr = 8,wecan makes
uche
i
ght
t
r
i
ang
l
e
s,s
eef
i
e.Deno
t
et
het
r
i
ang
l
e
sbyt
hr
eeve
r
t
i
ce
sa
s:
gur
(
1,2,8),(
1,3,6),(
1,4,7),(
2,3,4),(
2,5,7),(
3,5,
s9.
8),(
4,5,6)and (
6,7,8).Sot
hemi
n
ima
lnumbe
ro
fni
2011
(
N
i
n
bo,Zh
e
i
a
n
g
j
g)
F
i
r
s
tDay
l
8:00 12:00,Ju
y27,2011
1 I
fmi
nx∈R
ax2 +b
= 3,
f
i
nd
x2 +1
(
1)t
her
angeo
fb;
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
266
(
2)t
heva
l
ueofaf
org
i
venb.(
s
edbyLuXi
ng
i
ang)
po
j
ax2 +b
So
l
u
t
i
on1.Denot
ef(
x)=
.
I
ti
sea
s
os
eet
ha
ta >
yt
2
x +1
0.Byf(
0)=b,wes
eet
ha
tb ≥ 3.
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
(
i)I
fb -2
a ≥ 0,
ax2 +b
b -a
2
= a x +1 +
≥ 2 a(
x)=
b -a) = 3,
f(
2
x +1
x2 +1
e
u
a
l
i
t
l
d
si
fa x2 +1 =
q
yho
b -a ,
b -2
a
t
ha
ti
s,
i
fx = ±
.
2
a
x +1
Theva
l
ueo
faf
org
i
venbi
sa =
whenb = 3,a =
3
.
2
b - b2 -9,
e
s
i
a
l
l
pec
y
2
(
i
i)I
fb -2
a <0,
l
e
t x2 +1 =t(
t ≥1).f(
x)=g(
t)=
b -a
o,
a
t+
mono
t
on
i
ca
l
l
nc
r
ea
s
i
ngwhent ≥ 1,s
yi
t
mi
nf(
x)= g(
1)= a +b -a =b = 3,whena >
x∈R
3
.
2
Summi
ngup,wege
t(
1)t
her
angeofbi
s[
3,+ ∞ ).
3
b - b2 -9
(
2)I
fb =3,
t
hena ≥ ;
i
fb >3,
t
hena =
.
2
2
ax2 +b
So
l
u
t
i
on2.Le
tf(
x)=
.
I
ti
sea
s
os
eet
ha
ta > 0.
yt
2
S
i
nc
emi
nx∈R
2
x +1
ax +b
= 3,
andf(
0)=b,wes
eet
ha
tb ≥ 3.
x2 +1
a ö÷
æ 2 b -2
ax çx a
è
ø
'(
x)=
.
f
3/2
(
x2 +1)
(
a ≤0,
l
e
tf
x)=0,wehavet
i)I
fb -2
'(
hes
o
l
u
t
i
onx0 =
t
henf
'(
x)<0;andi
t
henf
'(
x)>0.
0,andi
fx <0,
fx >0,
Ch
i
naSou
t
he
a
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
267
b
0)=bi
st
hemi
n
ima
lva
l
ue.Henceb = 3,anda ≥ .
f(
2
(
a >0,
'(
x)=0,wehavet
i
i)I
fb -2
l
e
tf
hes
o
l
u
t
i
onsx0 =
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
0,x1,2 = ±
b -2a
.
a
sno
tt
he mi
n
ima
lva
l
ue,wh
i
ch
I
ti
sea
s
os
eef(
0)= bi
yt
imp
l
i
e
sb > 3;andf(
x1,2)
i
st
hemi
n
ima
lva
l
ue
b -2a
+b
a·
a
)
(
=
= 3⇒2 a(
,
x
b -a) = 3
f 12
b -2a
+1
a
⇒a2 -ab +
9
b - b2 -9,
= 0⇒a =
4
2
t
ha
ti
s,
b > 3anda =
b - b2 -9
.
2
Summi
ngup,wege
t
(
1)t
her
angeo
fbi
s[
3,+ ∞ ).
3
b - b2 -9
(
2)I
fb =3,
t
hena ≥ ;
i
fb >3,
t
hena =
.
2
2
2
Le
ta,bandcb
ec
op
r
imepo
s
i
t
i
v
ei
n
t
e
e
r
ss
ot
ha
ta2|(
b3 +
g
c3),b2|(
a3 +c3)andc2|(
a3 +b3).Fi
ndt
heva
l
ue
sofa,
bandc.(
s
edby Yang Xi
aomi
ng)
po
So
l
u
t
i
on.Bythecond
i
t
i
onoft
heprob
l
em,wehavea2|(
a3 +
b3 +c3),b2 | (
a3 +b3 +c3)andc2| (
a3 +b3 +c3).S
i
ncea,b
andca
r
ecopr
ime,wes
eet
ha
ta2b2c2 | (
a3 +b3 +c3).
Wi
t
hou
tl
o
s
sofgene
r
a
l
i
t
uppo
s
et
ha
ta ≥b ≥c,s
o
y,s
3
a3 ≥ a3 +b3 +c3 ≥ a2b2c2 ⇒a ≥
b2c2 ,
3
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
268
and
2
b3 ≥b3 +c3 ≥ a2 ⇒2
b3 ≥
b4c4
18
⇒b ≤ 4 .
9
c
Wes
eet
ha
ti
fc ≥ 2⇒b ≤ 1,t
her
e
s
u
l
tcon
t
r
ad
i
c
t
sb ≥c.
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
Thu
s,
c = 1.
1,1,1)
i
s
I
fc = 1andb = 1,
t
hena = 1,
s
o(
a,b,c)= (
as
o
l
u
t
i
on.
I
fc = 1,b ≥ 2anda = b,t
i
chi
sa
henb2 |b3 + 1,wh
con
t
r
ad
i
c
t
i
on!
I
fb ≥ 2anda >b >c = 1,
t
hen
2
b
a2b2 | (
a3 +b3 +1)⇒2a3 ≥ a3 +b3 +1 ≥ a2b2 ⇒a ≥ ,
2
andbyc = 1,
4
b
a2 | (
b3 +1)⇒b3 +1 ≥ a2 ≥ ⇒4
b3 +4 ≥b4 .
4
Forb >5,
t
hei
nequa
l
i
t
snos
o
l
u
t
i
on.Takeb =2,3,4,
yha
5,wes
eet
ha
tt
hes
o
l
u
t
i
on
sa
r
ec = 1,b = 2,a = 3.
The
r
e
f
or
e,a
l
ls
o
l
u
t
i
on
sa
r
e(
a,b,c)= (
1,1,1),(
1,2,
3),(
1,3,2),(
2,1,3),(
2,3,1),(
3,2,1)and (
3,1,2).
3
Le
ts
e
tM = {
1,2,3,...,50}.Fi
nda
l
lpo
s
i
t
i
vei
n
t
ege
r
n,
s
ucht
ha
tt
he
r
ea
r
ea
tl
ea
s
ttwod
i
f
f
e
r
en
te
l
emen
t
saand
bi
nanys
ub
s
e
twi
t
h35e
l
emen
t
sofM ,
s
ucht
ha
ta +b =n
ora -b = n.(
s
edbyLiShenghong)
po
So
l
u
t
i
on.T
akeA
={
1,2,3,...,35},
t
henf
o
ranya,b ∈ A ,
a -b ≤ 34,a +b ≤ 34 +35 = 69.
Int
hefo
l
l
owi
ng,wes
howt
ha
t1 ≤ n ≤ 69.Le
tA = {
a1 ,
Ch
i
naSou
t
he
a
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
269
a2 ,...,a35},wi
t
hou
tl
o
s
so
fgene
r
a
l
i
t
uppo
s
et
ha
ta1 < a2
y,s
< … < a35 .
(
i)I
f1 ≤ n ≤ 19,by
1 ≤ a1 < a2 < … < a35 ≤ 50,
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
2 ≤ a1 +n < a2 +n < … < a35 +n ≤ 50 +19 = 69,
andby Di
r
i
ch
l
e
t
􀆳
sDr
awe
rTheor
em,t
he
r
eex
i
s
t1 ≤i,j ≤ 35
(
i ≠j)s
ucht
ha
tai +n = aj ,
t
ha
ti
s,
ai -aj = n.
(
i
i)I
f51 ≤ n ≤ 69,by
1 ≤ a1 < a2 < … < a35 ≤ 50,
1 ≤ n -a35 < n -a34 < … < n -a1 ≤ 68,
andby Di
r
i
ch
l
e
t
􀆳
sDr
awe
rTheor
em,t
he
r
eex
i
s
ta
tl
ea
s
t1 ≤i,
i ≠j)s
ai +aj = n.
ucht
ha
tn -ai = aj ,
t
ha
ti
s,
j ≤ 35(
(
i
i
i)I
f20 ≤ n ≤ 24,
s
i
nc
e
50 - (
2
n +1)+1 = 50 -2n ≤ 50 -40 = 10,
ha
t
wes
eet
ha
tt
he
r
ea
r
ea
tl
ea
s
t25e
l
emen
t
si
na1 ,a2 ,...,a35t
be
l
ongt
o[
1,2
n].
The
r
ea
r
ea
tmo
s
t24e
l
emen
t
si
n{
1,n +1},{
2,n +2},...,
{
n,2
n}
s
u
cht
ha
t{
ai ,aj }= {
i,n +i}.Henc
e,
aj -ai =n.
(
i
v)I
f25 ≤n ≤34,
s
i
nc
e{
1,n +1},{
2,n +2},...,{
n,
2
n}havea
tmo
s
t34e
l
emen
t
s,by Di
r
i
ch
l
e
tDr
awe
rTheor
em,
t
he
r
eex
i
s
t1 ≤i,j ≤ 35(
i ≠j)s
ucht
ha
tai =i,aj = n +i,
t
ha
ti
saj -ai = n.
(
v)I
fn =35,
t
he
r
ea
r
e33e
l
emen
t
s{
1,34},{
2,33},...,
{
17,18},{
35},{
36},...,{
50}.Hence,t
he
r
eex
i
s
t1 ≤i,
j≤
35(
i ≠j)s
ucht
ha
tai +aj = 35.
(
v
i)I
f36 ≤ n ≤ 50,
i
fn = 2
k + 1,{
1,2
k},{
2,2
k - 1},...,{
k,k + 1},
{
k +1},...,{
50};
2
i
f18 ≤k ≤20,50- (
2
k +1)+1 =50-2
k ≤50-36 =14;
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
270
i
f21 ≤k ≤24,50- (
2
k +1)+1 =50-2
k ≤50-42 =8,
i ≠j)
k +1 = n.
t
he
r
eex
i
s
t1 ≤i,
s
ucht
ha
tai +aj =2
j ≤35(
I
fn = 2
k,{
1,2
k -1},{
2,2
k -2},...,{
k -1,k +1},
{
k},{
k},{
k +1},...,{
50};
2
2
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
i
f18 ≤k ≤19,50- (
2
k +1)+3 ≤16
k -1 ≤19-1 =18;
i
f20 ≤k ≤ 23,50 - (
k +1)+3 ≤ 50 -2
k +2 ≤ 12
k -1
2
≤2
3 -1 = 22;
k +1)+3 ≤50-2
k +2 ≤4
k -1 ≤
i
f24 ≤k ≤25,50- (
2
25 -1 = 24,
t
he
r
ee
x
i
s
t1 ≤i,j ≤ 35(
i ≠j)
s
u
cht
ha
tai +aj = 2
k.
4
Suppo
s
et
ha
tal
i
nepa
s
s
i
ngt
hec
i
r
cumc
en
t
r
eO of△ABC
i
n
t
e
r
s
ec
t
sABandACa
tpo
i
n
t
sM andN ,
r
e
s
t
i
ve
l
pec
y,and
E andF a
r
et
he mi
dpo
i
n
t
so
fBN andCM ,r
e
s
t
i
ve
l
pec
y.
Pr
ovet
ha
t ∠EOF = ∠A .(
s
edbyTaoP
i
ng
sheng)
po
So
l
u
t
i
on.Wes
howt
ha
tt
h
ea
bo
v
ec
on
c
l
u
s
i
oni
st
r
u
ef
o
ranyt
r
i
ang
l
e.
I
f △ABC i
sr
i
ang
l
ed.Theconc
l
u
s
i
oni
sobv
i
ou
s.In
ght
,
,
,
f
ac
ts
eeFi
.4
.1 whe
r
e ∠ABC = 90
°.So t
hec
i
r
cumc
en
t
r
eO
g
i
st
hemi
dpo
i
n
tofAC ,OA = OB andN = O .S
i
nceF i
st
he
mi
dpo
i
n
tofCM ,wes
i
neOF ‖AM .Hence
eet
ha
tt
hemed
i
anl
∠EOF = ∠OBA = ∠OAB = ∠A .
I
f△ABCi
sno
tr
i
t
ang
l
ed,s
eeFi
.4
.2andFi
.4
.3.
gh
g
g
F
i
.4
.1
g
F
i
.4
.2
g
F
i
.4
.3
g
Ch
i
naSou
t
he
a
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
271
F
i
r
s
tweg
i
veal
emma.
Lemma.Le
tA andB betwo po
i
n
t
sont
hed
i
ame
t
e
rKL of
c
i
r
c
l
e☉O wi
t
hr
ad
i
u
sR ,andOA = OB = a.Seef
i
e.
gur
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
Le
t CD and EF be two chord
s pa
s
s
i
ng A and B ,
r
e
s
c
t
i
ve
l
s
eCE and DF i
n
t
e
r
s
ec
tKL a
t M and N ,
pe
y.Suppo
r
e
s
c
t
i
ve
l
pe
y.ThenMA = NB .
Proo
fo
ft
hel
emma.Asshownin
F
i
.4
.4.Suppo
s
et
ha
tCD ∩ EF = P .
g
Th
i
nko
ft
ha
tl
i
ne
sCE andDFi
n
t
e
r
s
e
c
t
l
a
u
s
􀆳The
o
r
em,wehav
e
△PAB.By Mene
AC ·PE ·BM
= 1,
CP EB MA
BF ·PD ·AN
= 1.
FP DA NB
F
i
.4
.4
g
Then
MA
AC ·AD ·PE ·PF ·BM
=
.
NB
BE BF PC PD AN
①
Byt
heIn
t
e
r
s
e
c
t
i
ngChordTheor
em,wege
t
PC ·PD = PE ·PF .
②
So
AC ·AD = AK ·AL = R2 -a2 = BK ·BL = BE ·BF .
③
MA
MB ,
=
By ① ,③ ,wehave
t
ha
ti
s
NB
NA
MA
MA + AB
AB
=
=
= 1.
NB
NB + AB
AB
Thu
s,MA = NB .
Now,r
e
t
urn t
ot
he or
i
i
na
l prob
l
em,s
ee F
i
.4
.5 and
g
g
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
272
F
i
.4
.6.Ex
t
endMN t
od
i
ame
t
e
rKK1 ,t
akepo
i
n
tM 1 onKK1
g
tCM 1 ∩ ☉O = A1 ,andl
s
ucht
ha
tOM 1 = OM .Le
e
tA1B
i
n
t
e
r
s
e
c
tKK1 a
orM 1N1 =
tN1 .Byt
hel
emma,MN1 = M 1N (
s,
MN ont
her
i
tf
i
e).So,Oi
st
hemi
dpo
i
n
tofNN1 .Thu
gh
gur
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
OE and OF a
r
et
he med
i
anl
i
ne o
f △NBN1 and △MCM 1 ,
r
e
s
c
t
i
ve
l
s,wehave ∠EOF = ∠BA1C = ∠A .
pe
y.Thu
F
i
.4
.5
g
F
i
.4
.6
g
S
e
c
ondDay
8:00 12:00,Ju
l
y28,2011
5
Le
tAA0 ,BB0 andCC0 beangu
l
a
rb
i
s
ec
t
or
sof △ABC .
Le
tA0A1 ‖BB0 andA0A2 ‖CC0 ,whe
r
eA1 andA2l
i
eon
AC andAB,r
e
s
c
t
i
v
e
l
pe
y,
andl
e
tl
i
neA1A2i
n
t
e
r
s
e
c
t
BC a
tA3.The po
i
n
t
sB3
and C3
a
r
e ob
t
a
i
ned
s
imi
l
a
r
l
y.
P
r
ov
e
t
ha
t
i
n
t
s A3, B3, C3 a
r
e
po
co
l
l
i
nea
r.(
s
edby Tao
po
P
i
ng
sheng)
So
l
u
t
i
on. By the Mene
l
au
s
F
i
.5
.1
g
Ch
i
naSou
t
he
a
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
273
Inve
r
s
eTheor
em,weneedon
l
os
howt
ha
t
yt
AB3 ·CA3 ·BC3
= 1.
B3C A3B C3A
①
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
S
i
nc
el
i
ne A1A2A3 i
n
t
e
r
s
e
c
t
s △ABC , by Mene
l
au
s
􀆳
CA3 ·BA2 ·AA1
= 1.
So
Theor
em,wehave
A3B A2A A1C
CA3
A2A ·A1C
=
.
A3B
BA2 AA1
②
S
imi
l
a
r
l
y,wehave
AB3 B2B ·B1A ,
=
B3C CB2 BB1
BC3
C2C ·C1B
=
.
C3A AC2 CC1
ByBA2 =
③
④
BC0 ·
AA0 ·
BA0 andAA2 =
AC0 ,wehave
BC
AI
AA2
AA0 ·AC0 ·BC
=
.
BA2
BA0 ·BC0 AI
Mor
eove
r,byAA1 =
⑤
AA0·
CA0·
AB0andCA1 =
CB0 ,we
AI
CB
have
A1C
CA0 ·CB0 ·AI
=
.
AA1
AA0 ·AB0 BC
Thenby ② ,⑤ and ⑥ ,wehave
æCA0 ÷ö2
CA3
CA0 ·AC0 ·CB0
=
= ç
.
èA0B ø
A3B BA0 BC0 AB0
S
imi
l
a
r
l
y,wehave
æ CB0 ö÷2 ,
CB3
= ç
èB0A ø
B3A
⑥
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
274
æAC0 ö÷2
AC3
= ç
.
èC0B ø
C3B
⑦
f△ABC a
S
i
nc
et
hr
eeang
l
eb
i
s
e
c
t
or
sAA0 ,BB0 ,CC0 o
r
e
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
concu
r
r
en
t,byCeva
􀆳
sTheor
em,wehave
AB0 ·CA0 ·BC0
= 1.
B0C A0B C0A
⑧
Thu
s,by ⑦ and ⑧ ,wehave
æAB0 ·CA0 ·BC0 ö÷2
AB3 ·CA3 ·BC3
= ç
= 1,
èB0C A0B C0A ø
B3C A3B C3A
t
ha
ti
s①.
6
Gi
vennpo
i
n
t
sP1 ,P2 ,...,Pn onap
l
ane,l
e
tM beany
hep
l
ane.Deno
t
eby|PiM |t
he
i
n
tons
egmen
tAB ont
po
d
i
s
t
ancebe
twe
enPi andM ,
i = 1,2,3,...,
n.Pr
ov
et
ha
t
∑
n
i=1
x{ ∑i=1|PiA |,∑i=1|PiB|} .
| PiM |≤ ma
n
n
(
s
edbyJ
i
n Mengwe
i)
po
→
So
l
u
t
i
on.Le
tO bet
heor
i
i
n.Then wehaveOM
g
(
B,
t∈(
0,1).
1 -t)O→
→
= tOA +
→
→
|PiM | =|OM -OPi |
→
→ -(
→
=|tOA + (
1 -t)O→
B -tOP
1 -t)OP
i
i|
→
→
→
≤t|OA -OPi |+ (
1 -t)|O→
B -OP
i|
=t|PiA |+ (
1 -t)|PiB |.
Henc
e,
n
n
n
→
→
∑ |P M | ≤t∑ |P A |+ (1 -t)∑ |P B |
i=1
i
i
i=1
i
i=1
n
n
{ ∑ |P A |,∑ |P B |} .
≤ ma
x
i=1
i
i=1
i
Ch
i
naSou
t
he
a
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
7
275
Suppo
s
et
ha
tt
hes
equenc
e{
an }de
f
i
nedbya1 = a2 = 1,
an =7an-1 -an-2 ,n ≥ 3.Provet
ha
tan + an+1 + 2i
sa
s
edby Tao
r
f
ec
ts
r
ef
oranypo
s
i
t
i
vei
n
t
ege
rn.(
po
pe
qua
)
P
i
ng
sheng
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
So
l
u
t
i
on.I
ti
swe
l
lknownt
ha
tt
hes
o
l
u
t
i
onoft
hes
equence
canbeob
t
a
i
nedbys
o
l
v
i
ngtwogeome
t
r
i
cs
equenc
e.Wege
tan
= C1λ1 +C2λ2 ,wh
e
r
e
n
λ1 =
n
æ3 + 5 ö2
æ3 - 5 ö2
7 + 45
7 - 45
÷ , λ2 =
÷ ,
= ç
= ç
2
2
è 2 ø
è 2 ø
λ1 andλ2a
r
es
o
l
u
t
i
on
soft
heequa
t
i
onλ2 -7
λ +1 =0,a1 =
1 = C1λ1 + C2λ2 ,a2 = 1 = C1λ2
λ2
1 +C2
2.
The
r
e
for
e,
n-1
-1
an +an+1 +2 =λn
λ1 +λ2
λ2 +λ2
1 C1 (
1 )+λ2 C2 (
2 )+2
=λ1- +λ2- +2
n 1
n 1
n-1 2
æ æ3 + 5 ö
÷
= çç
èè
2
ø
2
ø
n-1
é æ3 + 5 ö
÷
= êê ç
ëè
ö
æ æ - 5 ön-1 ö2
÷ + ç ç3
÷
÷ +2
ø
èè 2 ø ø
n-1 2
æ3 - 5 ö
÷
+ç
è
2
ø
ùú
2
ú = xn ,
û
ön-1
æ
æ3 - 5 ön-1
÷
+ ç
whe
r
exn = ç3 + 5 ÷
i
st
hes
o
l
u
t
i
onoft
he
è 2 ø
è 2 ø
s
equence {
xn }ofpo
s
i
t
i
vei
n
t
ege
r
sx1 =2,x2 =3,xn =3xn-1 xn-2 ,n ≥ 3.
8
Con
s
i
de
r12f
i
r
e
sont
hec
l
ockf
acea
s12po
i
n
t
s.Co
l
or
gu
l
l
ow,b
l
ueandg
r
een.Each
t
hemi
nf
ou
rco
l
or
s:r
ed,ye
co
l
or i
su
s
ed f
or t
hr
ee po
i
n
t
s. Conf
i
e n convex
gur
,
i
l
a
t
e
r
a
l
swi
t
hve
r
t
i
ce
si
nt
he
s
epo
i
n
t
ss
ucht
ha
t
quadr
(
1)t
he
r
ea
r
enos
amec
o
l
o
ro
fv
e
r
t
i
c
e
sf
o
re
a
chquad
r
i
l
a
t
e
r
a
l.
(
2)amonganyt
hr
eeo
ft
he
s
e quadr
i
l
a
t
e
r
a
l
s,t
he
r
ei
sa
276
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
co
l
oro
fve
r
t
i
ce
ss
ucht
ha
tt
heve
r
t
i
ce
soft
ha
tco
l
or
a
r
ed
i
f
f
e
r
en
t.
s
edbyTaoP
i
ng
sheng)
F
i
ndt
hel
a
r
s
tnumbe
ro
fn.(
po
ge
So
l
u
t
i
on.Weus
eA ,B ,C,D t
or
epr
e
s
en
tt
he
s
efourco
l
or
s,
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
r
e
s
c
t
i
ve
l
hepo
i
n
t
si
nt
hes
ameco
l
orbyl
owe
rl
e
t
t
e
r
sa
s
pe
y,andt
a1,a2,a3;b1,b2,b3;c1,c2,c3 andd1,d2,d3r
e
s
c
t
i
ve
l
pe
y.
Nowcon
s
i
de
rco
l
orA .I
f,i
nn quadr
i
l
a
t
e
r
a
l
s,t
henumbe
r
r
en1 ,n2 ,n3r
ofpo
i
n
t
sa1 ,a2 ,a3i
nco
l
orA a
e
s
c
t
i
ve
l
hen
pe
y,t
fn ≥ 10,
n1 +n2 +n3 = n.Suppo
s
et
ha
tn1 ≥n2 ≥n3 .I
t
hen
n1 +n2 ≥ 7.Cons
i
de
rt
he
s
es
even quadr
i
l
a
t
e
r
a
l
s(
i
t
sA co
l
or
ft
henumbe
r
sofpo
i
n
t
sb1 ,b2 ,b3i
n
ve
r
t
exi
se
i
t
he
ra1 ora2 ),i
co
l
orB a
r
em 1 ,m 2 ,m 3 ,
r
e
s
t
i
ve
l
henm 1 +m 2 +m 3 =7.
pec
y,t
t
henm 3
Bys
t
r
i
c
i
t
uppo
s
et
ha
tm 1 ≥ m 2 ≥ m 3 ,
ymme
y,wemays
≤ 2,
t
ha
ti
s,m 1 + m 2 ≥ 5.
l
orpo
i
n
ti
se
i
t
he
r
Con
s
i
de
rt
he
s
ef
i
vequadr
i
l
a
t
e
r
a
l
s(
i
t
sAco
a1 ora2 ,andi
t
sBco
l
orpo
i
n
ti
se
i
t
he
rb1orb2 ),i
ft
henumbe
r
s
r
ek1 ,k2 ,k3 ,r
o
fpo
i
n
t
sc1 ,c2 ,c3i
nco
l
orC a
e
s
c
t
i
ve
l
hen
pe
y,t
k1 +k2 +k3 =5.Bys
t
r
i
c
i
t
uppo
s
et
ha
tk1 ≥k2
ymme
y,wemays
≥k3 ,
t
henk3 ≤ 1,
t
ha
ti
s,
k1 +k2 ≥ 4.
Con
s
i
de
rt
he
s
ef
our quadr
i
l
a
t
e
r
a
l
s,deno
t
ed a
s T1 ,T2 ,
i
t
sco
l
orA po
i
n
ti
se
i
t
he
ra1 ora2 ,
i
t
sco
l
orB po
i
n
ti
s
T3 ,T4 (
e
i
t
he
rb1 orb2 ,andi
t
sco
l
orC po
i
n
ti
se
i
t
he
rc1 orc2 ).S
i
nce
he
r
e a
r
e two
t
he
r
ea
r
e on
l
hr
ee po
i
n
t
si
n co
l
or D ,t
yt
i
l
a
t
e
r
a
l
st
ha
thavet
hes
ameco
l
orD po
i
n
t.Suppo
s
et
ha
t
quadr
t
hes
ameco
l
orD po
i
n
to
fT1 ,T2i
sd1 .
Then,i
nt
hr
eequadr
i
l
a
t
e
r
a
l
sT1 ,T2 ,T3 ,wha
t
eve
rbet
he
l
or o
ft
he ve
r
t
ex, t
he
r
e a
r
e r
epea
t
ed po
i
n
t
s, wh
i
ch
co
(
)
,
con
t
r
ad
i
c
t
scond
i
t
i
on 2 .Henc
e n ≤ 9.
t
r
uc
t
i
on of
Wes
how t
he max
ima
lnumbe
rn = 9by cons
t
he
s
en
i
nequadr
i
l
a
t
e
r
a
l
s.
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
Ch
i
naSou
t
he
a
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
277
Wedr
aw t
hr
ee “
conc
en
t
r
i
cannu
l
u
s”wi
t
hf
our po
i
n
t
son
eachr
ad
i
u
sr
epr
e
s
en
t
i
ngf
ou
rve
r
t
i
c
e
sandt
heco
l
or.So n
i
ne
r
ad
i
ir
epr
e
s
en
tn
i
nequadr
i
l
a
t
e
r
a
l
s,wh
i
chs
a
t
i
s
f
i
t
i
on (
1).
ycond
Nex
t,wes
howt
ha
tt
heya
l
s
os
a
t
i
s
f
i
t
i
on (
2).Take
ycond
anyt
hr
eer
ad
i
i(
ort
hr
eequadr
i
l
a
t
e
r
a
l
s).
I
ft
he
s
et
hr
eer
ad
i
icomef
r
om aconcen
t
r
i
cannu
l
u
s,f
or
eachco
l
orexc
ep
tA ,
t
he
r
ea
r
et
hr
eepo
i
n
t
s.
I
ft
he
s
et
hr
eer
ad
i
icomef
r
om t
hr
ee concen
t
r
i
c annu
l
i,
t
henf
orco
l
orA ,
t
he
r
ea
r
et
hr
eepo
i
n
t
s.
I
ft
he
s
et
hr
eer
ad
i
icomef
r
omtwoconcen
t
r
i
cannu
l
i,ca
l
l
t
he
s
et
hr
ee f
i
r
e
s F
i
.1, F
i
.2 and Fi
.3. The r
ad
i
u
s
gu
g
g
g
d
i
r
e
c
t
i
on
sa
r
e ca
l
l
ed “
up r
ad
i
u
s”, “
l
e
f
tr
ad
i
u
s”and “
r
i
ght
r
ad
i
u
s”,anddeno
t
ed,r
e
s
c
t
i
ve
l
ft
hr
ee
pe
y,byS,Z andY .I
r
ad
i
ihavet
hr
eed
i
r
e
c
t
i
on
s,t
hent
he
r
ea
r
et
hr
eepo
i
n
t
so
fco
l
or
Bi
nt
hr
ee quadr
i
l
a
t
e
r
a
l
s.I
ft
het
hr
ee r
ad
i
ihave on
l
y two
d
i
r
e
c
t
i
on
s,t
hent
he
r
ea
r
ea
l
lc
a
s
e
sa
ss
howni
nt
het
ab
l
e
sbe
l
ow,
whe
r
e1,2and3s
t
andf
o
rF
i
.1,F
i
.2andF
i
.3,r
e
s
c
t
i
v
e
l
g
g
g
pe
y.
He
r
e, t
he co
l
or i
n f
i
r
e means t
ha
t t
he t
hr
ee
gu
i
l
a
t
e
r
a
l
shaveco
l
orwi
t
hd
i
f
f
e
r
en
tf
i
e
s.
quadr
gur
S 1,21,2 2
Z
Y
1
2
1,21,2
C
1
2
1 1,21,2
S 1,21,2 1
Z
Y
2
1
1,21,2
D
2
1
2 1,21,2
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
278
S 1,31,3 1
Z
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
Y
3
1
1,31,3
C
Y
2
3
2,32,3
C
1
3 1,31,3
S 2,32,3 3
Z
3
2
3
2 2,32,3
S 1,31,3 3
Z
Y
1
3
1,31,3
Y
3
2
3
1 1,31,3
D
S 2,32,3 2
Z
1
2,32,3
3
2
3 2,32,3
D
Thu
s,t
hemax
ima
lnumbe
ro
fni
s9.
2012
(
Pu
t
i
a
n,F
u
i
a
n)
j
F
i
r
s
tDay
8:00 12:00,Ju
l
y27,2012
1
F
i
nd at
r
i
l
e(
l,m ,n)(
1 < l < m < n)o
f po
s
i
t
i
ve
p
i
n
t
ege
r
ss
ucht
ha
t ∑k=1k, ∑k=l+1k, ∑k=m+1k f
orm a
l
m
n
t
r
i
cs
equenc
ei
norde
r.(
s
edbyTaoP
i
ng
s
heng)
geome
po
t
t(
t +1)
So
l
u
t
i
on.Fort ∈ N* ,denot
eSt = ∑k=1k =
.Le
t
2
l
m
n
k=1
k=l+1
k=m+1
∑k = Sl ,∑k = Sm -Sl ,∑ k = Sn -Sm ,
formageome
t
r
i
cs
equenc
ei
norde
r.Then
2
,
Sl (
Sn -Sm )= (
Sm -Sl )
t
ha
ti
sSl (
Sn +Sm -Sl )= S2m .Thu
s,Sl |S2m ,
t
ha
ti
s
①
Ch
i
naSou
t
he
a
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
279
2
2
l(
l +1)|m2(
m +1)
.
Le
tm +1 =l(
akel =3.Thenm =11andSl =
l +1)andt
S3 =6,Sm =S11 =66.Sub
s
t
i
t
u
t
ei
ti
n
t
o ① ,wehaveSn =666,
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
n(
n +1)
=6
t
ha
ti
s
66.Son = 36.
2
The
r
e
f
or
e,(
l,m ,n)= (
3,11,36)
i
sas
o
l
u
t
i
ons
a
t
i
s
f
i
ng
y
t
hecond
i
t
i
on.
Remark.Theso
l
u
t
i
oni
sno
tun
i
l
e,t
he
r
ea
r
e
que.Forexamp
o
t
he
rs
o
l
u
t
i
on
sa
s(
8,11,13),(
5,9,14),(
2,12,62),(
3,24,
171).(Wemays
howt
ha
tt
henumbe
ro
fs
o
l
u
t
i
onsi
si
nf
i
n
i
t
e.)
2
hei
nc
i
r
c
l
eof△ABC .Thec
i
r
c
l
e☉Ii
n
t
e
r
s
ec
t
s
Le
t☉Ibet
s
i
de
sAB ,BC andCA a
tpo
i
n
t
sD ,E andF ,r
e
s
t
i
ve
l
pec
y.
n
t
e
r
s
e
c
t
sl
i
ne
sAI,BI andDI a
tpo
i
n
t
sM ,N
Li
neEF i
e
s
t
i
ve
l
ha
tDM ·KE = DN ·KF .
andK ,r
pec
y.Provet
(
s
edbyZhangPengcheng)
po
So
l
u
t
i
on.I
ti
sea
s
os
eet
ha
t po
i
n
t
sI,D ,E and B a
r
e
yt
concyc
l
i
cand
∠AID = 9
0
°- ∠IAD ,
∠MED = ∠FDA = 9
0
°- ∠IAD .
So ∠AID = ∠MED ,t
hu
s po
i
n
t
sI,D ,E and M a
r
e
concyc
l
i
c.
Henc
e,f
i
vepo
i
n
t
sI,D ,B ,E ,
Ma
r
econcyc
l
i
cand ∠IMB = ∠IEB
=9
0
°,
t
ha
ti
sAM ⊥ BM .
S
imi
l
a
r
l
i
n
t
sI,D ,A ,N
y,po
andF a
r
econcyc
l
i
candBN ⊥ AN .
Le
tl
i
ne
sAN andBM i
n
t
e
r
s
ec
ta
t
i
n
t G . We s
ee po
i
n
tI i
st
he
po
F
i
.2
.1
g
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
280
or
t
hoc
en
t
e
ro
f△GAB andID ⊥ AB ,s
opo
i
n
t
sG ,IandD a
r
e
co
l
l
i
nea
r.
r
econcyc
l
i
c,wes
eet
ha
t
S
i
nc
epo
i
n
t
sG ,N ,D and B a
∠ADN = ∠G .
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
i
s
ec
t
s ∠MDN ,
t
hu
s
S
imi
l
a
r
l
y,∠BDM = ∠G .SoDK b
DM
KM
=
.
DN
KN
①
S
i
nc
epo
i
n
t
sI,D ,EandM a
r
econcyc
l
i
c,andpo
i
n
t
sI,D ,
N andF a
r
econcyc
l
i
c,wes
eet
ha
t
KM ·KE = KI·KD = KF ·KN .
The
r
e
for
e,
KM
KF
=
.
KN
KE
②
DM
KF ,
=
By ① and② ,wes
eet
ha
t
t
ha
ti
sDM ·KE =
DN
KE
DN ·KF .
3
Forpo
s
i
t
i
vecompo
s
i
t
e numbe
rn,deno
t
e byf(
n)and
n)t
hes
um oft
hesma
l
l
e
s
tt
hr
eepo
s
i
t
i
ved
i
v
i
s
or
so
fn
g(
andt
hel
a
r
s
ttwo po
s
i
t
i
ved
i
v
i
s
or
so
fn,r
e
s
t
i
ve
l
ge
pec
y.
ucht
ha
tg(
n)equa
n)t
Fi
nda
l
ln s
l
sf(
os
omepowe
rof
s
i
t
i
vei
n
t
ege
r
s.(
s
edby HeYi
i
e)
po
po
j
So
l
u
t
i
on.I
fni
sodd,t
hena
l
lf
ac
t
or
sofna
r
eodd.Sof(
n)i
s
oddandg(
n)i
seven.g(
n)canno
tbef(
n)t
os
omepowe
rof
seven.Thesma
l
l
e
s
ttwod
i
v
i
s
or
s
s
i
t
i
vei
n
t
ege
r.
The
r
e
for
eni
po
ofna
r
e1and2,andt
hel
a
r
s
ttwod
i
v
i
s
or
so
fna
r
enandn/2.
ge
Le
td bet
het
h
i
rdsma
l
l
e
s
td
i
v
i
s
orofn.I
ft
he
r
eex
i
s
t
sk ∈
n)= fk (
n),
N s
ucht
ha
tg(
t
hen
*
Ch
i
naSou
t
he
a
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
281
3
n
k
k
k
=(
=(
≡d (
mod3).
1 +2 +d)
3 +d)
2
S
i
nc
e3
3
n,
wes
eet
ha
t3|dk .So3|d,ands
i
ncedi
st
he
2
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
t
h
i
rdsma
l
l
e
s
t,wes
eet
ha
td = 3.
3
Thu
s, n =6k ,wege
tn =4×6k-1 .S
i
nce3|n,wes
eet
ha
t
2
k ≥ 2.
Summi
ngup,
n = 4 ×6l (
l ∈ N* ).
4
Le
tr
ea
lnumbe
r
sa,b,candds
a
t
i
s
f
y
x)= acosx +bcos2x +ccos3x +dcos4x ≤ 1
f(
foranyr
ea
lnumbe
rx.F
i
ndt
heva
l
ue
sofa,b,candd
s
ucht
ha
ta + b - c + d t
ake
st
he max
imum numbe
r.
(
s
edbyLiShenghong)
po
So
l
u
t
i
on.S
i
nc
e
0)= a +b +c +d,
f(
π)= -a +b -c +d,
f(
t
hen
æπö a b
d,
-c fç ÷ =
è3 ø 2 2
2
2
4 æπö
a +b -c +d = f(
0)+ f(
π)+ f ç ÷ ≤ 3
3
3 è3 ø
æπö
i
fandon
l
ff(
0)= f(
π)= f ç ÷ = 1,
t
ha
ti
s,i
fa = 1,b +
yi
è3 ø
hent
heequa
l
i
t
l
d
s.Le
tt = c
osx,
d = 1andc = - 1,t
y ho
-1 ≤t ≤ 1.Th
en
x)-1 = cosx +bcos2x -cos3x +dcos4x -1
f(
(
=t + (
1-d)
t -1)- (
t -3
t)+d(
t -8
t +1)-1
2
4
8
2
3
4
2
]≤0,∀t ∈ [-1,1],
[-4
= 2(
1-t2)
d
t2 +2
t+ (
d -1)
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
282
t
ha
ti
s
4d
t2 -2
t+ (
1 -d)≥ 0,∀t ∈ (-1,1).
T
ak
i
ngt = 1/2 +ε,|ε|< 1/2,
t
henε[(
ε]≥ 0,
2d -1)+4d
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
1
1
e
et
ha
td = .
I
fd = ,
t
hen
|ε|< 1/2.Sowes
2
2
2
≥ 0.
t2 -2
t+ (
1 -d)= 2
t2 -2
t +1/2 = 2(
t -1/2)
4d
So,t
hemax
ima
lnumbe
ro
fa +b -c +di
s3,and(
a,b,
c,
1
1ö
æ
d)= ç1, ,-1, ÷ .
2
2ø
è
S
e
c
ondDay
8:00 12:00,Ju
l
y28,2012
5
Anon
-nega
t
i
venumbe
rmi
sca
l
l
edas
ixma
t
chnumb
e
r.I
f
m andt
hes
um ofi
t
sd
i
i
t
sa
r
ebo
t
h mu
l
t
i
l
e
so
f6,f
i
nd
g
p
t
henumbe
r oft
hes
i
x ma
t
ch numbe
r
sl
e
s
st
han 2012.
(
s
edbyTaoP
i
ng
s
heng)
po
So
l
u
t
i
on.Le
tn
= d1d2d3d4 = 1
000d1 +100d2 +10d3 +d4 ,
d1 ,d2 ,d3 ,d4 ∈ [
0,1,2,...,9],andS(
n) = d1 + d2 +
d3 +d4 .
Ma
t
cht
henon
-nega
t
i
ve mu
l
t
i
l
e
sof6l
e
s
st
han2000i
n
t
o
p
167pa
i
r
s(
x,y),x +y = 1998,s
ucht
ha
t
(
0,1998),(
6,1992),(
12,1986),...,(
996,1002).
Fo
re
a
chpa
i
r(
x,y),
l
e
tx =a1a2a3a4,y =b1b2b3b4,
t
hen
a1 +b1)+100(
a2 +b2)+10(
a3 +b3)+ (
a4 +b4)
1000(
= x +y = 1
998.
S
i
nc
ex,y a
r
eeven,a4 ,b4 ≤ 8.Soa4 +b4 ≤ 16 < 18.
Thu
s,a4 +b4 = 8.S
i
ncea3 +b3 ≤ 18 < 19,a3 +b3 = 9.
Ch
i
naSou
t
he
a
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
283
S
imi
l
a
r
l
t
a
i
na2 +b2 = 9anda1 +b1 = 1.Thu
s,
y,wecanob
S(
x)+S(
a1 +b1)+ (
a2 +b2)+ (
a3 +b3)+ (
a4 +b4)
y)= (
= 1 +9 +9 +8 = 2
7.
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
x)andS(
Con
s
equen
t
l
he
r
ei
son
l
fS(
ha
ti
s
y)t
y,t
yoneo
r
ea
l
lmu
l
t
i
l
e
sof
t
hemu
l
t
i
l
eo
f6.(
Th
i
si
sbe
cau
s
et
ha
tx,ya
p
p
3,s
oa
r
eS(
ti
s,t
he
r
ei
son
l
x)andS(
y).)Tha
yoneofxandy
wh
i
chi
sas
i
xma
t
chnumbe
r.
The
r
e
f
or
e,t
he
r
ea
r
e167s
i
xma
t
chnumbe
r
sl
e
s
st
han2000,
andt
he
r
ei
sj
u
s
tones
i
xma
t
chnumbe
rbe
tween2000and2011.
The
r
e
f
or
e,t
hean
swe
ri
s167 +1 = 168.
6
F
i
ndt
hemi
n
imum po
s
i
t
i
vei
n
t
ege
rns
ucht
ha
t
3
n -2011
n -2012
<
2012
2011
(
s
edbyLi
uGu
ime
i)
po
3
n -2013
n -2011
.
2011
2013
≤4
023,t
hen
So
l
u
t
i
on.Wes
eet
ha
ti
f2012 ≤ n
3
3
n -2011
2012
n -2012
n -2013
n -2011
≥ 0a
< 0.
nd
2011
2011
2013
Ot
he
rwi
s
e,
3
n -2011
≤
2012
n -2013
≥
2011
3
n -2012
⇔n > 4023
2011
n -2011
⇔n ≥ 4024.
2013
Thu
s,i
fn ≥ 4024,
t
hen
n -2011
n -2012
<0≤
2012
2011
s4024.
Sot
hemi
n
imumo
fni
3
3
n -2013
n -2011
.
2011
2013
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
284
7 In△ABC wi
t
hAB =1,
l
e
tD
bea po
i
n
ton AC s
ucht
ha
t
∠ABD = ∠C a
ndl
e
tE bea
i
n
tonAB s
ucht
ha
tBE =
po
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
DE .Le
tH beapo
i
n
tonDE
s
ucht
ha
tAH ⊥ DEandM be
t
hemi
dpo
i
n
to
fCD .
I
fAH =
F
i
.7
.1
g
2 - 3,f
i
ndt
hes
i
z
eo
f ∠AME .(
s
edby Xi
ongBi
n)
po
So
l
u
t
i
on.Le
t ∠ABD
= ∠C =αa
nd ∠DBC =β.
I
ti
sea
s
o
yt
s
eet
ha
t ∠BDE =α,∠AED = 2
α,
∠ADE = ∠ADB - ∠BDE = (
α +β)-α =β,
AB = AE +EB = AE +EH + HD .
Henc
e,
AB
AE +EH HD 1 +cos2
α
=
+
=
+c
o
tβ
AH
AH
AH
s
i
n2
α
=c
o
tα+ co
tβ.
①
Dr
aw l
i
ne
s EK ⊥ AC and
EL ⊥ BD wi
t
h peda
l
s K and L ,
r
e
s
t
i
ve
l
s t
he
pec
y. Then, L i
mi
dpo
i
n
to
fBD .Comb
i
n
i
ng wi
t
h
t
heS
i
neTheor
em,weob
t
a
i
n
EL
DEs
i
n ∠EDL s
i
nα
=
=
EK
DEs
i
n ∠EDK
s
i
nβ
=
F
i
.7
.2
g
BD
LD
=
.
CD
MD
Thu
s,
c
o
tα =
LD
MD
MK DK
=
=
=c
o
t ∠AME -c
o
tβ. ②
EL
EK
EK EK
Ch
i
naSou
t
he
a
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
285
By ① ,② andknowncond
i
t
i
on
s,wehave
c
o
t ∠AME =
AB
1
=
= 2 + 3.
AH
2- 3
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
The
r
e
f
or
e,∠AME = 15
°.
8 Le
andPn = {
1,2,...,
tm b
eapo
s
i
t
i
v
ei
n
t
e
e
r,
n =2m -1,
g
i
n
t
sonnumbe
rax
i
s.A g
r
a
s
s
hoppe
r
n}bet
hes
e
to
fn po
ump
sbe
tweenad
ac
en
tpo
i
n
t
sonPn .F
i
ndt
he max
ima
l
j
j
numbe
rofm s
ucht
ha
tf
oranyx,y ∈ Pn ,t
henumbe
rof
way
st
ha
tag
r
a
s
s
hoppe
rj
ump
i
ngf
romxt
oyby2012s
t
eps
i
seven (
s
s
i
ngx ory ont
hewayi
spe
rmi
t
t
ed).(
s
ed
pa
po
byZhangS
i
hu
i)
So
l
u
t
i
on.I
fm
≥1
1,t
henn = 2 -1 > 2013.S
i
ncet
he
r
ei
s
m
on
l
r
a
s
s
hoppe
rj
umpsf
r
om po
i
n
t1t
opo
i
n
t2013by
yonewayag
2012s
t
ep
s,wes
eet
ha
tm ≤ 10.
Int
hef
o
l
l
owi
ng,wes
howt
ha
tt
heanswe
ri
sm = 10.To
s
howt
h
i
s,wewi
l
lpr
oveas
t
r
onge
rpr
opo
s
i
t
i
onbyi
nduc
t
i
onon
m :foranyk ≥ n = 2m -1andanyx,y ∈ Pn ,
t
henumbe
rof
way
st
heg
r
a
s
s
hoppe
rj
umpsf
r
om po
i
n
txt
oybyks
t
epsi
seven.
I
fm = 1,
t
henumbe
ro
fway
si
s0,whe
r
e0i
seven.
2
l+1
I
fm =l,
t
henumbe
ro
fway
si
seven.Then,f
ork ≥ n =
-1,
t
he
r
ea
r
et
hr
eek
i
ndo
fr
ou
t
e
sf
rom po
i
n
txt
opo
i
n
ty
byks
t
ep
s.Wes
howt
ha
tt
henumbe
rofway
si
sevenf
oreach
k
i
ndo
fr
ou
t
e.
(
1)Therou
t
edoe
sno
tpa
s
spo
i
n
t2l .Sopo
i
n
t
sxandybo
t
h
a
r
eonones
i
deofpo
i
n
t2l .Byt
hei
nduc
t
i
onhypo
t
he
s
e
s,t
he
r
e
a
r
eevenr
ou
t
e
s.
(
2)Therou
t
epa
s
s
e
spo
i
n
t2lj
u
s
tonce.
tt
hei
-t
hs
t
ep
s.
Suppo
s
et
ha
tt
heg
r
a
s
s
hoppe
ri
sa
tpo
i
n
t2l a
286
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
(
i ∈{
0,
1,...,
k},
i =0me
an
sx =2l ,
i =k me
an
sy =2l ).We
s
howt
ha
t,f
oranyi,
t
henumbe
ro
frou
t
e
si
seven.
Suppo
s
et
ha
tt
her
ou
t
ei
sx,a1 ,...,ai-1 ,2l ,ai+1 ,...,
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
ak-1 ,y.Di
v
i
dedi
ti
n
t
otwos
ub
r
ou
t
e
s:f
rom po
i
n
tx t
opo
i
n
t
ai-1 ofi -1s
t
ep
sandf
r
om po
i
n
tai+1t
fk -i -1s
t
eps
opo
i
n
tyo
(
f
ori = 0ork,on
t
ep
s).
l
ub
r
ou
t
eofk -1s
yones
I
fi -1 < 2l -1andk -i -1 < 2l -1,
t
henk ≤ 2l+1 -2,
wh
i
chcon
t
r
ad
i
c
t
sk ≥ n = 2l+1 -1.So,wemu
s
thavei -1 ≥
2l -1ork -i -1 ≥ 2l -1.Byt
hei
nduc
t
i
onhypo
t
he
s
e
s,t
he
r
e
a
r
e even way
sf
or a s
ub
r
ou
t
e.So, by t
he Mu
l
t
i
l
i
ca
t
i
on
p
Pr
i
nc
i
l
e,t
henumbe
ro
fway
si
seven.
p
(
3)Ther
ou
t
epa
s
s
e
spo
i
n
t2l nol
e
s
st
hantwot
ime
s.
o2l ,
t
henumbe
ro
fway
si
s
Con
s
i
de
rt
hes
ub
r
ou
t
e
sf
rom2lt
even,s
i
ncewecancon
s
i
de
rt
herou
t
e
ss
t
r
i
ct
o2l .Soby
ymme
t
he Mu
l
t
i
l
i
ca
t
i
onPr
i
nc
i
l
e,t
henumbe
ro
fway
si
seven.
p
p
Summi
ngup,t
hemax
ima
lmi
s10.
2013
(
Y
i
n
t
a
n,
J
i
a
n
x
i)
g
g
F
i
r
s
tDay
8:00 12:00,Ju
l
y27,2013
1
Le
ta,
bber
ea
lnumbe
r
ss
ucht
ha
tt
heequa
t
i
onx3 -ax2 +
bx - a = 0ha
son
l
ea
lr
oo
t
s.Fi
ndt
he mi
n
imum of
yr
2
a3 -3ab +3a
.
b +1
So
l
u
t
i
on.Le
tx1 ,x2 andx3 bet
her
ea
lroo
t
soft
heequa
t
i
on
Ch
i
naSou
t
he
a
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
287
x3 -ax2 +bx -a =0.By Vi
e
t
a
􀆳
sFormu
l
a,wehave
x1 +x2 +x3 = a,x1x2 +x2x3 +x1x3 =b,x1x2x3 = a.
2
≥3(
By(
x1 +x2 +x3)
x1x2 +x2x3 +x1x3),wehavea2 ≥
3
b,andbya = x1 + x2 + x3 ≥ 3 x1x2x3 = 3 a ,wehave
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
3
3
a ≥3 3.Thu
s,
a3 -3ab +3a a(
a2 -3
b)+a3 +3a
2
=
b +1
b +1
≥
a3 +3a a3 +3a
≥ 2
b +1
a
+1
3
=3
a ≥ 9 3.
I
fa =33,
b =9,
t
hent
heequa
l
i
t
l
d
swheneachroo
ti
s
yho
equa
lt
o 3.
Summi
ngup,t
hean
swe
ri
s9 3.
2 Le
t☉I bet
hei
nc
i
r
c
l
eo
f △ABC wi
t
h AB > AC . ☉I
t
angen
tt
o BC and AD a
t D and E ,r
e
s
t
i
ve
l
pec
y.The
t
angen
tl
i
neEP o
f☉Ii
n
t
e
r
s
ec
t
st
heex
t
endedl
i
neofBCa
t
P .Segmen
tCFi
spa
r
a
l
l
e
lt
oPE andi
n
t
e
r
s
ec
t
sAD a
tpo
i
n
t
F .Li
neBFi
n
t
e
r
s
e
c
t
s☉Ia
tpo
i
n
t
sM andN s
ucht
ha
tM i
s
ons
egmen
tBF .Segmen
tPM i
n
t
e
r
s
ec
t
s ☉I a
tt
heo
t
he
r
i
n
tQ .Pr
ovet
ha
t ∠ENP = ∠ENQ .
po
So
l
u
t
i
on.Suppos
et
ha
t☉I
t
ouche
sAC andAB a
tS and
T, r
e
s
c
t
i
ve
l
s
e
pe
y. Suppo
t
ha
t ST i
n
t
e
r
s
ec
t
s AI a
t
i
n
tG ,wes
eet
ha
tIT ⊥
po
AT and TG ⊥ AI.So we
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
288
haveAG ·AI = AT2 = AD·AE ,
t
hu
spo
i
n
t
sI,G ,EandD a
r
e
concyc
l
i
c.
S
i
nceIE ⊥ PE andID ⊥ PD ,wes
eet
ha
tpo
i
n
t
sI,E ,P
andD a
r
econcyc
l
i
c.Hence,po
i
n
t
sI,G ,E ,P and D a
r
e
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
concyc
l
i
c.
The
r
e
f
or
e, ∠IGP = ∠IEP = 90
°,t
ha
ti
s,IG ⊥ PG .
r
eco
l
l
i
nea
r.
Henc
e,po
i
n
t
sP ,S andT a
Li
ne PST i
n
t
e
r
s
e
c
t
s △ABC . By Mene
l
au
s
􀆳 Theor
em,
wehave
AS ·CP ·BT
= 1.
SC PB TA
S
i
nc
eAS = AT ,CS = CD andBT = BD ,wehave
PC ·BD
= 1.
PB CD
①
Le
tt
heex
t
en
s
i
ono
fBNi
n
t
e
r
s
e
c
tPE a
tpo
i
n
tH .Thenl
i
ne
BFH i
n
t
e
r
s
ec
t
s△PDE .By Mene
l
au
s
􀆳Theor
em,
PH ·EF ·DB
= 1.
HE FD BP
EF
PC ,
=
S
i
nc
eCF pa
r
a
l
l
e
lt
oBE ,
wehave
FD CD
PH ·PC ·DB
= 1.
HE CD BP
②
By ① and ② ,wehavePH = HE .Hence,PH2 = HE2 =
PH
HN ,
=
HM ·HN .Thu
s,wehave
△PHN ∽ △MHP and
HM PH
∠HPN
=
∠HMP
=
∠NEQ .Fu
r
t
he
r,s
i
nce ∠PEN
∠EQN ,
t
he
r
e
for
e ∠ENP = ∠ENQ .
3
Le
tt
hes
equenc
e{
an }bede
f
i
nedby
=
Ch
i
naSou
t
he
a
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
289
2
n
+(
-1)
an
(
a1 = 1,a2 = 2,an+1 =
n = 2,3,...).
an-1
Pr
ovet
ha
tt
hes
um o
fs
r
e
sofanytwoad
acen
tt
e
rms
qua
j
o
ft
hes
equencei
sa
l
s
oi
nt
hes
equence.
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
So
l
u
t
i
on.Byan+1
=
2
n
+(
-1)
an
2
,wehavean+1an-1 = an
+
an-1
n
(
(-1)
n = 2,3,...,),s
o
2
2
n 1
2
-1)- -an-2
an -an-2 anan-2 -an
an
-2
-1 + (
=
=
an-1
an-1an-2
an-1an-2
=
2
an
an-3 an-1 -an-3
-1 -an-1
=
an-1an-2
an-2
= … =
a3 -a1
= 2,
a2
an = 2an-1 +an-2(
n ≥ 3),a1 = 1,a2 = 2.
t
ha
ti
s,
The
r
e
f
or
e,
an = C1λn
λn
λ1 +λ2 = 2,λ1λ2 = - 1,
1 + C2
2,
a1 = 1,a2 = 2n ∈ N+ .
Then,s
i
nceλ1λ2 = -1andλ2 = 2 -λ1 ,wehave
1 = C1λ1 +C2λ2
{
2 = C1λ2
λ2
1 +C2
2
⇒
⇒
λ2 = C1λ1λ2 +C2λ2
2
{
{
2 = C1λ2
λ2
1 +C2
2
2 -λ1 = -C1 +C2λ2
2
λ2
2 = C1λ2
1 +C2
2
1 +λ2
⇒C1(
1 )=λ1 .
Thu
s,bys
t
r
i
ccond
i
t
i
on,wehaveC2(
1 +λ2
2 )=λ2 .
ymme
So,s
i
nce1 +λ1λ2 = 0,wehave
2
2
2
n
2
n
+an+1 = C1(
an
1 +λ2
λ2
1 +λ2
λ2
1)
1 +C2 (
2)
2 +
n
(
2C1C2(
λ1λ2)
1 +λ1λ2)
n+1
2n 1
+C2λ2 + = a2n+1 .
C1λ2
1
4
i
v
i
dedi
n
t
otwo
Suppo
s
et
ha
t12ac
r
oba
t
sl
abe
l
ed1 12d
290
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
c
i
r
c
l
e
sA andB ,wi
t
hs
i
xpe
r
s
on
si
neach.Le
te
a
cha
c
r
oba
t
t
andont
hes
hou
l
de
r
so
ftwoad
a
c
en
ta
c
r
oba
t
so
fA .We
i
nBs
j
c
a
l
li
tat
owe
ri
ft
hel
abe
lo
fe
a
cha
c
r
oba
to
fBi
sequ
a
lt
ot
he
s
umo
ft
hel
ab
e
l
so
ft
hea
c
r
oba
t
sunde
rh
i
sf
e
e
t.How many
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
d
i
f
f
e
r
en
tt
owe
r
sc
ant
he
y make?
(
Remark. Wet
r
ea
ttwot
owe
r
sa
st
hes
amei
fonecan be
ob
t
a
i
nedbyr
o
t
a
t
i
onorr
e
f
l
ec
t
i
onoft
heo
t
he
r.Forexamp
l
e,
t
hef
o
l
l
owi
ngt
owe
r
sa
r
et
hes
ame,whe
r
et
hel
abe
l
si
n
s
i
det
he
c
i
r
c
l
er
e
f
e
rt
ot
hebo
t
t
om ac
r
oba
t,t
hel
abe
l
sou
t
s
i
det
hec
i
r
c
l
e
r
e
f
e
r
st
ot
heuppe
rac
r
oba
t.)
So
l
u
t
i
on.Denot
et
hes
um o
fl
abe
l
sofA andB byx andy,
r
e
s
c
t
i
ve
l
s,wehave
pe
y.Theny = 2x.Thu
3x = x +y = 1 +2 + … +12 = 78,x = 26.
Obv
i
ou
s
l
t
eA = {
1,2,a,
y,1,2 ∈ A and11,12 ∈B .Deno
b,c,d},whe
r
ea <b <c < d.Thena +b +c +d = 23,and
a ≥ 3,8 ≤ d ≤ 10 (
i
fd ≤ 7,
t
hena +b +c +d ≤ 4 +5 +6 +
7 = 22,wh
i
chi
sacon
t
r
ad
i
c
t
i
on.)
(
1)I
fd = 8,
t
henA = {
1,2,a,b,c,
8},c ≤7,a +b +c =15.Thu
s,(
a,b,
c)=
(
3,5,7)or (
4,5,6),t
ha
ti
s,A = {
1,2,
3,5,7,8}orA = {
1,2,4,5,6,8}.
I
fA = {
1,2,3,5,7,8},
t
henB = {
4,
6,9,10,11,12}.S
i
nc
eB con
t
a
i
n
s11,4,6and12,t
he
r
ei
s
on
l
owe
rt
ha
t,i
nA ,8and3,3and1,1and5,5and7
yonet
Ch
i
naSou
t
he
a
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
291
a
r
ead
ac
en
t.
j
I
fA = {
1,2,4,5,6,8},
t
henB = {
3,7,9,10,11,12}.
r
e
S
imi
l
a
r
l
eet
ha
t,i
nA ,1and2,5and6,4and8a
y,wes
ad
acen
t,r
e
s
c
t
i
ve
l
r
ea
r
etwoa
r
r
angemen
t
s,t
ha
ti
s,
j
pe
y.The
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
t
he
r
ea
r
etwot
owe
r
s.
(
t
henA = {
1,2,a,b,c,9},c ≤ 8,a +b +
2)I
fd = 9,
c = 14,whe
r
e(
a,b,c)= (
3,5,6)or (
3,4,7),t
ha
ti
s,A =
{
1,2,3,5,6,9}orA = {
1,2,3,4,7,9}.
1,2,3,5,6,9},
t
henB = {
4,7,8,10,11,12}.
I
fA = {
nA mu
s
tbead
ac
en
t
Toob
t
a
i
n4,10and12i
nB ,1,3,and9i
j
i
rwi
s
e,i
ti
simpo
s
s
i
b
l
e!
pa
I
fA = {
1,2,3,4,7,9},
t
henB = {
5,6,8,10,11,12}.
Toob
t
a
i
n6,8and12i
nB ,2and4,1and7,9and3mu
s
tbe
ad
ac
en
ti
nA ,r
e
s
c
t
i
ve
l
r
ea
r
etwoa
r
r
angemen
t
s,t
ha
t
j
pe
y.The
i
s,t
he
r
ea
r
etwot
owe
r
s.
(
3)I
fd =10,
t
henA = {
1,2,a,b,
c,
10},whe
r
ec ≤9,a +b +c =13.Thu
s,(
a,
b,c)= (
3,4,6),
t
ha
ti
s,A = {
1,2,3,4,
6,10}andB = {
5,7,8,9,11,12}.To
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
292
ob
t
a
i
n8,9,11and12i
nB ,
6and2,6and3,10and1,10and
2mu
s
tbead
acen
t,r
e
s
t
i
ve
l
r
ei
son
l
owe
r.
j
pec
y.The
yonet
Summi
ngup,t
he
r
ea
r
es
i
xd
i
f
f
e
r
en
tt
owe
r
sa
l
lt
og
e
t
he
r.
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
S
e
c
ondDay
8:00 12:00,Ju
l
y28,2013
5
x
x
x
,whe
Le
tf(
x)= ! + ! + … +
r
e[
x]
i
st
he
1
2
2013!
[ ] [ ]
[
]
r
ea
t
e
s
ti
n
t
ege
rno g
r
ea
t
e
rt
hanx.Ca
l
lani
n
t
ege
rn a
g
ft
heequa
t
i
onf(
x)= nha
sar
ea
ls
o
l
u
t
i
on
ri
goodnumbe
x.Fi
ndt
henumbe
rofgood numbe
r
si
nt
hes
e
t{
1,3,
5,...,2013}.
So
l
u
t
i
on.Fi
r
s
t,wepo
i
n
tou
ttwoobv
i
ou
sf
ac
t
s:
(
a)I
fmi
sapo
s
i
t
i
vei
n
t
ege
randxi
sr
ea
l,t
hen
x]
[mx ] = [ [m
].
(
b)Foranyi
n
t
ege
rlandpo
s
i
t
i
veevennumbe
rm ,wehave
[2lm+1] = [2ml] .
Le
tm =k!(
k = 1,2,...,2013)
i
n(
a)ands
ummi
ngup,
wehave
x)=
f(
[
x
x]
∑ [k! ] = ∑ [ k! ] = f([x]),
2013
2013
k=1
k=1
t
ha
ti
s,f(
x)=nha
sar
ea
ls
o
l
u
t
i
oni
fandon
l
ff(
x)=nha
s
yi
ani
n
t
ege
rs
o
l
u
t
i
on.
So,weon
l
i
de
rxa
sani
n
t
ege
r.
S
i
nce
ycons
2013
x ö÷
æ x +1
,
x +1)-f(
x)= [x +1] - [x ] + ∑ ç
f(
!
! ø ≥1
k
k
è
k=2
[
] [ ]
①
Ch
i
naSou
t
he
a
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
293
wes
eet
ha
tf(
x)(
x ∈ Z)
i
smono
t
onou
s
l
nc
r
ea
s
i
ng.Now,we
yi
f
i
ndi
n
t
ege
r
saandb,
s
ucht
ha
t
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
a -1)< 0 ≤ f(
a)< f(
a +1)< …
f(
< f(
b -1)< f(
b)≤ 2013 < f(
b +1).
i
nce
No
t
et
ha
tf(-1)< 0 = f(
0),s
oa = 0.S
1173)=
f(
6
1173
∑ [ k!
k=1
] = 1173 +586 +195 +48 +9 +1
=2
012 ≤ 2013,
1174)=
f(
6
1174
∑ [ k!
k=1
] = 1174 +587 +195 +48 +9 +1
=2
014 > 2013,
wes
eet
ha
tb = 1173.
Sot
hegoodnumbe
r
si
n{
1,3,5,...,2013}a
r
et
heodd
numbe
r
si
n
{
0),f(
1),...,f(
1173)}.
f(
l(
l = 0,1,...,586)
Le
tx = 2
i
n ①.By (
b),wehave
Thu
s,
[2lk+! 1] = [k2l! ] (2 ≤k ≤ 2013).
2013
l +1
2
l ö÷
æ 2
= 1,
2
l +1)-f(
2
l)= 1 + ∑ ç
f(
k!
k! ø
k=2 è
[
] [ ]
t
ha
ti
s,t
he
r
ei
se
x
a
c
t
l
e
ri
nf(
2
l)andf(
2
l + 1).
yoneoddnumb
1174
=5
The
r
e
f
or
e,t
he
r
ea
r
e
87oddnumbe
r
si
n{
0),f(
1),
f(
2
...,f(
1173)},t
ha
ti
s,t
he
r
ea
r
e587goodnumbe
r
si
nt
hes
e
t
{
1,3,5,...,2013}.
6 Le
tnb
eani
n
t
e
e
rg
r
e
a
t
e
rt
han1.Deno
t
et
hef
i
r
s
tnp
r
ime
si
n
g
294
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
i
n
c
r
e
a
s
i
ngo
r
de
rbyp1,p2 ,...,pn (i.
e.,p1 = 2,p2 =
p1 p2 … pn
).Le
3,...
tA = p1
i
nda
l
lpo
s
i
t
i
v
ei
n
t
e
e
r
sx
p2 pn .F
g
A
s
u
cht
ha
t i
se
v
enandha
se
x
a
c
t
l
i
s
t
i
nc
tpo
s
i
t
i
v
ed
i
v
i
s
o
r
s.
yxd
x
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
So
l
u
t
i
on.By2x |A ,not
et
ha
tA
p2 … pn
= 4·p2
pn .We may
αn
2
s
uppo
s
et
ha
tx = 2α1pα
whe
r
e0 ≤α1 ≤ 1,0 ≤αi ≤ pi
2 …pn ,
(
i = 2,3,...,n).Then,wehave
A
2α
p2-α2 … pn-αn
= 2 - 1p2
.
pn
x
A
s
Henc
e,t
henumbe
rofd
i
f
f
e
r
en
td
i
v
i
s
or
sof i
x
(
3 -α1)(
p2 -α2 +1)…(
pn -αn +1).
Weknowt
ha
t
α
α
α
(
3 -α1)(
p2 -α2 +1)…(
pn -αn +1)= x = 2 1p22 …pnn .
①
Byi
nduc
t
i
on on n,wesha
l
l provet
ha
tt
he a
r
r
ay (
α1 ,
α2 ,...,
αn )s
a
t
i
s
f
i
ng ①i
s(
1,1,...,1)(
n ≥ 2).
y
(
hen ① b
e
c
ome
s(
3 -α1)(
4 -α2)= 2α13α2 ,
1)I
fn = 2,t
whe
r
eα1 ∈ {
i
c
hha
sno
0,1}.I
fα1 = 0,
t
h
e
n3(
4 -α2)= 3α2 wh
I
fα1 =1,
t
h
e
n2(
4-α2)=2·3α2 .Weha
v
eα2 =
i
n
t
e
e
rs
o
l
u
t
i
onα2.
g
1.Thu
s,(
α1,
α2)= (
1,1)
.Tha
ti
s,
t
hec
on
c
l
u
s
i
oni
st
r
u
ef
o
rn =2.
(
2)Suppo
s
et
ha
tt
heconc
l
u
s
i
oni
st
r
uef
orn =k -1.(
k≥
3),
t
henwhenn =k,① become
s
(
3 -α1)(
p2 -α2 +1)…(
pk-1 -αk-1 +1)(
pk -αk +1)
②
α
α
αk-1 αk
= 2 1p22 …pk1 pk .
I
fαk ≥ 2,con
s
i
de
r
i
ng
0 < pk -αk +1 < pk ,
0 < pi -αi +1 ≤ pi +1 < pk (
1 ≤i ≤k -1),
Ch
i
naSou
t
he
a
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
295
wes
eet
ha
tt
hel
e
f
t
-hands
i
deo
f② canno
tbed
i
v
i
dedbypk ,bu
t
t
her
i
-hand s
i
de o
f ② i
s a mu
l
t
i
l
eo
f pk , wh
i
ch i
sa
ght
p
con
t
r
ad
i
c
t
i
on.
I
fαk = 0,
t
hen ② become
s
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
(
3 -α1)(
p2 -α2 +1)…(
pk-1 -αk-1 +1)(
pk +1)
k-1 .
= 2 1p22 …pk1
α
α
α
③
No
t
et
ha
tp2 ,p3 ,...,pk a
r
eoddpr
ime,t
hu
s,ont
heone
hand,pk +1i
seven.Sot
hel
e
f
t
-hands
i
deo
f③i
seven.Ont
he
tt
hen3 o
t
he
rhand,t
her
i
ts
i
deof③i
sodd.Soα1 = 1.Bu
gh
α1 = 2,s
ot
hel
e
f
t
-hands
i
deof ③ i
sa mu
l
t
i
l
eof4,bu
tt
he
p
r
i
t
-hands
i
deo
f③i
sno
t,wh
i
chi
sacon
t
r
ad
i
c
t
i
on.
gh
Byt
heabovea
r
t,wemu
s
thaveαk = 1,andi
n ②,
gumen
Thu
s,
α
pk -αk +1 = pkk = pk .
α
α -1
α
(
3 -α1)(
.
p2 -α2 +1)…(
pk-1 -αk-1 +1)= 2 1p22 …pk-k1
Byt
hei
nduc
t
i
onhypo
t
he
s
e
s,
α1 =α2 = … =αk-1 = 1.
Thu
s,
α1 =α2 = … =αk-1 =αk =1,
t
ha
ti
s,t
heconc
l
u
s
i
on
i
st
r
uef
orn =k.
By (
1)and (
2),weconc
l
udet
ha
t(
α1 ,α2 ,...,αn )= (
1,
1,...,1),
s
ot
hei
n
t
ege
rr
equ
i
r
edi
sx =2p2 …pn =p1p2 …pn .
7
Cu
to
f
facorne
ro
f2×2un
i
ts
r
e
sf
rom a3×3un
i
t
qua
s
r
e
s,t
her
ema
i
n
i
ngf
i
r
ei
sca
l
l
edaho
rn (
Fi
.7
.1i
sa
qua
gu
g
horn).Now,pu
ts
omehorn
s wi
t
hou
tove
r
l
app
i
ng ona
boa
rdo
f10 × 10 un
i
ts
r
e
s(
Fi
.7
.2)s
ucht
ha
tt
he
qua
g
bounda
r
i
e
soft
he horn co
i
nc
i
de wi
t
ht
he g
r
i
do
ft
he
boa
rd.F
i
ndt
he max
imum o
fks
ucht
ha
twha
t
eve
rt
hek
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
296
hornspu
tont
heboa
rd,onecana
lway
spu
tano
t
he
rhorn
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
ont
heboa
rd.(
s
edby HeYi
i
e)
po
j
F
i
.7
.1
g
So
l
u
t
i
on.Fi
r
s
t,wehavekmax
F
i
.7
.2
g
< 8,
t
h
i
si
sbe
cau
s
eo
ft
ha
ti
fwepu
te
i
t
gh
hornsa
si
nF
i
.7
.3,t
hen no mor
e
g
horncanbepu
t.
Ne
x
t,wes
howt
ha
t,a
f
t
e
rpu
t
t
i
ng
any s
even horn
s, t
he
r
ei
sa
lway
s
roomf
orano
t
he
rhorn.
Con
s
i
de
rf
ou
r4×4 s
r
e
si
n
qua
F
i
.7
.3
g
f
ourcorne
r
so
f 10 × 10 s
r
e
s. Then any horn can on
l
qua
y
,
×
i
n
t
e
r
s
e
c
toneo
ft
he
s
e4 4s
r
e
s.So s
evenhornsa
r
ep
l
aced
qua
on10×10s
r
e
s.Byt
he Di
r
i
ch
l
e
t Dr
awe
r Theor
em,t
he
r
e
qua
ex
i
s
t
sa4×4s
r
eSs
ucht
ha
tt
he
r
ei
sa
tmo
s
tonehornH t
ha
t
qua
i
n
t
e
r
s
e
c
t
sS,andH c
anb
ec
on
t
a
i
nedbya3×3s
r
e
s,s
oS ∩ Hi
s
qua
c
on
t
a
i
nedbya3×3s
a
r
e
sonac
onne
ro
fS.
qu
We can pu
t a horn on S a
ss
hown i
n
F
i
.7
.4.
g
Summi
ngup,wehavekmax = 7.
F
i
.7
.4
g
Ch
i
naSou
t
he
a
s
t
e
rn Ma
t
hema
t
i
c
a
lOl
i
ad
ymp
8
297
Le
tn ≥ 3bei
n
t
ege
r.Suppo
s
et
ha
tα,β,γ ∈ (
0,1)and
s
a
t
i
s
f
ak ,bk ,ck ≥0 (
k =1,2,...,n)
k +α)
ak
y∑k=1(
n
∑
≤α,
n
k=1
(
k +β)
bk ≤βand ∑k=1(
k +γ)
ck ≤γ.Fi
nd
n
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
ucht
ha
t∑k=1(
k +λ)
akbkck ≤λ.
t
hemi
n
imumofλs
n
α ,
γ , , ,
So
l
u
t
i
on.Le
b1 = β ,
c1 =
ai bi ci =
ta1 =
1 +α
1 +β
1 +γ
0(
i = 2,3,...,n).Wes
eet
ha
ta
l
lcond
i
t
i
on
sa
r
es
a
t
i
s
f
i
ed.
So,wemu
s
thave
α · β · γ
(
≤λ,
1 +λ)
1 +α 1 +β 1 +γ
t
ha
ti
s,
α
βγ
λ≥(
.
1 +α)(
1 +β)(
1 +γ)-α
βγ
α
βγ
= λ0 .We w
i
l
lshow
Deno
t
e(
)
(
1 +α 1 +β)(
1 +γ)-α
βγ
t
ha
t,foranyak ,bk ,ck ,k = 1,2,...,n,wehave
n
k +λ )
abc
∑(
0
k=1
≤λ0 ,
k k k
①
wh
i
chs
a
t
i
s
f
i
e
sa
l
lt
hecond
i
t
i
on
s.
Byt
hecond
i
t
i
on
so
ft
heprob
l
em,
1
n
k +β
æçk +α
k +γ ö÷ 3
ak ·
bk ·
ck
∑
γ
ø
β
k=1 è α
1
n
n
1
1
n
k +β ö÷ 3 æç
k +α ö÷ 3 · æç
k +γ ö÷ 3
æ
ak
ck
≤ ç∑
≤ 1,
bk · ∑
∑
è k=1 α
ø
è k=1 γ
ø
è k=1 β
ø
whe
r
eweu
s
et
heHö
l
de
r
􀆳
sInequa
l
i
t
fxi ,yi ,zi ≥ 0(
i = 1,
y:i
2,...,n),
t
hen
n
( ∑xyz )
i=1
i i i
3
≤
n
n
n
( ∑x ) ( ∑y ) ( ∑z ) .
i=1
3
i
i=1
3
i
i=1
3
i
②
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
298
The
r
e
f
or
e,t
opr
ove① ,i
ts
u
f
f
i
c
e
st
os
howt
ha
t,f
ork =1,
2,...,n,wehave
1
æk +α k +β k +γ
ö3
k +λ0
·
·
·akbkck ÷ ,
akbkck ≤ ç
λ0
γ
è α
ø
β
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
t
ha
ti
s
2
k +α)(
k +β)(
k +γ)ö÷ 3
æ(
k +λ0
(akbkck ) 3 ≤ ç
.
λ0
α
γ
è
ø
β
1
③
Inf
ac
t,
λ0 =
α
βγ
(
)
1 + α +β +γ + (
α
β +βγ +γα)
α
βγ
k2 + (
α +β +γ)
k+(
α
β +βγ +γα)
≥
=
Thu
s,
kα
βγ
.
(
)
(
+
+
k α k β)(
k +γ)-α
βγ
(
k +α)(
k +β)(
k +γ)
k +λ0
≤
.
λ0
α
βγ
④
Ands
i
nc
e(
k +α)
ak ≤α,(
k +β)
bk ≤β,(
k +γ)
ck ≤γ,we
have
2
(akbkck ) 3 ≤
2
α
æç
ö÷ 3
βγ
.
k +α)(
k +β)(
k +γ)ø
è(
⑤
By ④ and ⑤ ,wes
eet
ha
tequa
t
i
on ③ ho
l
d
s,t
hu
s① ho
l
d
s.
α
γ
β
S
ummi
ngup,weha
v
eλmin =λ0 = (
.
(
(
1+α)
1+β)
1+γ)-α
γ
β
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
Int
e
rna
t
i
ona
lMa
thema
t
i
ca
l
Ol
i
ad
ymp
2011
(
Ams
t
e
r
d
am,H
o
l
l
a
n
d)
F
i
r
s
tDay
9:00~13:30,Ju
l
y18,2011
1
Gi
venany s
e
tA = {
a1 ,a2 ,a3 ,a4}offour d
i
s
t
i
nc
t
s
i
t
i
vei
n
t
ege
r
s,wedeno
t
et
hes
uma1 +a2 +a3 +a4 =
po
sA .Le
tnA deno
t
et
henumbe
rofpa
r
e
s(
i,
t
h1 ≤i <
j)wi
i
chai +aj d
i
v
i
de
ssA .Fi
nd
sa
l
ls
e
t
sA off
our
j ≤ 4forwh
d
i
s
t
i
nc
tpo
s
i
t
i
vei
n
t
ege
r
swh
i
chach
i
evet
hel
a
r
s
tpo
s
s
i
b
l
e
ge
va
l
ueofnA .(
s
edby Mex
i
co)
po
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
300
So
l
u
t
i
on.(
Ba
s
edont
hes
o
l
u
t
i
onbyJ
i
nZhaorong)Le
ts
e
tA
=
{
s
i
t
i
vei
n
t
ege
r
swi
t
ha1 < a2 < a3 <
a1 ,a2 ,a3 ,a4}offourpo
a4 .S
i
nce
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
1
1
sA = (
a1 +a2 +a3 +a4)< a2 +a4 < a3 +a4 <sA ,
2
2
a2 +a4 ,a3 +a4 dono
r
e
for
e,
td
i
v
i
desA .The
nA ≤ C2
4 -2 = 4.
Ont
heo
t
he
rhand,i
fA = {
1,5,7,11},nA = 4,t
he
l
a
r
s
tpo
s
s
i
b
l
eva
l
ueo
fnA i
s4.
ge
Nex
t,wewi
l
lf
i
nda
l
ls
e
t
sA o
ffourpo
s
i
t
i
vei
n
t
ege
r
swi
t
h
nA = 4.
td
i
v
i
desA ,and
Fi
r
s
t,wes
eet
ha
ta2 +a4 ,a3 +a4 dono
1
sA ≤ max{
a1 +a4 ,a2 +a3}<sA .
2
Thu
s,
andt
hen
1
sA = max{
a1 +a4 ,a2 +a3},
2
a1 +a4 = a2 +a3 .
Bya1 +a3 |sA ,
a1 +a3),whe
sapo
s
i
t
i
ve
l
e
tsA = k(
r
eki
i
n
t
ege
r.Andbya1 +a3 < a2 +a3 weknowt
ha
tk > 2.
As2(
a2 +a3)=sA =k(
a1 +a3),
a2 =
andf
rom
a2 =
1(
ka1 + (
k -2)
a3),
2
1(
ka1 + (
k -2)
a3)< a3 ,
2
wehavek < 4.Thu
k = 3.Cons
s,
equen
t
l
y,wehave
2(
a2 +a3)= 2(
a1 +a4)= 3(
a1 +a3)=sA ,
f
r
om wh
i
ch wecande
r
i
vea2 =
1(
1(
3
a1 + a3),a4 =
a1 +
2
2
In
t
e
rna
t
i
ona
lMa
t
hema
t
i
c
a
lOl
i
ad
ymp
301
3
a3).
a1 +a2),wehave
Andbya1 +a2 |sA ,
l
e
tsA =l(
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
t
ha
ti
s,
1
æ
ö
a1 +a3)÷ ,
3
a1 +a3)=lça1 + (
3(
2
è
ø
(
5
6 -l)a3 = (
l -6)
a1 .
S
i
nc
ea1anda3a
r
epo
s
i
t
i
v
ei
n
t
e
e
r
sanda1 <a3,
r5.
l =3,4o
g
I
fl = 3,wehavea2 = a3 ,wh
i
chi
sacon
t
r
ad
i
c
t
i
on.
I
fl = 4,wehavea3 = 7
a1 ,cons
equen
t
l
tfo
l
l
owst
ha
t
y,i
a2 =5a1 ,a4 = 11a1 .
equen
t
l
I
fl = 5,wehavea3 = 19
a1 ,cons
y,wehavea2 =
11
a1 ,a4 = 29a1 .
I
ti
sea
s
ove
r
i
f
ha
t,whenl = 4,5,eachofa1 +a2 ,
yt
yt
a1 +a3 ,a1 +a4 anda2 +a3 d
i
v
i
de
ssA .
Tos
um up,a
l
ls
e
t
sA o
ff
ou
rd
i
s
t
i
nc
t po
s
i
t
i
vei
n
t
ege
r
s
wh
i
chach
i
evet
hel
a
r
s
tpo
s
s
i
b
l
eva
l
ueofnA = 4a
r
eA = {
a,
ge
5
a,7a,11a},andA = {
a,11a,19a,29a},whe
r
eai
sany
s
i
t
i
vei
n
t
ege
r.
po
2 Le
tS beaf
i
n
i
t
es
e
to
fa
tl
ea
s
ttwo po
i
n
t
si
nt
hep
l
ane.
As
s
umet
ha
tnot
hr
eepo
i
n
t
sofSa
r
eco
l
l
i
nea
r.Awi
ndmi
l
l
i
sapr
oc
e
s
st
ha
ts
t
a
r
t
swi
t
hal
i
nelgo
i
ngt
hroughas
i
ng
l
e
i
n
tP ∈ S.Thel
i
ner
o
t
a
t
e
sc
l
ockwi
s
eabou
tt
hepo
i
n
tP
po
un
t
i
lt
hef
i
r
s
tt
imet
ha
tt
hel
i
ne mee
t
ss
omeo
t
he
rpo
i
n
t
be
l
ong
i
ngt
oS.Th
i
spr
oc
e
s
scon
t
i
nue
si
nde
f
i
n
i
t
e
l
y.
Showt
ha
twecanchoo
s
eapo
i
n
tPi
nS andal
i
nelgo
i
ng
t
hr
oughP s
ucht
ha
tt
her
e
s
u
l
t
i
ng wi
ndmi
l
lu
s
e
seachpo
i
n
t
ofS a
sap
i
vo
ti
nf
i
n
i
t
e
l
ime
s.(
s
edbyBr
i
t
i
sh)
y manyt
po
So
l
u
t
i
on.(
Ba
s
edont
hes
o
l
u
t
i
onby Zhou Ti
anyou)Cons
i
de
r
eachl
i
neℓ ha
sad
i
r
e
c
t
i
on,wh
i
chva
r
i
e
scon
t
i
nuou
s
l
he
ywhent
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
302
l
i
ne ℓ r
o
t
a
t
e
s.Fi
r
s
t,cons
i
de
rt
heca
s
e when|S |= 2
k +1
i
so
l
d.
Int
hepr
oc
e
s
so
fawi
ndmi
l
l,wes
ayal
i
ne ℓi
sonagood
s
i
t
i
on,i
ft
he
r
ea
r
ek po
i
n
t
so
fS oneachs
i
deo
ft
hel
i
ne ℓ
po
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
when ℓ j
u
s
tl
eave
sonepo
i
n
to
fS.
Wecons
i
de
rtwogood po
s
i
t
i
on
sa
r
eequa
li
f ℓ pa
s
s
e
st
he
s
ametwo po
i
n
t
s wi
t
ht
hes
amed
i
r
e
c
t
i
on,o
t
he
rwi
s
et
hey a
r
e
d
i
f
f
e
r
en
tgood po
s
i
t
i
on
s.I
ti
sea
s
os
eet
ha
tt
henumbe
ro
f
yt
s
i
t
i
on
si
sf
i
n
i
t
ei
na
l
l wi
ndmi
l
l
s. Gi
ven a po
s
i
t
i
ve
good po
d
i
r
e
c
t
i
ons
ucha
sx
-ax
i
s,deno
t
ea
l
lgoodpo
s
i
t
i
onsi
nt
heorde
r
ofc
l
ockwi
s
eang
l
e
si
n[
0,2π)byℓ1 ,ℓ2 ,...,ℓm .Wepr
oceed
t
opr
ovei
nt
hr
ees
t
ep
s.
Fi
r
s
t
l
i
ven anygood po
s
i
t
i
on,wecans
eet
he
r
ei
sa
t
y,g
mo
s
tonegoodpo
s
i
t
i
on.S
i
ncei
ft
he
r
ewe
r
etwogoodpo
s
i
t
i
ons
ℓi andℓj t
ha
thadt
hes
amed
i
r
ec
t
i
on,t
hent
hey we
r
epa
r
a
l
l
e
l
andd
i
dno
tco
i
nc
i
de,t
henumbe
ront
her
i
i
det
ot
hel
i
ne
sℓi
ghts
andℓjs
hou
l
dbekork -1,
i
tcou
l
dno
tbepo
s
s
i
b
l
et
obo
t
hl
i
ne
s
ℓi andℓj .
Se
cond
l
i
n
ti
nS,t
he
r
eex
i
s
t
ss
omeℓi pa
s
s
i
ng
y,foranypo
t
hr
oughP a
sf
o
l
l
ows.
Takeanypo
i
n
tP ∈ S,andl
i
ne ℓ pa
s
s
i
ngt
hroughP bu
t
no
tt
hr
ought
heo
t
he
rpo
i
n
to
fS.
I
ft
henumbe
rofpo
i
n
t
st
ot
he
r
i
ts
i
deo
fl
i
ne ℓi
ss,t
hent
henumbe
rofpo
i
n
t
st
ot
hel
e
f
t
gh
s
i
deofl
i
ne ℓi
s2
k -s.Thed
i
f
f
e
r
enceoftwonumbe
r
si
s2
k-
2
s.Now,ro
t
a
t
e ℓ abou
tP c
l
ockwi
s
e,wi
t
hs i
nc
r
ea
s
i
ng or
k -2
s
dec
r
ea
s
i
ngby 1 when ℓ i
s pa
s
s
i
ng a po
i
n
t,s
ot
ha
t2
change
s2.When ℓ r
o
t
a
t
e
s180
°,2
k -2
sbecome
si
t
soppo
s
i
t
e
he
r
eex
i
s
t
samomen
tt
ha
tan ℓ ofwh
i
ch
numbe
r.The
r
e
f
or
e,t
t
henumbe
r
so
f po
i
n
t
sontwos
i
d
e
sa
r
eequ
a
l.Deno
t
et
hel
a
s
t
s
s
i
ngpo
i
n
tbyQ,
t
hent
he
r
ei
sagoodpo
s
i
t
i
onℓi pa
s
s
i
ngPandQ.
pa
In
t
e
rna
t
i
ona
lMa
t
hema
t
i
c
a
lOl
i
ad
ymp
303
Th
i
rd
l
ndmi
l
ls
t
a
r
t
i
ngf
romagoodpo
s
i
t
i
onmee
t
st
he
y,awi
r
equ
i
r
emen
to
ft
hepr
ob
l
em.
Wi
t
hou
tl
o
s
so
fgene
r
a
l
i
t
t
a
r
twi
t
hℓ1 .And we
y,we mays
s
howt
ha
tt
he nex
t mee
t
i
ng po
i
n
ti
sj
u
s
tℓ2 ,s
ot
he wi
ndmi
l
l
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
t
i
nue
si
nf
i
n
i
t
e
l
ime
s.Bys
t
eptwo,
mee
t
sa
l
lℓ1 andcon
y manyt
weknowt
ha
teachpo
i
n
tofSi
su
s
eda
sap
i
vo
ti
nf
i
n
i
t
e
l
y many
t
ime
s.
s
s
i
ngP andQ wi
t
hP a
sap
i
vo
tand
Suppo
s
et
ha
tℓ =ℓ1 pa
sj
u
s
tl
eav
i
ngQ .Suppo
d
i
v
i
d
i
ngSequa
l
l
s
et
ha
tℓ me
t
ywhenℓ1i
tandu
s
eR a
sa p
i
vo
t,t
hen ℓ r
ema
i
nd
i
v
i
de
sS
i
n
tR nex
po
equa
l
l
eav
i
ngP wh
i
chi
sva
l
i
dforR onanys
i
deo
fP .
ywhen ℓl
Th
i
ss
howst
ha
tℓi
ss
t
i
l
lagoodpo
s
i
t
i
onwheni
tme
tR and
deno
t
e
st
h
i
sgood po
s
i
t
i
ona
sℓ
'.I
tr
ema
i
nst
obes
hownt
ha
t
i
ncei
f
t
he
r
ei
snogoodpo
s
i
t
i
onbe
tween ℓ andℓ
',
s
oℓ
' =ℓ2 .S
ℓ2 wa
',t
aked
i
r
ec
t
edl
i
neℓ
″
sagoodpo
s
i
t
i
onbe
tween ℓ andℓ
s
s
i
ngP andpa
r
a
l
l
e
lt
o ℓ2 ,t
henℓ
″d
i
v
i
de
sS equa
l
l
ot
ha
t
pa
y,s
t
he
r
ea
r
ea
tl
ea
s
tk + 1po
i
n
t
sont
hel
e
f
torr
i
i
deo
f ℓ2 ,
ghts
wh
i
chcon
t
r
ad
i
c
t
st
hef
ac
tt
ha
tℓ2i
sagoodpo
s
i
t
i
on.
Now,con
s
i
de
rt
he ca
s
e when | S |= 2
ki
s even.The
a
r
tabovei
ss
t
i
l
lva
l
i
d wi
t
hs
u
i
t
ab
l
er
ev
i
s
i
on.Wes
ay a
gumen
l
i
ne ℓi
sonagood po
s
i
t
i
oni
ft
he
r
ea
r
ek po
i
n
t
sofS ont
he
r
i
ts
i
deo
ft
hel
i
neℓ when ℓj
u
s
tl
eave
sonepo
i
n
to
fS.Then
gh
t
hef
i
r
s
tands
e
conds
t
ep
scanbepr
ovens
imi
l
a
r
l
het
h
i
rd
y.Fort
s
t
ep,s
t
a
r
t
i
ngf
r
omagood po
s
i
t
i
on,wecans
hows
imi
l
a
r
l
ha
t
yt
t
henex
tmee
t
i
ngpo
i
n
tby ℓ i
ss
t
i
l
lagoodpo
s
i
t
i
on.Theon
l
y
s
l
i
i
f
f
e
r
enc
et
ot
heoddca
s
ei
st
os
howt
ha
tt
he
r
ei
snogood
ghtd
s
i
t
i
onbe
tween ℓ1 and ℓ2 .
po
Taked
i
r
e
c
t
edl
i
neℓ
″ pa
s
s
i
ngP and pa
r
a
l
l
e
lt
o ℓ2 ,t
hen
t
he
r
ea
r
ekpo
i
n
t
sofSt
ot
her
i
fℓ
″.
I
fℓ2 we
r
eont
her
i
ghto
ght
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
304
s
i
det
oℓ
″,
t
hent
he
r
ewou
l
dbenomor
et
hank -2po
i
n
t
s,s
oℓ
″
wou
l
dno
tbeagoodpo
s
i
t
i
on.I
fℓ2 we
r
eont
hel
e
f
ts
i
det
oℓ
″,
ot
her
i
ts
i
det
oℓ
t
hent
he
r
ewou
l
dbea
tl
ea
s
tk +1t
oℓ
″,s
″
gh
wou
l
dno
tbea good po
s
i
t
i
on.Thu
s,we provedf
ort
heeven
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
ca
s
e.
3 Le
tf :R → Rbear
ea
l
va
l
uedf
unc
t
i
onde
f
i
nedont
hes
e
t
o
fr
ea
lnumbe
r
st
ha
ts
a
t
i
s
f
i
e
s
x +y)≤ yf(
x)+f(
x))
f(
f(
①
ovet
ha
tf(
x)= 0fora
l
l
fora
l
lr
ea
lnumbe
r
sx andy.Pr
x ≤ 0.(
s
edbyBe
l
a
r
u
s)
po
So
l
u
t
i
on.(
Ba
s
edont
hes
o
l
u
t
i
onby Wu Mengx
i)
Le
ty = f(
x)-xi
ni
nequa
l
i
t
henwehave
y ① ,t
t
hu
s,
x))≤ (
x)-x)
x)+f(
x)),
f(
f(
f(
f(
f(
(
x)-x)
x)≥ 0.
f(
f(
Con
s
equen
t
l
ea
lnumbe
rx,wehave
y,foranyr
②
(
x))-f(
x))
x))≥ 0.
f(
f(
f(
f(
No
t
et
ha
tbyt
ak
i
ngy = 0,① imp
l
i
e
sf(
x) ≤ f(
x)).
f(
The
r
e
for
e,
x))≥ 0,orf(
x))= f(
x)< 0.
f(
f(
f(
③
Wef
i
r
s
ts
how t
ha
tf(
x) ≤ 0forany r
ea
lnumbe
rx by
con
t
r
ad
i
c
t
i
on.I
ft
he
r
ei
sar
ea
lnumbe
rx0s
ucht
ha
tf(
x0)>0,
t
henf
oranyr
ea
lnumbe
ry,wehavef(
x0 + y) ≤ yf(
x0)+
x0))
f(
f(
,wehavef(
x0)).Thu
s,foranyy < x0 +y)
f(
f(
x0)
f(
In
t
e
rna
t
i
ona
lMa
t
hema
t
i
c
a
lOl
i
ad
ymp
305
x0))
f(
f(
,wehavef(
z)
(
x
f 0)
<0.
So,f
oranyr
ea
lnumbe
rz <x0 -
x0))
f(
f(
,wes
eet
ha
t
x0)
f(
< 0.Th
e
r
e
for
e,f
orz < mi
n 0,x0 -
{
}
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
z < 0andf(
z)< 0.
Thu
s,by ② ,wehave
④
x0))
x0))
f(
f(
f(
f(
≤ x0 z)≤z < mi
.
n 0,x0 f(
(
(
)
f x0)
f x0
{
}
Con
s
equen
t
l
s,
z))=f(
x0 + (
z)-x0))<0.Thu
f(
f(
y,f(
by ② and ④ ,wehave
z))= f(
z)< 0.
f(
f(
⑤
z +y)≤ yf(
z)+f(
z))= (
z).
f(
f(
y +1)
f(
⑥
x0)≤ (
z).
1 +x0 -z)
f(
f(
⑦
Henc
e,foranyr
ea
lnumbe
ry,by ① and ⑤ ,wehave
Le
ty = x0 -zi
n ⑥ ,t
hen
Tak
i
ngzt
obes
u
f
f
i
c
i
en
t
l
t
i
ves
ucht
ha
t1 +x0 -z >
ynega
x0) < 0, wh
i
ch i
sa
0,t
hen by ⑤ and ⑦ , we have f(
con
t
r
ad
i
c
t
i
on.
The
r
e
f
or
e,foranyr
ea
lnumbe
rx,
x)≤ 0andf(
x))≤ 0.
f(
f(
⑧
Le
ty = - x i
n ① ,t
henf(
0) ≤ - xf(
x)+ f(
x)) ≤
f(
-xf(
x)by ⑧.
Thu
s,weon
l
os
howt
ha
tf(
0)=0,
t
henforx <0,
yneedt
x)≥ 0,andby ⑧ ,weprovedf(
x)= 0fora
l
lx ≤ 0.
f(
Inf
ac
t,i
ff(
t)=tha
snonega
t
i
ves
o
l
u
t
i
on,t
henforany
r
ea
lnumbe
rx,wehave
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
306
x))≠ f(
x)andf(
x)))≠ f(
x)).
f(
f(
f(
f(
f(
⑨
Sof(
equen
t
l
x))≥0andf(
x)))≥0by ③.Cons
f(
f(
f(
y,
x))= 0andf(
x)))= 0by ⑧.Tha
ti
s,f(
0)= 0.
f(
f(
f(
f(
I
ff(
t) = t ha
sa nega
t
i
ves
o
l
u
t
i
on,wes
how t
ha
tt i
s
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
t
henby ① ,
un
i
i
ncei
ft
he
r
ea
r
etwos
o
l
u
t
i
onst1 <t2 <0,
que.S
wehave
t2 = f(
t2)≤ (
t2 -t1)
t1)+f(
t1))= (
t2 -t1)
t1 +t1 ,
f(
f(
t
hu
s(
1 - t1) ≤ 0, wh
i
ch i
s a con
t
r
ad
i
c
t
i
on.
t2 - t1)(
Fu
r
t
he
rmor
e,wes
howt
ha
tt
he
r
eex
i
s
t
sr
ea
lnumbe
rxs
ucht
ha
t
x)≠t (
o
t
he
rwi
s
ef
ora
l
ly,
t ≤y
t +t,wh
i
chf
a
i
l
swheny <
f(
0),hence ⑨ ho
l
df
ort
h
i
sx.
S
e
c
ondDay
9:00~13:30,Ju
l
y19,2011
4 Le
tn > 0beani
n
t
ege
r.Wea
r
eg
i
venaba
l
anc
eandn
n-1
0
1
we
i
t
so
fwe
i
r
et
op
l
aceeach
gh
ght2 ,2 ,...,2 .Wea
oft
hen we
i
t
sont
heba
l
anc
e,onea
f
t
e
rano
t
he
r,i
ns
uch
gh
awayt
ha
tt
her
i
sneve
rheav
i
e
rt
hant
hel
e
f
tpan.
ghtpani
Ateachs
t
ep,wechoo
s
eoneoft
hewe
i
sun
t
i
la
l
loft
he
ght
we
i
st
ha
thaveno
tye
tbeenp
l
acedont
heba
l
anc
eand
ght
l
ac
ei
tone
i
t
he
rt
hel
e
f
tpanort
her
i
t
i
la
l
lt
he
p
ghtpan,un
we
i
shavebeenp
l
ac
ed.
ght
De
t
e
rmi
net
henumbe
rofway
si
nwh
i
cht
h
i
scanbedone.
(
s
edbyI
r
an)
po
So
l
u
t
i
on.(
Ba
s
edont
hes
o
l
u
t
i
onby YaoBowen)Thenumbe
r
o
fway
si
s(
2
n -1)!! = 1 ×3 ×5 × … × (
2
n -1).
s
Wepr
ovet
hepr
ob
l
embyi
nduc
t
i
ononn.Theca
s
en = 1i
c
l
ea
r,pu
tonewe
i
tont
hel
e
f
tpan.Hence,t
he
r
ei
son
l
gh
yone
In
t
e
rna
t
i
ona
lMa
t
hema
t
i
c
a
lOl
i
ad
ymp
307
way.
Suppo
s
et
ha
ti
nt
heca
s
en =k,
t
henumbe
rofway
si
s(
2
k-
1)!! .
t
hou
ta
f
f
e
c
t
i
ngt
her
e
s
u
l
t,
Thenfort
heca
s
en = k +1,wi
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
mu
l
t
i
l
t
hwe
i
sby1/2,t
hek + 1we
i
t
sofwe
i
ta
r
e
p
ybo
ght
gh
gh
1/2,1,2,...,2k-1 .S
i
nc
eforanypo
s
i
t
i
vei
n
t
ege
rr,wehave
2r > 2r-1 +2r-2 + … +1 +
r-1
1
i
≥
±2 .
2 i∑
=-1
The heav
i
e
r pan i
s whe
r
e t
he heav
i
e
s
t we
i
s.
ght i
The
r
e
for
e,t
heheav
i
e
s
twe
i
heba
l
ance mu
s
tbeont
he
ghtont
l
e
f
tpan.Int
hefo
l
l
owi
ng,cons
i
de
rt
hepo
s
i
t
i
onoft
hewe
i
ght
1/2i
nt
heproc
e
s
s
i
on.
(
a)I
fwet
akewe
i
t1/2f
i
r
s
t,t
heni
tmu
s
tpu
tont
hel
e
f
t
gh
her
ema
i
n
i
ngk we
i
t
shave(
2
k -1)!! way
st
odo.
pan.Thent
gh
,
,
,
(
)
/
bI
fwet
akewe
i
ts
t
ept = 2 3 ... k +1,we
ght1 2a
c
anpu
ti
te
i
t
he
ront
hel
e
f
tpano
ront
her
i
tpanb
e
c
a
u
s
ewe
i
t
gh
gh
1/2i
st
hel
i
t
e
s
tone,s
ot
henumb
e
ro
fway
si
s(
2
k -1)!!
gh
Tos
umup,whenn =k +1,
t
he
r
ea
r
et
o
t
a
l
l
2
k -1)!! +
y(
k ×(
2
k -1)!! = (
1+2
k)(
2
k -1)!! = (
2
k +1)!! way
s,wh
i
ch
comp
l
e
t
e
st
hei
nduc
t
i
on.
5 Le
tf beaf
unc
t
i
onf
romt
hes
e
tofi
n
t
ege
r
st
ot
hes
e
tof
s
i
t
i
vei
n
t
ege
r
s.Suppo
s
et
ha
t,f
oranytwoi
n
t
ege
r
sm and
po
n,
t
hed
i
f
f
e
r
enc
ef(
m )-f(
n)i
sd
i
v
i
s
i
b
l
ebyf(
m -n).
Pr
ovet
ha
t,foranytwoi
n
t
ege
r
swi
t
hf(
m )< f(
n),t
he
numbe
ri
sd
i
v
i
s
i
b
l
ebyf(
m ).(
s
edbyI
r
an)
po
So
l
u
t
i
on.(
Ba
s
edont
hes
o
l
u
t
i
onby Long Zi
chao)Ac
cord
i
ng
t
ot
heprob
l
em,wehavef(
k)|f(
x +k)-f(
x),∀x ∈ Zfor
anyi
n
t
ege
rk ≠ 0.Cons
equen
t
l
k)|f(
x +t
k)- f(
x),
y,f(
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
308
∀x ∈Z,t ∈ Z.Sof(
k)|f(
m )-f(
n)foranym ,ns
ucht
ha
t
k|m -n.Thu
s,
n)|f(
m +n)-f(
m ),
f(
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
m - (-n))|f(
m )-f(-n).
f(
①
②
i
nce
Wenowshowt
ha
tf
oranyi
n
t
ege
rn,f(
n)=f(-n).S
o
t
he
rwi
s
e,wi
t
hou
tl
o
s
so
fgene
r
a
l
i
t
ft
he
r
ei
sani
n
t
ege
rn ≠
y,i
0,
s
ucht
ha
tf(
n)> f(-n)> 0,t
hen0 < f(
n)-f(-n)<
n),wh
i
chcon
t
r
ad
i
c
t
sf(
n)|f(
n)-f(-n).
f(
The
r
e
for
e,by ② ,wehave
m +n)|f(
m )-f(
n).
f(
③
t
henby ③ ,wehave0 <f(
I
f0 <f(
m )<f(
n),
m +n)<
n).Comb
i
n
i
ng ① and ③ ,wehavef(
m +n)=f(
m ).Then
f(
by ③ ,wege
tt
her
e
s
u
l
tf(
m )|f(
n).Forf(
m )= f(
n),t
he
r
e
s
u
l
ti
sobv
i
ou
s.
6 Le
t△ABC beanacu
t
et
r
i
ang
l
ewi
t
hc
i
r
cumc
i
r
c
l
eΓ.Le
tl
beat
angen
tl
i
net
o Γ,andl
e
tla ,lb andlc bet
hel
i
ne
s
ob
t
a
i
nedby r
e
f
l
ec
t
i
ngl t
ot
hel
i
ne
sBC ,CA and AB ,
r
e
s
c
t
i
ve
l
ha
tt
hec
i
r
cumc
i
r
c
l
e oft
het
r
i
ang
l
e
pe
y.Show t
st
angen
tt
ot
hec
i
r
c
l
e Γ.
f
ormedbyl
i
ne
sla ,lb andlc i
(
s
edbyJ
apan)
po
So
l
u
t
i
on.(
Ba
s
edont
hes
o
l
u
t
i
onby Chen Li
n)Le
tP bet
he
o Γ.Deno
t
et
hes
t
r
i
cpo
i
n
t
sofP t
o
t
angen
tpo
i
n
to
flt
ymme
BC ,CA ,andAB byPa ,Pb andPc ,r
e
s
t
i
ve
l
s
epo
i
n
t
s
pec
y.The
a
r
eonc
i
r
c
l
e
sΓa ,Γb andΓcs
t
r
i
ct
oΓt
oBC ,CA andAB ,
ymme
r
e
s
c
t
i
ve
l
e,
ℓa ,
ℓbandℓca
r
et
angen
tt
oΓa ,ΓbandΓca
t
pe
y.Henc
i
n
t
sPa ,Pb andPc ,r
e
s
c
t
i
ve
l
po
pe
y.
Deno
t
ela ∩lb = C
',lb ∩lc = A',lc ∩la = B'.
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
In
t
e
rna
t
i
ona
lMa
t
hema
t
i
c
a
lOl
i
ad
ymp
309
F
i
.6
.1
g
De
f
i
net
heor
i
en
t
edang
l
eo
fl
i
nem t
ol
i
nen by
Themagn
i
t
udeo
f
f
r
om m t
on.
(
m ,n).
(
m ,n)i
st
heang
l
ero
t
a
t
edan
t
i
c
l
ockwi
s
e
Weconc
l
udet
ha
t
(
r
eco
l
l
i
nea
r.
1)Po
i
n
t
sPa ,Pb Pc a
Inf
ac
t,t
he mi
dpo
i
n
t
sofPPa ,PPb ,PPc a
r
et
he peda
l
i
n
t
so
fPt
oBC,CAandAB,
r
e
s
t
i
ve
l
lpo
i
n
t
sa
r
e
pec
y.Thepeda
po
,
co
l
l
i
nea
rbyS
ims
on
􀆳
sTheor
em.SoPa Pb andPca
r
eco
l
l
i
nea
r.
(
2) Deno
t
et
hec
i
r
c
umc
i
r
c
l
e
so
f △A'PbPc , △B
'PcPa and
△C
'PaPb by Γ1,Γ2 and Γ3,r
e
s
c
t
i
v
e
l
i
r
c
umc
i
r
c
l
e
so
f
pe
y.Andc
△A
'B
'C
'byΩ.Thenf
ou
rc
i
r
c
l
e
sΓ1,Γ2,Γ3 andΩa
r
ec
opunc
t
a
l.
In f
ac
t,i
ti
sj
u
s
tt
he Mi
l Theor
em for comp
l
e
t
e
que
i
l
a
t
e
r
a
lA'PcB'PaC
'Pb .Deno
t
et
hecopunc
t
a
lpo
i
n
tbyQ .
quadr
(
)
,
,
r
e on c
i
r
c
l
e
s Γ1 Γ2 and Γ3 ,
3 Po
i
n
t
s A B and C a
r
e
s
t
i
ve
l
pec
y.
︵
Inf
ac
t,c
i
r
c
l
e
sΓb andΓc i
n
t
e
r
s
ec
ta
tpo
i
n
tA ,andAPc =
︵
︵
t
a
t
eanang
l
eo
f (
AP = APb .Ro
PcA ,PbA)
abou
tpo
i
n
tA ,
t
hen
lc ,lb )=
Γc → Γb ,Pc → Pb ,andt
ang
en
tl
i
nelc →lb .So, (
(
PcA ,PbA)and
(
lc ,
lb )=
(
i
chme
an
sf
ou
r
PcA',PbA'),wh
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
310
i
n
t
sa
r
ec
on
c
c
l
i
c.Tha
ti
s,po
i
n
tA i
sonc
i
r
c
l
eΓ1.S
imi
l
a
r
l
po
y
y,
r
eonc
i
r
c
l
e
sΓ2 andΓ3,r
e
s
c
t
i
v
e
l
i
n
t
sB andCa
pe
y.
po
(
4)Po
i
n
tQi
sonc
i
r
c
l
eΓ.
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
Byde
f
i
n
i
t
i
ono
fpo
i
n
tQ ,
(
AQ ,BQ )=
(
AQ ,PcQ )+
=
(
APb ,BPa )
=
=
=
=2
=
(
APb ,PbPc )+
(
APb ,AC)+
(
AC ,AP )+
(
AC ,BC)-
(
AC ,BC).
(
PcQ ,BQ )
(
PcPa ,BPa )
(
AC ,BC)+
(
AC ,BC)+
(
AP ,BP )
(
BC ,BPa )
(
BP ,BC)
Henc
e,fou
rpo
i
n
t
sA ,B ,C andQ a
r
econcyc
l
i
c,t
ha
ti
s,
i
n
tQi
sonc
i
r
c
l
eΓ.
po
(
5)Ci
r
c
l
eΓi
st
angen
tt
oc
i
r
c
l
eΩa
tpo
i
n
tQ .
n
t
e
r
s
e
c
tc
i
r
c
l
eΩa
tpo
i
n
t
sQandA″,
Le
tl
i
neQAi
t
henweha
v
e
(
A″B',B'Q )=
=
=
=
=
=
=
=
(
A″B',B'A')+
(
A″Q ,QA')+
(
A'B',B'Q )
(
A'B',B'Q )
(
AQ ,A'Q )+
(
A'B',B'Q )
(
AB ,BPc )+
(
A'B',B'Q )
(
AB ,BPc )+
(
PcB ,BQ )
(
APc ,A'Pc )+
(
AB ,BPc )+
(
AB ,BQ ).
(
A'B',B'Q )
(
PcB',B'Q )
︵
︵
r
eequa
li
n
Th
i
ss
howst
ha
tt
hedeg
r
ee
so
fA″Q andAQ a
c
i
r
c
l
eΩ.No
t
et
ha
tpo
i
n
t
sA ,Q andA″a
r
eco
l
l
i
nea
r,andpo
i
n
t
Qi
st
hes
amepo
i
n
tonc
i
r
c
l
e
sΩandΓ.The
r
e
for
e,t
het
angen
t
l
i
ne
soft
hetwoc
i
r
c
l
e
sa
tpo
i
n
tQ co
i
nc
i
de.Tha
ti
s,t
hec
i
r
c
l
e
s
ΩandΓa
r
et
angen
ta
tQ .
In
t
e
rna
t
i
ona
lMa
t
hema
t
i
c
a
lOl
i
ad
ymp
2012
311
(
Ma
rD
e
lP
l
a
t
a,A
r
e
n
t
i
n
e)
g
F
i
r
s
tDay
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
9:00~13:30,Ju
l
y10,2012
1 Gi
vent
r
i
ang
l
e ABC ,t
he po
i
n
tJ i
st
he cen
t
r
eo
ft
he
i
sexc
i
r
c
l
ei
st
angen
tt
ot
he
exc
i
r
c
l
eoppo
s
i
t
eve
r
t
exA .Th
s
i
deBC a
tM ,andt
tK andL ,
ot
hel
i
ne
sAB andAC a
ta
tF ,andt
r
e
s
c
t
i
ve
l
i
ne
sLM andBJ mee
hel
i
ne
s
pe
y.Thel
KM andCJ mee
ta
tG .Le
tSbet
hepo
i
n
tofi
n
t
e
r
s
ec
t
i
onof
e
tT bet
l
i
ne
sAF andBC ,andl
hepo
i
n
toft
hei
n
t
e
r
s
e
c
t
i
on
o
fl
i
ne
sAG andBC .
Provet
ha
tM i
st
hemi
dpo
i
n
tofST .(
Theexc
i
r
c
l
eof
△ABC oppo
s
i
t
et
heve
r
t
exAi
st
hec
i
r
c
l
et
ha
ti
st
angen
tt
o
t
hel
i
nes
egmen
tBC ,t
ot
her
ayAB beyondB ,andt
ot
he
r
ayAC beyondC .)
So
l
u
t
i
on.Le
t ∠CAB
=α,∠ABC =β,∠BCA =γ.
S
i
nc
eAJi
s
t
heb
i
s
e
c
t
o
ro
f ∠CAB, ∠JAK = ∠JAL =α/2.S
i
nc
e ∠AKL =
∠ALJ =9
0
°,po
i
n
t
sK andLa
r
eont
hec
i
r
c
l
eω wi
t
hd
i
ame
t
e
rAJ.
F
i
.1
.1
g
st
heb
i
s
e
c
t
oro
f ∠KBM ,wehave ∠MBJ =90
°S
i
nc
eBJi
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
312
imi
l
a
r
l
° - γ/2.
y, ∠CML = γ/2 and ∠MCJ = 90
β/2.S
Con
s
equen
t
l
y,∠LFJ = ∠ MBJ - ∠BMF = ∠MBJ - ∠CML
=9
0
°-β/2 -γ/2 = α/2 = ∠JAL .Hence,po
i
n
tF i
sont
he
c
i
r
c
l
eω.S
imi
l
a
r
l
i
n
tG i
sa
l
s
oont
hec
i
r
c
l
eω.S
i
nceAJi
s
y,po
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
t
hed
i
ame
t
e
ro
fc
i
r
c
l
eω,wehave ∠AFJ = ∠ AGJ = 90
°.
r
es
t
r
i
cabou
tt
heb
i
s
ec
t
orof
Segmen
t
sAB andBC a
ymme
ex
t
e
rna
lang
l
eof ∠ABC .AndbyAF ⊥ BF andKM ⊥ BF ,we
s
eet
ha
ts
egmen
t
sSM andAK a
r
es
t
r
i
cabou
tBF ,SM =
ymme
AK .
S
imi
l
a
r
l
i
nc
eAK = AL ,wehaveSM =
y,TM = AL .Ands
TM ,name
st
hemi
dpo
i
n
tofST .
l
y,M i
2 Le
n
t
ege
r,andl
e
ta2 ,a3 ,...,an bepo
tn ≥3beani
s
i
t
i
ve
ovet
ha
t(
1+
r
ea
lnumbe
r
ss
ucht
ha
ta2a3 …an = 1.Pr
2
3
n
n
(
…(
>n .
1 +a3)
1 +an )
a2)
So
l
u
t
i
on.BytheAM GMinequa
l
i
t
y,wehave
1
1
æ 1
ök
k
(
+
+… +
+ak ÷
= ç
1 +ak )
k -1
èk -1 k -1
ø
æ 1 ö÷k-1
ak
èk -1ø
k
≥k · ç
f
ork = 2,3,...,n.
Thu
s,
2
3
n
(
(
…(
1 +a2)
1 +a3)
1 +an )
≥ 2a2 ·3
2
=n .
n
æ 1 ö÷2 · 4 æç 1 ö÷3 ·…· n æç 1 ö÷n-1
a3 4
a4
n
an
è2ø
è3ø
èn -1ø
3ç
Theequa
l
i
t
l
d
swhenak =
yho
1 ,
k =2,...,n,wh
i
ch
k -1
i
sno
tt
heca
s
es
i
ncea2a3 …an = 1.
2
3
n
n
(
…(
>n .
Henc
e,(
1 +a2)
1 +a3)
1 +an )
In
t
e
rna
t
i
ona
lMa
t
hema
t
i
c
a
lOl
i
ad
ymp
313
3 Thel
i
a
r
􀆳
sgue
s
s
i
nggame i
sa game p
l
ayed be
tweentwo
u
l
e
so
ft
he gamedependontwo
l
aye
r
sA andB .Ther
p
i
cha
r
eknownt
obo
t
hp
l
aye
r
s.
s
i
t
i
vei
n
t
ege
r
skandn wh
po
,
Att
hes
t
a
r
toft
hegame A choo
s
e
si
n
t
ege
r
sx andN
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
wi
t
h1 ≤ x ≤ N .P
l
aye
rA keepsx s
e
c
r
e
t,andt
r
u
t
hf
u
l
l
y
t
e
l
l
sN t
o p
l
aye
r B . Now p
l
aye
rB t
r
i
e
st
o ob
t
a
i
n
s
t
i
ons a
s
i
nforma
t
i
on abou
t x by a
s
k
i
ng p
l
aye
r A que
f
o
l
l
ows:eachque
s
t
i
oncons
i
s
t
sofBs
c
i
f
i
ngana
rb
i
t
r
a
r
pe
y
y
fpo
s
i
t
i
vei
n
t
ege
r
s(
s
s
i
b
l
c
i
f
i
edi
ns
ome
s
e
tS o
po
y ones
pe
ev
i
ou
sque
s
t
i
on),anda
s
k
i
ngA whe
t
he
rx be
l
ong
st
oS.
pr
s
ka
s manys
uch que
s
t
i
onsa
she wi
she
s.
P
l
aye
rB may a
Af
t
e
reachque
s
t
i
on,p
l
aye
rA mu
s
timmed
i
a
t
e
l
ri
t
yanswe
wi
t
hye
sorno,bu
ti
sa
l
l
owedt
ol
i
ea
smanyt
ime
sa
sshe
wan
t
s;t
he on
l
e
s
t
r
i
c
t
i
on i
st
ha
t,among any k + 1
yr
con
s
ecu
t
i
veanswe
r
s,a
tl
ea
s
tonean
swe
ri
st
r
u
t
hf
u
l.
Af
t
e
rB ha
sa
s
keda
smanyqu
e
s
t
i
on
sa
shewan
t
s,hemu
s
t
s
c
i
f
e
to
fX o
fa
tmo
s
tnpo
s
i
t
i
v
ei
n
t
e
e
r
s.I
fxbe
l
ong
st
o
pe
yas
g
X,
t
henB wi
n
s;o
t
he
rwi
s
e,hel
o
s
e
s.Pr
ov
et
ha
t:
1
.I
fn ≥ 2k ,
t
henB cangua
r
an
t
eeawi
n;
2
. Fora
l
ls
u
f
f
i
c
i
en
t
l
a
r
t
he
r
eex
i
s
t
sani
n
t
ege
rn >
yl
gek,
1
.99k s
ucht
ha
tB canno
tgua
r
an
t
eeawi
n.
So
l
u
t
i
on.Werephras
et
her
u
l
eo
ft
hegamea
sfo
l
l
ows:Gi
ven
twopo
s
i
t
i
vei
n
t
ege
r
skandn,p
l
aye
rAt
e
l
l
saf
i
n
i
t
es
e
tT = {
1,
2,...,N }t
op
l
aye
rB andkeep
sonee
l
emen
txs
e
c
r
e
t.P
l
aye
r
B choo
s
e
saf
i
n
i
t
es
ub
s
e
tS o
fT anda
sksp
l
aye
rA whe
t
he
rx
be
l
ong
st
oS.P
l
aye
rA an
swe
r
si
twi
t
hye
sornoandi
sa
l
l
owed
t
ol
i
ea
tmo
s
tcon
s
e
cu
t
i
vekt
ime
s.Af
t
e
ra
s
k
i
ngf
i
n
i
t
eque
s
t
i
ons,
i
fp
l
aye
rB cans
i
f
ub
s
e
tofT con
t
a
i
n
i
ngx wi
t
ha
tmo
s
tn
pec
yas
e
l
emen
t
s,t
henp
l
aye
rB wi
n
s.
(
1)I
f N > 2k ,we wi
l
lshow t
ha
tp
l
aye
rB can a
lway
s
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
314
de
t
e
rmi
nes
omee
l
emen
ty ∈ T s
ucht
ha
ty ≠ x.Thu
s,wecan
r
e
s
t
r
i
c
tN ≤ 2k .Con
s
equen
t
l
fn ≥ 2k ,
t
henp
l
aye
rB wi
ns.
y,i
Deno
t
eT = {
1,2,...,N },p
sksp
l
aye
rA s
ame
l
aye
rB a
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
s
t
i
onkt
ime
s:I
sx = 2k +1?I
ft
heanswe
r
sa
r
ea
l
lno,t
hen
que
k
,
≠
+
=
x 2 1 y.Oncean answe
ri
s ye
s t
hent
he nex
tf
i
r
s
t
s
t
i
ono
fp
l
aye
rB i
s:I
sx ∈ {
t ∈ Z|1 ≤ t ≤ 2k-1}? I
fA
que
k-1
{
,
an
swe
r
sye
st
henwehavet
of
i
nday ∈ t ∈ Z|2 +1 ≤t ≤
2k }s
ucht
ha
ty ≠ x.I
fA an
swe
r
sno,t
henwehavet
of
i
nday
k-1
{
}
,
∈ t ∈ Z|1 ≤t ≤ 2
s
ucht
ha
ty ≠ x.
Int
h
i
sway byeach
educ
e ha
l
ft
hes
i
z
e oft
hes
e
t
an
swe
rof p
l
aye
r A ,wecan r
con
t
a
i
n
i
ngy.When A an
swe
r
sk que
s
t
i
ons,wecanconc
l
ude
k
fa = x,t
i
e
s
t
ha
tt
he
r
ei
saun
i
henA l
quea,1 ≤ a ≤ 2 .I
con
s
e
cu
t
i
vek +1t
ime
s.Soy = a ≠ x.
(
2) We pr
ove t
ha
tf
or any 1 < λ < 2,i
fn =
k+1
[(
λ ]-1,t
hen p
l
aye
r B canno
t gua
r
an
t
ee a wi
n.
2 -λ)
Spec
i
a
l
l
akeλ,1
.99 <λ <2,
f
ors
u
f
f
i
c
i
en
t
l
a
r
n
t
ege
rk,
y,t
yl
gei
wehave
n = [(
2 -λ)
λk+1]-1 > 1
.99k ,
wh
i
chi
st
her
equ
i
r
edconc
l
u
s
i
on.
P
l
aye
rA choo
s
e
sT = {
1,...,n +1},andchoo
s
e
sanyx ∈
T .Deno
t
et
hemax
imumnumbe
ro
fcons
ecu
t
i
vel
i
e
sbymi when
x =i.Andde
f
i
neϕ = ∑i=1λmi .Thes
t
r
a
t
egyofAi
st
ochoo
s
e
n+1
t
ol
i
eorno
ts
ucht
ha
tϕt
ake
st
hesma
l
l
e
rva
l
ue.Wewi
l
lshow
t
ha
tϕ < λk+1 a
tanyt
imewi
t
ht
hes
t
r
a
t
egys
t
a
t
edabove.Thu
s
mi ≤kforeachi ∈ T .SoBcanno
tde
t
e
rmi
newhe
t
he
ri =xor
tgua
r
an
t
eeawi
n.
no
t.Thu
s,p
l
aye
rB canno
1
1
n(
λϕ +n +1)
ϕ = mi
ϕ1 ,ϕ2)≤ 2 (
ϕ1 +ϕ2)= 2 (
<
1 (k+2 (
λ + 2 -λ)
λk+1)=λk+1 .
2
In
t
e
rna
t
i
ona
lMa
t
hema
t
i
c
a
lOl
i
ad
ymp
315
Att
hebeg
i
nn
i
ng,mi =0,
s
oϕ =n +1 <λk+1 .Suppo
s
et
ha
t
a
f
t
e
rs
eve
r
a
lan
swe
r
s,ϕ < λk+1 ,andB a
s
ks:I
sx ∈ S? The
an
swe
r“
s”or “
no”cor
r
e
s
i
ng t
otwo numbe
r
sofϕ,
ye
pond
r
e
s
c
t
i
ve
l
sa
sfo
l
l
ows:ϕ1 =
pe
y,i
∑
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
i∉S
+
∑
∑
λmi+1 .Byde
f
i
n
i
t
i
on,
i∈S
1 + ∑i∉Sλmi+1andϕ2 =
i∈S
1
1
n(
λϕ +n +1)
ϕ = mi
ϕ1 ,ϕ2)≤ 2 (
ϕ1 +ϕ2)= 2 (
<
1 (k+2 (
λ + 2-λ)
λk+1)= λk+1 .
2
S
e
c
ondDay
9:00~13:30,Ju
l
y11,2012
4 F
b,
i
nda
l
lf
unc
t
i
on
sf:Z→Zs
ucht
ha
t,fora
l
li
n
t
ege
r
sa,
ct
ha
ts
a
t
i
s
f
t
hef
o
l
l
owi
ngequa
l
i
t
l
d
s:
ya +b +c = 0,
yho
2
a)+f2(
b)+f2(
c)
f (
=2
a)
b)+2f(
b)
c)+2f(
c)
a).
f(
f(
f(
f(
①
(
He
r
eZdeno
t
e
st
hes
e
to
fi
n
t
ege
r
s.)
So
l
u
t
i
on.Le
ta
=b =c = 0y
i
e
l
d3f2(
0)= 6f2(
0).Hence,
0)= 0.
f(
②
a)= f(-a),∀a ∈ Z.
f(
③
2
= 0.He
Le
tb = -a,c = 0y
i
e
l
d(
a)-f(-a))
nce,f
f(
i
sodd,t
ha
ti
s,
2
2
2
+ f(
=2
+
Le
tb = a,c = - 2
ay
i
e
l
d2f(
a)
2
a)
a)
f(
4f(
a)
2
a).Hence,
f(
2
a)= 0orf(
2
a)= 4f(
a),∀a ∈ Z.
f(
④
I
ff(
r)=0fors
omer ≥1,
t
henl
e
tb =r,
c = -a -ry
i
e
l
d
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
316
2
(
= 0.Th
a +r)- f(
a))
a
ti
s,fi
sape
r
i
od
i
cf
unc
t
i
onof
f(
r
i
odr:
pe
a +r)= f(
a),∀a ∈ Z.
f(
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
a)= 0,∀a ∈ Z,i
Es
c
i
a
l
l
ff(
1)= 0.Andi
nt
h
i
s
pe
y,f(
a)= 0,∀a ∈ Z,s
ca
s
e,f
unc
t
i
onf(
a
t
i
s
f
i
e
st
hecond
i
t
i
on ①.
1)=k ≠0.Thenby ③ ,f(
2)=0,or
Nows
uppo
s
et
ha
tf(
2)= 4
2)= 0,
t
henfi
k.I
ff(
sape
r
i
od
i
cf
unc
t
i
ono
fpe
r
i
od
f(
2:
2
n)= 0,f(
2
n +1)=k,∀n ∈ Z.
f(
t
henby ④ ,f(
2)= 4
4)= 0,orf(
4)= 16
I
ff(
k ≠ 0,
k.
sape
r
i
od
i
cf
unc
t
i
onofpe
r
i
od4,and
I
ff(
4)= 0,
t
henfi
e,
3)= f(-1)= f(
1)=k.Henc
f(
n)= 0,f(
n +1)= f(
n +3)=k,
4
4
4
f(
4
n +2)= 4
k,∀n ∈ Z.
f(
2
I
ff(
4)= 16
k ≠ 0,
l
e
ta = 1,b = 2,c = -3y
i
e
l
df(
3)
10
kf(
k2 = 0.
3)+9
Thu
s,
3)∈ {
k,9
k}.
f(
⑤
3)∈ {
9
k,25
k}.
f(
⑥
Le
ta =1,
b =3,
c =-4y
i
e
l
df2(
3)-34
kf(
k2 =0.
3)+225
Thu
s,
Henc
e,by ⑤ and ⑥ ,f(
3)= 9
k.
Now wes
howt
ha
tf(
x) = kx2 ,∀x ∈ N,byi
nduc
t
i
on.
Forx = 0,1,2,3,4,wehavef(
x)=kx2 .Nows
uppo
s
et
ha
t
x)=kx2forx = 0,1,...,n(
n ≥ 4),t
henl
e
ta = n -1,
f(
b = 2,c = -n -1i
n①y
i
e
l
d
In
t
e
rna
t
i
ona
lMa
t
hema
t
i
c
a
lOl
i
ad
ymp
317
2
2
,k(
}.
n +1)∈ {
k(
n +1)
n -1)
f(
Andl
e
ta = n -1,b = 2,c = -n -1i
n①y
i
e
l
d
2
2
,k(
}.
n +1)∈ {
k(
n +1)
n -3)
f(
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
2
n +1)=k (
n +1)
f
orn ≥4.The
r
e
f
or
e,f(
x)=
Thu
s,f(
l
lx ∈ N.By ③ ,f(
l
lx ∈ Z.
kx2fora
x)=kx2fora
Tos
um up a
l
lt
heaboveca
s
e
s,we now checkt
hef
i
na
l
r
e
s
u
l
t:
x)= 0,f2(
x)=kx2 ,
f1(
x)=
f3(
0,x ≡ 0(
mod2),
{
mod2),
k,x ≡ 1(
mod4),
ìï0,x ≡ 0(
ï
mod2),
x)= ík,x ≡ 1(
f4(
ïï
î4
k,x ≡ 2(
mod4).
a
t
i
s
f
fa,b,ca
Obv
i
ou
s
l
r
eeven,
y ①.Forf3 ,i
y,f1 ,f2 s
a)= f(
b)= f(
c)= 0s
a
t
i
s
f
ft
he
r
ea
r
etwoodd
t
henf(
y ① ;i
andoneeveni
na,bandc,t
henbo
t
hs
i
de
sof ① a
r
eequa
lt
o
2
k2 .
Forf4 ,
s
i
nc
ea +b +c = 0,(
a),f(
b),f(
c))ha
son
l
f(
y
f
ourca
s
e
s:(
0,k,k),(
4
k,k,k),(
0,0,0)and (
0,4
k,4
k),
obv
i
ou
s
l
heya
l
ls
a
t
i
s
f
y,t
y ①.
5 Le
t△ABC beat
r
i
ang
l
ewi
t
h ∠BCA = 90
°,andl
e
tD be
tX beapo
i
n
ti
nt
he
t
hefoo
toft
hea
l
t
i
t
udef
r
om C .Le
i
n
t
e
r
i
oroft
hes
egmen
tCD .Le
tK bet
he po
i
n
tont
he
ucht
ha
tBK = BC .S
imi
l
a
r
l
e
tL bet
he
s
egmen
tAX s
y,l
i
n
tont
hes
egmen
tBXs
ucht
ha
tAL = AC .Le
tM bet
he
po
i
n
to
fi
n
t
e
r
s
ec
t
i
onofAL andBK .
po
Showt
ha
tMK = ML .
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
318
So
l
u
t
i
on.Le
tpo
i
n
t
sC
'andC bes
t
r
i
cove
rt
hel
i
neAB ,
ymme
andω1 andω2 bec
i
r
c
l
e
swi
t
hc
en
t
r
e
sA andB ,r
ad
i
u
sAL and
BK ,
r
e
s
c
t
i
v
e
l
i
nc
eAC
' = AC
pe
y.S
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
= AL a
nd BC
' = BC = BK ,
i
n
t
sCandC
'a
r
ebo
t
honc
i
r
c
l
e
s
po
ω1 andω2 .S
i
nce ∠BCA = 90
°,
r
et
angen
tt
o
l
i
ne
sAC and BC a
c
i
r
c
l
e
sω2 andω1 ,r
e
s
c
t
i
ve
l
t
pe
y,a
t
he
r
i
n
t C . Le
t K1 be ano
po
i
n
t
e
r
s
e
c
t
i
onpo
i
n
tofl
i
neAX and
i
f
f
e
r
en
tt
oK ,andL1be
c
i
r
c
l
eω2d
ano
t
he
ri
n
t
e
r
s
e
c
t
i
on po
i
n
to
fl
i
ne
BX andc
i
r
c
l
eω1 d
i
f
f
e
r
en
tt
oL .
F
i
.5
.1
g
Byt
heCi
r
c
l
e
-Powe
rTheor
em,wehave
XK ·XK1 = XC ·XC' = XL ·XL1 ,
henc
eK1 ,L ,K ,L1 a
r
efou
rconcyc
l
i
cpo
i
n
t
sa
tc
i
r
c
l
edeno
t
ed
byω3 .
Byapp
l
i
ngCi
r
c
l
e
-Powe
rTheor
emt
oc
i
r
c
l
eω2 ,wehave
y
AL2 = AC2 = AK ·AK1 .
Th
i
simp
l
i
e
st
hel
i
neALi
st
ang
en
tt
oc
i
r
c
l
eω3a
tpo
i
n
tL.By
t
hes
imi
l
a
ra
r
t,l
i
neBKi
st
ang
en
tt
oc
i
r
c
l
eω3 a
tpo
i
n
tK .
gumen
The
r
e
f
or
e,MK andMLa
r
etwot
angen
tl
i
ne
sf
r
om po
i
n
tM
t
oc
i
r
c
l
eω3 ,
t
hu
sMK = ML .
6 F
i
nd a
l
l po
s
i
t
i
vei
n
t
ege
r
sn f
or wh
i
ch t
he
r
e ex
i
s
t non
nega
t
i
vei
n
t
ege
r
sa1 ,a2 ,a3 ,...,an ,s
ucht
ha
t
1
1
1
1
2
n
+
+ … + a = a + a + … + a = 1. ①
2a1 2a2
3n
2n
31 32
In
t
e
rna
t
i
ona
lMa
t
hema
t
i
c
a
lOl
i
ad
ymp
319
So
l
u
t
i
on.Suppos
et
ha
tns
a
t
i
s
f
i
e
scond
i
t
i
on ① ,t
ha
ti
s,t
he
r
e
ex
i
s
tnon
-nega
t
i
vei
n
t
ege
r
sa1 ≤ a2 ≤ a3 ≤ … ≤ an ,s
ucht
ha
t
n
-a
∑2 i =
i=1
n
∑i·3
-ai
i=1
= 1.
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
Mu
l
t
i
l
i
ngbo
t
hs
i
de
so
ft
hes
e
condequa
l
i
t
p
y
y byan ,and
t
hent
ak
i
ng mod2,wehave
n
1
∑i = 2n(n +1)≡ 1(mod2),
i=1
henc
e,
n ≡ 1,2(
mod4).Int
hefo
l
l
owi
ng,wesha
l
lshowt
ha
t
na
r
ea
l
li
n
t
ege
r
ss
uch
t
h
i
si
sa
l
s
oas
u
f
f
i
c
i
en
tcond
i
t
i
on.Tha
ti
s,
t
ha
tn ≡ 1,2(
mod4).
Weca
l
las
e
to
ff
i
n
i
t
er
epea
t
ab
l
epo
s
i
t
i
vei
n
t
ege
r
sB = {
b1 ,
b2 ,...,bn }a
r
e
s
ea
s
i
b
l
e”,i
s“
ft
hee
l
emen
t
sofB cancor
f
pond
t
onon
-nega
t
i
vei
n
t
ege
r
sa1 ,a2 ,...,an s
ucht
ha
t
n
-a
∑2 i =
i=1
n
∑b3
i=1
i
-ai
= 1.
sf
ea
s
i
b
l
e,r
ep
l
ac
i
ngany
No
t
eanimpor
t
an
tf
ac
tt
ha
ti
fBi
e
l
emen
tbo
fB bytwopo
s
i
t
i
vei
n
t
ege
r
suandv wi
t
hu +v =3
b,
sa
l
s
of
ea
s
i
b
l
e.In f
ac
t,i
fb
t
hen t
he r
e
s
u
l
t
i
ng s
e
t B' i
cor
r
e
s
st
o non
-nega
t
i
vei
n
t
ege
ra,wet
akebo
t
hu andv
pond
cor
r
e
s
i
ng t
o a + 1, keep
i
ng o
t
he
r
s cor
r
e
s
pond
pondence
unchanged.S
i
nc
e
2-a-1 +2-a-1 = 2-a ,
u·3-a-1 +v·3-a-1 =b·3-a ,
B'i
sf
ea
s
i
b
l
e.I
fB'canbeob
t
a
i
nedbys
uchf
i
n
i
t
er
ep
l
acemen
t
s
t
et
hem byB
f
r
omB ,wedeno
B'.Pa
r
t
i
cu
l
a
r
l
fb ∈ B ,
y,i
t
henwecanr
ep
l
acebbyband2
b,
t
hu
s,B
B ∪{
2
b}.
Wesha
l
ls
howt
ha
tf
oreachpo
s
i
t
i
vei
n
t
ege
rn ≡ 1,2(
mod
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
320
4),Bn = {
1,2,...,n}
i
sf
ea
s
i
b
l
e.B1i
sf
ea
s
i
b
l
e,s
i
nc
ewecan
t
akea1 = 0.B2i
sf
ea
s
i
b
l
e,s
i
nceB1
n ≡ 1(
mod4),
t
hens
i
nc
eBn
B2 .I
fBni
sf
ea
s
i
b
l
ef
or
Bn+1 ,Bn+1i
sa
l
s
of
ea
s
i
b
l
e.
sf
ea
s
i
b
l
ef
orn ≡ 1(
Thu
s,i
ts
u
f
f
i
ce
st
os
howt
ha
tBn i
mod
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
sf
ea
s
i
b
l
e,s
i
nc
e
4).B5i
B2
{
1,3,3}
B9i
sf
ea
s
i
b
l
e,s
i
nce
{
1,2,3,4,6,9}
B5
sf
ea
s
i
b
l
e,s
i
nc
e
B13i
B9
{
1,3,4,5}
B5 .
{
1,2,3,5,6,7,9}
B9\{
8}
B9.
B13 ,
{
1,2,3,4,5,6,7,9,11,13}
Thel
a
s
ts
t
epi
sob
t
a
i
ned by append
i
ng2
bs
eve
r
a
lt
ime
s.
sf
ea
s
i
b
l
e,
Append
i
ng8,10and12s
uc
ce
s
s
i
ve
l
tt
ha
tB17i
y,wege
s
i
nce
B6
B5 ∪ {
7,11}
B12 ∪ {
15}
B8 ∪ {
11}
B17\{
10,14,16}
La
s
t
l
howt
ha
tB4k+2
y,wes
andcomp
l
e
t
et
hepr
oo
f.
B7 ∪ {
9,11,15}
B17 .
n
t
ege
rk ≥ 2,
B4k+13foranyi
Bys
uc
c
e
s
s
i
ve
l
i
ng4
k +4,4
k +6,...,4
k +12,we
yappend
no
t
et
ha
t
(
/2 ≤ 4
4
k +12)
k +2.
Int
her
ema
i
n
i
ngs
i
xoddnumbe
r
s4
k +3,4
k +5,...,4
k+
13,deno
t
et
henumbe
r
st
ha
ta
r
e mu
l
t
i
l
e
sof3byu1 ,v1 ,t
he
p
s
umoftwoo
fwh
i
chi
sa mu
l
t
i
l
eo
f3byu2 ,v2 andu3 ,v3 .
p
Thens
ub
s
t
i
t
u
t
ebi =
1(
ui +vi)byui ,vifori =1,2,3.No
t
e
3
t
ha
tbii
seven,s
oweappendbi/2andge
tB4k+13 .
In
t
e
rna
t
i
ona
lMa
t
hema
t
i
c
a
lOl
i
ad
ymp
2013
321
(
S
a
n
t
aMa
r
t
a,Co
l
omb
i
a)
F
i
r
s
tDay
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
9:00~13:30,Ju
l
y23,2013
Pr
ovet
ha
tf
oranypa
i
ro
fpo
s
i
t
i
vei
n
t
ege
r
skandn,t
he
r
e
1
ex
i
s
tkpo
s
i
t
i
vei
n
t
ege
r
sm 1 ,m 2 ,...,mk (
no
tnece
s
s
a
r
i
l
y
d
i
f
f
e
r
en
t)s
ucht
ha
t
1+
1 ö÷ æç
1 ö÷ … æç
1 ö÷
æ
2k -1
1+
1+
= ç1 +
.
m1 ø è
m2 ø è
mk ø
è
n
(
s
edbyJ
apan)
po
So
l
u
t
i
on.Me
thod1.Byi
nduc
t
i
ononk,t
heca
s
eofk
①
= 1i
s
t
r
i
v
i
a
l.Suppo
s
et
ha
tt
hepropo
s
i
t
i
oni
st
r
uefork = j - 1,we
s
howt
ha
tt
heca
s
eo
fk =ji
sa
l
s
ot
r
ue.
sodd,t
ha
ti
s,
n =2
t -1fors
I
fni
omepo
s
i
t
i
vei
n
t
ege
rt,
no
t
et
ha
t
2j -1 2(
t +2j-1 -1) 2
· t
=
1+
2
t -1
2
t
2
t -1
æ
è
2j-1 -1ö÷ æç
1 ö÷ ,
1+
2
t -1ø
t
øè
= ç1 +
andbyt
hehypo
t
he
s
i
so
fi
nduc
t
i
on,wecanf
i
ndm 1 ,...,mj-1
s
ucht
ha
t
2j-1 -1
1 ö÷ æç
1 ö÷ … æç
1 ö÷
æ
1+
1+
= ç1 +
.
m1 ø è
m2 ø è
mj-1 ø
è
t
1+
Thu
s,weneedon
l
ot
akemj = 2
t -1.
yt
I
fni
seven,t
ha
ti
s,
n =2
tfors
omepo
s
i
t
i
vei
n
t
ege
rt,no
t
e
t
ha
t
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
322
2j -1 2
t +2j -1 2
t +2j -2
·
=
j
2
t
2
t
2
t +2 -2
1+
2j-1 -1ö÷
1
ö÷ æç
1+
j
t +2 -2ø è
2
t
ø
= ç1 +
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
æ
è
hehypo
t
he
s
i
sofi
nduc
t
i
on,wecanf
i
nd
and2
t +2j -2 >0,byt
m 1 ,...,mj-1s
ucht
ha
t
2j-1 -1
1 ö÷ æç
1 ö÷ … æç
1 ö÷
æ
1+
1+
= ç1 +
.
m1 ø è
m2 ø è
mj-1 ø
è
t
1+
Thu
s,weneedon
l
ot
akemj = 2
t +2j -2.
yt
Me
thod2.Cons
i
de
rt
heb
i
na
r
i
ono
ft
her
ema
i
nde
r
s
yexpans
fnand -n:
o
fmod2k o
n -1 ≡ 2a1 +2a2 + … +2ar (
mod2k ),
whe
r
e0 ≤ a1 < a2 < … < ar ≤k -1,and
-n ≡ 21 +22 + … +2s (
mod2 ),
b
b
b
k
whe
r
e0 ≤b1 <b2 < … <bs ≤k -1.
S
i
nc
e
0
1
k 1
-1 ≡ 2 +2 + … +2 - (
mod2k ),
wehave
{
a1 ,a2 ,...,ar }∪ {
b1 ,b2 ,...,bs }
={
0,1,...,k -1},andr +s =k.
For1 ≤ p ≤r,1 ≤q ≤s,wedeno
t
e
Sp = 2ap +2ap+1 + … +2ar ,
Tq = 2b1 +2b2 + … +2bq .
Andde
f
i
neSr+1 = T0 = 0.No
t
et
ha
t
S1 +Ts = 2k -1
andn +Ts ≡ 0(
mod2k ).Wehave
In
t
e
rna
t
i
ona
lMa
t
hema
t
i
c
a
lOl
i
ad
ymp
323
2k -1 n +S1 +Ts
=
n
n
1+
=
n +S1 +Ts ·n +Ts
n +Ts
n
r
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
=
2ap
2bq
æç
ö÷
æç
ö÷
·
+
+
.
1
1
∏
∏
n +Sp+1 +Ts ø q=1 è
n +Tq-1 ø
p=1 è
r
=
s
n +Sp +Ts
n +Tq
·∏
∏
+
+
+Tq-1
n
S
T
n
s
p+1
p=1
q=1
s
Thu
s,i
ff
or1 ≤ p ≤ r,1 ≤ q ≤ s,de
f
i
ne m p =
n +Sp+1 +Ts
n +Tq-1
,t
hen wege
tt
her
equ
i
r
ed
andmr+q =
ap
2bq
2
equa
l
i
t
l
opr
ovet
ha
ta
l
lmi a
r
ei
n
t
ege
r
s.For1
y.Weneedon
yt
≤ p ≤r,weknowt
ha
t
n +Sp+1 +Ts ≡ n +Ts ≡ 0(
mod2ap ).
Andfor1 ≤q ≤s,wehave
mod2bq ),
n +Tq-1 ≡ n +Ts ≡ 0(
wh
i
chob
t
a
i
n
st
heconc
l
u
s
i
on.
Me
thod3.Foranya(≠ 0,-1),wehave
1ö
æ
1+
1 ö÷
1öæ
æç
1 + ÷ ç1 +
= çç
a ÷÷ .
aøè
a +1ø
è
2ø
è
②
Wer
ewr
i
t
et
hel
e
f
t
-hands
i
de of ① i
nt
hef
orm oft
he
oduc
to
f2k -1f
r
ac
t
i
on
s:
pr
1 ö÷ æç
1 ö÷ æç
1 ö÷ …
æ
n +2k -1
1+
1+
= ç1 +
nøè
n +1ø è
n +2ø
è
n
1
1
æç
ö÷ æç
ö÷
1+
1+
.
è
n +2k -3ø è
n +2k -2ø
③
Fort
heevenn,g
r
oup
i
ngs
uc
c
e
s
s
i
ve
l
her
i
-hands
i
deof
yt
ght
③i
npa
i
r
sf
romt
hel
e
f
tt
ot
her
i
s
i
ng ② wege
tt
he
ghtandbyu
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
324
f
ormo
fpr
oduc
to
f2k-1f
r
ac
t
i
ons:
1öæ
1 ö æ
1
ææ
öö
1
ö÷
ç ç1 + n ÷ ç1 + n
÷ … ç1 + n
÷ ÷ æç1 +
.
k
1
çç
֍
ç
+1÷
+2
-2÷ ÷ è
n +2k -2ø
2øè
2
2
èè
ø è
øø
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
④
roup
i
ngt
her
i
t
-hands
i
deo
f③i
npa
r
e
Fort
heevenn,g
gh
f
r
omt
her
i
ot
hel
e
f
tandbyu
s
i
ng ② ,wege
tt
heform of
ghtt
oduc
to
f2k-1f
r
ac
t
i
ons:
pr
æ
1ö
æç
1 + ÷ çç
nø
è
è
1 öæ
1
æ
ö
ç1 +n +1÷ ç1 +n +1
÷…
ç
֍
+1÷
2 øè
2
è
ø
ö
1
æ
ö
1
æç
ö÷ ÷
ç1 +n +1
÷
+
1
k 1
ç
(
/2 +2k-1 -2ø ÷ .
+2 - -3÷ è
n +1)
2
è
ø
ø
⑤
Repea
t
i
ngt
heabove g
r
oup
i
ngproc
e
s
st
ot
hef
r
ac
t
i
onsi
n
b
i
r
en
t
he
s
e
so
f④ and ⑤ k -2t
ime
s,r
e
s
t
i
ve
l
l
l
gpa
pec
y,wewi
tt
heformo
ft
her
i
t
-hands
i
deof①.
ge
gh
2
A conf
i
r
a
t
i
on o
f 4027 po
i
n
t
si
nt
he p
l
anei
s ca
l
l
ed
gu
Co
l
omb
i
ani
fi
tcons
i
s
t
so
f2013r
edpo
i
n
t
sand2014b
l
ue
i
n
t
s,and no t
hr
ee po
i
n
t
s of t
he conf
i
a
t
i
on a
r
e
po
gur
co
l
l
i
nea
r.Bydr
awi
ngs
omel
i
ne
s,t
hep
l
anei
sd
i
v
i
dedi
n
t
o
s
eve
r
a
lr
eg
i
on
s.An a
r
r
angemen
tofl
i
ne
si
sgood f
ora
Co
l
omb
i
anconf
i
a
t
i
oni
ft
hefo
l
l
owi
ngtwocond
i
t
i
ons
gur
a
r
es
a
t
i
s
f
i
ed:
●
Nol
i
nepa
s
s
e
st
hroughanypo
i
n
to
ft
heconf
i
a
t
i
on.
gur
●
Nor
eg
i
oncon
t
a
i
n
spo
i
n
t
sofbo
t
hco
l
our
s.
F
i
ndt
hel
ea
s
tva
l
ue o
fk s
ucht
ha
tf
orany Co
l
omb
i
an
conf
i
r
a
t
i
ono
f4027po
i
n
t
s,t
he
r
ei
sagooda
r
r
angemen
t
gu
o
fkl
i
ne
s.(
s
edby Au
s
t
r
a
l
i
a)
po
In
t
e
rna
t
i
ona
lMa
t
hema
t
i
c
a
lOl
i
ad
ymp
So
l
u
t
i
on1.Theansweri
sk
325
=2
013.
t
hanexamp
l
e.Wema
rk
Fi
r
s
t
l
ha
tk ≥ 2013wi
y,weshowt
2013r
edpo
i
n
t
sand2013b
l
uepo
i
n
t
sonac
i
r
c
l
ea
l
t
e
rna
t
i
ve
l
y.
Thent
he
r
ea
r
e4026a
r
c
sont
hec
i
r
c
l
ewi
t
hd
i
f
f
e
r
en
tendpo
i
n
t
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
co
l
ou
r
s.Ma
rkano
t
he
rpo
i
n
ti
nb
l
ueont
hep
l
ane.I
fkl
i
ne
si
s
hen each a
r
ci
n
t
e
r
s
e
c
t
s wi
t
hs
omel
i
ne and any l
i
ne
good,t
i
n
t
e
r
s
e
c
t
st
hec
i
r
c
l
ea
tmo
s
ttwopo
i
n
t
s,hencet
he
r
ea
r
ea
tl
ea
s
t
4026/2=2013l
i
ne
s.
In t
he fo
l
l
owi
ng, we s
how t
ha
tt
he
r
e ex
i
s
t
s a good
a
r
r
angemen
to
f2013l
i
ne
s.
t
ht
hes
ame
F
i
r
s
t,no
t
et
ha
tf
ortwo po
i
n
t
sA and B wi
co
l
our,wecans
epa
r
a
t
et
he
s
etwopo
i
n
t
swi
t
ho
t
he
r
sbydr
awi
ng
twos
u
f
f
i
c
i
en
tnea
rpa
r
a
l
l
e
ll
i
ne
st
oAB oneachs
i
deofAB .
heconvexhu
l
lo
fa
l
lco
l
ou
r
edpo
i
n
t
s.Taketwo
Le
tP bet
ad
acen
tve
r
t
i
ce
so
fP ,s
aypo
i
n
t
sA andB .Theno
t
he
rpo
i
n
t
s
j
I
foneoft
hemi
sr
ed,s
ayA .
a
r
el
oca
t
edonones
i
deo
fl
i
neAB .
Thenwecandr
awonel
i
net
os
epa
r
a
t
eA wi
t
ho
t
he
rpo
i
n
t
s.The
r
ema
i
n
i
ng2012r
ed po
i
n
t
scanbeg
r
oupedi
n1006 pa
i
r
s;each
i
ro
fr
edpo
i
n
t
scanbes
epa
r
a
t
edbytwol
i
ne
s.Soa
l
lt
oge
t
he
r
pa
2013l
i
ne
smee
tt
her
equ
i
r
emen
t.I
fA andB a
r
ea
l
lb
l
ue,t
hen
t
heycanbes
epa
r
a
t
ed wi
t
ho
t
he
rve
r
t
i
ce
sbyu
s
i
ngal
i
ne.The
r
ema
i
n
i
ng2012b
l
uepo
i
n
t
scanbeg
roupedi
n1006pa
i
r
s;each
i
ro
fb
l
uepo
i
n
t
scanbes
epa
r
a
t
edby2l
i
ne
s.Soa
l
lt
oge
t
he
r
pa
2013l
i
ne
smee
tt
her
equ
i
r
emen
t
s.
So
l
u
t
i
on2.Wehaveamoregenera
lr
e
s
u
l
ta
sfo
l
l
ows.
Suppo
s
et
he
r
ea
r
enpo
i
n
t
si
nr
edorb
l
ueonap
l
ane,andno
t
hr
eeo
ft
hem a
r
eco
l
l
i
nea
r.Thent
he
r
eex
i
s
t[
n/2]l
i
ne
st
ha
t
mee
tt
her
equ
i
r
emen
t
s.
Proo
f.Weprovebyinduc
t
i
on.Theconc
l
u
s
i
oni
sobv
i
ou
si
fn ≤
2.Forn ≥ 3,con
s
i
de
ral
i
ne ℓ pa
s
s
i
ngpo
i
n
t
sA andB ,s
uch
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
326
t
ha
tt
her
ema
i
n
i
ngpo
i
n
t
sa
r
eonones
i
deo
fl
i
ne ℓ.Byt
he
n/2]- 1
hypo
t
he
s
e
so
fi
nduc
t
i
on,t
her
ema
i
n
i
ngpo
i
n
t
shave [
l
i
ne
st
ha
tmee
tt
her
equ
i
r
emen
t
s.
I
fA andB havet
hes
ameco
l
ou
rori
nd
i
f
f
e
r
en
tco
l
our
sbu
t
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
a
r
es
epa
r
a
t
edby al
i
ne,wecans
epa
r
a
t
eA andB wi
t
ho
t
he
r
n/2]l
i
ne
s mee
tt
he
i
n
t
sby al
i
ne pa
r
a
l
l
e
lt
o ℓ.Thu
s,[
po
r
equ
i
r
emen
t
s.I
fA andB a
r
ei
nd
i
f
f
e
r
en
tco
l
our
sbu
tbo
t
hi
na
thave
r
eg
i
onR ,
t
hent
her
ema
i
n
i
ngpo
i
n
t
si
nt
her
eg
i
onR dono
aco
l
ou
r,s
ay,b
l
ue,wecandr
aw al
i
net
os
epa
r
a
t
et
heb
l
ue
i
n
to
fA orB wi
t
ho
t
he
rpo
i
n
t
s.Thu
s,t
he [
n/2]l
i
ne
smee
t
po
t
her
equ
i
r
emen
t
sandcomp
l
e
t
et
hei
nduc
t
i
on.
Rema
r
k: Wecan a
s
k a gene
r
a
lprob
l
em t
ha
ts
ub
s
t
i
t
u
t
e
s
2013and2014byanypo
s
i
t
i
vei
n
t
ege
r
sm andn,r
e
s
t
i
ve
l
pec
y,
m ≤n.Deno
t
edt
hes
o
l
u
t
i
ont
ot
heg
ene
r
a
lp
r
ob
l
embyf(
m ,n).
Wecanob
t
a
i
nt
ha
tm ≤ f(
m ,n)≤ m +1byt
hei
deaof
seven,t
henf(
m ,n)= m .Ont
heo
t
he
r
So
l
u
t
i
on1.Andi
fmi
hand,fort
heca
s
et
ha
tm i
sodd,t
hent
he
r
ei
sanN ,s
ucht
ha
t
foranym ≤n ≤ N ,wehavef(
m ,n)= m ,andforanyn > N ,
m ,n)= m +1.
wehavef(
3
Suppo
s
et
ha
tt
heexc
i
r
c
l
eo
f
△ABC oppo
s
i
t
et
heve
r
t
exA
t
ouche
st
he s
i
de BC a
tt
he
i
n
tA1 .De
f
i
net
he po
i
n
t
s
po
B1 on CA and C1 on AB
ana
l
ogou
s
l
s
i
ng t
he
y by u
exc
i
r
c
l
e
soppo
s
i
t
et
oBandC ,
r
e
s
c
t
i
v
e
l
s
et
ha
tt
he
pe
y.Suppo
c
i
r
c
umc
en
t
r
eo
f△A1B1C1 l
i
e
s
on
t
he
c
i
r
cumc
i
r
c
l
e
of
F
i
.3
.1
g
In
t
e
rna
t
i
ona
lMa
t
hema
t
i
c
a
lOl
i
ad
ymp
327
△ABC .Pr
ovet
ha
t△ABCi
sr
i
ang
l
ed.(
Theexc
i
r
c
l
e
ght
s
i
t
et
heve
r
t
exA i
st
hec
i
r
c
l
et
ha
tt
ouched
o
f△ABC oppo
t
hel
i
nes
egmen
tBCt
ot
her
ayAB beyondBandt
ot
her
ay
AC beyondC .Theexc
i
r
c
l
e
soppo
s
i
t
eB andCa
r
es
imi
l
a
r
l
y
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
de
f
i
ned.)(
s
edby Ru
s
s
i
a)
po
So
l
u
t
i
on.Denot
et
hec
i
r
cumc
i
r
c
l
e
sof△ABCand△A1B1C1by
︵
he mi
dpo
i
n
to
fa
r
cBC on Ω
Ωand G,r
e
s
c
t
i
ve
l
tA0 bet
pe
y.Le
con
t
a
i
n
i
ngpo
i
n
tA .Po
i
n
t
sB0 andC0 a
r
ede
f
i
nedana
l
ogou
s
l
y.
hec
en
t
r
eo
fc
i
r
c
l
e G,t
henQi
sonΩbyt
hehypo
t
he
s
i
s
Le
tQ bet
oft
hepr
ob
l
em.F
i
r
s
t,weg
i
vet
hefo
l
l
owi
ngl
emma.
Lemma.A0B1 = A0C1 .Po
i
n
t
sA ,A0 ,B1 and C1 a
r
e
concyc
l
i
c.
I
f po
i
n
t
s A0 and A co
i
nc
i
de,t
hen △ABC i
si
s
o
s
ce
l
e
s
t
r
i
ang
l
e,t
hu
sAB1 = AC1 .Ot
he
rwi
s
e,A0B = A0C by t
he
ti
sev
i
den
tt
ha
t
de
f
i
n
i
t
i
onofA0 .I
æ 1
ö
b +c -a)÷ ,
BC1 = CB1 ç = (
è 2
ø
and
∠C1BA0 = ∠ABA0 = ∠ACA0 = ∠B1CA0 .
Thu
s,
△A0BC1 ≌ △A0CB1 .
So,wehaveA0B1 = A0C1 .
①
Al
s
o, by ① , we have ∠A0C1B = ∠A0B1C , hence
∠A0C1A = ∠A0B1A .Thu
s,po
i
n
t
sA ,A0 ,B1 and C1 a
r
e
concyc
l
i
c.
Obv
i
ou
s
l
i
n
t
sA1 ,B1 andC1 a
r
eonas
emi
a
r
co
fΓ,
y,po
t
hu
s △A1B1C1 i
san ob
t
u
s
e
ang
l
edt
r
i
ang
l
e. Wi
t
hou
tl
o
s
sof
sob
t
u
s
eang
l
e,t
hen
r
a
l
i
t
uppo
s
et
ha
t ∠A1B1C1i
gene
y,wemays
i
n
t
sQ andB1 a
r
eond
i
f
f
e
r
en
ts
i
de
sofA1C1 .Obv
i
ou
s
l
o
po
y,s
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
328
a
r
epo
i
n
t
sB andB1 ,henc
e,po
i
n
t
sQ andB a
r
eont
hes
ames
i
de
o
fA1C1 .
n
t
e
r
s
ec
t
swi
t
h
No
t
et
ha
tt
hepe
rpend
i
cu
l
a
rb
i
s
ec
t
orofA1C1i
Ga
ttwo po
i
n
t
swh
i
cha
r
eond
i
f
f
e
r
en
ts
i
de
sofA1C1 .Byt
he
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
r
eamongt
hei
n
t
e
r
s
ec
t
i
on po
i
n
t
s,
abovea
r
t,B0 andQ a
gumen
andB0 andQ a
r
eont
hes
ames
i
deofA1C1 .SoB0 = Q ,a
s
s
howni
nt
hed
i
ag
r
am.
By t
he l
emma,l
i
ne
s QA0 and QC0 a
r
e pe
rpend
i
cu
l
a
r
e
s
c
t
i
ve
l
r
e
b
i
s
ec
t
or
sofB1C1 andA1B1 ,r
pe
y,andA0 andC0 a
mi
dpo
i
n
t
so
fa
r
c
sCB andBA ,r
e
s
c
t
i
ve
l
r
e
for
e,
pe
y.The
∠C1B0A1 = ∠C1B0B1 + ∠B1B0A1 = 2∠A0B0B1 +2∠B1B0C0
= 2∠A0B0C0 = 1
80
°- ∠ABC .
Ont
heo
t
he
rhand,byt
hel
emmaoncemor
e,wehave
∠C1B0A1 = ∠C1BA1 = ∠ABC .
Henc
e,∠ABC = 180
° - ∠ABC ,s
o ∠ABC = 90
°.Th
i
s
comp
l
e
t
e
st
heproo
f.
S
e
c
ondDay
9:00~13:30,Ju
l
y24,2013
4
Le
t△ABC beanacu
t
e
ang
l
edt
r
i
ang
l
e wi
t
hor
t
hocen
t
e
r
H ,andl
e
tW bea po
i
n
tont
hes
i
deBC ,l
i
ngs
t
r
i
c
t
l
y
y
be
tweenB andC .Thepo
i
n
t
sM andN a
r
et
hef
ee
to
ft
he
a
l
t
i
t
ude
sf
r
om B andC ,r
e
s
c
t
i
ve
l
t
ebyω1 t
he
pe
y.Deno
c
i
r
cumc
i
r
c
l
eo
f△BWN ,andl
e
tX bet
hepo
i
n
tont
heω1
s
ucht
ha
tWX i
l
ogou
s
l
t
e
st
hed
i
ame
t
e
rofω1 .Ana
y,deno
byω2t
hec
i
r
cumc
i
r
c
l
eof△CWM ,andY bet
hepo
i
n
ton
ω2s
sad
i
ame
t
e
rofω2 .Pr
ucht
ha
tWYi
ovet
ha
tX ,Y and
In
t
e
rna
t
i
ona
lMa
t
hema
t
i
c
a
lOl
i
ad
ymp
329
Ha
r
eco
l
l
i
nea
r.(
s
edby
po
Tha
i
l
and)
So
l
u
t
i
on. Le
t AL be t
he
a
l
t
i
t
udet
os
i
deBC ,andZ bet
he
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
i
n
t
e
r
s
e
c
t
i
on po
i
n
to
fc
i
r
c
l
e
sω1
how
andω2 o
t
he
rt
hanW .Wes
t
ha
tpo
i
n
t
sX ,Y ,Z and H a
r
e
co
l
l
i
nea
r.
Po
i
n
t
sB ,C ,M and N a
r
e
concyc
l
i
c(
deno
t
et
hec
i
r
c
l
e by
ω3)s
i
nc
e ∠BNC = ∠BMC =
F
i
.4
.1
g
n
t
e
r
s
e
c
ta
ta po
i
n
ts
i
ncet
hey a
r
et
he
90
°.WZ ,BN andCM i
r
ad
i
ca
lax
i
so
fω1 andω2 ,ω1 andω3 ,ω2 andω3 ,r
e
s
t
i
ve
l
pec
y.
Ands
i
nceBN andCM i
n
t
e
r
s
e
c
ta
tA ,WZ pa
s
s
e
st
hroughA .
∠WZX = ∠WZY =9
r
et
hed
i
ame
t
e
r
s
0
°s
i
nc
eWX andWYa
o
fω1andω2 ,
r
e
s
c
t
i
ve
l
s,po
i
n
t
sX andY a
r
eont
hel
i
ne
pe
y.Thu
lpe
rpend
i
cu
l
a
rf
r
omZt
oWZ .
So,po
i
n
t
sB ,L ,H andN a
r
econcyc
l
i
cs
i
nc
e ∠BNH =
∠BLH = 9
0
°.Byt
heCi
r
c
l
e
-Powe
rTheor
em,
AL ·AH = AB ·AN = AW ·AZ .
①
I
fpo
i
n
tH i
sont
hel
i
ne AW ,t
hen H and Z co
i
nc
i
de.
Ot
he
rwi
s
e,by ① ,wehave
AZ
AL
=
.
AH
AW
Thu
s,△AHZ ∽ △AWL,
c
on
s
e
en
t
l
qu
y,∠HZA = ∠WLA =
90
°,hence,po
i
n
tH i
sa
l
s
oonl
i
nel.
5
Le
tQ+ bet
hes
e
to
fa
l
lpo
s
i
t
i
ver
a
t
i
ona
lnumbe
r
s.Le
tf:
+
unc
t
i
on s
a
t
i
s
f
i
ng t
he f
o
l
l
owi
ng t
hr
ee
Q → R be a f
y
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
330
cond
i
t
i
on
s:
(
x)
xy);
i)fora
l
lx,y ∈ Q+ ,wehavef(
f(
y)≥ f(
(
i
i)f
ora
l
lx,y ∈ Q+ ,wehavef(
x +y)≥f(
x)+f(
y);
(
i
i
i)t
he
r
ee
x
i
s
t
sar
a
t
i
ona
lnumb
e
ra >1s
a)=a.
u
cht
ha
tf(
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
Pr
ovet
ha
tf(
x) = x fora
l
lx ∈ Q+ . (
s
ed by
po
Bu
l
r
i
a)
ga
So
l
u
t
i
on.Le
tx
= 1,y = ai
n(
i),wehave
1)≥ 1.
f(
By (
i
i)andi
nduc
t
i
ononn,wehave
①
nx)≥ nf(
x),"n ∈ Z+ (
t
hes
e
tofa
l
lpo
s
i
t
i
vei
n
t
ege
r
s),
f(
"x ∈ Q+ .
②
1)≥ n."n ∈ Z+ .
n)≥ nf(
f(
③
æm ö
n)≥ f(
m ),"m ,n ∈ Z+ .
f ç ÷f(
èn ø
④
n ② ,wehave
Tak
i
ngx = 1i
By (
i)onc
eaga
i
n,wehave
Henc
e,by ③ and ④ ,wehave
+
f(
q)> 0,"q ∈ Q .
⑤
x)≥ f(x )≥ x > x -1,"x ∈ Q+ ,x > 1.
f(
⑥
n
x)≥ f(
xn ),"n ∈ Z+ ,"x ∈ Q+ ,
f (
⑦
n
x)≥ f(
xn )> xn -1,"x ∈ Q+ ,x > 1.
f (
⑧
Thenby (
i
i)and ⑤ ,fi
ss
t
r
i
c
t
l
nc
r
ea
s
i
ng,and
yi
By (
i)andi
nduc
t
i
ononn,wehave
Thu
s,by ⑥ and ⑦ ,wehave
Thenby ⑧ ,wehave
In
t
e
rna
t
i
ona
lMa
t
hema
t
i
c
a
lOl
i
ad
ymp
331
x)> xn -1,"n ∈ Z+ ,"x ∈ Q+ ,x > 1.
f(
⑨
x)≥ x "x ∈ Q+ ,x > 1.
f(
⑩
an )= an .
f(
(
11)
n
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
Tak
i
ngt
hel
imi
ta
snt
end
st
ot
hei
nf
i
n
i
t
n ⑨ ,wehave
yi
By (
i
i
i),⑦ and ⑩ ,wehavean = fn (
a)≥ f(
an )≥ an .
Thu
s,
Fora
l
lx ∈ Q+ ,x > 1,we maychoo
s
en ∈ Z+ ,s
ucht
ha
t
an -x > 1.By (
11),(
i
i)and ⑩ ,wehave
an = f(
an )≥ f(
x)+f(
an -x)≥ x + (
an -x)= an .
The
r
e
f
or
e,
x)= xfora
l
lx ∈ Q+ ,x > 1.
f(
(
12)
La
s
t
l
l
lx ∈ Q+ ,andfora
l
ln ∈ Z+ ,by (
12),(
i)and
y,fora
② ,wehave
nf(
x)= f(
n)
x)≥ f(
nx)≥ nf(
x),
f(
"n ∈ Z+ ,
n > 1."x ∈ Q+ ,
(
13)
nx)= nf(
x),"n ∈ Z+ ,n > 1,"x ∈ Q+ ,
f(
(
14)
t
ha
ti
s,
Tak
i
ngx = m/
nfora
l
lm ≤ n ∈ Z+ ,
n > 1,wehave
m) m
æ m ö f(
=
.
fç ÷ =
èn ø
n
n
Tha
ti
s,f(
x)= xfora
l
lx ∈ Q+ ,x ≤ 1.
Remark.Thecond
i
t
i
onf(
a)=a
> 1i
se
s
s
en
t
i
a
l.Inf
ac
t,f
or
b ≥ 1,f
unc
t
i
onf(
x)=bx2s
a
t
i
s
f
i
e
s(
i)and (
i
i)f
ora
l
lx,y ∈
1
+
saun
i
i
xedpo
i
n
t ≤ 1.
Q ,andf ha
quef
b
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
332
6
Suppo
s
et
ha
ti
n
t
ege
rn ≥ 3,andcons
i
de
rac
i
r
c
l
ewi
t
hn +
1 equa
l
l
ed po
i
n
t
s ma
rked on i
t. Cons
i
de
ra
l
l
ys
pac
l
abe
l
l
i
ng
so
ft
he
s
epo
i
n
t
swi
t
ht
henumbe
r
s0,1,...,n
s
ucht
ha
teach numbe
ri
su
s
ed exac
t
l
e;twos
uch
y onc
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
l
abe
l
l
i
ng
sa
r
econ
s
i
de
r
edt
o bet
hes
amei
fonecan be
ob
t
a
i
nedf
r
om t
heo
t
he
rby aro
t
a
t
i
on o
ft
hec
i
r
c
l
e.A
eaut
i
li
f,foranyfou
rl
abe
l
sa <b <
l
abe
l
l
i
ngi
sca
l
l
edb
fu
c < d wi
t
ha + d = b +c,t
a,d)doe
hechord (
sno
t
b,c).
i
n
t
e
r
s
ec
tt
hechord (
Le
tM bet
henumbe
ro
fbeau
t
i
f
u
ll
abe
l
l
i
ng
s,andl
e
tN be
x,y)s
ucht
ha
tx < y,x +y ≤n
t
henumbe
ro
fchord
s(
andgcd (
x,y)= 1.Provet
ha
tM = N + 1.(
s
edby
po
Ru
s
s
i
a)
So
l
u
t
i
on1.Not
et
ha
tt
hed
i
s
t
anc
ebe
tweenma
rkedpo
i
n
t
sdoe
s
no
tma
t
t
e
r.Thei
n
t
e
r
s
e
c
t
i
onoft
hechord
son
l
sont
he
ydepend
orde
roft
hepo
i
n
t
s.Forac
i
r
cu
l
a
t
i
onofpe
rmu
t
a
t
i
onof[
0,n]
={
0,1,...,n},weca
x,y)ak
-chordi
fx +y =
l
lachord (
k.I
fx =y,
t
hent
hechorddegene
r
a
t
e
s.
Weca
l
lt
hr
eed
i
s
o
i
n
tchord
sa
r
ei
norde
r
j
i
fachordpa
r
t
so
t
he
rtwochord
s,e.
g.,
i
nF
i
.6
.1,chord
sA ,B and C a
r
ei
n
g
orde
rbu
tchord
sB ,CandD no
t.Weca
l
l
m ≥3d
i
s
o
i
n
tchord
sa
r
ei
norde
r,i
fany
j
t
hr
eechord
sa
r
ei
norde
r.
F
i
.6
.1
g
Aux
i
l
i
aryLemma.Inabeaut
i
f
u
ll
abe
l
l
i
ng,a
l
lk
-chord
sa
r
ei
n
orde
rforanyi
n
t
ege
rk.
Proo
f.Weprovei
tbyi
nduc
t
i
ononn.Thel
emmai
st
r
i
v
i
a
lfor
n ≤ 3.Forn ≥ 4,s
uppo
s
et
ha
tt
he
r
ewe
r
eabeau
t
i
f
u
ll
abe
l
l
i
ng
S,s
ha
tt
hr
eek
-chord
sA ,B andC we
r
eno
ti
norde
r.I
fn
ucht
i
sno
tt
heendpo
i
n
tofchord
sA ,B andC ,wecande
l
e
t
et
he
In
t
e
rna
t
i
ona
lMa
t
hema
t
i
c
a
lOl
i
ad
ymp
333
i
n
tnandob
t
a
i
nabeau
t
i
f
u
ll
abe
l
l
i
ngS\{
n}of[
0,n -1].By
po
r
ei
norde
r.
t
hehypo
t
he
s
i
so
fi
nduc
t
i
on,chord
sA ,B andC a
S
imi
l
a
r
l
f0i
sno
tt
heendpo
i
n
tofchord
sA ,B andC ,we
y,I
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
cande
l
e
t
et
he po
i
n
t0,and mi
nu
seachl
abe
l
l
i
ng by1,s
o we
ob
t
a
i
n a beau
t
i
f
u
ll
abe
l
l
i
ng S\{
0}. By t
he hypo
t
he
s
i
s of
r
ei
n orde
r, wh
i
ch i
sa
i
nduc
t
i
on,chord
s A , B and C a
con
t
r
ad
i
c
t
i
on.Thu
s,0andn mu
s
tappea
ramongt
heendpo
i
n
t
s
n
-chord
so
fA ,B andC .Suppo
s
et
ha
tchord
s(
0,x)and(
y,n)
t
hu
s
a
r
eamongA ,B andC .Thenn ≥ 0 +x =k =n +y ≥n,
x =nandy =0.Tha
ti
s,(
0,n)
i
soneofn
-chord
so
fA ,B and
C .Wi
t
hou
tl
o
s
so
fgene
r
a
l
i
t
uppo
s
et
ha
tC = (
0,n).
y,s
u,v)bead
ac
en
t
Le
tchordD = (
j
andpa
r
a
l
l
e
lt
ochordC ,s
eeF
i
.6
.2,
g
ft = n,t
hen
anddeno
t
et = u +v.I
n
-chord
sA ,B andD a
r
eno
ti
norde
r
i
nt
he beau
t
i
f
u
ll
abe
l
l
i
ng S\{
0,n},
wh
i
ch con
t
r
ad
i
c
t
st
he hypo
t
he
s
i
s of
i
nduc
t
i
on.I
ft <n,
-chord (
0,
t)
t
hent
henchordC i
s
doe
sno
ti
n
t
e
r
s
e
c
tD ,t
F
i
.6
.2
g
apa
r
tpo
i
n
ttandchordD .Andn
-chordE = (
t,n -t)doe
sno
t
i
n
t
e
r
s
e
c
tchordC .So,po
i
n
t
s
tandn -ta
r
eont
hes
ames
i
d
eo
fC.
Bu
tcho
r
d
sA ,B andE a
r
eno
ti
no
r
d
e
r,wh
i
chi
sac
on
t
r
ad
i
c
t
i
on.
La
s
t
l
i
nc
et
he mapp
i
ng o
fx t
on - x con
s
e
r
ve
st
he
y,s
beau
t
i
f
u
l
ne
s
so
fac
i
r
cu
l
a
rpe
rmu
t
a
t
i
on,at
-chordmapst
o(
2
n-
t)
-chord,
t
ha
ti
s,
t > n equ
i
va
l
en
t
st
ot < n.Thu
s,wehave
ovedt
heaux
i
l
i
a
r
emma.
pr
yl
,
Int
hefo
l
l
owi
ng wepr
ovet
hepr
ob
l
embyi
nduc
t
i
ononn.
t
i
f
u
l
Theca
s
eo
fn = 2i
st
r
i
v
i
a
l.Le
tn ≥ 3,andS beabeau
rmu
t
a
t
i
onof [
0,n].T i
sob
t
a
i
nedby de
l
e
t
i
ngn i
nS.Al
l
pe
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
334
n
-chord
si
nT a
r
ei
norde
r,t
he
i
rendpo
i
n
t
si
nc
l
udenumbe
r
s[
0,
n -1].Weca
so
ff
i
r
s
tk
i
ndi
f0i
sl
oca
t
edbe
tweentwo
l
ls
uchTi
n
-chord
s,o
t
he
rwi
s
e,weca
l
ls
uchTi
sofs
econdk
i
nd.Wesha
l
l
showt
ha
teachf
i
r
s
tk
i
ndofbeau
t
i
f
u
lpe
rmu
t
a
t
i
onof[
0,n -1]
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
cor
r
e
s
st
oexac
tonebeau
t
i
f
u
lpe
rmu
t
a
t
i
onof[
0,n].And
pond
eachs
e
condk
i
ndo
fpe
rmu
t
a
t
i
onof [
0,n - 1]cor
r
e
s
st
o
pond
exac
t
l
t
i
f
u
lpe
rmu
t
a
t
i
on
sof[
0,n].
ytwobeau
I
fTi
so
ft
hef
i
r
s
tk
i
nd,s
uppo
s
et
ha
t0l
oca
t
e
sont
hea
r
c
be
tweenchord
sA andB .S
i
nc
echord
sA ,(
0,n)andchord
sB
i
nSa
r
ei
norde
r,
n mu
s
tl
oca
t
eont
heo
t
he
ra
r
cbe
tweenchord
s
A andB .Thu
s,wecanr
e
t
r
i
eveS f
rom T un
i
l
he
que
y.Ont
o
t
he
rhand,foreachT o
ft
hef
i
r
s
tk
i
nd,wecanaddni
nt
he
above manne
rt
o ob
t
a
i
n S. We s
ha
l
ls
how t
ha
t cyc
l
i
c
rmu
t
a
t
i
onS mu
s
tbebeau
t
i
f
u
l.
pe
For0 <k <n,
t
hek
-chordofSi
sa
l
s
ot
hek
-chordofT ,
s
o
k
-chord
sa
r
ei
norde
r.
I
fT i
so
ft
hes
e
condk
i
nd,t
hent
he po
s
i
t
i
onofn t
ot
he
cor
r
e
s
i
ngSha
stwopo
s
s
i
b
i
l
i
t
i
e
s,t
ha
ti
s,
nad
ac
i
en
tt
o0on
pond
j
e
i
t
he
rs
i
de.S
imi
l
a
r
l
ha
tS i
s a beau
t
i
f
u
l
y, we can check t
rmu
t
a
t
i
ono
f[
0,n].
pe
Deno
t
et
het
o
t
a
lnumbe
ro
fbeau
t
i
f
u
lpe
rmu
t
a
t
i
ono
f[
0,n]
by M n ,t
he t
o
t
a
l numbe
r of t
he s
econd k
i
nd of beau
t
i
f
u
l
rmu
t
a
t
i
ono
f[
0,n -1]byLn .Thenwehave
pe
Mn = (
M n-1 -Ln-1)+2Ln-1
= M n-1 +Ln-1 .
st
he numbe
r of po
s
i
t
i
ve
I
ts
u
f
f
i
ce
st
os
how t
ha
tLn-1 i
x,y)wi
x,
i
n
t
ege
rpa
i
r
s(
t
ht
hecon
s
t
r
a
i
n
t
sx +y =nandgcd(
y)= 1.
f
i
ne
Forn ≥ 3,de
In
t
e
rna
t
i
ona
lMa
t
hema
t
i
c
a
lOl
i
ad
ymp
335
n)= # {
x:1 ≤ x ≤ n,gcd(
x,n)= 1}.
φ(
Wes
ha
l
lshowt
ha
tLn-1 =φ(
n).Cons
i
de
ras
econdk
i
ndof
]
,
,
[
,
rknumbe
r
s0 ...,n beau
t
i
f
u
lpe
rmu
t
a
t
i
ono
f 0 n -1 ma
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
1c
l
ockwi
s
eont
hec
i
r
c
l
es
ucht
ha
tnumbe
r0co
i
nc
i
de
swi
t
ht
he
s
i
t
i
on0.Deno
t
et
henumbe
ro
fpo
s
i
t
i
onia
sf(
i).Suppo
s
e
po
t
ha
tf(
a)= n -1.
S
i
nceeachnumbe
ro
f[
1,...,n -1]i
sa
tanendpo
i
n
tof
n
-chord,anda
l
ln
-chord
sa
r
ei
norde
r,byt
hede
f
i
n
i
t
i
ono
ft
he
s
e
condk
i
nd,(
1,n - 1)i
sann
-chord.Thu
s,a
l
ln
-chord
sa
r
e
i)+f(
n -i)= nfori = 1,...,n -1.
r
a
l
l
e
l.Tha
ti
s,f(
pa
S
imi
l
a
r
l
i
nc
ea
l
l(
n -1)
-cho
r
d
sa
r
ei
no
r
de
rande
a
chpo
i
n
ti
s
y,s
anendpo
i
n
to
fan (
n -1)
-cho
r
d,a
l
l(
n -1)
-cho
r
d
sa
r
epa
r
a
l
l
e
l.
Thu
s,f(
i)+f(
mod(
a -i,n))=n -1f
o
ri = 1,...,n -1.
mod(
equen
t
l
a -i,n)+1.Cons
The
r
e
f
or
e,f(-i)= f(
y,
byt
ak
i
ngi =a,2
0)=0,
a,...,(
n -1)
as
uc
ce
s
s
i
ve
l
y,andf(
wehave
k,n),k = 0,1,2,...,(
n -1).
f(-ak)= mod(
①
S
i
nc
ef i
sape
rmu
t
a
t
i
on,we mu
s
thavegcd (
a,n) = 1.
Tha
ti
s,Ln-1 ≤ φ(
n).Toshowt
ha
tt
heequa
l
i
t
l
d
sfor ① ,
yho
weneedon
l
os
how t
ha
tt
he pe
rmu
t
a
t
i
onf g
i
ven by ① i
s
yt
beau
t
i
f
u
l.Tos
eet
h
i
s,wecon
s
i
de
rf
ournumbe
r
sw ,x,yandz
ont
hec
i
r
c
l
es
a
t
i
s
f
i
ngw + y = x + z.The
i
rcor
r
e
s
i
ng
y
pond
s
i
t
i
on
sont
hec
i
r
c
l
es
a
t
i
s
f
po
y (-aw )+ (-ay)≡ (-ax)+ (az)mod (
n),t
ha
ti
s,t
hechord (
w ,y)andchord (
x,z)a
r
e
r
a
l
l
e
l.Thu
s,t
hepe
rmu
t
a
t
i
on ① i
sbeau
t
i
f
u
l,andi
soft
he
pa
s
e
condk
i
ndbycon
s
t
r
uc
t
i
on.
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
336
2014
(
C
a
eT
own,T
h
e
p
R
e
u
b
l
i
co
fS
o
u
t
h
p
)
A
f
r
i
c
a
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
F
i
r
s
tDay
9:00~13:30,Ju
l
y8,2014
1
Le
ta0 < a1 < a2 < … beani
nf
i
n
i
t
es
equenceofpo
s
i
t
i
ve
i
n
t
ege
r
s.Provet
ha
tt
he
r
eex
i
s
t
saun
i
s
i
t
i
vei
n
t
ege
r
quepo
ns
ucht
ha
t
an <
a0 +a1 + … +an
≤ an+1 .
n
(
s
t
edby Au
s
t
r
i
a)
po
So
l
u
t
i
on.De
f
i
nedn
No
t
et
ha
t
=(
a0 +a1 + … +an )-nan ,n =1,2,....
nan+1 - (
a0 +a1 + … +an )
=(
n +1)
an+1 - (
a0 +a1 + … +an +an+1)
= -dn+1 .
So,t
hepr
ob
l
emi
sequ
i
va
l
en
tt
o pr
ovet
ha
tt
he
r
eex
i
s
t
sa
un
i
s
i
t
i
vei
n
t
ege
rns
ucht
ha
tdn > 0 ≥ dn+1 .
quepo
Wes
eet
ha
td1 = (
a0 +a1)-1·a1 = a0 > 0,and
dn+1 -dn = ((
a0 +a1 + … +an )-nan+1)((
a0 +a1 + … +an )-nan )
= n(
an -an+1)< 0,
t
ha
ti
s,{
dn }i
sas
t
r
i
c
t
l
r
ea
s
i
ngs
equenceofi
n
t
ege
r
swi
t
h
y dec
r
e ex
i
s
t
s a un
i
t
hef
i
r
s
tt
e
rm be
i
ng po
s
i
t
i
ve. Henc
e,t
he
que
s
i
t
i
vei
n
t
ege
rn,
s
ucht
ha
tdn > 0 ≥ dn+1 .
po
In
t
e
rna
t
i
ona
lMa
t
hema
t
i
c
a
lOl
i
ad
ymp
337
Remark.I
ti
se
s
s
en
t
i
a
l
l
n
t
e
rmed
i
a
t
et
heor
emi
nd
i
s
c
r
e
t
e
yani
f
orm.
2
s
s
boa
rd
Le
tn ≥ 2beani
n
t
ege
r.Con
s
i
de
rann × n che
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
cons
i
s
t
i
ngo
fn2 un
i
ts
r
e
s.Aconf
i
a
t
i
onofn r
ooks
qua
gur
ont
h
i
sboa
rdi
spe
a
c
e
li
feve
r
ow andeve
r
l
umn
fu
yr
yco
con
t
a
i
n
s exac
t
l
ook.Fi
nd t
he g
r
ea
t
e
s
t po
s
i
t
i
ve
y one r
ucht
ha
tf
oreach peac
e
f
u
lconf
i
a
t
i
ono
fn
i
n
t
ege
rk s
gur
r
ook
s,t
he
r
ei
sanemp
t
r
ewi
t
hou
tanyrookson
yk ×ks
qua
anyofi
t
sk2 un
i
ts
r
e
s.(
s
edbyCroa
t
i
a)
qua
po
So
l
u
t
i
on.Wesha
l
ls
howt
ha
tt
heanswe
ri
skmax = [ n -1]by
twos
t
ep
s.Le
tlbeapo
s
i
t
i
vei
n
t
ege
r.
(
1)I
fn >l2 ,
t
hent
he
r
eex
i
s
t
sanemp
t
r
ef
orany
yl×ls
qua
e
f
u
lconf
i
r
a
t
i
on.
peac
gu
2
(
2)I
fn ≤ l ,t
hent
he
r
eex
i
s
t
sapeace
f
u
lconf
i
a
t
i
on,
gur
s
ucht
ha
teachl ×ls
r
ei
sno
temp
t
qua
y.
Proo
fo
f(
1).Therei
sarowR wi
t
hf
i
r
s
tco
l
umnha
sarook.
Takes
uc
c
e
s
s
i
ve
l
owscon
t
a
i
n
i
ngrow R ,wh
i
cha
r
edeno
t
ed
ylr
byU .I
fn >l2 ,
t
henl2 +1 ≤n,andf
romco
l
umn2t
oco
l
umn
l2 +1i
nU ,con
t
a
i
n
i
ngll ×ls
r
e
swh
i
chhavea
tmo
s
tl -1
qua
r
ook
s.So,a
tl
ea
s
tonel ×ls
r
ei
semp
t
qua
y.
Proo
fo
f (2). For n
2
= l , we s
ha
l
lf
i
nd a peac
e
f
u
l
conf
i
r
a
t
i
onwh
i
chha
snoemp
t
r
e.Wel
abe
lt
he
gu
yl ×ls
qua
rowsf
r
ombo
t
t
omt
ot
opandt
heco
l
umnsf
roml
e
f
tt
or
i
t
h
ghtbo
by0,1,...,
heun
i
ts
r
ea
tt
he
l2 -1.Sodeno
t
eby (
r,c)t
qua
r
owrandco
l
umnc.
Wepu
tar
ooka
t(
i
l +j,j
l +i)fori,j = 0,1,2,...,
l -1.Thef
i
r
ebe
l
owshowst
heca
s
eforl = 3.S
i
nceeach
gu
numbe
rbe
tween0t
ol2 -1canbewr
i
t
t
enun
i
l
nt
heform
que
yi
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
338
o
fi
l +j,(
0 ≤i,j ≤l -1),s
ucha
conf
i
r
a
t
i
oni
speac
e
f
u
l.
gu
Foranyl ×ls
r
eA ,s
uppo
s
e
qua
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
t
ha
tt
hel
owe
s
tr
owo
fA i
sr
owpl +
s
i
nc
epl +q ≤
q,0 ≤ p,q ≤l -1 (
2
l -l).The
r
ei
sonerooki
nA byt
he
conf
i
r
a
t
i
on,andt
heco
l
umnl
abe
l
s
gu
l+
oft
herookmayb
eq
l +p,(
q +1)
l -1)
l +p,p +1,
l+ (
p,...,(
p+
F
i
.2
.1
g
(
1),...,
l +p +1.Rea
r
r
anget
he
s
enumbe
r
si
ni
nc
r
ea
s
i
ng
q -1)
orde
rt
o
l +p +1,q
l +p,
p +1,l + (
p +1),...,(
q -1)
(
l +p,...,(
l -1)
l +p.
q +1)
Thent
hef
i
r
s
tnumbe
ri
sl
e
s
st
hanorequa
lt
ol,t
hel
a
s
ti
s
r
ea
t
e
rt
hanorequa
lt
o(
l -1)
landt
hed
i
f
f
e
r
encebe
tweentwo
g
r
e
for
e,t
he
r
eex
i
s
t
sonerooki
nA .
ad
acen
tnumbe
r
si
sl.The
j
Fort
heca
s
eofn <l2 ,cons
i
de
rt
heconf
i
a
t
i
onabove,
gur
bu
tde
l
e
t
el2 -nco
l
umnsandr
owsf
romt
her
i
romt
he
ghtandf
bo
t
t
om,r
e
s
c
t
i
ve
l
tanl ×ls
r
e.Thu
s,weob
t
a
i
n
pe
y,wege
qua
ann ×ns
r
e,whe
r
et
he
r
ei
snoemp
t
r
e.
Bu
ts
ome
qua
yl ×ls
qua
rowsandco
l
umn
smaybeemp
t
trooksa
tt
hec
ro
s
s
y.Wecanpu
s
r
e
so
f emp
t
l
umns t
o ob
t
a
i
nt
he de
s
i
r
ed
qua
y rows and co
e
f
u
lconf
i
r
a
t
i
on.
peac
gu
Remark.Theanswercou
l
da
l
s
obei
nt
heformof n
3
-1.
Aconvexquadr
i
l
a
t
e
r
a
lABCD ha
°.
s ∠ABC = ∠CDA =90
st
hef
oo
to
ft
hepe
rpend
i
cu
l
a
rf
rom A t
oBD .
Po
i
n
tH i
Po
i
n
t
sSandTl
i
eons
i
de
sAB andAD ,r
e
s
c
t
i
ve
l
uch
pe
y,s
t
ha
tH l
i
e
si
ns
i
de △SCT and ∠CHS - ∠CSB = 90
°,
In
t
e
rna
t
i
ona
lMa
t
hema
t
i
c
a
lOl
i
ad
ymp
339
∠THC - ∠DTC = 9
0
°.
st
angen
tt
ot
he c
i
r
cumc
i
r
c
l
eo
f
Pr
ovet
ha
tl
i
ne BD i
s
edbyI
r
an)
△TSH .(
po
So
l
u
t
i
on.Suppos
et
ha
tt
hel
i
nepa
s
s
i
ngC andpe
rpend
i
cu
l
a
rt
o
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
n
t
e
r
s
e
c
t
sl
i
neABa
tpo
i
n
tQ ,
s
eet
hef
i
ebe
l
ow.Then
l
i
neSCi
gur
256
∠SQC = 9
0
°- ∠BSC = 180
°- ∠SHC .
r
ec
on
c
c
l
i
c wi
t
h SQ i
t
s
Hen
c
e,po
i
n
t
sC, H ,S and Q a
y
Ma
t
hema
t
i
c
a
lOl
i
adi
nC
ymp
,hina
f△SHCi
sonl
i
neAB.
I
n
d
i
ame
t
e
r.
The
r
e
f
o
r
et
hec
i
r
c
umc
en
t
r
eK o
f△CHTi
sonl
i
neAD .
t
hes
amemanne
r,t
hec
i
r
c
umc
en
t
r
eL o
,
Byt
heCo
s
i
neLaw
DF2 = BD2 +BF2 -2BD ·BFcosB


=2
y 1 2
=
2
2
2
(
-(
x +y)
x +z)

y +z) + (
x +y)(
2(

y +z)
4xy2z
.
(
x +y)(
y +z)
Thu
s
4xyz
4xyz
·
i
.3
.1
g
)
KF × HD CF (
x +y) AD (
y +zF
=
FH × DK
DF
DF
x· z
AD
CF
Tos
ho
wt
ha
tl
i
ne BD i
st
angen
tt
ot
he c
i
r
cumc
i
r
c
l
eo
f
16
x
z
y
t
s
u
f
f
i
c
e
st
os
how t
ha
tt
he i
n
t
e
r
s
ec
t
i
on po
i
n
t of
△TSH ,i
=
= 4.
2
(
(
+y)
+z)
x
D
F
y
sonl
i
neAH .Bu
tt
he
rpend
i
cu
l
a
rb
i
s
e
c
t
or
sofHS and HT i
pe
2
,i
e
rp
e
n
d
i
cu
l
a
rb
i
s
e
c
t
o
r
sa
r
e
u
s
tt
h
eang
l
eb
s
e
c
t
or
so
f ∠AKH
DKHF
App
l
i
ngPt
o
l
emy
􀆳􀆳
sT
h
e
o
r
e
mt
oc
c
l
i
c
uad
r
i
l
a
t
e
r
a
l
p
j
y
q
and ∠ALH ,r
e
s
c
t
i
ve
l
he In
t
e
rna
l Ang
l
e Bi
s
ec
t
or
wehave
pe
y. By t
Theor
em,i
ts
u
f
f
i
c
e
st
oshowt
ha
t
KF ·HD = DF ·HK +FH ·DK .
AK × AL
KF × HD
FD = HK.
= 4,weob
t
a
i
n
Comb
i
n
i
ngwi
t
h
KH
LH =3.
FH × DK
FH × DK
h
ef
o
l
l
owi
ng,wewi
l
lg
i
vetwopr
oof
so
f①.
So
l
u
t
i
on 2. Fi
r
s
t we I
r
ov
e
a
pnt
l
emma.
①
Proo
f1.Le
tM bet
hei
n
t
e
r
s
ec
t
i
onpo
i
n
to
fl
i
ne
sKL andHC ,
Lemma.Asshowni
n
F
i
.3
.
s
e
et
h
ef
i
u
r
ebe
l
ow.
g
g2.
t
I
ft
hec
i
r
c
l
et
ouche
sAB andACa
B and C ,r
sa
e
s
c
t
i
ve
l
pe
y,Q i
n
t
e
r
s
e
c
t
s
i
n
tont
hec
i
r
c
l
e.AQ i
po
hen
t
he c
i
r
c
l
e a
t po
i
n
t P, t
F
i
.3
.2
g
wehave
PQ ·BC = 2BP ·QC = 2BQ ·PC .
Proo
fo
ft
hel
emma.ByPto
l
emy
􀆳􀆳
sTheor
em,wes
eet
ha
t
PQ ·BC = BP ·QC +BQ ·PC .
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
340
S
i
nc
eKH = KCandLH =
LC , po
r
e
i
n
t
s H and C a
s
t
r
i
cove
rl
i
neKL .Thu
s,
ymme
Mi
st
he mi
d
i
n
to
fHC .Le
t
po
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
O be t
he c
i
r
cumc
en
t
r
eo
ft
he
c
e,O i
s
ad
r
i
l
a
t
e
r
a
lABCD .Hen
qu
t
he
mi
d
-po
i
n
t o
f AC
and
c
on
s
equ
en
t
l
t
he
r
e
f
o
r
e
yOM ‖AH ,
OM ⊥ BD .Fur
t
he
rby OB =
F
i
.3
.2
g
OD , we s
ee t
ha
t OM i
st
he
rpend
i
cu
l
a
rb
i
s
e
c
t
oro
fBD ,
t
hu
sBM = DM .
pe
r
ec
onc
c
l
i
cwi
t
hKC,
S
i
n
c
eCM ⊥ KL,
i
n
t
sB,C,M andK a
y
po
r
ec
onc
c
l
i
cwi
t
h
t
hed
i
ame
t
e
r.S
imi
l
a
r
l
i
n
t
sL,C,M andD a
y
y,po
LC,
t
hed
i
ame
t
e
r.So,byt
heS
i
neTheo
r
em,wehav
e
AK
s
i
n∠ALK
DM ·CK
CK
KH ,
=
=
=
=
AL
s
i
n∠AKL
CL BM
CL
LH
t
ha
ti
s,①.
P
r
oo
f2.I
fpo
i
n
t
sA ,H andCa
r
ec
o
l
l
i
ne
a
r,t
henAK
= AL,KH
= LH ,
t
hu
s① f
o
l
l
ows.El
s
e,l
e
tω bet
hec
i
r
c
l
epa
s
s
i
ngA ,H
andC .S
i
nepo
i
n
t
sA ,B ,C andD a
r
eonac
i
r
c
l
e
∠BAC = ∠BDC = 9
0
°- ∠ADH = ∠AHD .
Le
tN ≠ A bet
heo
t
he
ri
n
t
e
r
s
ec
t
i
on po
i
n
toft
hec
i
r
c
l
eω
andt
heb
i
s
e
c
t
oro
f ∠CAH ,t
hen AN i
sa
l
s
ot
he b
i
s
ec
t
orof
∠BAD .
S
i
nc
epo
i
n
t
sH andC a
r
es
t
r
i
cove
rl
i
neKL ,and
ymme
eet
ha
tpo
i
n
tN andt
HN = NC ,wes
hecen
t
r
eofωa
r
ebo
t
hon
ti
s,t
hec
i
r
c
l
eωi
st
heApo
l
l
on
i
u
sc
i
r
c
l
eofpo
i
n
t
s
l
i
neKL .Tha
K andL ,
t
hu
s① f
o
l
l
ows.
Remark.Prob
l
em3ha
sanex
t
en
s
i
onbyt
heprob
l
ems
e
l
e
c
t
i
on
In
t
e
rna
t
i
ona
lMa
t
hema
t
i
c
a
lOl
i
ad
ymp
341
commi
t
t
eea
sfo
l
l
ows.
Foraconvexquadr
i
l
a
t
e
r
a
lABCD ,po
i
n
t
sS andT a
r
eon
sl
oca
t
edi
nt
he
s
i
de
sAB andAD ,r
e
s
c
t
i
ve
l
i
n
tH i
pe
y.And po
i
nne
rpa
r
to
f△SCT ,s
a
t
i
s
f
i
ng ∠BAC = ∠DAH , ∠CHS y
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
∠CSB = 9
0
°and ∠THC - ∠DTC = 90
°.
Then t
he c
i
r
cumcen
t
r
eo
f △TSH i
s on AH and t
he
c
i
r
cumcen
t
r
eof△SCTi
sonAC .
S
e
c
ondDay
9:00~13:30,Ju
l
y9,2014
4 Po
i
n
t
sP andQl
i
eons
i
d
eBC o
fa
c
u
t
e
ang
l
ed △ABC s
ot
ha
t
∠PAB = ∠BCAa
nd ∠CAQ = ∠ABC.Po
i
n
t
sM andNl
i
eon
l
i
n
e
sAP andAQ,r
e
s
e
c
t
i
v
e
l
u
cht
ha
tP i
st
h
e mi
dpo
i
n
to
f
p
y,s
andQi
AM ,
st
hemi
dpo
i
n
to
fAN .P
r
ov
et
ha
tl
i
n
e
sBM andCN
i
n
t
e
r
s
e
c
tont
hec
i
r
c
umc
i
r
c
l
eo
f△ABC.(
s
e
dbyGe
o
r
i
a)
po
g
So
l
u
t
i
on.Le
tS bet
hei
n
t
e
r
s
e
c
t
i
onpo
i
n
to
fl
i
ne
sBM andCN ,
s
eet
hef
i
ebe
l
ow.Deno
t
eβ = ∠QAC = ∠CBA ,γ = ∠PAB
gur
= ∠ACB ,
t
henwecans
eet
ha
t△ABP ∽ △CAQ ,
t
hu
s
BP
BP
AQ
NQ
=
=
=
.
PM
PA
QC
QC
By ∠BPM = β + γ = ∠CQN ,△BPM ∽ △NQC ,t
hu
s
∠BMP = ∠NCQ .Con
s
equen
t
l
hu
s
y, △BPM ∽ △BSC ,t
∠CSB = ∠BPM =β +γ = 1
80
°- ∠BAC .
5
Foreachpo
s
i
t
i
vei
n
t
ege
rn,
t
hebankofCapeTowni
s
s
ue
s
1
co
i
nsofdenomi
na
t
i
on .Gi
venaf
i
n
i
t
eco
l
l
ec
t
i
ono
fs
u
ch
n
c
o
i
n
s(
o
fno
tne
c
e
s
s
a
r
i
f
f
e
r
en
tdenomi
na
t
i
on
s)wi
t
ht
o
t
a
l
yd
342
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
v
a
l
u
ea
tmo
s
t99 +
1,
ove
pr
2
t
ha
ti
ti
spo
s
s
i
b
l
et
os
l
i
tt
h
i
s
p
co
l
l
e
c
t
i
oni
n
t
o100 orf
ewe
r
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
r
oup
s,s
ucht
ha
teachg
r
oup
g
ha
st
o
t
a
l va
l
ue a
t mo
s
t 1.
(
s
edbyLuxembou
r
po
g)
So
l
u
t
i
on. We sha
l
l pr
ove a
r
a
l conc
l
u
s
i
on: f
or any
gene
s
i
t
i
vei
n
t
ege
r N ,g
i
ven af
i
n
i
t
e
po
F
i
.5
.1
g
co
l
l
ec
t
i
ono
fs
uchco
i
n
swi
t
hat
o
t
a
lva
l
uea
tmo
s
tN -
1,
prove
2
t
ha
ti
ti
spo
s
s
i
b
l
et
os
l
i
tt
h
i
sco
l
l
e
c
t
i
oni
n
t
oN orf
ewe
rg
r
oups,
p
s
ucht
ha
teachg
roupha
sat
o
t
a
lva
l
ueo
fa
tmo
s
t1.
k (
ki
s a po
s
i
t
i
ve
I
fs
ome co
i
ns have t
o
t
a
lva
l
ue of1/
i
n
t
ege
r),wer
ep
l
ac
et
he
s
eco
i
nsbyoneco
i
nofva
l
ue1/
k,wh
i
ch
doe
sno
ta
f
f
e
c
tt
hepr
ob
l
em.Int
h
i
sway,foreacheveni
n
t
ege
r
k,a
tmo
s
toneco
i
nha
sva
l
ueo
f1/
k(
o
t
he
rwi
s
e,twos
uchco
i
ns
mayber
ep
l
ac
edbyoneco
i
no
fva
l
ue2/
k);
foreachoddi
n
t
ege
r
k,a
tmo
s
t(
k -1)co
i
n
so
fva
l
ue1/
k,(
o
t
he
rwi
s
e,ks
uchco
i
ns
canber
ep
l
ac
edbyoneco
i
no
fva
l
ue1).So,we mays
uppo
s
e
t
ha
tt
he
r
ei
snomor
er
ep
l
ac
emen
tcanbemakefort
heco
i
ns.
F
i
r
s
twet
akeeachco
i
no
fva
l
ue1a
sag
roup.Suppo
s
et
he
r
e
a
r
ed < N s
uchg
r
oup
s.I
ft
he
r
ea
r
enoo
t
he
rco
i
n
s,t
hent
he
ob
l
emi
ss
o
l
ved.Ot
he
rwi
s
e,t
akeco
i
nofva
l
ue1/2a
sag
roup
pr
(
ft
he
r
ei
sany.Le
tm = N - d ≥ 1.Thenforeach
d +1)i
l
ue
i
n
t
ege
rki
n2,...,m ,
t
akeco
i
nso
fva
l
ue1/(
2
k -1)andva
1/(
2
k)
i
ng
r
oup (
d + k)i
ft
he
r
ea
r
eany,i
n wh
i
cht
het
o
t
a
l
/(
va
l
uedoe
sno
texc
eed(
2
k -2)
2
k -1)+1/(
2
k)<1.Forco
i
ns
ofva
l
uel
e
s
st
han1/(
2m ),
i
ft
he
r
ea
r
eany,wecanpu
tt
hemi
n
In
t
e
rna
t
i
ona
lMa
t
hema
t
i
c
a
lOl
i
ad
ymp
343
s
omeg
r
oup (
d +j)s
ucht
ha
tt
het
o
t
a
lva
l
uei
sl
e
s
st
han1(
s
i
nce
d +j)ha
i
feachg
r
oup (
sva
l
ueg
r
ea
t
e
rt
han1 -1/(
2m ),t
hen
1 -1/(
2m ))= m +
t
het
o
t
a
lva
l
uewi
l
lbeg
r
ea
t
e
rt
hand + m (
d -1/2 =N - 1/2).Repea
tt
h
i
s procedu
r
ef
i
n
i
t
et
ime
s,a
l
l
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
co
i
nsa
r
epu
ti
nN orf
ewe
rg
r
oup
swi
t
heachg
roupo
fva
l
uea
t
mo
s
tone.
6
As
e
to
fl
i
ne
si
nt
hep
l
anei
si
ng
ene
r
a
lpo
s
i
t
i
oni
fnotwo
o
ft
hema
r
epa
r
a
l
l
e
landnot
hr
eeoft
hempa
s
st
hrought
he
s
amepo
i
n
t.A s
e
to
fl
i
ne
si
n gene
r
a
lpo
s
i
t
i
on cu
t
st
he
l
anei
n
t
or
eg
i
ons,s
omeo
f wh
i
ch havef
i
n
i
t
ea
r
ea;we
p
ca
l
lt
hem f
i
n
i
t
er
eg
i
on
s.Provet
ha
tf
ora
l
ls
u
f
f
i
c
i
en
t
l
y
l
a
r
n any s
e
to
fn l
i
ne
si
n gene
r
a
lpo
s
i
t
i
on,i
ti
s
gen,i
s
s
i
b
l
et
oco
l
ou
ra
tl
ea
s
t no
ft
hel
i
ne
si
nb
l
ues
ucht
ha
t
po
noneo
fi
t
sf
i
n
i
t
er
eg
i
on
sha
sacomp
l
e
t
e
l
l
uebounda
r
yb
y.
(
s
edby Au
s
t
r
i
a)
po
So
l
u
t
i
on.Le
hemax
ima
ls
e
to
fl
i
ne
ss
ucht
ha
tnof
i
n
i
t
e
tB bet
r
eg
i
onha
scomp
l
e
t
e
l
l
uebounda
r
t|B |=k,andco
l
our
yb
y.Le
,
t
heo
t
he
rn -kl
i
ne
si
nr
ed.Foreachr
edl
i
ne ℓ t
he
r
ei
sa
s
l
ea
s
tonef
i
n
i
t
er
eg
i
onA who
s
eun
i
eds
i
del
i
e
son ℓ.We
quer
s
ayapo
i
n
ti
sr
edi
fi
ti
st
hei
n
t
e
r
s
e
c
t
i
onpo
i
n
to
fr
edandb
l
ue
l
i
ne
s.Andwes
ayapo
i
n
ti
sb
l
uei
fi
ti
st
hei
n
t
e
r
s
ec
t
i
onpo
i
n
tof
twob
l
uel
i
ne
s.Deno
t
et
heve
r
t
i
c
e
so
fA c
l
ockwi
s
eby (
p1 ,p2 ,
...,ps )wi
t
hpo
i
n
tp1i
nr
edandp2i
nb
l
ue.Then wes
ayt
he
r
edl
i
ne ℓ cor
r
e
s
st
ot
her
edpo
i
n
tp1 andb
l
uepo
i
n
tp2 .
pond
Now wea
r
et
oshowt
ha
tanyb
l
uepo
i
n
tcanbecor
r
e
s
o
pondedt
æk ö
a
tmo
s
ttwor
edl
i
ne
s.(
I
ft
h
i
si
st
r
ue,t
henn -k ≤2ç ÷ ⇔n ≤
è2ø
k2 .)
Wepr
ovei
tbycon
t
r
ad
i
c
t
i
on.I
fno
t,s
uppo
s
et
ha
tt
he
r
e
344
Ma
t
hema
t
i
c
a
lOl
i
adi
nCh
i
na
ymp
a
r
et
hr
eer
edl
i
ne
sℓ1 ,ℓ2and ℓ3cor
r
e
s
oab
l
uepo
i
n
tb,
pondt
andt
hecor
r
e
s
i
ngr
edpo
i
n
t
sonr
edl
i
ne
s ℓ1 ,ℓ2 and ℓ3
pond
a
r
er1 ,
r2andr3 ,
hei
n
t
e
r
s
ec
t
i
onpo
i
n
tof
r
e
s
c
t
i
ve
l
tbbet
pe
y.Le
twob
l
uel
i
ne
s.Wi
t
hou
tl
o
s
so
fgene
r
a
l
i
t
uppo
s
et
ha
t
y,wemays
Mathematical Olympiad in China (2011–2014) Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/06/18. For personal use only.
s
i
de
s(
r
eononeoft
hetwob
l
uel
i
ne
s,and
r2 ,b)and (
r3 ,b)a
(
r1 ,b)
i
st
hes
i
deo
fr
eg
i
onA ont
heo
t
he
rb
l
uel
i
ne.S
i
nceA
ha
son
l
eds
i
de,A mu
s
tbeat
r
i
ang
l
e △r1b
r2 .Bu
tt
hen
yoner
s
sr2 ,
r
edl
i
ne
sℓ1andℓ2pa
andab
l
uel
i
nea
l
s
opa
s
s
e
sr2 ,wh
i
ch
i
sacon
t
r
ad
i
c
t
i
on.
Descargar