ALVARADO.PrincipiosdeIngenieria2nd

Anuncio
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/302119863
Principios de Ingeniería Aplicados en Alimentos (2da. ed.)
Book · January 2014
CITATIONS
READS
7
34,746
1 author:
Juan de Dios Alvarado
Universidad Técnica de Ambato (UTA), Ecuador
19 PUBLICATIONS 349 CITATIONS
SEE PROFILE
Some of the authors of this publication are also working on these related projects:
Cálculo de procesos térmicos y no térmicos en lácteos. View project
Lácteos concentrados azucarados: de la tradición a la ciencia View project
All content following this page was uploaded by Juan de Dios Alvarado on 07 May 2016.
The user has requested enhancement of the downloaded file.
PRINCIPIOS DE
INGENIERÍA
APLICADOS A
ALIMENTOS
Juan de Dios Alvarado
SECRETARÍA DE LA ORGANIZACIÓN DE LOS ESTADOS AMERICANOS
PROGRAMA REGIONAL DE DESARROLLO CIENTÍFICO Y TÉCNOLÓGICO
PROYECTO MULTINACIONAL DE BIOTECNOLOGÍA Y TECNOLOGÍA DE ALIMENTOS
La presente obra se divulga gracias a las autoridades de
la Universidad Técnica de Ambato, quienes a través del
Reglamento de auspicio para la impresión de libros, textos u
otro tipo de publicaciones académicas, científicas y culturales,
hicieron posible su difusión.
Rector: Ing. M.Sc. Luis Amoroso Mora.
Vicerrector Académico: Dr. M.Sc. Galo Naranjo L.
Vicerrector Administrativo: Ing. M.Sc. Jorge León M.
© Del autor.
I.S.B.N.: 978-9942-11-507-2
Diseño, Diagramación y Levantamiento de Texto:
Paul Alvarado.
Imprenta
.
Impreso en Ecuador 2013.
Segunda Edición 1000 ejemplares.
La Primera Edición de este libro fue publicada con el soporte y la
ayuda financiera de la Secretaría General de la Organización de
los Estados Americanos (OEA), Programa Regional de Desarrollo
Científico y Tecnológico, como parte del Proyecto Multinacional
Biotecnología y Tecnología de Alimentos (1996). Diagramación: Ing.
Javier Salazar. Inprenta: Radio Comunicaciones División de Artes
Gráficas. Quito - Ecuador. 500 ejemplares.
Este libro no podrá ser reproducido en forma alguna, total o
parcialmente, sin el permiso de la Universidad Técnica de Ambato
o del autor.
PRINCIPIOS DE
INGENIERÍA
APLICADOS EN
ALIMENTOS
Segunda Edición
Juan de Dios Alvarado
DEDICATORIA
A Ecuador y Ambato.
“......voluntad es su fuerza; constancia,
su virtud palpitante y eterna”.
(R. Pachano L.)
Por la familia:
Gladys, Sylvia, Paúl.
I
CONTENIDO
Página
Acerca del Autor
Presentación
Prólogo a la Segunda Edición
Prólogo a la Primera Edición
III
IV
V
VII
CAPÍTULO 1. BALANCES DE MATERIA Y DE ENERGÍA ........................................................ 1
Tema 1.1.
Tema 1.2.
Tema 1.3.
Aplicación de balances de materia en la elaboración de jaleas .................................... 5
Aplicación de balances de energía para la determinación del calor específico .......... 10
Aplicación de balances de materia y energía para la elaboración de
cartas de humedad ...................................................................................................... 20
CAPÍTULO 2. PRINCIPIOS BÁSICOS DE FENÓMENOS DE TRANSPORTE ........................ 28
Tema 2.1.
Tema 2.2.
Tema 2.3.
Aplicación de la ley de Fourier .................................................................................. 32
Aplicación de la primera ley de Fick .......................................................................... 38
Aplicación de la ley de enfriamiento de Newton ....................................................... 46
CAPÍTULO 3. CINÉTICA DE REACCIONES QUE OCURREN EN ALIMENTOS .................. 54
Tema 3.1.
Tema 3.2.
Tema 3.3.
Aplicación de cinética química en la oxidación de aceites ........................................ 58
Aplicación del tiempo de vida media en la cinética del empardeamiento
de bananos .................................................................................................................. 64
Aplicación del modelo de Arrhenius en la cinética de degradación de la
vitamina C en jugos de frutas ..................................................................................... 75
Tema 4.1.
Tema 4.2.
Tema 4.3.
Tema 4.4.
Tema 4.5.
Tema 4.6.
Tema 4.7.
Aplicación del principio de Arquímedes para determinar el contenido de
sólidos en papas .......................................................................................................... 92
Aplicación de la densidad para caracterizar granos y harinas .................................... 96
Aplicación de la densidad de leches, jugos y aceites para calcular el
contenido de sus componentes químicos principales ............................................... 110
Aplicación de la tensión superficial como índice de pureza en jugos de
frutas .......................................................................................................................... 133
Aplicación del módulo de Young como una medida de control en
tallarines ................................................................................................................... 139
Aplicación de las propiedades mecánicas para caracterizar carnes .......................... 144
Aplicación del índice de refracción para explorar la estructura de ácidos
grasos ......................................................................................................................... 155
Juan de Dios Alvarado
CAPÍTULO 4. PROPIEDADES MECÁNICAS Y ÓPTICAS ....................................................... 85
II
CAPÍTULO 5. PROPIEDADES REOLÓGICAS ........................................................................ 175
Tema 5.1.
Tema 5.2.
Tema 5.3.
Tema 5.4.
Aplicación de la viscosidad para determinar la energía de activación de
flujo en leches, jugos y aceites .................................................................................. 179
Aplicación de los parámetros reológicos como índices de control de
calidad en productos lácteos ..................................................................................... 195
Aplicación del modelo de la ley de la potencia para caracterizar el flujo
de pulpas de frutas ..................................................................................................... 210
Aplicación de los parámetros reológicos para caracterizar a pulpas de
bananos ...................................................................................................................... 221
CAPÍTULO 6. PROPIEDADES TÉRMICAS ............................................................................. 228
Tema 6.1.
Tema 6.2.
Tema 6.3.
Tema 6.4.
Tema 6.5.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Tema 6.6.
Aplicación del calor específico para determinar la concentración de
sacarosa en jarabes ................................................................................................... 233
Aplicación de los fundamentos de penetración de calor en estado
variable para calcular la difusividad térmica de pulpas de frutas ............................ 240
Aplicación de la difusividad para calcular la conductividad térmica de
carnes ......................................................................................................................... 246
Aplicación de la ley de Fourier en estado de régimen transitorio para
determinar la conductividad térmica de frutas y vegetales esféricos ....................... 254
Aplicación de la calorimetría para determinar el calor de vaporización en
alimentos líquidos con humedad alta ........................................................................ 267
Aplicación del principio de Othmer para determinar la entalpía de
evaporación del agua en alimentos sólidos .............................................................. 272
CAPÍTULO 7. TRANSFERENCIA DE CALOR ........................................................................ 280
Tema 7.1.
Tema 7.2.
Tema 7.3.
Tema 7.4.
Tema 7.5.
Aplicación del coeficiente global de transferencia de calor para control
de intercambiadores de carcaza con haz de tubos .................................................... 285
Aplicación de los coeficientes de transferencia de calor para control de
intercambiadores de placas ....................................................................................... 301
Aplicación del coeficiente global de transferencia de calor para control
del funcionamiento de ollas de cocción .................................................................... 319
Aplicación de los fundamentos de conducción de calor de estado inestable
para calcular cambios de temperatura en papas......................................................... 332
Aplicación del método numérico de diferencias finitas para calcular
cambios de temperatura en alimentos enlatados ....................................................... 340
CAPÍTULO 8. PROCESOS TÉRMICOS ................................................................................... 348
Tema 8.1.
Tema 8.2.
Aplicación del Método General para establecer el tiempo de pasteurización
de alimentos líquidos ................................................................................................ 353
Aplicación del Método de Ball para calcular tiempos de proceso térmico
en la esterilización comercial de alimentos enlatados .............................................. 374
CAPÍTULO 9. DESHIDRATACIÓN ........................................................................................... 393
Tema 9.1.
Tema 9.2.
Tema 9.3.
Tema 9.4.
Tema 9.5.
Aplicación de la crioscopía para determinar la actividad del agua en
alimentos líquidos ..................................................................................................... 398
Aplicación de la deshidratación osmótica en frutas ................................................ 408
Aplicación de la energía solar para el secado de cereales ........................................ 425
Aplicación de la liofilización atmosférica para la deshidratación de papas ............. 439
Aplicación de la ley de Fick para determinar el coeficiente de difusión en
el secado de vegetales ............................................................................................... 451
INDICE ........................................................................................................................................ 482
III
ACERCA DEL AUTOR
JUAN DE DIOS ALVARADO, trabaja como
docente universitario desde hace 43 años,
responsable de la Cátedra de Ingeniería de
Procesos en Alimentos, su actividad como
Director-Tutor de 80 Tesis de Grado y trabajos
para graduación coadyuvó para que más de un
centenar de profesionales opten por el título de
Ingeniero.
Nació en Quito el 4 de septiembre de 1946, es
hijo de Lola Alvarado Albán y está casado con
Gladys Navas Miño, con quien procrearon dos
hijos Sylvia Cristina y Paul Santiago.
Se graduó como Ingeniero en Alimentos en la
Universidad Técnica de Ambato-Ecuador (1974)
y como Magister en Ciencias y Tecnología de
Alimentos en INCAP - Universidad de San
Carlos de Guatemala (1979).
Es autor de los libros: “Principios de Ingeniería
Aplicados en Alimentos”. Segunda edición.
UTA. Ambato, Ecuador. Alvarado, J. de D. 2013.
488 páginas; “Propiedades Termodinámicas
Relacionadas con el Agua Constitutiva de
Alimentos”. UTA. Ambato, Ecuador. Alvarado,
J. de D. 2012. 308 páginas; “Métodos para
Medir Propiedades Físicas en Industrias de
Alimentos”. Editorial Acribia. Alvarado, J. de D. y Aguilera, J. M. (Eds.). 2001. 410 páginas y
“Principios de Ingeniería Aplicados a Alimentos”. OEA. Quito, Ecuador. Alvarado, J. de D. 1996.
524 páginas.
Participante de numerosos cursos de especialización en los países iberoamericanos y en Ecuador.
Entre las actividades y reconocimientos se destacan: Director de Sesión Docencia del IX Congreso
Iberoamericano de Ingeniería en Alimentos (CIBIA IX), España. Conferencista en CIBIA VIII, 2011,
Perú. Presidente de CIBIA VI, 2007, Ecuador. Distinción H. Consejo Provincial de Tungurahua,
2003. Finalista del Premio Coorporación Andina de Fomento (CAF) a la Investigación Tecnológica
Capítulo Ecuador, 2002. Profesor invitado de la Universidad Nacional Experimental del YaracuyVenezuela y de la Universidad Nacional de Salta-Argentina. Premio Pedro Vicente Maldonado 1997,
otorgado por el Distrito Metropolitano de Quito a la mejor obra en Ciencias Exactas. Distinción
Joaquín Lalama, otorgada por el I. Municipio de Ambato. Miembro Titular de la Comunidad
Científica Ecuatoriana desde 1985. Director de la Escuela de Ingeniería en Alimentos y de la Escuela
de Ingeniería Agronómica de la Universidad Técnica de Ambato.
Juan de Dios Alvarado
Aportó con capítulos en cuatro libros relacionados con alimentos. Publicó 22 artículos científicos en
revistas internacionales indizadas procedentes de Alemania, Argentina, Chile, España, Guatemala,
USA, Venezuela y Canadá; 42 artículos presentados y/o difundidos en documentos de
congresos y eventos internacionales y 63 artículos técnicos presentados en eventos o publicados
en revistas técnicas ecuatorianas. Ha realizado 20 proyectos de investigación con financiamiento
internacional y/o nacional.
IV
PRESENTACIÓN
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
La enseñanza superior técnica en Ecuador se desenvuelve bajo el apoyo de textos y bibliografía, generados
en los países de mayor desarrollo relativo; en los cuales, la organización del trabajo universitario depende de
objetivos nacionales claros y se desarrolla en estrecha relación con los usuarios de la investigación y mano de
obra técnica que responden a esa realidad.
Nuestro país, al igual que otros países en desarrollo, responde a una propia realidad socio-económica-técnica, que
requiere, de sus universidades, soluciones acordes con sus necesidades; lo que significa generar investigación
particular y mano de obra técnica capaz de encarar con éxito los problemas propios, con los pequeños recursos,
pero con la proyección a manejar, adaptar y generar el conocimiento y la técnica de avanzada.
Dentro de este contexto, el presente libro es uno de los primeros esfuerzos serios de aporte a la enseñanza
de la Ingeniería de Alimentos, con un enfoque práctico de aplicación, manejando productos y equipos de
nuestra realidad, pero reflejando un amplio dominio de los conocimientos teóricos de la Ingeniería de Procesos
de Alimentos. Los nueve capítulos que contiene el libro, permiten en forma objetiva, clara y metodológica
acceder a los conocimientos complejos de la Ingeniería de Alimentos.
La constancia de una década de trabajo en la investigación y docencia se proyectará en el tiempo a través del
presente libro cuya autoría corresponde a un representante de esa nueva generación de investigadores que hace
vislumbrar mejores días para el país.
Bolívar Izurieta A.
V
PRÓLOGO A LA SEGUNDA EDICIÓN Y
VERSIÓN ELECTRÓNICA
En la Primera Edición se indicó la dificultad de aplicar principios y leyes científicas en Ingeniería de Alimentos,
entre otras causas por la compleja composición de los productos alimenticios y los cambios que ocurren en
forma incesante, lo anterior intentó explicar de alguna forma la falta de textos relacionados con procesos de
alimentos. De hecho el libro puede ser considerado como una de las primeras o la primera publicación formal
en castellano sobre este campo del conocimiento, pues los textos utilizados en aquella época fueron escritos
en inglés o eran traducciones de otros idiomas. Por ello la publicación llenó un vacío existente en nuestro país
y otros de habla hispana, además es un hecho trascendente la inclusión del libro en la Serie de publicaciones
Científicas y Técnicas de la Organización de los Estados Americanos, caso relevante para Ecuador.
En los inicios del presente siglo se ha observado un importante y acelerado avance del conocimiento relacionado
con los alimentos y de manera específica con la ingeniería y tecnología, tanto a nivel mundial como nacional.
Para sustentar lo indicado basta señalar el hecho que a finales de la década de 1990 existía una Facultad de
Ingeniería de Alimentos en Ecuador, en el momento actual se han cuadruplicado o decuplicado al incluir las
carreras de Agroindustrias o Industrias Agropecuarias, las cuales básicamente se relacionan con alimentos.
Lo anterior, entre otras causas, explica que la Primera Edición de 500 ejemplares, distribuidos especialmente
por OEA a instituciones y centros de investigación que tenían relación con sus programas de trabajo, fueron
totalmente insuficientes para su reparto entre la comunidad académica y profesional que trabaja con tecnología
e ingeniería de alimentos, la cual también creció de manera importante en las dos últimas décadas aumentando
la demanda. Muchas veces se recibieron mensajes telefónicos, escritos o por vía internet desde diferentes partes
del mundo que solicitaban ejemplares, los cuales lamentablemente se agotaron en muy corto tiempo.
Por ventaja el objetivo y la idea fundamental de la Primera Edición se mantienen. El propósito fundamental
conserva su validez, esto es, proporcionar una guía a los estudiantes de pregrado para que se inicien en el
inmenso mundo de la Ingeniería de Alimentos, posiblemente por ello varias instituciones universitarias de
Latinoamérica lo han utilizado como libro de texto. Entonces la idea de valerse del entorno como una inmenso
laboratorio en el cual los alimentos ofrecen una infinidad de posibilidades para investigación, cuando se
dispone de materiales y métodos probados, hace que el libro sea ampliamente utilizado a través del tiempo,
pues siempre aparecerán nuevos productos con otros procesos en los que pueden aplicarse conocimientos
fundamentales de ingeniería para entenderlos y mejorarlos, por ello se espera que este libro tenga vigencia
actual y futura.
Se intenta mantener en todo lo posible el contenido de la Primera Edición, por respeto a las ideas que llevaron
a culminar el primer esfuerzo y a las personas e instituciones involucradas; sin embargo, contenidos como los
programas de computadora desarrollados en aquella época en lenguaje Fortran, son totalmente obsoletos y en
el momento actual no tienen utilidad, por ello fueron eliminados. Por otro lado, en los momentos actuales se
requiere hacer versiones amenas para el usuario, las ediciones frías en blanco y negro no son adecuadas para
los jóvenes, por ello se intenta alegrar y animar esta impresión con el uso de color y figuras relacionadas con el
tema, además de mejorar la presentación de ecuaciones y gráficos.
Juan de Dios Alvarado
También se anhela que la Segunda Edición de la obra sea conveniente y provechosa para docentes y profesionales
que desempeñan su trabajo en plantas industriales, según las experiencias recopiladas en los años de vigencia
del libro, pues son varios los casos de Ingenieros en Alimentos que laboran como jefes de producción o jefes
de planta que utilizan los datos presentados para actividades relacionadas con la transformación y producción
de alimentos, cálculos para diseñar equipos, índices de control de calidad y además del uso como libro de
consulta.
VI
Se debe tener presente que son cada vez más rápidos los cambios que ocurren en la humanidad. En el Siglo XX
se señaló que prácticamente el conocimiento generado en ese lapso se duplicó, con relación al conocimiento
acumulado a través de todo el tiempo anterior, es tan impresionante el avance con los nuevos descubrimientos
en el Siglo XXI, que se admite la duplicación del conocimiento en un período de una o máximo dos décadas.
Como consecuencia no es extraño que los medios electrónicos como las computadoras, tabletas electrónicas
y aun los teléfonos inalámbricos, sean los medios por los cuales las generaciones actuales acceden, buscan y
utilizan la información.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Lo indicado conduce a pensar que la enseñanza no puede mantener la metodología anterior, válida para períodos
de lento avance del conocimiento, es indispensable adaptarse a la época actual y los primeros en hacerlo son
los jóvenes, pues por su naturaleza están preparados y capacitados para vivir en un mundo que demanda una
mayor velocidad de aprendizaje y enfrentar cambios súbitos en su actividad cotidiana, lo cual incluye distintas
etapas de su existencia, posiblemente más cortas. Es fácil ver en los corredores y patios de las universidades
a los jóvenes con sus computadoras conectadas a las redes de información mundial, un 75% del tiempo de
lectura y de consulta lo hacen con medios electrónicos y quizá el 25% o menos lo ocupan en trabajos físicos
de consulta en biblioteca. Los tiempos cambian y explican que la segunda edición de este libro sea en versión
electrónica, además de la impresa.
La juventud actual lo que espera del docente es el planteamiento de desafíos, no enseñanzas; lo anterior
resulta extremadamente importante pues señalar o repetir el conocimiento no resulta suficiente, lo importante
es estimular todas las aptitudes que poseen los estudiantes para que observen de manera diferente las cosas
y encuentren realidades, que no son necesariamente las llamadas verdades que generalmente se aceptan y
teóricamente se enseñan. Los libros deben principalmente servir como guías o referencias para la búsqueda y
desarrollo de nuevos conocimientos o datos, por ventaja los alimentos presentan una versatilidad tan amplia
que convierte a este trabajo en una guía para explorar y encontrar nuevos y diversos retos.
Toda Universidad y todos los universitarios debemos empoderarnos de la frase “Construyendo juntos una
Universidad de excelencia”, debe ser una filosofía de vida, nada fácil, por el contrario resulta extremadamente
difícil y compleja, pero es el camino que debemos escoger quienes tenemos la suerte de estar en centros de
educación superior. Parece una utopía, pero dejará de serlo cuando todos y cada uno de los involucrados nos
comprometamos en aportar con algo que represente un trabajo acorde a nuestra formación, que por tanto
sea significativo y trascendente. Se anhela que esta Segunda Edición constituya un aporte, pequeño pero
importante, para ser consecuente con el afán de realizar un verdadero esfuerzo por llegar a la cúspide junto con
las nuevas generaciones.
Para finalizar, creo firmemente que siempre debe estar presente la gratitud, en especial a todos los grupos
humanos y personas que hicieron posible la Primera Edición, luego de transcurrir diecisiete años para que
aparezca la Segunda Edición, son muchos los aportes, comentarios y sugerencias recibidas en la práctica
docente y trabajos de laboratorio, a todos quienes hicieron llegar sus acotaciones un especial reconocimiento,
de manera especial a los estudiantes que lo han utilizado.
Juan de Dios Alvarado.
Ecuador. Ambato. 2013.
VII
PRÓLOGO
Se acepta que las disciplinas técnicas se aprenden mejor al aplicar los conocimientos, además de escucharlos.
Esta realidad es muy difícil que se cumpla. En nuestro medio, la falta de personal especializado; los costos de
libros, publicaciones, equipos, reactivos y materiales; la limitada o inexistente infraestructura, son obstáculos
poderosos para realizar una verdadera educación técnica, y constituyen problemas serios para realizar una labor
educativa exitosa.
Existen pocas alternativas válidas para enfrentar y superar estos problemas. Las soluciones ensayadas en la
mayoría de los casos son un fracaso. Se puede demostrar que reducir la enseñanza a exposiciones verbales en
el aula de clase, y a presentaciones ilustrativas o visitas de observación, son muchas veces una frustración para
los educandos y educadores.
Una alternativa es hacer el esfuerzo de observar en el entorno los fenómenos que constantemente ocurren,
e intentar explicarlos con la aplicación de los conocimientos existentes. En otras palabras, considerar a la
naturaleza que nos rodea como un gran centro de enseñanza y salir del concepto tradicional del laboratorio
entre paredes, con equipos que impresionan a los visitantes pero que son utilizados pocas horas en el año.
Se necesita pensar en un laboratorio que utilice preferentemente los productos naturales y que se adapte a
las necesidades propias, con el uso de los recursos humanos y físicos existentes. Creer que este camino es
adecuado motivó la realización del presente trabajo.
Intentar aplicar principios y leyes en Ingeniería de Alimentos es un desafío ambicioso y nada fácil, pues
los alimentos son sistemas extremadamente complejos de multicomponentes, muchas veces anisotrópicos,
completamente variables en su composición, termolábiles y perecederos. Los principios utilizados en otras
ingenierías generalmente se aplican en sistemas más simples, mejor definidos, que pueden ser idealizados
con mayor facilidad. Lo anterior explica la falta de textos relacionados con procesos de alimentos y justifica
la necesidad de realizar trabajos que permitan explorar el cumplimiento de leyes científicas en productos
particulares cultivados, producidos y consumidos en la región.
El libro está constituido por nueve capítulos: Balances de materia y de energía. Principios básicos de fenómenos
de transporte. Cinética de reacciones que ocurren en alimentos. Propiedades mecánicas y ópticas. Propiedades
reológicas. Propiedades térmicas. Transferencia de calor. Procesos térmicos. Deshidratación. Corresponden,
en una gran extensión, a la materia tratada en los cursos de Ingeniería de Procesos de Alimentos que se imparten
en los últimos años de la carrera de Ingeniería de Alimentos en la Universidad Técnica de Ambato.
Para propósitos didácticos, la estructura de los temas busca facilitar su tratamiento en unidades independientes
y en forma de trabajos prácticos que es lo aceptado para presentar artículos académicos. Las unidades de
medida son las del Sistema Internacional de Unidades (SI). En determinados puntos se utilizan como ejercicio
unidades de otros sistemas de medida. El deseo es inculcar en los docentes la aplicación de una metodología,
que luego podrá ser utilizada en sus actividades profesionales, y estimular la consulta de publicaciones afines
mediante preguntas específicas del cuestionario, que por razones obvias no son contestadas. Se incluyen
ejemplos de programas de computación, para impulsar la aplicación de esta herramienta en el análisis de
los temas propuestos y que puede ser extendida a otras actividades relacionadas con el procesamiento de
Juan de Dios Alvarado
Cada capítulo contiene varios temas, con la característica que en todos los casos se presentan resultados
experimentales obtenidos con la limitada infraestructura existente en el medio y en productos seleccionados. Se
pretende demostrar la aplicación del método utilizado, pues por el elevado número de alimentos los resultados
serán distintos cuando se trabaje con diferentes géneros, especies y variedades; o cuando se considere la
composición, que varía por diversas causas. En consecuencia, existe la posibilidad de trabajar con diversos
materiales según las inquietudes y necesidades particulares, y la comparación con los resultados presentados
de las muestras seleccionadas previamente, permitirá establecer las semejanzas o diferencias y comprender de
mejor manera la complejidad de cada alimento.
VIII
alimentos. En síntesis se anota que las experiencias docentes, observadas durante los últimos quince años,
fueron aplicadas para mejorar la metodología, la cual necesariamente está sujeta a innovaciones y reformas.
El objetivo fundamental es proporcionar una guía a los estudiantes de pregrado para que se inicien en el
inmenso mundo de la Ingeniería de Alimentos, causa y razón de la publicación.
El presente esfuerzo se cristaliza y aparece gracias a la confianza y ayuda decidida del Dr. Héctor Herrera,
Coordinador del Proyecto Multinacional de Biotecnología y Tecnología de Alimentos del Programa Regional
de Desarrollo Científico y Tecnológico de la Organización de los Estados Americanos (OEA), conjuntamente
con la comprensión y apoyo del Dr. Carlos Zuritz, quien realizó la revisión del manuscrito. Vaya para ellos
un sentimiento de gratitud imperecedera. Además se reconoce el respaldo desinteresado de los Doctores Luis
Romo Saltos, Pilar Rodríguez de Massager, José Miguel Aguilera R. y Luis Durán H. quienes emitieron
sugerencias críticas sobre determinados capítulos de su especialidad, para una mejor presentación de este libro.
Al Dr. Galo René Pérez, Director de la Academia Ecuatoriana de la Lengua, un reconocimiento especial por
sus ilustradas sugerencias para mejorar el estilo de esta obra.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Por último se desea expresar el agradecimiento a la Universidad Técnica de Ambato, por las facilidades ofrecidas
para la realización de las pruebas experimentales y la preparación del manuscrito; a la Facultad de Ciencia e
Ingeniería en Alimentos, y en especial a los señores estudiantes de las promociones l979 a l988, verdaderos
soportes y estímulo para la obra; al Ing. Alim. Javier Salazar por su valiosa colaboración en el levantamiento del
texto y elaboración de las figuras, y en fin a todas las personas que en forma directa o indirecta contribuyeron a
la realización del trabajo, y que, por temor a omisiones involuntarias, no son expresamente citadas.
J. de D. Alvarado.
Ambato. Enero de l996.
Balances de Materia y de Energía
1
Juan de Dios Alvarado
1. Balances de Materia y
de Energía
Capítulo 1
2
1. BALANCES DE MATERIA Y DE ENERGÍA
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Los procesos que tienen lugar durante el procesamiento de alimentos son extremadamente complejos y
diversos; sin embargo un análisis cuidadoso permitió establecer que todos ellos se componen de un número
reducido de operaciones básicas, que actúan como nexo común y que dependen de principios físicos definidos.
A manera de ejemplo, durante su elaboración, prácticamente todos los productos alimenticios en cierto
momento son calentados o enfriados. Desde el punto de vista de la ingeniería lo principal es la cantidad de
calor necesario y las condiciones en que se intercambia el mismo. En consecuencia, la operación básica será
la transferencia de calor. Y el principio físico es que la energía térmica pasa en forma espontánea desde los
cuerpos más calientes hacia los más fríos.
En ocasiones, varias operaciones básicas son agrupadas bajo una denominación general. En el libro del Profesor
Earle, posiblemente el primer texto de Ingeniería de Alimentos traducido al español, se utilizó la denominación
de separaciones mecánicas para considerar a la filtración, la sedimentación, el tamizado y la centrifugación. El
autor señaló que para el técnico de alimentos la ingeniería es el estudio de los procesos que transforman sus
materias primas en productos terminados o que permiten incrementar el tiempo durante el cual permanecen
aptos para su consumo, causando un daño mínimo. Esta especialidad de la ingeniería, llamada Ingeniería de
los Procesos de la Industria de los Alimentos, utiliza los conceptos de la Física y de la Química, en particular
sus aspectos dinámicos, y los aplica a las situaciones reales de fabricación y producción.
A la definición anterior, se necesita añadir la utilización de los conceptos de la Biología por la naturaleza de la
mayoría de los alimentos.
El desarrollo rápido y constante de esta especialidad, hace que en el momento actual la orientación sea considerar
a cada una de las operaciones no en forma aislada, sino tratando de relacionarlas con los cambios y reacciones
que provocan en el producto; es decir, aplicar el concepto de proceso. Por otro lado, el término proceso permite
unificar diferentes técnicas que son utilizadas en industrias diversas para su aplicación posterior en cualquier
rama específica de la siempre creciente industria alimentaria, previa unificación lógica de las operaciones
comunes.
Todas las operaciones básicas obedecen a las leyes de conservación de materia, cantidad de movimiento
y energía; lo que establece la importancia de la aplicación correcta de los balances como herramientas
fundamentales de cálculo.
Balances de Materia y de Energía
3
Se conocen tres clases generales de balances: balances de materia, que en muchas situaciones prácticas
presentadas en alimentos corresponden a balances de materiales; balances de energía y balances combinados
de materiales y de energía. En adición, se pueden establecer otros balances, como de cantidad de movimiento
y energía mecánica.
En el presente capítulo se presentan casos de aplicación de los dos primeros y un ejemplo de la utilización de
los balances combinados para la elaboración de cartas de humedad.
a
A’
B
B’
(BR)
C
C’
d
D’
(DJ)
e
E’
(EA)
(EE)
(EH)
(EK)
(EP)
(ER)
(ES)
F
F’
G’
h
H
M
(MA)
(MC)
(ME)
(MG)
(MS)
n
P
Q
R
(RA)
(RV)
t
T
(TA)
V
w
W
x
X
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
altura sobre el nivel del mar [m]
constante de la ecuación 1.3.1. (10,79586)
capacidad calórica del agua y del calorímetro [J/C]
constante de la ecuación 1.3.1. (5,02808)
grados Brix
calor específico [J/kg.C o J/kg.K]
constante de la ecuación 1.3.1. (1,5474*10-4)
diferencia
constante de la ecuación 1.3.1. (-8,29692)
densidad de jugos [kg/m3]
base de los logaritmos naturales (2,7182818)
constante de la ecuación 1.3.1. (4,2873*10-4)
energía acumulada [J]
energía que ingresa a un sistema [J]
energía térmica [J]
energía cinética [J]
energía consumida [J]
energía de presión [J]
energía que sale de un sistema [J]
humedad relativa decimal o porcentaje [sin dimensiones]
constante de la ecuación 1.3.1. (4,46955)
constante de la ecuación 1.3.1. (2,2195983)
entalpía [J/kg]
capacidad calórica de un calorímetro [J/C.calorímetro]
humedad [g/100 g]
masa acumulada [kg]
masa consumida [kg]
masa que ingresa a un sistema [kg]
masa generada en el sistema [kg]
masa que sale de un sistema [kg]
índice de refracción
presión [Pa]
cantidad de calor [J]
factor de disipación de calor [J/C.calorímetro]
constante de los gases calculada para el aire [kg.m3/m2.kg.K]
constante de los gases calculada para el vapor de agua [kg.m3/m2.kg.K]
tiempo [s]
temperatura [C]
temperatura absoluta [K]
volumen específico [m3/kg]
relación de humedad [g vapor de agua / g aire seco]
peso [kg]
fracción másica [g/g]
peso en porcentaje [g/100 g]
Juan de Dios Alvarado
NOMENCLATURA DEL CAPÍTULO 1
Capítulo 1
4
Y
Z
= contenido de azúcar en porcentaje
= 273,16/temperatura absoluta
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Subíndices
a
b
c
d
e
f
g
h
i
j
k
m
n
o
p
q
r
R
s
t
v
w
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
cenizas
carbohidratos
alimento cuyo calor específico será determinado
fibra
estado cuando el agua alcanza la temperatura de equilibrio con el calorímetro
estado final
grasa
húmedo
componente o índice del sumatorio
jugo
calorímetro
humedad
no
estado inicial
presión constante
componente del sistema
rocío
término de corrección para el calor ganado o perdido durante el período experimental
saturado
proteína
vapor
agua
1
2
= posición uno
= posición dos
Balances de Materia y de Energía
5
TEMA 1.1. APLICACIÓN DE BALANCES DE MATERIA EN LA
ELABORACIÓN DE JALEAS
INTRODUCCIÓN
Harper, (1976), indicó que las bases para calcular las cantidades relativas de materiales en procesos alimenticios
están en la ley de conservación de masa, la cual establece simplemente que la cantidad de materia que entra
a una operación debe ser igual a la cantidad que sale. Puede ser aplicada a constituyentes individuales, como
también al total. En el caso de cambios químicos, la ley es expresada en términos de grupos químicos y
elementos.
(ME) + (MG) - (MS) - (MC) = (MA)
(1.1.1)
Cuando no existe generación o consumo de materia dentro del sistema, la ecuación se reduce a:
(ME) - (MS) = (MA)
(1.1.2)
Por último, si no existe acumulación, la ecuación queda simplificada a la igualdad siguiente:
(ME) = (MS)
(1.1.3)
Juan de Dios Alvarado
Al considerar un sistema encerrado por fronteras o límites, la ley puede ser definida en la forma siguiente:
las entradas por los límites, más la generación interna, menos las salidas por los límites y menos el consumo
interno, será igual a la acumulación o pérdida dentro del sistema, que puede ser positiva o negativa; en forma
de ecuación:
Capítulo 1
6
Que expresa el concepto básico de la ley de conservación de la materia señalado por Lavoisier: la materia no
se puede crear ni destruir.
Johnson y Peterson, (1974), señalaron que los procedimientos de manufactura de mermeladas y jaleas pueden
variar de una planta a otra; sin embargo, los factores principales para la calidad del producto son el control
de los sólidos solubles y del pH. Los ingredientes básicos son: jugo de fruta, azúcar, agua y pectina en una
proporción del 1% si es de 150 grados. Esta última se prepara aparte, mezclando una parte de pectina seca con
cinco partes de azúcar; la mezcla se dispersa en agua con agitación vigorosa y se calienta hasta 88C, para
asegurar su disolución.
Estos ingredientes se mezclan y el conjunto se concentra por evaporación de manera uniforme en recipientes
con agitación hasta alcanzar una concentración de 65Brix; se ajusta el pH hasta valores entre 3,1 y 3,4,
generalmente con la adición de jugo de limón, y se llena en recipientes apropiados.
La proporción de los ingredientes es variable pues depende, entre otras cosas, del tipo de fruta y del grado de
madurez. Leach y Mason, (1964), presentaron diversas formulaciones para frutas cítricas; en varios casos de
cocción en sistema abierto la relación fruta:azúcar:agua es 1,0:1,5:2,5.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
En las jaleas, los sólidos solubles son principalmente azúcares, en especial sacarosa. Según Villavecchia
(1963), el índice de refracción de las soluciones acuosas de sacarosa varía con la concentración, y en esto se
basa la determinación del contenido de azúcar de una solución por medio de refractómetros. El autor presenta
tablas con la relación entre el índice de refracción y la concentración de azúcar como porcentaje en peso.
Alvarado y López, (l986), trabajaron con las principales frutas existentes en Ecuador y establecieron que
la ecuación siguiente permite el cálculo de la densidad de jugos de frutas y de jarabes, como función del
contenido de sólidos solubles y de la temperatura.
(DJ) = 1008 + 4,15 (BR) - 0,60 (T)
(1.1.4)
Donde (DJ) es la densidad en [kg/m3], (BR) son los grados Brix y (T) es la temperatura en C.
OBJETIVOS
Demostrar una de las múltiples aplicaciones de los balances de materiales en el procesamiento de alimentos.
Comparar los valores establecidos por refractometría con los calculados mediante balances de masa, del
contenido de sólidos solubles durante la manufactura de jaleas.
MATERIALES Y MÉTODO
Utilizar jugos de naranjas (Citrus sinensis), naranjas agrias (Citrus aurantium), toronjas (Citrus paradisii)
o mandarinas (Citrus reticulata); limón (Citrus limon) para regulación del pH. Determinar el contenido de
sólidos solubles del jugo por refractometría con un refractómetro Abbe estabilizado a 20C, o un refractómetro
industrial.
Preparar todos los ingredientes necesarios para la elaboración de jaleas y mezclarlos en la proporción indicada
para obtener 2,5 litros de solución; medir el índice de refracción o directamente los grados Brix a 20C; colocar
aproximadamente un litro de esta solución en un recipiente aforado para registro de volumen; calentar a fuego
controlado y agitar; en el momento que se inicie la evaporación empezar el registro de tiempo; continuar
la operación cuidando de mantener el volumen constante por la adición de cantidades medidas de solución
caliente. Cada treinta minutos registrar el volumen de solución añadida y medir el índice de refracción o los
grados Brix a 20C hasta que la jalea alcance los 65Brix. Ajustar el pH con el jugo de limón para gelificación
Balances de Materia y de Energía
7
antes de envasarla.
CUESTIONARIO
Con los datos experimentales elaborar una tabla de los valores de tiempo en segundos, índice de refracción,
concentración de azúcar como grados Brix, densidad y peso según el volumen de solución añadida.
Calcular por balance de materiales el contenido de sólidos en la solución inicial luego de la mezcla de
ingredientes; compararlo con el establecido mediante el índice de refracción, si es necesario hacer la corrección
por temperatura.
Para cada intervalo de tiempo, establecer el peso correspondiente a la solución añadida según la ecuación
de la densidad (1.1.4), y calcular el contenido de sólidos conforme avanza la concentración por balance de
materiales. Graficar los resultados y comparar los valores con los establecidos mediante el índice de refracción.
Consultar los datos (Villavecchia, 1963) y hacer un gráfico que indique la relación entre la concentración de
azúcar expresada en grados Brix y el índice de refracción. Determinar los valores numéricos de las constantes
por técnicas de regresión lineal y exponencial; discutir su significado y aplicación, según lo indicado por Saltos
(1986).
RESULTADOS EXPERIMENTALES
Cuando se preparó la jalea con jugo de mandarina procedente del Cantón Patate (10,6Brix, pH 3,9), en un vaso
de cristal alto para mantener el volumen en 600 [cm3], se obtuvieron los resultados indicados en la Tabla 1.1.1.
Tabla 1.1.1. Valores Registrados del Incremento de Sólidos Durante la Elaboración de Jalea de Mandarina
Tiempo
[s]
Indice de
refracción
(20C)
Brix
Densidad
(92C)
[kg/m3]
Volumen
añadido (106)
[m3]
Peso añadido
de solución
[kg]
0
1 800
3 600
5 400
7 200
9 000
10 800
1,3858
1,4052
1,4129
1,4225
1,4360
1,4502
1,4592
32,6
42,8
46,6
51,2
57,4
63,8
67,5
1 088
1 130
1 146
1 165
1 191
1 218
1 233
0
97
117
130
145
168
132
0
0,110
0,132
0,147
0,164
0,190
0,149
Al realizar la mezcla de ingredientes según la proporción indicada por Leach y Mason, se establece el balance de
materiales siguiente, considerando como base 1 [kg] de solución con una densidad de 1131 [kg/m3], calculado
con la ecuación (1.1.4) a 20C.
Operación
0,2000
Mezcla
Sale
Solución
1,0000
Azúcar
0,3212
Agua
0,6788
0,3000
0,5000
Según el balance, el contenido de azúcar que en una gran extensión corresponde a los sólidos solubles o Brix
es 32,12; que compara con 32,6 determinado por refractometría. La pectina no se considera para los cálculos
por intervenir en muy pequeña proporción 2 [g].
El balance de materiales para el primer intervalo de tiempo considerando el volumen de 0,6 litros y la ecuación
(1.1.2) es:
Juan de Dios Alvarado
Entra
Jugo
Azúcares 0,0212
Agua
0,1788
Azúcar (sacarosa)
Agua
Capítulo 1
8
Entra
Solución
0,6*10-3 * 1 088 = 0,6528
Azúcar
0,2097
Agua
0,4431
Solución añadida = 0,1100
Azúcar
0,0353
Agua
0,0747
Operación
Evaporación
Sale y acumula
Agua
0,0970
Concentrado
0,6658
Azúcar 0,2450
Agua
0,5208
0,2097 + 0,035 = Y (0,6658)
Y = 0,368 = 36,8 % azúcar
Para el segundo intervalo de tiempo se obtiene:
Entra
Concentrado
0,6*10-3 * 1 130 = 0,6780
Azúcar 0,2495
Agua 0,4285
Solución añadida = 0,1320
Azúcar 0,0424
Agua 0,0896
Operación
Evaporación
Sale y acumula
Agua
0,1170
Concentrado
0,6930
Azúcar
0,2919
Agua
0,4011
0,2495 + 0,0424 = Y (0,6930)
Y = 0,421 = 42,1 % azúcar
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Para el tercer intervalo de tiempo.
Entra
Concentrado
0,6*10-3 * 1 146 = 0,6876
Azúcar 0,2895
Agua
0,3981
Solución añadida = 0,1470
Azúcar
0,0472
Agua
0,0998
Operación
Evaporación
Sale y acumula
Agua
Concentrado
Azúcar
Agua
0,1300
0,7046
0,3367
0,3679
0,2895 + 0,0472 = Y (0,7046)
Y = 0,478 = 47,8 % azúcar
Para el cuarto intervalo de tiempo.
Entra
Concentrado
0,6*10-3 * 1 165 = 0,6990
Azúcar 0,3341
Agua 0,3649
Solución añadida = 0,1640
Azúcar 0,0527
Agua 0,1113
Operación
Evaporación
Sale y acumula
Agua
0,1450
Concentrado
0,7180
Azúcar
0,3868
Agua
0,3312
0,3341 + 0,0527 = Y (0,7180)
Y = 0,539 = 53,9 % azúcar
Para el quinto intervalo de tiempo.
Entra
Concentrado
0,6*10-3 * 1 191 = 0,7146
Azúcar 0,3852
Agua
0,3294
Solución añadida = 0,1900
Azúcar 0,0610
Agua
0,1290
Operación
Evaporación
Sale y acumula
Agua
Concentrado
Azúcar
Agua
0,1680
0,7366
0,4462
0,2904
Balances de Materia y de Energía
9
0,3852 + 0,0610 = Y (0,7366)
Y = 0,606 = 60,6 % azúcar
Para el sexto intervalo de tiempo.
Entra
Concentrado
0,6*10-3 * 1 218 = 0,7308
Azúcar 0,4429
Agua
0,2879
Solución añadida = 0,1490
Azúcar 0,0479
Agua
0,1011
Operación
Evaporación
Sale y acumula
Agua
Concentrado
Azúcar
Agua
0,1320
0,7478
0,4908
0,2570
0,4429 + 0,0479 = Y (0,7478)
Y = 0,656 = 65,6 % azúcar
En la Figura 1.1.1. se presenta el cambio en el contenido de sólidos solubles registrado a los diferentes tiempos,
según las lecturas refractométricas, y calculado mediante los balances. Las diferencias establecidas, inferiores
al 5%, se explican por la dificultad de mantener en forma exacta el volumen constante durante la evaporación
y las aproximaciones que se realizan al calcular los valores de la densidad; sin embargo, se demuestra que la
aplicación de los balances de materia es útil para controlar el proceso de elaboración de jaleas y otros productos
similares cuando no se dispone de equipos específicos.
Figura 1.1.1. Tiempo contra contenido de sólidos en la elaboración de jaleas.
BIBLIOGRAFÍA Y REFERENCIAS
Alvarado, J. de D. y López, F. 1986. Ecuaciones para el cálculo de la densidad de jugos de frutas. III Jornadas
de Alimentos. Universidad Estatal de Guayaquil, Ecuador. 14 p.
Harper, J. C. 1976. “Elements of Food Engineering”. Westport, Conn., AVI Pub. Co. Inc. p: 13-22.
Johnson, A. J. and Peterson, M. S. 1974. “Encyclopedia of Food Technology”. V. 2. Westport, Conn., AVI
Pub. Co. Inc. p: 469-472.
Leach, M. y Mason, M. 1964. “Conservación de Frutas y Hortalizas”. Traducido por: Venancio López L.
Zaragoza, España. Editorial Acribia. p: 77-88.
Saltos, H. A. 1986. “Estadística de Inferencia”. Ambato, Ecuador. Editorial Pio XII. p: 111-143.
Villavecchia, V. 1963. “Tratado de Química Analítica Aplicada”. T. 2. Barcelona, España. Editorial Gustavo
Gili. p: 85-102.
Juan de Dios Alvarado
Villavecchia (1963) reportó los valores del porcentaje en peso de azúcares contra el índice de refracción a
20C. Es posible encontrar una ecuación que relacione las dos variables por técnicas estadísticas, para analizar
su significado y aplicación.
Capítulo 1
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
10
TEMA 1.2. APLICACIÓN DE BALANCES DE ENERGÍA PARA LA
DETERMINACIÓN DEL CALOR ESPECÍFICO
INTRODUCCIÓN
Earle (1968) indicó que si en un proceso ingresan energías térmicas o calóricas (EH), energías cinéticas (EK),
energías de presión (ER), la energía total que sale del sistema será igual a la suma de las energías que entran;
en forma de ecuación:
(EH) + (EK) + (ER) = (ES)
(1.2.1)
Siendo (ES) la suma de las energías que salen. Cuando existe acumulación en el sistema:
(EE) = (ES) + (EA)
(1.2.2)
Donde (EE) es la suma de las energías que entran y (EA) es la energía acumulada. En ciertos casos existe
consumo de energía, y la ecuación se modifica en la forma siguiente:
(EE) = (ES) + (EA) + (EP)
(1.2.3)
(EP) corresponde a la suma de las energías consumidas por el sistema.
Como las energías no se miden normalmente en valores absolutos, pues usualmente se miden basándose en
un valor de referencia conveniente, en el balance de energía se utiliza la suma de los cambios de energía
Balances de Materia y de Energía
11
relacionados con el valor de referencia.
La calorimetría, que mide el calor que los cuerpos almacenan, se utiliza extensamente para la cuantificación
de diversas propiedades de alimentos; entre ellas el calor específico. Los métodos de mezcla utilizados para
determinar el calor específico aplican la ley de conservación de la energía.
El calor específico se usa frecuentemente para evaluar los procesos de calentamiento y enfriamiento en
productos alimenticios, y es definido por:
Cp = Q/W(dT)
(1.2.4)
Donde Cp es el calor específico, el subíndice p denota calor específico a presión constante; Q es el calor
transferido; W es la masa y (dT) es el cambio de temperaturas experimentado por el material.
Según el procedimiento indicado por Dickerson (1968), se desarrolló una ecuación para calcular el calor
específico de frutas y vegetales frescos, pues la entalpía está definida por:
Q = W (h2 - h1)
(1.2.5)
Siendo (h2-h1) = dh = diferencia de entalpías. Reemplazando en (1.2.4).
Cp = (dh) / (dT)
(1.2.6)
Por otra parte, al considerar un efecto aditivo de la entalpía en frutas y vegetales, separando la entalpía de los
jugos y el porcentaje de sólidos que no son parte del jugo, como fibras, corteza y membranas; constituidos
principalmente por fibra cruda con un calor específico de 1,85, se establece:
(dh) = (1-(Xnj/100))(dh)j + 1,85 (Xnj/100)(dT)
(1.2.7)
Donde Xnj son los sólidos insolubles presentes en el jugo como porcentaje en peso, y (dh)j corresponde a la
diferencia de entalpías en el jugo. Reemplazando en (1.2.6).
Cp = (1-(Xnj/100))((dh)j/(dT)) + 1,85 (Xnj/100)
(1.2.8)
Sobre el punto de congelación el calor específico del jugo es:
Cp jugo = (dh)j / (dT)
(1.2.9)
Sustituyendo en la ecuación (1.2.8), se obtiene:
Cp = (1-(Xnj/100)) (Cp jugo) + 1,85 (Xnj/100)
(1.2.10)
Cp jugo = 1,19 + 0,0266 (M)
(1.2.11)
Lo que permite obtener:
Cp = (1-(Xnj/100)) (1,19 + 0,0266 (M)) + 1,85 (Xnj/100)
(1.2.12)
La ecuación se puede usar para calcular el calor específico de frutas y vegetales en unidades del sistema
internacional [kJ/kg.K], si se conocen la humedad y el porcentaje de sólidos que no constituyen el jugo.
Juan de Dios Alvarado
Alvarado y Moreno (1986) trabajaron con jugos y pulpas de treinta frutas con contenidos de agua superiores a
45 g/100 g, y establecieron la regresión lineal siguiente para la relación entre el calor específico y la humedad
expresada como porcentaje (M):
Capítulo 1
12
Para pulpas de frutas, según Alvarado, (1991), la variación del calor específico como función de la humedad
es descrita por la ecuación siguiente:
Cp = 1,56 e0,009446(M)
(1.2.13)
La ecuación es válida para todo el intervalo de humedades posible de ser encontrado durante el procesamiento
de frutas; sin embargo, puntualizó que las ecuaciones específicas presentadas por Alvarado y Moreno (1986),
correspondientes a cada fruta, permiten obtener resultados más exactos a humedades altas.
Heldman y Singh (1981) desarrollaron una ecuación para el cálculo del calor específico que es más dependiente
de los componentes del producto, y de aplicación más amplia. Puede ser usada, además de jugos en leches y
otros productos líquidos, la que en unidades del sistema internacional es:
Cp = 1424 xb + 1549 xt + 1675 xg + 837 xa + 4187 xm
(1.2.14)
Donde x es el peso del componente como fracción unitaria. Los subíndices corresponden a: b = carbohidratos,
t = proteína, g = grasa, a = ceniza, m = humedad, d = fibra.
Choi y Okos (l986), presentaron un modelo muy completo para el cálculo del calor específico [kJ/kg.K] como
función de los componentes principales de los alimentos y de la temperatura [C]; para temperaturas sobre el
punto de congelación.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Cp = Σ Cpi xi
(1.2.15)
El subíndice i se refiere al componente considerado, así:
Cpm = 4,1762 - 9,0864 * 10-5 T + 5,4731 * 10-6 T2
Cpb = 1,5488 + 1,9625 * 10-3 T - 5,9399 * 10-6 T2
Cpt = 2,0082 + 1,2089 * 10-3 T - 1,3129 * 10-6 T2
Cpg = 1,9842 + 1,4733 * 10-3 T - 4,8008 * 10-6 T2
Cpa = 1,0926 + 1,8896 * 10-3 T - 3,6817 * 10-6 T2
Cpd = 1,8459 + 1,8306 * 10-3 T - 4,6509 * 10-6 T2
(1.2.16)
(1.2.17)
(1.2.18)
(1.2.19)
(1.2.20)
(1.2.21)
Para el caso particular de la leche de vaca y productos lácteos, Alvarado (1987) presentó valores del calor
específico determinado en muestras adquiridas en la localidad; en leche pasteurizada el valor determinado fué
3,76 [kJ/kg.K]. Lewis (1987), Rao y Rizvi (1986) presentaron una información amplia sobre esta propiedad
para leches, jugos de frutas y otros alimentos.
Hwang y Hayakawa (1979), clasificaron los métodos utilizados comunmente para determinar el calor específico
de alimentos en: métodos de mezcla (modificado en los últimos años encapsulando las muestras para evitar
la interferencia de calores de solución), y por exploración diferencial calorimétrica (DSC). Desarrollaron un
método indirecto de mezcla aplicable especialmente en alimentos altamente higroscópicos o alimentos con
una gran cantidad de componentes químicos solubles en agua, método que será utilizado como un caso de
aplicación de balances calóricos.
OBJETIVOS
Señalar una de las aplicaciones de los balances de energía.
Aplicar un método de mezcla, utilizado para la determinación del calor específico en alimentos.
Comparar los valores experimentales del calor específico con los calculados mediante ecuaciones en el caso de
Balances de Materia y de Energía
13
alimentos líquidos y pastosos.
MATERIALES Y MÉTODOS
Trabajar por duplicado con muestras líquidas como leche o semisólidas como pulpas de bananos, manzanas sin
semillas, papas o tomates frescos. El producto será cortado en pedazos y licuado a baja velocidad hasta obtener
la consistencia de pulpa homogénea.
Determinación de la capacidad calórica del calorímetro
La capacidad calórica del calorímetro Hk se define como el calor necesario para elevar la temperatura de un
calorímetro en 1C, y es un factor de corrección para la determinación del calor específico de los materiales
de muestra.
En la Figura 1.2.1. se indica esquemáticamente el calorímetro. Dos calorímetros se utilizan para cada
determinación, el calorímetro A con 250 [g] de agua destilada y el calorímetro B vacío. Las tapas y las cubiertas
de los calorímetros se atornillan apretadamente y se colocan el uno en una estufa a 70C y el otro al ambiente.
Después de que las temperaturas se equilibren, las cubiertas y las tapas se remueven y el agua caliente del
calorímetro A se vierte rápidamente dentro de la cámara intermedia del calorímetro B, cuya tapa y cubierta
se atornillan inmediatamente para ser colocado al ambiente. La temperatura del agua en el calorímetro B se
registra contínuamente durante dos horas, agitando el contenido antes de cada lectura.
Tapón de caucho
Aislamiento de lana de vidrio
Pared exterior del termo
Recipiente plástico
Espacio para agua
Termocupla
Tubo de vidrio
Figura 1.2.1. Esquema de un calorímetro.
Según la ley de conservación de la energía, el calor total contenido en el agua y el calorímetro en el estado
inicial debe ser igual al del estado final más el calor perdido por el sistema al ambiente. Si el subíndice o
representa el estado inicial y e el estado cuando el contenido alcanza una velocidad constante de intercambio
de calor con el medio, entonces:
Cpw.Ww.Tow + Cpk.Wk.Tok = Cpw.Ww.Te + Cpk.Wk.Te - R
(1.2.22)
Juan de Dios Alvarado
Espacio para el Producto
Capítulo 1
14
Donde R es el factor de pérdida de calor.
Para el análisis, si se asume que la pérdida de calor al ambiente es constante hasta el final del experimento, la
velocidad de calor perdido puede ser determinada de la razón de cambio de la temperatura en la porción lineal.
2
(dQ/dt) = (dT/dt) (∑ Cpq.Wq)
(1.2.23)
q=1
El subíndice q representa el componente q del sistema, esto es, calorímetro y agua. El calor total
perdido por todo el período del experimento, te, corresponde a:
2
R = dQ = (dQ/dt).te = (dT/dt) ((∑ Cpq.Wq).te
q=1
R = (Cpw.Ww + Cpk.Wk) (dT/dt).te
(1.2.24)
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Al sustituir en la ecuación (1.2.22), haciendo que las temperaturas del agua y del calorímetro esten en equilibrio
al inicio y al final Tow = Tok y Tfw = Tfk, y reordenando los dos lados de la ecuación, se tiene:
Cpw.Ww.Tow+Cpk.Wk.Tok = Cpw.Ww.Te+Cpk.Wk.Te-(Cpw.Ww+Cpk.Wk)(dT/dt)te
(1.2.25)
Cpw.Ww.Tow+Cpk.Wk.Tok = Cpw.Ww.Te+Cpk.Wk.Te-Cpw.Ww(dT/dt)te-Cpk.Wk(dT/dt)te
(1.2.26)
Asignando:
Hk = Cpk.Wk
(1.2.27)
Por reemplazo:
Cpw.Ww.Tow+Hk.Tok = Cpw.Ww.Te+Hk.Te-Cpw.Ww(dT/dt)te-Hk(dT/dt)te
Hk.Tok-Hk.Te+Hk(dT/dt)te = Cpw.Ww.Te-Cpw.Ww.Tow-Cpw.Ww(dT/dt)te
Hk(Tok - Te + (dT/dt)te) = Cpw.Ww(Te - Tow - (dT/dt)te)
Hk = Cpw.Ww(Te - Tow - (dT/dt)te)/(Tok - Te + (dT/dt)te)
(1.2.28)
(1.2.29)
(1.2.30)
(1.2.31)
La capacidad calórica del calorímetro puede ser calculada usando la ecuación (1.2.31).
Determinación del calor específico de las muestras
Se vierte en el espacio intermedio, para el proceso de intercambio de calor, una masa conocida de agua destilada
hasta aproximadamente dos centímetros del borde del calorímetro; se lo cierra herméticamente y se registra la
temperatura del agua con la termocupla.
En cada prueba, una masa conocida de alimento se calienta en una estufa a 70C; se espera a que alcance
el equilibrio térmico para el registro de la temperatura. Se abre la tapa del calorímetro e inmediatamente se
transfiere la muestra del alimento al recipiente interior y se atornilla este herméticamente. Luego se procede a
registrar el cambio de temperatura en el agua por un período de dos horas o más, a intervalos de diez minutos,
y agitando el calorímetro antes de cada lectura.
Para realizar el cálculo del calor específico, según la ley de conservación de la energía, el contenido de calor
total de la muestra, del agua y del calorímetro en el estado inicial, debe ser igual al del estado final, menos el
calor ganado o más el calor perdido por el sistema a sus alrededores.
Si o representa el estado inicial y f el estado final, se tiene:
Cpc.Wc.Toc+Cpw.Ww.Tow+Hk.Tok = Cpc.Wc.Tfc+Cpw.Ww.Tfw+Hk.Tfk-R
(1.2.32)
Balances de Materia y de Energía
15
Para el análisis, se asume que la razón de calor ganado o perdido es constante para todo el experimento. La
asunción es impuesta, dado que es extremadamente difícil determinar el calor ganado o perdido al ambiente, en
la porción curvilínea inicial de la curva de la historia de temperaturas. En base a la asunción anterior, el calor
ganado o perdido puede ser determinado desde el cambio de temperatura en la porción recta de la historia de
temperaturas.
El factor de pérdida de calor, al incluirse la masa correspondiente a la muestra, viene dado por:
R = (Cpw.Ww + Cpk.Wk + Cpc.Wc)(dT/dt)t
R = (Cpw.Ww + Hk + Cpc.Wc)(dT/dt)t
(1.2.33)
(1.2.34)
Asignando:
B = Cpw.Ww + Hk
TR = (dT/dt)t
(1.2.35)
(1.2.36)
Por reemplazo se obtiene:
R = (B + Cpc.Wc) TR
(1.2.37)
(dT/dt) es negativo cuando la temperatura del contenido es más alta que la temperatura ambiental. Sustituyendo
en la ecuación (1.2.32), fijando Tow=Tok; Tfw=Tfc=Tfk y arreglando los valores en ambos lados, se obtiene:
Cpc.Wc.Toc+Cpw.Ww.Tow+Hk.Tow = Cpc.Wc.Tfw+Cpw.Ww.Tfw+Hk.Tfw-(B+Cpc.Wc)TR
Cpc.Wc.Toc+Tow(Cpw.Ww+Hk) = Cpc.Wc.Tfw+Tfw(Cpw.Ww+Hk)-(B+Cpc.Wc)TR
Cpc.Wc.Toc + Tow.B = Cpc.Wc.Tfw + Tfw.B - TR.B - Cpc.Wc.TR
Cpc.Wc.Toc - Cpc.Wc.Tfw + Cpc.Wc.TR = Tfw.B - Tow.B - TR.B
Cpc.Wc(Toc - Tfw + TR) = B(Tfw - Tow - TR)
Cpc = B(Tfw - Tow - TR)/Wc(Toc - Tfw + TR)
(1.2.38)
(1.2.39)
(1.2.40)
(1.2.41)
(1.2.42)
(1.2.43)
El calor específico puede ser calculado usando la ecuación (1.2.43). Si Tow, Tfw y T2w son las medidas de
temperatura, en to, t1 y t2, TR se calcula con la ecuación siguiente:
TR = (T2w - Tfw)t1/(t2 - t1)
(1.2.44)
CUESTIONARIO
Graficar los datos de tiempo contra temperatura obtenidos en la determinación de la capacidad calórica del
calorímetro y del calor específico de la muestra. Calcular el valor de Cpc.
RESULTADOS EXPERIMENTALES
Cuando se trabajó con leche de vaca se obtuvieron los registros de temperatura indicados en la Tabla 1.2.1.,
para las pruebas correspondientes a la determinación de la capacidad calórica del calorímetro y del producto.
Primera prueba.
Según la Figura 1.2.2., al graficar la historia de temperaturas del agua en el calorímetro, colocado al ambiente
a 19,0C sin muestra, por pruebas sucesivas de regresión lineal se establece la ecuación que caracteriza al
Juan de Dios Alvarado
Utilizar las ecuaciones desarrolladas según el modelo de Dickerson (1.2.12), Alvarado (1.2.13), Heldman y
Singh (1.2.14), Choi y Okos (1.2.15), para calcular el calor específico de la muestra. Comparar los valores
experimentales con los calculados y reportados en la literatura técnica.
Capítulo 1
16
período de transferencia de calor constante, y que permite definir el punto tangente de la curva; en el presente
caso ocurre luego de 3060 [s] (te), que corresponde a una temperatura de 42,6C (Te); el valor de la pendiente,
-0,00154 [C/s], es el término (dT/dt). Como se conoce que la temperatura inicial del agua es 58,2C y su peso
0,250 [kg], el valor de la capacidad calórica del calorímetro, Hk, se establece con la aplicación de la ecuación
(1.2.31), pues el calor específico del agua a una temperatura intermedia de la prueba de 40C es 4,175 [kJ/
kg.K].
Hk = Cpw.Ww(Te - Tow - (dT/dt)te)/(Tok - Te + (dT/dt)te)
Hk = 4,175 * 0,250(42,6 - 58,2 + (0,00154 * 3060))/(19,0 - 42,6 - (0,00154 * 3060))
Hk = 0,401 [kJ/C (calorímetro)]
B = Cpw.Ww + Hk
B = 4,175 * 0,25 + 0,401
B = 1,445 [kJ/C]
Según la ecuación (1.2.44).
TR = (T2w - Tfw)t1 / (t2 - t1)
TR = (32,7 - 35,6) * 540 / (3600 - 540)
TR = -0,5C
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
El calor específico se calcula con la ecuación (1.2.43).
Cpc = B(Tfw - Tow - TR) / Wc(Toc - Tfw + TR)
Cpc = 1,445(35,6 - 21,2 + 0,5) / 0,1685 (70,0 - 35,6 - 0,5)
Cpc = 3,77 [kJ/kg.K]
Tabla 1.2.1. Cambios Registrados en la Temperatura del Agua en Calorímetros para la Determinación del Calor Específico
de Leche de Vaca
Temperatura
Tiempo [s]
0
300
600
900
1 200
1 500
1 800
2 100
2 400
2 700
3 000
3 300
3 600
3 900
4 200
4 500
4 800
5 100
5 400
[C]
Primera prueba
Segunda prueba
Con agua
Con producto y agua
Con agua
Con producto y agua
52,8
50,7
48,9
47,7
46,7
45,9
45,1
44,5
43,9
43,4
42,8
42,3
41,9
41,5
41,0
40,6
40,2
39,9
39,5
21,2
34,2
35,7
35,4
35,0
34,7
34,3
34,0
33,7
33,4
33,2
32,9
32,6
32,4
32,1
31,9
31,6
31,3
31,1
57,0
49,9
48,3
47,2
46,1
45,2
44,5
43,8
43,2
42,6
42,0
41,6
41,1
40,7
40,3
39,9
39,5
39,2
38,9
21,2
35,6
36,2
35,8
35,4
35,1
34,8
34,5
34,3
34,0
33,9
33,7
33,5
33,3
33,2
33,0
32,7
32,6
32,4
Los datos graficados en la Figura 1.2.3. permiten determinar el calor específico de la muestra, según la ecuación
(1.2.35), considerando que el peso de la leche utilizada en la prueba fué 168,5 [g] y que se calentó hasta 70C.
Balances de Materia y de Energía
17
Figura 1.2.2. Historia de temperaturas para calcular la capacidad calórica de calorímetros.
Figura 1.2.3. Historia de temperaturas para calcular el calor específico de leche.
Con iguales criterios y datos correspondientes se obtienen los siguientes resultados, para un peso de 173,6 [g]
de leche.
Hk = 4,175 * 0,250 (41,7 - 57,0 + (0,00127 * 3060))/(19,0 - 42,6 - (0,00127 * 3060))
Hk = 0,433 [kJ/C (calorímetro)]
B = 4,175 * 0,25 + 0,433 = 1,477
TR = (33,2 - 36,0)600/(4200 - 600) = -0.5
Cpc = 1,477(36,0 - 21,2 + 0,5) / 0,1736(70,0 - 36,0 - 0,5)
Cpc = 3,89 [kJ/kg.K]
Juan de Dios Alvarado
Segunda prueba.
Capítulo 1
18
Por último, el valor promedio de las dos pruebas es el calor específico de la muestra de leche de vaca:
Cpc = (3,77 + 3,89) / 2 = 3,83 [kJ/kg.K]
En el presente caso, las ecuaciones de Heldman y Singh (1.2.14) y la de Choi y Okos (1.2.15) son adecuadas
para calcular el calor específico; sin embargo, se requiere conocer la composición proximal de la muestra. En
leche de vaca se determinaron los siguientes valores, expresados en [g/100 g]: grasa 3,0; proteína 3,2; hidratos
de carbono 4,6; cenizas 0,7; agua 88,5.
Utilizando la ecuación propuesta por Heldman y Singh.
Cp = 1424 xb + 1549 xt + 1675 xg + 837 xa + 4187 xm
Cp = 1424 * 0,046 + 1549 * 0,032 + 1675 * 0,030 + 837 * 0,007 + 4187 * 0,885
Cp = 3,88 [kJ/kg.K]
Utilizando el modelo propuesto por Choi y Okos, previo el cálculo del calor específico de los componentes
principales en unidades del sistema internacional.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Cpm = 4,1762 - 9,0864*10-5 T + 5,4731*10-6 T2
Cpm = 4,1762 - 9,0864*10-5 * 40 + 5,4731*10-6 (40)2 = 4,1813
Cpb = 1,5488 + 1,9625*10-3 T - 5,9399*10-6 T2
Cpb = 1,5488 + 1,9625*10-3 * 40 - 5,9399*10-6 (40)2 = 1,6178
Cpt = 2,0082 + 1,2089*10-3 T - 1,3129*10-6 T2
Cpt = 2,0082 + 1,2089*10-3 * 40 - 1,3129*10-6 (40)2 = 2,0545
Cpg = 1,9842 + 1,4733*10-3 T - 4,8008*10-6 T2
Cpg = 1,9842 + 1,4733*10-3 * 40 - 4,8008*10-6 (40)2 = 2,0355
Cpa = 1,0926 + 1,8896*10-3 T - 3,6817*10-6 T2
Cpa = 1,0926 + 1,8896*10-3 * 40 - 3,6817*10-6 (40)2 = 1,1623
Cp = Cpm.xm + Cpb.xb + Cpt.xt + Cpg.xg + Cpa.xa
Cp = 4,1813 * 0,885 + 1,6178 * 0,046 + 2,0545 * 0,032
+ 2,0355 * 0,030 + 1,1623 * 0,007
Cp = 3,700 + 0,074 + 0,066 + 0,061 + 0,008 = 3,909
Cp = 3,91 [kJ/kg.K]
Se establece que el valor experimental de 3,83 [kJ/kg.K] es comparable con los calculados según los dos
modelos: 3,88 y 3,91. En adición, Earle (1968) reportó un valor de 3,89; Heldman y Singh (1981), un valor de
3,85; Alvarado (1987), un valor de 3,76; según tablas internacionales, 3,87. Esto comprueba la aplicación de la
ley de conservación de la energía, que valida el método aplicado.
BIBLIOGRAFIA Y REFERENCIAS
Alvarado, J. de D. 1991. Specific heat of dehydrated pulps of fruits. J. Food Process Engineering, 14(3):189195.
Alvarado, J. de D. 1987. Propiedades físicas de la leche. Universidad Técnica de Ambato, Facultad de Ciencia
e Ingeniería en Alimentos. Serie de Cuadernos Técnicos de Tecnología e Ingeniería de Alimentos. 4(1):32-38.
Alvarado, J. de D. y Moreno, C. 1986. Calor específico de frutas como una función de su humedad. Actas del
II Congreso Latinoamericano de Transferencia de Calor y Materia. V.3. Sao Paulo, Brasil. p:1631-1641.
Choi, Y. and Okos, M. R. 1986. Effects of temperature and composition on the thermal properties of foods.
Balances de Materia y de Energía
19
In: “Food Engineering and Process Applications”. V.1. Le Maguer, M. and Jelen, P. (Eds). London, England.
Elsevier Applied Science Pub. p:93-101.
Dickerson, R. W. Jr. 1968. Thermal properties of foods. In: “The Freezing Preservation of Foods”. 4th ed. V.2.
Tressler, D. K.; Van Arsdel, W. B. and Copley, M. J. (Eds). Westport, Conn. AVI Pub. Co. Inc. p:26-51.
Earle, R. L. 1968. “Ingeniería de los Alimentos”. Traducido por J. Alemán Vega. Zaragoza, España. Editorial
Acribia. p:13-23.
Heldman, D. R. and Singh, R. P. 1981. “Food Process Engineering”. 2nd. ed. Westport, Conn. AVI Pub. Co.
Inc. p:101.
Hwang, M. P. and Hayakawa, K. I. 1979. A specific heat calorimeter for foods. J. Food Sci., 44(2):435-438.
Lewis, M. J. 1987. “Physical Properties of Foods and Food Processing Systems”. Chichester, England. Ellis
Horwood. p: 220-245.
Juan de Dios Alvarado
Rao, M. A. and Rizvi, S. S. H. 1986. “Engineering Properties of Foods”. New York. Marcel Dekker, Inc. p:4988.
Capítulo 1
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
20
TEMA 1.3. APLICACIÓN DE BALANCES DE MATERIA Y ENERGÍA
PARA LA ELABORACIÓN DE CARTAS DE HUMEDAD
INTRODUCCIÓN
En muchos casos, además de las ecuaciones que proporciona la ley de conservación de la materia, se necesita
establecer otra ecuación independiente para lograr la solución de un problema; frecuentemente la ley de
conservación de la energía suministra el factor adicional de información. Himmelblau (1972) señaló que la
carta de humedad o gráfica psicrométrica es un medio gráfico de presentar las relaciones para, y entre, los
balances de materia y de energía de las mezclas de aire y de vapor de agua.
El cuerpo principal de la carta de humedad es la relación entre la humedad, y la temperatura a varios grados
de saturación, y contiene información adicional que permite estimar los cambios que ocurren cuando existe
pérdida o ganancia de humedad por el aire a determinadas temperaturas. En consecuencia, su uso es muy
amplio, pues sirve para cálculos en procesos de deshidratación, humidificación, acondicionamiento del aire,
evaporación, entre otros.
Para construir una carta de humedad se requiere conocer el significado de las propiedades involucradas y las
relaciones matemáticas que permiten su cálculo.
Se define al aire seco como aquel que existe cuando todo el vapor de agua y contaminantes son retirados del
aire atmosférico, su peso molecular aparente es 29,9646, y su constante de los gases corresponde a:
(RA) = 29,2706 [kg.m3/m2.K.kg]
Balances de Materia y de Energía
21
El aire húmedo es la mezcla binaria de aire seco y vapor de agua. La cantidad de vapor de agua depende de la
temperatura y de la presión. El peso molecular del agua es 18,01534 y la constante de los gases para el vapor
de agua corresponde a:
(RV) = 47,0604 [kg.m3/m2.K.kg]
Según Brooker y colaboradores (1981), para determinar la cantidad de vapor de agua contenida en el aire seco
se usan tres términos: presión de vapor, humedad relativa y razón de humedad. Con relación a la temperatura
menciona: temperatura de bulbo seco, temperatura húmeda o de bulbo húmedo y temperatura de punto de
rocío. En adición, otras propiedades utilizadas son la entalpía y el volumen específico.
La presión de vapor es la presión parcial ejercida por las moléculas del vapor de agua en la mezcla aire-vapor
de agua. Para el cálculo de la presión de vapor saturado se puede utilizar la fórmula desarrollada por Goff
(1949):
log Pvs = A’(1-Z)+B’(log Z)+C’(1-10 exp(D’((1/Z)-1)))+E’(10 exp (F’(1-Z)) -1)-G’
(1.3.1)
El valor de la presión debe ser multiplicado por 101325, para expresarlo en pascales [Pa].
La humedad relativa es la relación entre la presión parcial del vapor de agua en la mezcla y la presión que ejerce
el vapor saturado a la misma temperatura; en forma de ecuación:
F = (Pv / Pvs) 100
(1.3.2)
La relación de humedad es el peso del vapor de agua contenido en el aire húmedo por unidad de peso de aire
seco. La siguiente ecuación permite su cálculo:
w = (RA) F Pvs / ((RV)(P - F Pvs))
(1.3.3)
La entalpía de la mezcla aire seco-vapor de agua es el contenido de calor del aire húmedo por unidad de peso
de aire seco, referido a una determinada temperatura. Según lo indicado por Brooker y colaboradores (1981),
se obtiene la ecuación siguiente cuando las temperaturas de referencia son -17,8C para el aire y 0,0C para
el agua:
h = (0,24 (T + 17,8) + w(597,8 + 0,45 T)) * 4186,8
(1.3.4)
El volumen específico es el volumen de aire húmedo por unidad de peso de aire seco. Se puede usar la siguiente
ecuación para su cálculo:
V = ((RA)(TA)/P) (1 + ((RV)/(RA))w)
(1.3.5)
La temperatura de bulbo húmedo es la temperatura indicada por un termómetro cuyo bulbo está cubierto por
una mecha húmeda, y sobre la cual se hace pasar aire rápidamente. Wilhelm (1976) señaló que las ecuaciones
necesarias para calcular la temperatura húmeda se fundamentan en el planteo de un balance de energía en un
proceso de saturación adiabático, y presentó la siguiente ecuación para su cálculo:
Th = ((ws - w) 597,8 - (0,24 + 0,45 w)T)/(0,55 ws - w - 0,24)
(1.3.6)
La temperatura del punto de rocío es la temperatura a la cual el aire se satura cuando se enfría, sin que haya
aumento ni disminución de la humedad. Wilhelm (1976) reportó tres ecuaciones para el cálculo en tres
intervalos de temperatura:
Juan de Dios Alvarado
La temperatura de bulbo seco es la temperatura del aire húmedo indicada por un termómetro común.
Capítulo 1
22
( -50  T  0C )
Tr = 5,994 + 12,41 (ln Pv) + 0,4273 (ln Pv)2
(1.3.7)
( 0 < T  50C)
Tr = 6,983 + 14,38 (ln Pv) + 1,079 (ln Pv)2
(1.3.8)
( 50 < T  110C)
Tr = 13,80 + 9,478 (ln Pv) + 1,991 (ln Pv)2
(1.3.9)
La presión del vapor debe estar expresada en [kPa].
Uno de los factores que afecta a las propiedades psicrométricas del sistema aire y vapor de agua es la presión
total. Cuando la presión total es notablemente diferente de la presión atmosférica normal, lo cual ocurre
cuando la altura sobre el nivel del mar es considerable, se requiere elaborar cartas específicas.
En Ecuador la presencia de la Cordillera de los Andes origina que varias de sus principales ciudades estén
ubicadas a diferentes alturas sobre el nivel del mar. En la Tabla 1.3.1. se presenta una recopilación de datos
correspondientes a las Capitales de Provincia, con su correspondiente presión atmosférica. Se aprecia, por
ejemplo, que la presión atmosférica en Tulcán es un 30% inferior a la presión atmosférica en Guayaquil.
Tabla 1.3.1. Elevacion sobre el Nivel del Mar y Presión Atmosférica de las Capitales de Provincia de Ecuador.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Capital de provincia
Elevación
[m]
Presión Atmosférica
[kPa]
[mm Hg]
72,20
541,50
2540
Ambato
2520d
74,36a
557,71
Azogues
759,32
7d
101,24b
Babahoyo
2530f
74,00
555,00
Cuenca
757,71
4e
101,03
Esmeraldas
2608d
73,56a
551,71
Guaranda
6c
100,99
757,40
Guayaquil
589,21
2205d
78,56b
Ibarra
2850d
71,40
535,51
Latacunga
656,67
2135c
87,55
Loja
1070c
89,41b
670,59
Macas
759,32
7e
101,24b
Machala
755,44
44c
100,72
Portoviejo
759,47
6c
101,26b
Puerto Baquerizo
686,90
950c
91,58
Puyo
548,33
2818c
73,11
Quito
548,58
73,14
2820g
Riobamba
714,32
527c
95,24b
Tena
2956d
70,48a
528,61
Tulcan
678,39
970c
90,45b
Zamora
Fuentes: a Presión calculada con la ecuación (1.3.11); b Presión calculada con la ecuación (1.3.10); c Instituto
Nacional de Meteorología e Hidrología; d Instituto Geográfico Militar; e Dirección Nacional de Aviación Civil;
f Universidad de Cuenca; g Escuela Superior Politécnica del Chimborazo.
c
Existen ecuaciones que relacionan la presión atmosférica con la altura sobre el nivel del mar. Entre ellas la
utilizada por la Agencia Aeroespacial de los Estados Unidos de Norteamérica, que se aplica hasta los 2300 [m]
de altura:
P = 101,325 (288/(288 + 0,00665 a))5,124
(1.3.10)
La presión atmosférica, P, está expresada en kilo pascales, y la altura sobre el nivel del mar, a, en metros.
Para alturas mayores, en especial sobre los 2300 [m], la siguiente ecuación empírica fue establecida por Tejada
y Alvarado (1985), en base a datos experimentales recopilados en Ecuador.
Balances de Materia y de Energía
P = 101,325 (e)-0,0001228 a
23
(1.3.11)
La ecuación puede ser utilizada para calcular la presión atmosférica de localidades ubicadas en regiones
montañosas, cuando se conoce la altura a la que está ubicada.
OBJETIVOS
Desarrollar un programa de computación que permita establecer los valores de las propiedades principales del
sistema aire y vapor de agua, para graficar una carta de humedad.
Demostrar el uso, en forma simultánea, de los balances de materia y energía, por comparación de valores
calculados según ecuaciones obtenidas por balances y datos experimentales de propiedades psicrométricas.
MATERIALES Y METODOS
Durante un día, a las 09H00, 13H00 y 17H00 horas registrar en el ambiente de un cuarto, en forma simultánea,
la temperatura de bulbo seco y bulbo húmedo con un psicrómetro, y la humedad relativa con un higrómetro.
Medir la presión atmosférica con un barómetro, o calcularla según la altura sobre el nivel del mar.
Para la elaboración de los gráficos psicrométricos del tipo Gronsvenor, en los cuales se ubica la temperatura
de bulbo seco en abscisas y la relación de humedad en ordenadas, se requiere que cada una de las propiedades
psicrométricas estén expresadas de tal manera que provean pares de datos en coordenadas (T, w), temperatura
de bulbo seco y relación de humedad. Para ello, las ecuaciones se expresan en la forma siguiente, con el
propósito de facilitar el cálculo de la serie de puntos que definen las líneas que constituyen la carta de humedad.
Líneas de humedad relativa constante.
w = ((RA)/(RV)) (F Pvs / (P - F Pvs))
(1.3.12)
Líneas de entalpía constante.
w = ((h/4186,8) - 0,24(T + 17,8))/(597,8 + 0,45 T)
(1.3.13)
Líneas de volumen específico constante.
w = (V.P/(RV)(TA)) - ((RA)/(RV))
(1.3.14)
Líneas de temperatura húmeda constante.
w = ((597,8 - 0,55 Th) ws - 0,24(T - Th))/(597,8 + 0,45 T - Th)
(1.3.15)
CUESTIONARIO
Desarrollar un programa de computación que calcule las propiedades de las mezclas aire y vapor de agua
para elaborar cartas de humedad a diferentes valores de presión atmosférica, considerarando las ecuaciones
indicadas.
Graficar una carta de humedad para la localidad y comprobar su validez por comparación con los valores
experimentales de temperatura y humedad relativa. Explicar las causas de posibles diferencias; considerar lo
reportado por Olivera Fuentes (1982).
Juan de Dios Alvarado
Demostrar que varias de las ecuaciones indicadas se obtienen por balances de materia y energía.
Capítulo 1
24
RESULTADOS
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
A continuación se presenta un programa tipo desarrollado en lenguaje FORTRAN para el cálculo, a la presión
atmosférica a nivel del mar, de las propiedades psicrométricas expresadas en unidades del sistema internacional.
En la Figura 1.3.1. se presenta el diagrama de flujo correspondiente. Se observa que el programa es bastante
completo y versátil, pues conociendo dos datos se pueden calcular las propiedades restantes. En adición, la
presión atmosférica ingresa como dato y puede ser este cambiado según la presión a la cual se desea realizar
los cálculos.
Figura 1.3.1. Diagrama de flujo para el cálculo de propiedades psicrométricas del aire.
25
Juan de Dios Alvarado
Balances de Materia y de Energía
Capítulo 1
26
SIMBOLOGÍA DEL DIAGRAMA DE FLUJO
PATM
M
N
DB
A
WB
R
W
H
DP
SV
FS
PB
PVP
PV
WF
PVSF
RHF
WBF
DPF
= presión atmosférica [mm Hg]
= dato según los valores que se conozcan de las propiedades
= número de pares de valores a calcularse
= temperatura de bulbo seco [C]
= segundo dato a ser suministrado
= temperatura de bulbo húmedo [C]
= humedad relativa [%]
= razón de humedad [kg agua/kg aire seco]
= entalpía [kcal/kg aire seco]
= punto de rocío [C]
= volumen específico [m3/kg aire seco]
= 1,0045
= presión atmosférica [pulg Hg]
= presión de vapor
= subprograma FUNCTION para el cálculo de presión de vapor
= subprograma FUNCTION para el cálculo de razón de humedad
= subprograma FUNCTION para el calculo de presión de vapor de saturación
= subprograma FUNCTION para el cálculo de humedad relativa
= subprograma FUNCTION para el cálculo de bulbo húmedo
= subprograma FUNCTION para el cálculo de punto de rocío
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Posibles ingresos de pares de datos.
M1
M2
M3
M4
M5
= temperatura de bulbo seco y bulbo húmedo
= temperatura de bulbo seco y humedad relativa
= temperatura de bulbo seco y razón de humedad
= temperatura de bulbo seco y entalpía
= temperatura de bulbo seco y punto de rocío
La ciudad de Ambato está ubicada a 2540 [m] sobre el nivel del mar; su presión atmosférica registrada con
barómetro es 541,5 [mm] de mercurio, que corresponde a 72,2 [kPa]. Para estas condiciones el cálculo de
las propiedades psicrométricas permitió elaborar la Figura 1.3.2., que puede ser utilizada para trabajos que se
realicen en esta localidad.
BIBLIOGRAFIA Y REFERENCIAS
Brooker, D. B.; Bakker-Arkema, S. W. and Hall, C. W. 1981. “Drying Cereal Grains”. Westport, Connecticut.
AVI Pub. Co. Inc. p:24-48.
Goff, J. A. 1949. Standardization of thermodynamic properties of moist air. Trans. ASHVE, 55:463-464.
Himmelblau, D. M. 1972. “Principios y Cálculos Básicos de la Ingeniería Química”. Traducido por: Moreno
Lamont, O. México. Compañía Editorial Continental. p:379-445.
Olivera Fuentes, C. G. 1982. Diagramas sicrométricos corregidos para aire húmedo a presiones atmosféricas
y subatmosféricas. Actas del I Congreso Latinoamericano de Transferencia de Calor y Materia. V.1. La Plata,
Argentina. p:467-492.
Tejada Yépez, E. y Alvarado, J. de D. 1985. Cartas psicrométricas para las capitales de provincia del Ecuador.
Memorias del III Simposio Ecuatoriano de Operaciones Unitarias. Facultad de Ciencia e Ingeniería en
Alimentos, Universidad Técnica de Ambato. p:119-138.
Wilhelm, L. R. 1976. Numerical calculation of psychrometric properties in SI units. Trans. ASAE, 19:318-321,
325.
Figura 1.3.2. Carta de humedad. Calculada para la ciudad de Ambato.
Presión atmosférica 72.200 Pa
Altura 2540 msnm.
27
Juan de Dios Alvarado
Balances de Materia y de Energía
Capítulo 2
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
28
2. Principios Básicos de
Fenómenos de Transporte
Principios Básicos de Fenómenos de Transporte
29
2. PRINCIPIOS BÁSICOS DE FENÓMENOS DE TRANSPORTE
Se reconoce que uno de los iniciadores de la Ingeniería de Alimentos, a mediados del presente siglo, fue el
Profesor Marcel Loncin, de la Universidad de Karlsruhe, Alemania. En los Estados Unidos de América se
destaca el trabajo pionero del Profesor Stanley Charm, quien realizó parte importante de su investigación en el
Massachusetts Institute of Technology (M.I.T).
En especial, el primero de los nombrados, señaló que las operaciones utilizadas en la industria de alimentos,
en una gran mayoría, involucran el transporte de calor, masa y movimiento, o son limitadas por uno de ellos.
Menciona, como ejemplos, la pasteurización de leches y la esterilización de alimentos enlatados que dependen
de la transferencia de energía calórica entre fases. Esta transferencia determina la velocidad de destrucción
de microorganismos y los cambios que ocurren en el producto tratado. La concentración del jugo o jarabe
en un equipo para obtener azúcar, o de una micela en un equipo para obtención de aceite, ocurre a un ritmo
determinado por la velocidad de aplicación de calor al producto. La transferencia de calor también influye
en muchas reacciones químicas, enzimáticas o fermentativas, durante la preparación de numerosos productos
alimenticios.
La extracción de un material graso por un solvente y la extracción de azúcares de rodajas de remolacha
consisten esencialmente en transferencia de masa entre fases sin intercambio significativo de energía.
También la transferencia de masa influye apreciablemente en el ahumado de carne o pescado, en la refinación
e hidrogenación de aceites, en la desmineralización por intercambio iónico y en las fermentaciones aeróbicas y
anaeróbicas. Es la transferencia de ácido láctico y de cationes en el interior de ciertos quesos lo que determina
la homogeneidad de la maduración. En frutas, es la transferencia de gases lo que en una gran extensión gobierna
su evolución después de la cosecha.
Sin embargo, existen operaciones en las cuales no se puede suponer que existe una transferencia simple,
pues la transferencia simultánea por diversos mecanismos debe ser considerada. La velocidad de cristalización
depende de la transferencia simultánea de calor y materia, como también del fenómeno asociado con la
orientación de las moléculas en la superficie del cristal. El secado por aire caliente consiste en transferencia
simultánea de: calor, desde los elementos de calentamiento hacia el aire y desde el aire hacia el producto y al
interior del producto; masa, desde el producto hacia el aire y en el interior de la substancia; movimiento, como
resultado de la fricción del aire en contacto con el producto. Durante la destilación, transferencia de calor,
masa y movimiento tienen lugar entre el vapor y el líquido; en la rectificación ocurre sobre cada plato.
Lo anterior explica la importancia que tienen los fenómenos de transporte para iniciar el estudio de aspectos
relacionados con Ingeniería de Alimentos, pues su correcta comprensión permite un acercamiento real a
las operaciones involucradas. El capítulo comprende tres temas: dos relacionados con las propiedades de
transporte, la conductividad térmica y la difusividad en gases; uno relacionado con coeficientes de transporte,
Juan de Dios Alvarado
La sedimentación estática o por centrifugación consiste en el movimiento de una masa determinada, con una
velocidad bajo la influencia de una fuerza; el resultado es un cambio en la cantidad de movimiento equivalente
a esta fuerza. La velocidad de transporte de un fluido en una tubería, y la velocidad de filtración de un líquido
o de un gas, son determinadas por la transferencia de cantidad de movimiento o momento en la cercanía de las
paredes. Lo anterior también es cierto durante el transporte neumático, o cuando existe fluidización.
Capítulo 2
30
o los coeficientes de transferencia de calor. Se destaca las analogías existentes, para comprender como se
relacionan los diversos mecanismos de transferencia de calor y masa en los casos que deban ser considerados
en forma simultánea.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
NOMENCLATURA DEL CAPÍTULO 2
a’
A
b’
c’
C
C’
(Cp)
d
d’
D
D’
(dr)
(dx)
(dC)
(dT)
(dX)
(DA)
(DJ)
(DV)
e
E
f
F
F’
g
h
k
K
K’
l
L
m
M
N
(NGr)
(NNu)
(NPe)
(NPr)
(NRa)
(NRe)
P
P’
q
r
R
R’
t
T
= coeficiente de las ecuaciones para calcular la densidad de jugos [kg/m3]
= área [m2]
= coeficiente de las ecuaciones para calcular la densidad de jugos [1/C]
= coeficiente de las ecuaciones para calcular la densidad de jugos [1/C2]
= concentración [kg/m3]
= constante
= calor específico [J/kg.K o J/kg.C]
= diámetro [m o Å]
= coeficiente de las ecuaciones para calcular la densidad de jugos [1/C3]
= difusividad [m2/s o cm2/s]
= difusividad expresada en términos molares [kg.mol/m.h]
= diferencia de distancias radiales [m]
= diferencia de distancias longitudinales [m]
= diferencia de concentraciones [kg/m3]
= diferencia de temperaturas [C o K]
= diferencia de distancias en difusión [m]
= densidad del agua [kg/m3]
= densidad de jugos [kg/m3]
= densidad del vino [kg/m3]
= emisividad
= energía [J o ergios]
= función de choque
= factor de configuración de cuerpos grises
= constante de la ecuación de Sutherland
= aceleración debida a la gravedad [m/s2]
= coeficiente de transferencia de calor [W/m2.K o W/m2.C]
= conductividad térmica [W/m.K o W/m.C]
= constante de Boltzman [1,38*10-6 ergios/K]
= constante de la ecuación de Wilke y Lee
= dimensión característica [m]
= altura o longitud [m]
= velocidad de difusión [kg/s]
= peso molecular [kg/kg.mol o g/mol]
= descenso del nivel del líquido [m]
= número de Grashoff [sin dimensiones]
= número de Nusselt [sin dimensiones]
= número de Peclet [sin dimensiones]
= número de Prandtl [sin dimensiones]
= número de Rayleigh [sin dimensiones]
= número de Reynolds [sin dimensiones]
= presión [Pa o atmósferas]
= pérdidas
= flujo de calor [W]
= radio [m]
= constante de los gases [8,314 J/g.mol.K]
= separación entre moléculas [A]
= tiempo [s]
= temperatura [C]
Principios Básicos de Fenómenos de Transporte
(TA)
(TB)
(TC)
v
V
V’
(VC)
w
W
x
X
Y
z
31
= temperatura absoluta [K]
= temperatura de ebullición [K]
= temperatura crítica [K]
= velocidad [m/s]
= volumen [m3]
= volumen molar [m3/kg.mol o cm3/g.mol]
= volumen crítico [m3/kg.mol]
= masa [kg]
= peso [kg]
= distancia [m]
= distancia de difusión [m]
= calor latente [J/kg]
= espesor [m]
Letras griegas
α
β
ε
μ
π
ρ
= difusividad térmica [m2/s]
= coeficiente de expansión volumétrica [1/K o 1/C]
= energía de atracción máxima [ergios]
= viscosidad [Pa.s]
= 3,1416
= densidad [kg/m3]
a
c
e
f
i
m
n
p
r
s
t
w
x
y
= aceite
= conducción
= eléctrica
= fusión
= aire
= muestra
= convección
= pérdida
= radiación
= superficie
= total
= agua
= componente x
= componente y
1
2
3
= posición, condición o componente 1
= posición, condición o componente 2
= posición 3
Juan de Dios Alvarado
Subíndices
Capítulo 2
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
32
TEMA 2.1. APLICACIÓN DE LA LEY DE FOURIER
INTRODUCCIÓN
Loncin y Merson (1979) señalaron que la Primera Ley de Fourier define la cantidad de energía térmica que pasa
en dirección normal a superficies isotérmicas, de materiales inmóviles o isotrópicos con densidad constante.
Charm (1981) indicó que, en muchos casos, los tres modos reconocidos de transferencia de calor: conducción,
convección y radiación, operan en forma simultánea; sin embargo cada uno de ellos puede ser considerado de
manera individual, como en el presente caso, que corresponde a conducción.
Según Toledo (1981), la transferencia de calor se halla en un estado de régimen permanente o estable cuando
la temperatura en cualquier punto del sólido permanece constante con el tiempo. La tasa de transferencia de
calor por unidad de área es proporcional al gradiente de temperaturas. La constante de proporcionalidad es
la conductividad térmica. Si q es la tasa de transferencia de calor (energía/unidad de tiempo), A es el área
disponible para la transferencia de calor, T es la temperatura y x la distancia medida a lo largo de la dirección
de flujo de calor. Entonces:
q/A = -k((dT)/(dx))
(2.1.1)
La ecuación expresa la ley de Fourier.
Para el caso simple de transferencia de calor en un plano, con conductividad térmica uniforme y donde el
flujo de calor ocurre únicamente en una dirección, el término (dT/dx) es constante y la temperatura cambiará
a través del plano como una función lineal del espesor. Para un plano de espesor (dx) y donde existe una
diferencia de temperaturas (dT) a través del espesor, la ecuación anterior, luego de separar variables e integrar,
puede ser escrita como:
Principios Básicos de Fenómenos de Transporte
q
x2
T2
1
1
∫ x (dx) = - k A ∫ T (dT)
q = -k A (T2 - T1)/(x2 - x1) = - k A (T2 - T1)/z
33
(2.1.2)
(2.1.3)
La ecuación puede ser ordenada para dar:
q = (T1 - T2)/(z/kA)
(2.1.4)
Al denominador se lo conoce como resistencia térmica.
Pitts y Sissom (1979) señalaron que estos principios son extensivos al caso de una pared plana compuesta, lo
cual permite escribir para el caso de dos paredes adyacentes de materiales con conductividad térmica y espesor
diferentes.
q = (T1-T3)/((z1/k1A1) + (z2/k2A2))
(2.1.5)
Para transferencia térmica radial por conducción en una pared esférica, el área para un radio dado es 4πr2.
Substituyendo este valor en la Ley de Fourier e integrando, considerado q y k constantes, y reemplazando (dx)
por (dr), se obtiene:
q (dr) = - k (4πr2) (dT)
r2
T2
(q/4π) r ((dr)/r2) = - k T (dT)
1
1
(2.1.6)
(q/4π) (-(1/r2) + (1/r1)) = - k(T2 - T1)
(2.1.8)
q = 4πk (T1 - T2)/((1/r1) - (1/r2))
(2.1.9)
∫
∫
(2.1.7)
En el caso de capas esféricas múltiples, también se aplica el concepto de que las resistencias térmicas de las
capas individuales son linealmente adicionales, como se indicó para el caso de una pared plana compuesta.
En términos de áreas, la ecuación para el cálculo de la tasa de conducción de calor en corazas esféricas es:
q = k (A1A2)0,5 (T1 - T2)/(r2 - r1)
(2.1.10)
Kreith (1970) señaló que la conductividad térmica varía con la temperatura; sin embargo, esta variación
puede despreciarse si los valores y los cambios de las temperaturas bajo consideración no son grandes, o si la
dependencia de la conductividad con la temperatura es mínima.
Si se dispone de un trozo de muestra sólida de forma plana y se mantiene una temperatura constante en uno de
sus lados, la energía eléctrica requerida para mantener el estado estable será igual a la energía que pasa a través
del plano más la energía perdida en el equipo. Esto conduce a:
qe = qc + qp
(2.1.11)
A través de la corteza, el modo de transferencia de calor predominante es conducción. Y se ha de considerar
que ocurre en una dimensión sin generación interna de calor. Esto es expresado por la ecuación de Fourier.
Entonces:
qe = (kA (T1 - T2)/z) + (P’(Tm-Ts))
(2.1.12)
Juan de Dios Alvarado
En muchos alimentos la corteza es delgada y no constituye una resistencia adicional a la transferencia de calor.
En otros casos la corteza constituye la mayor resistencia a la transferencia de calor, por lo que es necesario
establecer su conductividad térmica.
Capítulo 2
34
donde P’ representa las pérdidas que son desconocidas. Con el propósito de eliminar este término, se puede
trabajar con otra condición de temperatura, lo cual lleva a establecer una segunda ecuación para combinarla
con la anterior.
OBJETIVOS
Revisar aspectos básicos de transferencia de calor por conducción en estado estable.
Estimar valores de la conductividad térmica en madera y cortezas gruesas con características diferentes al resto
del producto alimenticio, para comprender el significado de una de las propiedades de transporte.
Aplicar la ecuación de Fourier en un programa de computación.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
MATERIALES Y MÉTODO
Figura 2.1.1. Diagrama del equipo utilizado para demostrar la aplicación de la
Ley de Fourier
Principios Básicos de Fenómenos de Transporte
35
Trabajar con muestras de madera y corteza de sandía (Citrullus vulgaris), zambo (Cucurbita ficifolia), zapallo
(Cucurbita maxima) o coco (Cocos nucifera); medir el espesor y el área de la muestra. En el caso de las
cortezas, trabajar con los productos maduros para evitar la presencia de tejido fresco en la parte interior.
Introducir en sentido paralelo a la superficie una termocupla tipo aguja; registrar exactamente la distancia desde
la superficie interior hasta el punto en el cual está localizada la termocupla, al finalizar la experiencia.
En un cilindro metálico, completamente aislado térmicamente, excepto en uno de los extremos, introducir una
termocupla y una resistencia eléctrica conectada en serie con un amperímetro y un reóstato, y en paralelo con
un voltímetro hacia una fuente de poder de corriente directa. Llenar con aceite previamente calentado, y tapar
el extremo libre de área conocida con el trozo de la muestra en forma hermética; ubicar otra termocupla en un
sitio próximo a la cara exterior, según se indica en la Figura 2.1.1.
Colocar el sistema en un ambiente cerrado y medir su temperatura. Mediante el reóstato, regular la corriente
eléctrica y esperar que la temperatura del aceite permanezca constante durante dos horas o más, para conseguir
que el sistema se estabilice. Empezar a hacer lecturas cada quince minutos por una hora o más de: voltaje,
amperaje, temperatura del aceite, temperatura de la muestra y temperatura del aire. Cuidar que la temperatura
del aceite permanezca constante en un valor del orden de 70C.
Repetir la operación con otro trozo de muestra y con la temperatura del aceite en un valor constante del orden
de 50C.
CUESTIONARIO
Deducir la ecuación general de conducción, y desarrollar una ecuación para el cálculo de la transferencia
térmica en esferas para dos capas.
Para cada una de las pruebas utilizar los valores promedios de voltaje, amperaje y temperaturas del aceite,
muestra y aire, para calcular la conductividad térmica, utilizando la ecuación (2.1.12) en las dos condiciones
de trabajo, previa eliminación del término P’. Discutir el resultado.
Desarrollar un programa de computación que calcule el flujo de calor por conducción a través de la corteza,
a diferentes temperaturas y tamaños de frutas esféricas, con el uso del valor determinado de la conductividad
térmica.
RESULTADOS EXPERIMENTALES
Madera
Cuando se trabajó con madera aglomerada, conocida en el mercado como tabla triple, con un área de contacto
con el aceite de 0,00283 [m2] y un espesor de 0,008 [m] entre la superficie en contacto con el aceite y el punto
de registro de temperatura en la muestra, se obtuvieron los resultados presentados en la Tabla 2.1.1., luego de
dos horas para estabilización del sistema.
q1 = (kA(Ta1 - Tm1)/z) + (P’(Tm1 - Ts1))
q2 = (kA(Ta2 - Tm2)/z) + (P’(Tm2 - Ts2))
Realizando la suma indicada:
q1 = (kA(Ta1 - Tm1) + (z)P’(Tm1 - Ts1))/(z)
q2 = (kA(Ta2 - Tm2) + (z)P’(Tm2 - Ts2))/(z)
Si el espesor es igual en las dos pruebas y se acepta que las pérdidas de calor desde el cilindro hacia el ambiente
son bajas y del mismo orden, el término (z)P’ será igual en las dos ecuaciones, Despejando el término:
Juan de Dios Alvarado
La ecuación (2.1.12) para el caso de las dos pruebas corresponde a:
Capítulo 2
36
(z)P’ = ((q1(z)) - kA(Ta1 - Tm1))/(Tm1 - Ts1)
(z)P’ = ((q2(z)) - kA(Ta2 - Tm2))/(Tm2 - Ts2)
Por igualación de ecuaciones:
((q1(z)) - kA(Ta1 - Tm1))/(Tm1 - Ts1) = ((q2(z)) - kA(Ta2 - Tm2))/(Tm2 - Ts2)
Despejando la conductividad térmica:
k = (z)(q2(Tm1-Ts1) - q1(Tm2-Ts2)) / A((Ta2-Tm2)(Tm1-Ts1) -(Ta1-Tm1)(Tm2-Ts2))
Según los datos experimentales:
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
q1 = 2,10 [V] * 2,96 [A] = 6,216 [W]
q2 = 1,29 [V] * 2,14 [A] = 2,761 [W]
(Ta1 - Tm1) = 78,6 - 42,8 = 35,8C
(Ta2 - Tm2) = 51,0 - 31,8 = 19,2C
(Tm1 - Ts1) = 42,8 - 25,4 = 17,4C
(Tm2 - Ts2) = 31,8 - 25,8 = 6,0C
(z) = 0,008 [m]
A = 0,00283 [m2]
Reemplazando los valores:
k = 0,008[m] (2,761*17,4 - 6,216*6,0) [W.C]/0,00283[m2] (19,2*17,4 - 35,8*6,0)[C2]
k = 0,26 [W/m.C] o [W/m.K]
Tabla 2.1.1. Valores de Resistencia Eléctrica y Temperatura Registrados en Madera
Tiempo
[s]
Voltaje
[V]
Intensidad
[A]
Temperaturas
Aceite
[C]
Muestra
Superficie
42,3
42,6
42,9
43,0
43,2
42,8
24,9
25,2
25,5
25,6
25,8
25,4
32,2
31,9
31,8
31,6
31,5
31,8
26,4
26,0
25,8
25,6
25,2
25,8
Primera prueba (Reóstato 65 - 67%)
0
900
1800
2700
3600
Promedios
2,15
2,10
2,10
2,05
2,10
2,10
0
900
1800
2700
3600
Promedios
1,30
1,26
1,29
1,30
1,30
1,29
3,05
2,85
2,90
2,95
3,05
2,96
78,6
78,7
78,6
78,7
78,6
78,6
Segunda prueba (Reóstato 59 - 62%)
2,15
2,10
2,14
2,15
2,15
2,14
51,0
51,0
51,0
51,0
51,0
51,0
Parte comestible sólida (corteza)
Cuando se trabajó con la parte comestible de coco maduro (Cocos nucifera) con una área de 0,00283 [m2]
y espesor 0,0066 [m], se obtuvieron los valores que se presentan en la Tabla 2.1.2., luego de dos horas de
funcionamiento del sistema de calentamiento para lograr el estado estable.
Principios Básicos de Fenómenos de Transporte
37
Tabla 2.1.2. Valores de Resistencia Eléctrica y Temperatura Registrados en Coco
Tiempo
[s]
Voltaje
[V]
Intensidad
[A]
Temperaturas
[C]
Aceite
Muestra
Superficie
0 - 3600
0 - 3600
2,20
1,70
3,40
2,75
70,0
50,5
36,8
29,8
19,2
19,7
q1 = 2,20 [V] * 3,40 [A] = 7,480 [W]
q2 = 1,70 [V] * 2,75 [A] = 4,675 [W]
(Ta1 - Tm1) = 70,0 - 36,8 = 33,2C
(Ta2 - Tm2) = 50,5 - 29,8 = 20,7C
(Tm1 - Ts1) = 36,8 - 19,2 = 17,6C
(Tm2 - Ts2) = 29,8 - 19,7 = 10,1C
(z) = 0,0066 [m]
A = 0,00283 [m2]
Reemplazando los valores:
k = 0,0066 (4,675*17,6 - 7,480*10,1) / 0,00283 (20,7*17,6 - 33,2*10,1)
k = 0,54 [W/m.C] o [W/m.K]
BIBLIOGRAFÍA
Charm, S. E. 1981. “Fundamentals of Food Engineering”. 3rd. ed. Wesport, Connecticut. AVI Pub. Co. Inc.
p:119-125.
Kreith, F. 1970. “Principios de Transferencia de Calor”. Traducido por: Vásquez, F. México. Editorial Herrero
Hermanos. CRAT. p:1-123.
Loncin, M. and Merson, R. L. 1979. “Food Engineering. Principles and Selected Applications”. New York.
Academic Press, Inc. p:11-40.
Pitts, D. R. y Sissom, L. E. 1979. “Teoría y Problemas de Transferencia de Calor”. Traducido por: Gamba, S.
Bogotá, Colombia. Serie de Compendios Schaum. Editorial Mc Graw Hill Latinoamericana. p: 1-47.
Juan de Dios Alvarado
Toledo, R. T. 1981. “Fundamentals of Food Process Engineering”. Westport, Conn. AVI Pub. Co. Inc. p:197241.
Capítulo 2
38
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
TEMA 2.2. APLICACIÓN DE LA PRIMERA LEY DE FICK
INTRODUCCIÓN
Si en una solución existen diferencias en la concentración de los constituyentes, habrá una tendencia a un
movimiento de material hasta que se establezca el equilibrio con concentración uniforme. Si el movimiento es
el resultado del movimiento molecular al azar, se llama difusión; en líquidos y gases el movimiento puede ser
también resultado de convección.
Harper (1976) indicó que la difusión molecular es análoga a la transferencia de calor por conducción. La
fuerza motriz para conducción de calor es la diferencia de temperaturas; en cambio, la fuerza motriz para
difusión másica es la diferencia de concentraciones, y la relación básica se conoce como la ley de Fick. Esta
puede ser escrita en la forma siguiente:
m/A = - D((dC)/(dX))
(2.2.1)
En la ecuación, m es la velocidad de difusión de un componente, expresada en masa por unidad de tiempo; A
es el área perpendicular a la dirección de difusión; C es la concentración en masa por unidad de volumen, y X
es la distancia en dirección de la difusión. La constante D es el coeficiente de difusión o difusividad.
La difusividad es una propiedad de transporte como la conductividad térmica. Su valor depende de la
temperatura, presión y composición del sistema.
La ecuación anterior puede ser integrada considerando estado permanente y difusión unidireccional a través de
un área de sección transversal constante, para dar:
x2
C2
1
1
∫ x (dX) = - DA∫ C (dC)
(2.2.2)
m = - DA (C2 - C1) / (X2 - X1)
m = DA (C1 - C2) / (X2 - X1)
(2.2.3)
(2.2.4)
m
Principios Básicos de Fenómenos de Transporte
39
La ecuación es válida en sistemas fluidos, únicamente cuando no hay movimiento significativo del fluido.
Wilke y Lee (1955) indicaron que por escasez de datos experimentales confiables, los métodos para calcular
los coeficientes de difusión han asumido un rol útil. Discutieron la ecuación recomendada por Arnold (1930),
que introdujo un término adicional para corregir las desviaciones del modelo de esfera sólida, desarrollado
previamente por Sutherland (1893).
Según la ecuación de Arnold:
D = (0,00837(TA)3/2(((M1+M2)/M1M2)1/2)/P(V’11/3+V’21/3)2 (1+(C’1 2/(TA)))
(2.2.5)
Donde, D es el coeficiente de difusión o difusividad [cm2/s], (TA) es la temperatura absoluta [K], M es el peso
molecular, P es la presión total [at], V’ es el volumen molar en el punto de ebullición [cm3/g.mol] (para agua
V’1= 18,9 [cm3/g.mol] y para aire V’2= 29,9 [cm3/g.mol]), C’1 2 es la constante de Sutherland para difusión [K],
y puede ser calculada por:
C’1 2 = 1,47 F ((TB)1 (TB)2)1/2
(2.2.6)
Siendo (TB) la temperatura de ebullición [K], para agua (TB)1 = 373 [K] y para aire (TB)2 = 78,7 [K]
F’ = ((2(V’11/3 V’21/3)1/2) / (V’11/3 + V’21/3))3
(2.2.7)
En adición, discuten la ecuación de Guilliland (1934), quien desarrolló una fórmula empírica basada en el
modelo de esfera sólida de la teoría cinética.
D = (0,0043(TA)1,5 ((M1+M2)/M1M2)1/2)/P(V’11/3+V’21/3)2
(2.2.8)
Según Ocón en Vian y Ocón (1976), la difusividad de gases es una propiedad física que depende de los
componentes, la presión y la temperatura. El autor señaló que, en ausencia de datos experimentales, la
difusividad puede evaluarse a partir de ecuaciones semiempíricas basadas en la teoría cinética, siendo la más
satisfactoria la de Hirschfelder, Bird y Spotz (1949).
D = (9,292*10-4 (TA)3/2 ((1/M1)+(1/M2))1/2) / P(R’1 2)2(f(K(TA)/ε12))
(2.2.9)
Además de los términos ya definidos, R’1 2 es la separación de las moléculas en el choque [Å]
R’1 2 = (d1 + d2) / 2
(2.2.10)
d es el diámetro de colisión de los componentes, [Å], ε1 2 es la energía de interacción molecular [ergios]
definida por:
ε1 2 = (ε1ε2)1/2
(2.2.11)
Wilke y Lee (1955) sugirieron una modificación a la ecuación de Hirschfelder y colaboradores; consideraron
que el valor de la constante 9,292*10-4 puede ser corregido por la expresión siguiente, en la cual K’ reemplaza
a la constante.
K’*104 = 10,7 - 2,46((M1 + M2)/M1M2)1/2
Treybal (1970), presentó otra forma de la ecuación:
(2.2.12)
Juan de Dios Alvarado
K es la constante de Boltzman [1,38*10-6 ergios/K] y f(K(TA)/ε1 2) es la función de choque dada en gráficos.
Capítulo 2
40
D = ((0,00107 - 0,000246 ((1/M1) + (1/M2))1/2) (TA)3/2 ((1/M1)
+ (1/M2))1/2) / P (R’1 2)2 (f(K(TA)/ε1 2))
(2.2.13)
M. Cabe y Smith (1964) señalaron que para obtener resultados más exactos, especialmente a temperaturas
elevadas, la ecuación adecuada para el cálculo de la difusividad de gases es la obtenida a partir de la teoría de
Chapman-Enskog. La cual es:
D’ = (0,00815((TA)((1/M1) + (1/M2)))1/2) / (R’1 2)2(f(K(TA)/ε1 2))
(2.2.14)
Las magnitudes R’ y ε/K, están tabuladas para diversos gases; en ausencia de datos experimentales, estas
variables se pueden estimar a partir de ecuaciones empíricas:
ε/K = 0,75(TC) = 1,19(TB)
R’ = 8,37 (VC)1/3
(2.2.15)
(2.2.16)
Donde, (TC) es la temperatura crítica [K], (TB) es la temperatura normal de ebullición [K] y (VC) es el
volumen crítico [m3/kg.mol]. Notar la diferencia de unidades.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Toledo (1981) analizó el caso de difusión molecular a través de una capa inmóvil de aire, para su aplicación
en sistemas alimentarios. Afirmó que en este tipo de transporte de masa, en la interfase, existe una zona que
actúa como barrera impermeable a uno de los gases, y únicamente un gas entra o sale de la barrera por difusión.
El sistema está representado por una superficie húmeda en contacto con una capa inmóvil de aire; el vapor
puede salir libremente desde la barrera, pero el aire no se difunde en sentido contrario a la misma velocidad.
Un balance de materiales requiere el reemplazo de la masa que abandona la interfase. Entonces, por cada mol
de vapor que abandona la interfase, un mol de la mezcla de aire y vapor debe reemplazarlo. Por lo tanto, el flujo
neto de gas x que abandona la superficie, será la diferencia entre el que sale de la superficie por difusión y el
que retorna a la superficie con el gas y; en forma de ecuación:
- (mx/A) = D ((dCx)/(dX)) - ((-D) ((dCx)/(dX)) (Cx/Cy))
(2.2.17)
Agrupando términos:
- (mx/A) = D ((dCx)/(dX)) (1 + (Cx/Cy))
(2.2.18)
Si la mezcla consiste únicamente en el gas x y el gas y, entonces:
Ct = Cx + Cy
(2.2.19)
Resolviendo la suma indicada, por reemplazo se obtiene:
- (mx/A) = D ((dCx)/(dX)) (Ct/(Ct - Cx))
(2.2.20)
Separando variables e integrando con los límites:
Cx = Cx1 a X = 0
Cx = Cx2 a X = X2
- (mx/A)
(2.2.21)
(2.2.22)
x2
Cx2
∫ 0 (dX) = D C ∫ C ((dC )/(C - C ))
t
x
t
x
(2.2.23)
x1
- (mx/A) =
(D Ct / X2) ln((Ct - Cx1)/(Ct - Cx2))
Expresando la concentración en términos de presión parcial:
(2.2.24)
Principios Básicos de Fenómenos de Transporte
Ct = P/R(TA)
Cx = Px/R(TA)
41
(2.2.25)
(2.2.26)
Se establece que:
(mx/A) = (DP/R(TA)(X2 - X1)) ln((P - Px2)/(P - Px1))
(2.2.27)
(X2 - X1) corresponde a la distancia entre la superficie y X2.
La ecuación es válida en el caso de jugos, si Px2 es la presión parcial del vapor de agua en un punto X2 distante
de la interfase y que corresponde al aire y Px1 es la presión parcial del vapor de agua en la superficie del jugo,
la cual está directamente relacionada con la actividad del agua.
OBJETIVOS
Comprender las analogías existentes entre transferencia de calor y transferencia de masa.
Determinar experimentalmente valores de la difusividad en el sistema vapor de agua-aire a diferentes
temperaturas, para compararlos con valores calculados y reportados en la literatura técnica.
Explorar en jugos de frutas y en bebidas no carbonatadas posibles cambios en la difusividad del vapor de agua
hacia el aire.
MATERIALES Y MÉTODO
Trabajar con agua destilada, jugos de frutas obtenidos por presión manual o bebidas no carbonatadas.
Preparar tres ambientes cerrados en los cuales se mantengan las siguientes temperaturas: 20, 30 y 40C. En
cada uno de ellos colocar durante 24 horas un recipiente desecador con cloruro de calcio anhidro, tubos de
vidrio delgados y las muestras líquidas para su termostización.
En los tubos de vidrio de aproximadamente 6 [cm] de largo y 0,3 [cm] de diámetro, herméticamente cerrados
en uno de los extremos, llenar con ayuda de una jeringuilla agua destilada y jugo de fruta o bebida, hasta
aproximadamente 2 [cm] del borde superior. Colocar los tubos con las muestras en posición vertical en el
interior de los recipientes, medir exactamente la distancia entre el nivel del líquido con el borde superior del
tubo y el tiempo de inicio de la prueba.
Cerrar los recipientes con sus tapas y permitir que el nivel del líquido descienda aproximadamente 10 [mm];
registrar exactamente el descenso y el tiempo transcurrido, en el orden de dos días a la temperatura mayor y
cinco días a la temperatura menor.
Estudiar los fundamentos de la transferencia de masa molecular, la ecuación de rapidez de Fick en sus diferentes
formas y la procedencia de las ecuaciones indicadas para el cálculo teórico de la difusividad. Libro sugerido:
Welty y colaboradores (1993).
Utilizar la ecuación (2.2.4) y determinar los valores experimentales de la difusividad para las muestras de agua
destilada, de jugo o de la bebida considerada.
Elaborar un programa de computación que permita aplicar las ecuaciones indicadas por Arnold (2.2.5),
Juan de Dios Alvarado
CUESTIONARIO
Capítulo 2
42
Guilliland (2.2.8), Hirschfelder y colaboradores (2.2.9) con la modificación de Wilke y Lee (2.2.12), Treybal
(2.2.13) y Mc. Cabe y Smith (2.2.14). Calcular el valor de la difusividad del vapor de agua a cada temperatura
de trabajo.
Consultar en las referencias indicadas al final del tema, el valor de la difusividad para el sistema vapor de aguaaire y elaborar una tabla. Establecer comparaciones con los datos experimentales y discutir los resultados.
Comparar y comentar con respecto a la difusividad experimental del jugo de fruta o de la bebida no carbonatada
y la calculada mediante la ecuación desarrollada por Toledo (2.2.27).
¿Qué efecto tiene la presión atmosférica sobre la difusividad?. Estudiar y discutir su influencia en localidades
sobre el nivel del mar.
RESULTADOS EXPERIMENTALES
Usando el método indicado, se midió el descenso del nivel del líquido en el tubo de vidrio luego de cierto
tiempo (N), considerando la parte inferior del meñisco y la distancia promedio recorrida por las moléculas (X2X1). Esta distancia corresponde al punto medio del descenso registrado y el borde superior del tubo. Los datos
promedios se presentan en la Tabla 2.2.1.
Para aplicar la ecuación (2.2.4) se requiere hacer las consideraciones siguientes. En la expresión:
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
m = DA (C1 - C2) / (X2 - X1)
m es la velocidad másica de difusión, la cual puede ser expresada en términos de masa por unidad de tiempo,
según el volumen de agua transferido.
m = N A (DA)/t
(2.2.28)
Tabla 2.2.1. Valores del Descenso del Nivel de Líquido Registrados en Tubos Delgados de Vidrio a Diferentes Temperaturas
Temperatura
(X2 - X1)
N
Tiempo
[C]
[K]
[h]
[s]
20
30
40
293,2
303,2
313,2
168
168
45
604800
604800
162000
20
30
293,2
303,2
115
48
414000
172800
20
40
293,2
313,2
120
45
432000
162000
[mm]
[m]
[mm]
[m]
9,0
19,5
10,7
0,0090
0,0185
0,0107
27,5
25,5
21,4
0,0275
0,0255
0,0214
10,9
10,0
0,0109
0,0100
15,5
15,0
0,0155
0,0150
12,7
11,7
0,0127
0,0117
22,3
21,8
0,0223
0,0218
Agua
Jugo de claudia (Prunus salicina)
Vino
C1 es concentración de vapor de agua en la superficie del líquido, la que, según la ley general de los gases,
corresponde a:
Pw V = W R (TA) / M
C1 = W/V = Pw M / R (TA)
(2.2.29)
(2.2.30)
C2 es la concentración de vapor de agua en el aire del desecador. Por acción del compuesto higroscópico se
puede considerar su valor como cero.
Principios Básicos de Fenómenos de Transporte
43
Por reemplazo se obtiene:
D = m (X2 - X1) / A (C1 - C2)
D = N A (DA) (X2 - X1) / t A ((Pw * M/R (TA)) - (0))
D = N (DA) R (TA) (X2 - X1) / t Pw M
(2.2.31)
(2.2.32)
(2.2.33)
A 20 [C] o 293,2 [K] los datos son:
- Agua
N = 0,0090 [m]
(DA) = 998,2 [kg/m3] (Tabla 2.2.2)
R = 8314,34 [m3.Pa/kg.mol.K]
(TA) = 293,2 [K]
(X2-X1) = 0,0275 [m]
t = 604800 [s]
Pw = 2336,6 [Pa] (Tabla 2.2.2)
M = 18 [kg/kg.mol]
Reemplazando los valores en la ecuación (2.2.33)
D = 0,0090 [m] * 998,2 [kg/m3] * 8314,34 [m3.Pa/kg.mol.K] * 293,2 [K] *
0,0275 [m] / 604800 [s] * 2336,6 [Pa] * 18 [kg/kg.mol]
D = 2,37*10-5 [m2/s]
- En jugo de claudia (Prunus salicina), variedad de ciruela.
N = 0,0109 [m]
(DJ) = 1066 - 0,299 (20) + 1,758*10-3 (20)2 - 4,985*10-5 (20)3
(DJ) = 1060 [kg/m3] Alvarado y Romero (1989).
(X2-X1) = 0,0155 [m]
t = 414000 [s]
Reemplazando valores:
D = 0,0109 * 1060 * 8314,34 * 293,2 * 0,0155 /414000 * 2336,6 * 18
D = 2,51*10-5 [m2/s]
N = 0,0127 [m]
(DV) = 1049 [kg/m3]
(X2-X1) = 0,0223 [m]
t = 432000 [s]
Reemplazando valores:
D = 0,0127 * 1049 * 8314,34 * 293,2 * 0,0223 / 432000 * 2336,6 * 18
D = 3,99*10-5 [m2/s]
Juan de Dios Alvarado
- En vino dulce
Capítulo 2
44
Tabla 2.2.2. Valores de las Propiedades Físicas y Térmicas del Agua y Presión Absoluta del Vapor Saturado
Temperatura
Densidad
Calor
específico
Conductividad
térmica
Difusividad
térmica
Viscosidad
absoluta
Presión
absoluta
T
(TA)
(DA)
(Cp)
k
α (106)
μ (106)
Pw
[C]
[K]
[kg/m3]
[kJ/kg.K]
[W/m.K]
[m2/s]
[Pa.s]
[Pa]
0,558
0,568
0,577
0,587
0,597
0,606
0,615
0,624
0,633
0,640
0,647
0,652
0,658
0,668
0,673
0,678
0,682
0,684
0,685
0,131
0,135
0,137
0,141
0,143
0,146
0,149
0,150
0,151
0,155
0,157
0,158
0,159
0,163
0,165
0,167
0,169
0,170
0,171
1793,636
1534,741
1296,439
1135,610
993,414
880,637
792,377
719,808
658,026
605,070
555,056
509,946
471,650
404,034
352,059
308,909
277,528
254,973
253,360
872,4
1227,0
1704,9
2336,6
3159,9
4241,5
5623,8
7374,9
9581,1
12335,4
15745,9
19920,3
31162,2
47360,1
70105,9
101325,0
143348,9
198541,4
4,226
999,9
0
273,15
4,206
278,15
1000,0
5
4,195
283,15
999,7
10
999,1
4,187
288,15
15
998,2
4,182
20
293,15
997,1
4,178
25
298,15
4,176
303,15
995,7
30
4,175
308,15
994,1
35
992,2
4,175
40
313,15
990,2
4,176
45
318,15
4,178
323,15
988,1
50
4,179
328,15
985,7
55
983,2
4,181
333,15
60
977,8
4,187
70
343,15
4,194
971,8
353,15
80
4,202
363,15
965,3
90
958,4
373,15
100
4,211
951,0
4,224
110
383,15
4,232
943,5
393,15
120
Fuentes: Heldman y Singh (1981).
Toledo (1981), datos de presión de vapor.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
De igual forma se calcula para las otras temperaturas.
Según varios de los autores citados, los valores de la difusividad para el sistema agua-aire varían en un intervalo
estrecho a temperaturas bajas. Expresado en [m2/s] se establecen los valores siguientes: A 0C 2,2*10-5; 25C
2,39*10-5; 25,9C 2,58*10-5; 59C 3,05*10-5. Los valores experimentales son muy próximos a los indicados,
comprobándose la posibilidad de determinar valores de la difusividad con equipos simples existentes en los
laboratorios.
Todas las ecuaciones utilizadas para el cálculo de la difusividad arrojan resultados similares en el intervalo
de temperaturas considerado. La ecuación de Hirschfelder y colaboradores arroja los resultados más cercanos
con relación a los datos experimentales; la ecuación obtenida a partir de la teoría de Chapman-Enskog arroja
resultados más bajos, lo que se explica por ser ésta adecuada para temperaturas elevadas.
Los valores de la difusividad determinados en muestras de jugo de claudia son ligeramente superiores a los
del agua pura. La aplicación del modelo desarrollado por Toledo (1981) es adecuada para el cálculo de la
difusividad en alimentos líquidos, según se observa al comparar los valores del jugo de fruta y del vino.
BIBLIOGRAFÍA Y REFERENCIAS
Alvarado, J. de D. and Romero, C. 1989. Physical properties of fruits. I-II. Density and viscosity of juices as
function of soluble solids content and temperature. Lat. Am. Appl. Res. (LAAR), 19(1):15-21.
Arnold, J. H. 1930. Ind. Eng. Chem., 22:1091.
Gilliland, E. R. 1934. Ind. Eng. Chem., 26:681.
Harper, J. C. 1976. “Elements of Food Engineering”. Westport, Connecticut. AVI Pub. Co. Inc. p: 230-233.
Heldman, D. R. and Singh, P. 1981. “Food Process Engineering”. Westport, Connecticut. AVI Pub. Co. Inc.
p: 393-394.
Hirschfelder, J. O.; Bird, R. B. and Spotz, E. L. 1949. Chem. Rev., 44:205.
Mc. Cabe, W. L. y Smith, J. C. 1964. “Operaciones Básicas de Ingeniería Química”. V.2. Barcelona, España.
Editorial Reverté S.A. p: 633-662.
Principios Básicos de Fenómenos de Transporte
45
Sutherland. 1893. Phil. Mag., 36:507.
Toledo, R. 1981. “Fundamentals of Food Process Engineering”. Westport, Connecticut. AVI Pub. Co. Inc.
p: 357-359
Treybal, R. E. 1970. “Operaciones con Transferencia de Masa”. Buenos Aires, Argentina. Editorial Hispano
Americana S.A. p: 17-88.
Vian, O. y Ocón, J. 1976. “Elementos de Ingeniería Química”. 5ta ed. Madrid, España. Ediciones Aguilar. p:
428-444.
Welty, J. R.; Wicks, Ch. E. y Wilson, R. E. 1993. “Fundamentos de Transferencia de Momento, Calor y Masa”.
México, D. F. Editorial Limusa. p: 533-569.
Juan de Dios Alvarado
Wilke, C. R. and Lee, C. Y. 1955. Estimatión of diffusion coefficients for gases and vapors. Ind. Eng. Chem.,
47:1253-1257.
Capítulo 2
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
46
TEMA 2.3. APLICACIÓN DE LA LEY DE ENFRIAMIENTO DE
NEWTON
INTRODUCCIÓN
Se reconocen tres modos de transferencia de calor: conducción, convección y radiación. Según Kreith (1970),
estrictamente hablando, únicamente la conducción y la radiación deberían ser clasificadas como procesos de
transferencia de calor, pues dependen en forma exclusiva de la existencia de una diferencia de temperaturas.
La convección en cambio depende del transporte mecánico de masa; sin embargo, puesto que en la convección
también se efectúa transferencia de energía desde regiones de temperatura más alta a regiones de temperatura
más baja, se acepta la denominación de transferencia de calor por convección. Se tiene convección libre, o
convección natural, cuando el fluido que es el agente de transporte de calor se mueve por efecto de la variación
de su densidad, como consecuencia de un cambio de temperatura.
Toledo (1984) señaló que, en muchos problemas prácticos que se presentan en alimentos, la transferencia de
calor ocurre por más de un modo. En ciertos casos y a temperaturas bajas, el calor emitido por radiación, desde
la superficie considerada, es del mismo orden de magnitud que el emitido por convección en forma paralela.
Por ello se requiere considerar los dos coeficientes al determinar la velocidad total de transferencia de calor;
escrito en forma de ecuación:
q = qr + qn
q = hr A (dT)r + hn A (dT)n
(2.3.1)
(2.3.2)
Donde q es el flujo de calor, h es el coeficiente de transferencia de calor promedio por unidad de superficie,
A es el área de transferencia calórica, (dT) es la diferencia de temperaturas; los subíndices r y n se refieren a
Principios Básicos de Fenómenos de Transporte
47
radiación y convección, respectivamente.
Earle (1968) mencionó el trabajo de Newton, quien estableció experimentalmente que la velocidad con que
se enfría la superficie de un sólido sumergido en un fluido más frío, es proporcional a la diferencia entre la
temperatura de la superficie del sólido y la temperatura del fluido frío. A este hecho se lo conoce como ley
de enfriamiento de Newton, y corresponde a la parte convectiva de la última ecuación. Esta relación, más que
una ley del fenómeno de convección, es una definición del coeficiente de transferencia térmica promedio por
convección.
Al incluir a la radiación en un proceso térmico que involucre convección y radiación, se requiere definir el
coeficiente de transferencia de calor radiante. Una manera de hacerlo, según la ecuación reportada por Pitts y
Sissoms (1979), es:
hr = 5,669 (F) (((TA)2/100)4-((TA)1/100)4) / ((TA)2-(TA)1)
(2.3.3)
(F) es el factor de configuración para cuerpos grises, en el caso de una superficie gris que encierre totalmente
a otra, puede ser calculado por:
(1/F) = (1/e1) + (A1/A2)((1/e2)-1)
(2.3.4)
Donde e son las emisividades de los cuerpos grises.
Muchas de las ecuaciones utilizadas en cálculos relacionados con convección utilizan los llamados números
sin dimensiones. Toledo (1984) indicó que el uso de cantidades sin dimensiones proviene del principio
de similaridad, según el cual, si las características físicas de un fluido y las condiciones que existen en un
experimento se expresan en términos de estas cantidades, se pueden extrapolar los resultados de un experimento
a otros fluidos y otras condiciones. En consecuencia, el principio de similaridad hace innecesario obtener
experimentalmente ecuaciones de transferencia de calor para cada fluido; una ecuación de correlación general
puede ser aplicable para varios fluidos. Se debe indicar que en la práctica una similaridad total no se cumple.
Se necesita considerar una similaridad parcial, que requiere examinar en forma sucesiva, o en ciertos casos
simultánea, los diferentes fenómenos que pueden ocurrir.
Número de Nusselt:
(NNu) = h l / k
(2.3.5)
Número de Reynolds:
(NRe) = l v ρ / μ
(2.3.6)
Número de Prandtl:
(NPr) = (Cp) μ / k
(2.3.7)
Número de Grashoff:
(NGr) = (l)3 g β (ρ)2 (dT) / (μ)2
(2.3.8)
Número de Peclet:
(NPe) = (NRe) (NPr)
(2.3.9)
Número de Rayleigh:
(NRa) = (NGr) (NPr)
(2.3.10)
En estas ecuaciones, h es el coeficiente de transferencia de calor, l es la dimensión característica del sistema
Juan de Dios Alvarado
Las cantidades sin dimensiones siguientes fueron estructuradas por análisis dimensional, y se utilizan en
correlaciones que involucran al coeficiente de transferencia de calor.
Capítulo 2
48
considerado, k es la conductividad térmica, v es la velocidad, ρ es la densidad, μ es la viscosidad, (Cp) es el
calor específico, g es la aceleración debida a la gravedad, β es el coeficiente volumétrico de expansión térmica
y (dT) es la diferencia de temperaturas.
Para el caso específico de convección libre, Toledo (1984) recopiló y reportó las ecuaciones siguientes:
La ecuación de Hausen (1959), que ajusta muy bien con los datos experimentales cuando el número de Rayleigh
está entre 10-7 y 1012.
(NNu) = 0,11 (NRa)0,33 + (NRa)0,10
(2.3.11)
Las ecuaciones de Kato, Nishiwaki y Hirata (1968), que se aplican para el caso de placas verticales calientes.
Cuando el número de Rayleigh es inferior a 1010.
(NNu) = 0,138 (NGr)0,36 ((NPr)0,175 - 0,55)
(2.3.12)
Si el número de Rayleigh es superior a 1010.
(NNu) = 0,683 (NGr)0,25 (NPr)0,5 / (0,861 + (NPr))0,25
(2.3.13)
La ecuación de Mc Adams (1954), para el caso de cilindros horizontales y cuando el número de Rayleigh está
entre 103 y 109.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
(NNu) = 0,53 (NRa)0,25
(2.3.14)
Representaciones gráficas de la última ecuación, y otras establecidas por Mc Adams, fueron presentadas por
Welty (1994) y Kreith (1970).
El cálculo del número de Nusselt permite determinar el valor del coeficiente de transferencia de calor; sin
embargo, el hecho de que, a temperaturas ambientales y presiones próximas a la atmosférica, las propiedades
físicas del aire cambian muy poco, posibilitó el desarrollo de ecuaciones dimensionales para el cálculo de hn
como función de la diferencia de temperaturas y de la dimensión característica, L la altura o d el diámetro;
entre ellas Toledo (1981) presentó las siguientes:
Cilindros horizontales en contacto con aire inmóvil:
hn = 1,3196 ((dT)/d)0,25
(2.3.15)
Cilindros verticales en contacto con aire inmóvil:
hn = 1,3683 ((dT)/L)0,25
(2.3.16)
Ocón y Tojo (1971) presentaron una ecuación similar, para el caso de tubos horizontales y verticales en contacto
con aire en flujo laminar:
hn = 1,2793 ((dT)/l)0,25
(2.3.17)
Cuando se trabaja con cilindros en posición horizontal y vertical, mantenidos en contacto con aire en cámaras
cerradas y estado permanente, es posible considerar que la transferencia de calor ocurre por convección libre
y radiación en forma paralela. El análisis del fenómeno convectivo, según la ley de enfriamiento de Newton,
permitirá cuantificar los valores del coeficiente de transferencia térmica promedio a diferentes temperaturas.
Si se supone que la temperatura de la pared de la cámara es igual a la temperatura del aire interior, y que el área
del cilindro disminuye de manera uniforme, la ecuación (2.3.2) puede ser modificada en la forma siguiente:
Principios Básicos de Fenómenos de Transporte
q = (hr + hn)(2πL(r2 - r1) / ln(r2/r1))(Ti - Ts)
49
(2.3.18)
Donde L es la longitud del cilindro, π es 3,1416, r2 el radio inicial, r1 el radio final, Ti la temperatura del aire y
Ts la temperatura en la superficie del cilindro.
El flujo de calor que provoca la fusión de una determinada masa de hielo responde a la relación:
q = w (Yf) / t
(2.3.19)
Siendo w la masa fundida, (Yf) el calor latente de fusión y t el tiempo.
En consecuencia, luego de establecer el flujo de calor y el coeficiente de transferencia de calor por radiación,
se puede determinar el coeficiente de transferencia de calor por convección libre promedio.
OBJETIVOS
Aplicar la ley de enfriamiento de Newton y las ecuaciones utilizadas en transferencia de calor, para determinar
coeficientes de transferencia de calor convectivos.
Comparar valores experimentales y calculados del coeficiente de transferencia de calor por convección natural,
en cilindros de hielo en contacto con aire a diferentes temperaturas.
Comprobar la aplicación de ecuaciones dimensionales para el sistema hielo-aire, a diferentes temperaturas en
el caso de convección libre.
MATERIALES Y MÉTODOS
Preparar de manera simultánea doce cilindros de hielo de aproximadamente 0,15 [m] de alto por 0,04 [m] de
diámetro, mediante congelación durante un mínimo de dos días, en moldes llenos con agua provistos de tapones
de caucho en los extremos, y atravesados por un alambre que servirá para mantener suspendida la muestra.
En tres estufas de dimensiones interiores conocidas y estabilizadas a tres temperaturas diferentes (20, 30 y
40C), colocar, en cada una de ellas, para trabajar por duplicado, dos cilindros de hielo suspendidos en sentido
vertical y dos cilindros de hielo suspendidos en sentido horizontal, con su correspondiente recipiente para
recolectar el agua fundida.
Dejar que se estabilice el sistema por treinta minutos; con un Vernier medir el diámetro de cada cilindro de
hielo y cambiar el recipiente de recolección por un vaso de cristal de uno o dos litros de capacidad previamente
pesado; cerrar las estufas y recolectar el agua por un tiempo de veinte minutos o más, que debe ser registrado.
Abrir las estufas, medir nuevamente el diámetro y, por diferencia de peso, la cantidad de agua fundida, en la
forma más exacta posible.
CUESTIONARIO
Para cada temperatura y posición de las muestras calcular los valores promedios de la cantidad de calor
transferido, considerando la masa de agua recolectada por aplicación de la ecuación (2.3.19), y los valores
del coeficiente de transferencia de calor por radiación mediante las ecuaciones (2.3.4) y (2.3.3). Aplicar la
ecuación (2.3.18) y definir los valores del coeficiente de transferencia de calor promedio por convección libre,
según los datos experimentales.
Establecer los Números de Nusselt (ecuación 2.3.5) y los Números de Rayleigh ecuaciones (2.3.7), (2.3.8) y
(2.3.10), para las distintas condiciones de trabajo, y graficarlos en escalas logarítmicas. Por técnicas de regresión,
determinar los términos de la ecuación log (NRa) contra log (NNu) y compararlos con los correspondientes de la
Juan de Dios Alvarado
Consultar con respecto a la ley de enfriamiento de Newton y el análisis matemático para convección libre.
Capítulo 2
50
ecuación de Mc Adams (2.3.14) y los reportados en Welty (1994) y Kreith (1970).
Calcular los valores del coeficiente de transferencia de calor por convección libre correspondientes a las
diferentes condiciones de trabajo, según las ecuaciones (2.3.11), (2.3.12) y (2.3.13). Tabular los resultados,
incluidos los obtenidos según los datos experimentales, y discutirlos.
Utilizar los valores experimentales obtenidos con cilindros en posición vertical y horizontal en forma separada,
graficar los datos y establecer las correlaciones que permitan realizar comparaciones con las ecuaciones
(2.3.15), (2.3.16) y (2.3.17), discutir la aplicación de las ecuaciones dimensionales para el sistema analizado.
RESULTADOS EXPERIMENTALES
Los resultados siguientes se obtuvieron en muestras congeladas durante 48 horas. Las pruebas se efectuaron en
estufas con paredes de láminas de aluminio de 0,4*0,4*0,4 [m] y las medidas luego de treinta minutos para la
estabilización. Los datos se presentan en Tabla 2.3.1.
Aceptando una analogía exacta entre la transferencia de calor y la transferencia de materia, el flujo de calor
puede ser calculado por:
q = w (Yf) / t
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
El calor de fusión del agua es 333,8 [kJ/kg]; por reemplazo a 20C se obtiene:
q = 0,0142[kg] * 333,8[kJ/kg] / 1200[s] = 3,953 [W] (Vertical)
q = 0,01639[kg] * 333,8[kJ/kg] / 1200[s] = 4,559 [W] (Horizontal)
Tabla 2.3.1. Datos de Agua Fundida Registrados en Cilindros de Hielo
Temperatura
[C]
Posición
Longitud
[m]
Diámetro [m]
Final
Peso de agua
[kg]
Tiempo
[s]
Inicial
20
Vertical
Horizontal
0,15
0,15
0,0439
0,0439
0,0434
0,0418
0,01421
0,01639
1200
1200
30
Vertical
Horizontal
0,15
0,15
0,0435
0,0394
0,0402
0,0369
0,01680
0,01872
900
900
40
Vertical
Horizontal
0,15
0,15
0,0425
0,0402
0,0391
0,0371
0,02552
0,02748
900
900
50
Vertical
Horizontal
0,15
0,15
0,0400
0,0394
0,0374
0,0346
0,03371
0,03724
900
900
Para calcular los valores del coeficiente de transferencia de calor por radiación se debe considerar que la
temperatura de fusión del hielo es 0C o 273 K y su emisividad 0,97; para el aluminio comercial el valor de la
emisividad es 0,09.
A 20 C el valor calculado del factor de configuración es:
(1/F) = (1/e1) + (A1/A2)((1/e2) - 1)
A1 = π((di+df)/2)L = 3,14*((0,0439+0,0434)/2)*0,15 = 0,0206 [m2] (Vertical)
A1 = 3,14*((0,0439 + 0,0418)/2)*0,15 = 0,0202 [m2] (Horizontal)
A2 = 6(0,4*0,4) = 0,96 [m2]
(1/F) = (1/0,97) + (0,0206/0,96)((1/0,09) = 1,248
F = 1/1,248 = 0,801 (Vertical)
(1/F) = (1/0,97) + (0,0202/0,96)((1/0,09) - 1) = 1,244
Principios Básicos de Fenómenos de Transporte
51
F = 1/1,244 = 0,804 (Horizontal)
Según la ecuación:
hr = 5,66 (F)(((TA)2/100)4 - ((TA)1/100)4) / ((TA)2 - (TA)1)
hr = 5,669*0,801((293/100)4-(273/100)4)/(293-273) = 4,12 [W/m2 K] (Vertical)
hr = 5,669*0,804((293/100)4-(273/100)4)/(293-273) = 4,14 [W/m2 K] (Horizontal)
Los valores calculados se reemplazan en la ecuación que considera la transferencia simultánea de calor por
convección y radiación, donde en la parte convectiva está considerada la ley de Newton.
q = (hr+hn)(2πL(r2-r1)/ln(r2/r1))(Ta-Ts)
3,953 = (4,12 + hn)(2*3,14*0,15(0,02195 - 0,0217) / ln(0,02195/0,0217)) (20-0)
hn = 5,5 [W/m2 K] (Vertical)
4,559 = (4,14 + hn)(2*3,14*0,15(0,02195 -0,0209) / ln(0,02195/0,0209)) (20-0)
hn = 7,1 [W/m2 K] (Horizontal)
Igual procedimiento se aplica a las diferentes temperaturas, lo que permite elaborar la Tabla 2.3.2.
Tabla 2.3.2. Valores de Coeficientes de Transferencia de Calor en Convección Libre para Cilindrosde Hielo en Contacto
con Aire
Temperatura
[C]
Posición
q
[W]
A1
[m2]
A2
[m2]
F
hr
[W/m2.K]
hn
[W/m2.K]
20
Vertical
Horizontal
3,953
4,559
0,0206
0,0202
0,96
0,96
0,801
0,804
4,12
4,14
5,5
7,1
30
Vertical
Horizontal
6,231
6,943
0,0197
0,0180
0,96
0,96
0,807
0,819
4,38
4,45
6,2
8,4
40
Vertical
Horizontal
9,465
10,192
0,0192
0,0182
0,96
0,96
0,811
0,818
4,65
4,69
7,7
9,3
50
Vertical
Horizontal
12,503
13,812
0,0182
0,0174
0,96
0,96
0,818
0,824
4,92
4,98
8,8
10,9
Temperatura
Densidad
Coeficiente
volumétrico
expansión térmica
Calor
específico
Conductividad
térmica
Difusividad
térmica
Viscosidad
Viscosidad
cinemática
(TA)
ρ
β(103)
(Cp)
k
α(106)
μ(106)
μ’(106)
[C]
[K]
[kg/m3]
[1/K]
[kJ/kg.K]
[W/m.K]
[m2/s]
[N.s/m2]
[m2/s]
-20
253,15
1,365
3,97
1,005
0,0226
16,8
16,297
12,00
0
10
20
30
40
273,15
283,15
293,15
303,15
313,15
1,252
1,206
1,164
1,127
1,092
3,65
3,53
3,41
3,30
3,20
1,011
1,010
1,012
1,013
1,014
0,0237
0,0244
0,0251
0,0258
0,0265
19,2
20,7
22,0
23,4
24,8
17,456
17,848
18,240
18,682
19,123
13,90
14,66
15,70
16,58
17,60
50
60
70
80
90
323,15
333,15
343,15
353,15
363,15
1,057
1,025
0,996
0,968
0,942
3,10
3,00
2,91
2,83
2,76
1,016
1,017
1,018
1,019
1.021
0,0272
0,0279
0,0286
0,0293
0,0300
26,2
27,6
29,2
30,6
32,2
19,515
19,907
20,398
20,790
21,231
18,58
19,40
20,65
21,50
22,82
100
120
140
150
373,15
393,15
413,15
423,15
0,916
0,870
0,827
0,810
2,69
2,55
2,43
2,37
1,022
1,025
1,027
1,028
0,0307
0,0320
0,0333
0,0336
33,6
37,0
40,0
41,2
21,673
22,555
23,340
23,732
23,60
25,90
28,20
29,40
T
Adaptado de: Raznjevic, K. 1978. Handbook of Thermodynamic Tables and Charts. Hemisphere Publishing Corporation,
Washington. Fuente: Singh y Heldman (1984).
Para determinar los valores de los números adimensionales se requiere disponer de las propiedades físicas del
aire. Por esta razón se incluye la Tabla 2.3.3.
Juan de Dios Alvarado
Tabla 2.3.3. Propiedades Físicas del Aire Seco a Presión Atmosférica
Capítulo 2
52
Como ejemplo de cálculo, a 20C, las propiedades del aire se evalúan a la temperatura media de 10C.
(NNu) = hn l / k
(NNu) = 5,5[W/m2.K] * 0,15[m] / 0,0244[W/m.K] = 33,81 (Vertical)
(NNu) = (7,1) * ((0,0439 + 0,0418)/2)/0,0244 = 12,47 (Horizontal)
(NPr) = Cp μ / k
(NPr) = 1010[J/kg.K]*17,848*10-6[kg/m.s]/0,0244[J/s.m.K] = 0,74
(NGr) = (d)3 (g) (β) (ρ)2 (dT) / (μ)2
(NGr) = (0,15)3[m3]*9,81[m/s2]*3,53*103[1/K](1,206)2[kg2/m6]*20[K] / (17,848*10-6)2[kg2/m2.s2]
(NGr)= 1,07*107 (Vertical)
(NGr)= (0,04285)3(9,81)(3,53*10-3)(1,206)2(20)/(17,848*10-6)2
(NGr)= 2,49*105 (Horizontal)
(NRa) = (NPr) (NGr)
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
(NRa) = 0,74 * 1,07*107 = 7,92*106 (Vertical)
(NRa) = 0,74 * 2,49*105 = 1,84*105 (Horizontal)
Los cálculos a las diferentes temperaturas permiten elaborar la Tabla 2.3.4.
Según la ecuación de Mc Adams (1954), un gráfico de log(NRa) contra log(NNu) deberá ser una línea recta con
pendiente 0,25 y ordenada al origen igual a log 0,53, que es -0,276. En la Figura 2.3.1. se representan con línea
continua los valores calculados con la ecuación (2.3.14), y con línea cortada los valores obtenidos según las
condiciones experimentales, con su correspondiente ecuación de regresión lineal. Se aprecia que se cumple la
relación lineal cuando se consideran los logaritmos (r=0,99), y que existe una aproximación aceptable con la
ecuación de Mc Adams. Compruébase su validez en concordancia con lo publicado por Kreith (1970).
Figura 2.3.1. Logaritmo del Número de Rayleigh contra logaritmo del
Número de Nusselt en convección libre.
Principios Básicos de Fenómenos de Transporte
53
Tabla 2.3.4. Valores de Números Adimensionales Calculados para Cilindros en Contacto con Aire Quieto
Temperatura [C]
Posición
(NNu)
log(NNu)
(NPr)
(NGr)
(NRa)
log(NRa)
20
Vertical
Horizontal
Vertical
Horizontal
Vertical
Horizontal
Vertical
Horizontal
33,81
12,47
37,50
12,92
46,02
14,32
51,87
15,85
1,53
1,10
1,57
1,11
1,66
1,16
1,71
1,20
0,74
0,74
0,74
0,74
0,74
0,74
0,73
0,73
1,07*107
2,49*105
1,49*107
2,45*105
1,84*107
3,15*105
2,14*107
3,21*105
7,92*106
1,84*105
1,10*107
1,81*105
1,36*107
2,33*105
1,56*107
2,34*105
6,90
5,26
7,04
5,26
7,13
5,37
7,19
5,37
30
40
50
La aplicación de las ecuaciones recopiladas por Toledo (1984), cuando se trabaja con los datos a 20 C,
conduce a los resultados siguientes:
- Hausen (1959).
(NNu) = 0,11 (NRa)0,33 + (NRa)0,10
(NNu) = 0,11(7,92*106)0,33 + (7,92*106)0,10 = 25,69
hn = (NNu) (k) / (L)
hn = 25,69 * 0,0244[W/m.K] / 0,15 [m] = 4,18 [W/m2.K] (Vertical)
(NNu) = 0,11(1,84*105)0,33 + (1,84*105)0,10 = 9,37
hn = (NNu) (k) / (d)
hn = 9,37 * 0,0244/((0,0439 + 0,0418)/2) = 5,34 [W/m2.K] (Horizontal)
- Kato, Nishiwaki y Hirata (1968).
(NNu) = 0,138 (NGr)0,36 * ((NPr)0,175 - 0,55)
(NNu) = 0,138 (1,07*107)0,36 * ((0,74)0,175 - 0,55) = 18,67
hn = 18,67 * 0,0244/0,15 = 3,04 [W/m2.K] (Vertical)
(NNu) = 0,138(2,49*105)0,36 * ((0,74)0,175 - 0,55) = 4,82
hn = 4,82 * 0,0244 / 0,04285 = 2,75 [W/m2.K] (Horizontal)
En la Tabla 2.3.5. se recopilan los valores calculados a las diferentes temperaturas, incluidos los valores del
coeficiente de transferencia de calor por convección libre, que se obtienen de los datos experimentales.
Tabla 2.3.5. Valores del Coeficiente de Transferencia de Calor por Convección Libre para Cilindros de Hielo en Contacto
con Aire
hn [W/m2.K]
[C]
Posición
Experimental
Hansen
Kato y col.
Rayleigh
Mc Adams
20
Vertical
Horizontal
Vertical
Horizontal
Vertical
Horizontal
Vertical
Horizontal
5,5
7,1
6,2
8,4
7,7
9,3
8,8
10,9
4,18
5,34
4,65
6,05
5,02
6,45
5,30
6,84
3,04
2,75
3,47
3,11
3,80
3,45
4,05
3,61
4,86
6,65
5,35
7,54
5,72
8,04
6,00
8,51
4,57
6,25
5,04
7,09
5,38
7,56
5,65
8,02
30
40
50
Juan de Dios Alvarado
Temperatura
Capítulo 2
54
Tabla 2.3.6. Valores del Logaritmo de los Coeficientes de Transferencia de Calor y de la Razón Diferencia de Temperaturas
sobre la Dimensión Característica
Temperatura
VERTICAL
HORIZONTAL
[C]
hn
log hn
(dT/L)
log(dT/L)
hn
log hn
(dT/d)
log(dT/d)
20
30
40
50
5,5
6,2
7,7
8,8
0,740
0,792
0,886
0,944
133,3
200,0
266,7
333,3
2,125
2,301
2,426
2,523
7,1
8,4
9,3
10,9
0,851
0,924
0,968
1,037
466,7
786,4
1034,9
1351,4
2,669
2,896
3,015
3,131
Se destaca que, excepto la ecuación de Kato y colaboradores (1968), que es específica para cilindros verticales,
todas confirman el hecho experimental de que la transferencia de calor es mayor en sentido horizontal que
en sentido vertical y que la posición de las muestras afecta al coeficiente de transferencia convectivo. Los
valores experimentales son del mismo orden de magnitud, en especial al compararlos con los calculados con la
ecuación de Mc Adams (1954), la cual establece las mejores estimaciones para el caso analizado.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
En la Tabla 2.3.6. se presentan los valores del logaritmo del coeficiente de transferencia de calor promedio por
convección libre experimental, y del logaritmo de la relación entre la diferencia de temperaturas y la dimensión
característica, para cilindros en posición vertical y horizontal.
Figura 2.3.2. Convección libre en cilindros de hielo expuestos al aire.
En la Figura 2.3.2. están representados estos valores, con las correspondientes ecuaciones de regresión lineal
obtenidas al considerar los logaritmos de los términos de las ecuaciones sin dimensiones. Los términos de las
ecuaciones son diferentes a los reportados por Ocón y Tojo (1971); en posición horizontal los valores son más
próximos.
BIBLIOGRAFÍA Y REFERENCIAS
Earle, R. E. 1968. “Ingeniería de los Alimentos”. Traducido por: Alemán Vega, J. Zaragoza, España. Editorial
Acribia. 672 p.
Hausen, N. 1959. Allgem. Warmetechnic, 9:75-79.
Kato. Nishiwaki and Hirata. 1968. Intern. J. Heat and Mass Transfer, 11:1117.
Kreith, F. 1970. “Principios de Transferencia de Calor”. Traducido por: Vásquez Dorantes, F. México. Herrero
Hermanos, Sucesores S.A. (CRAT). p:350-391. y Figuras 7.3-7.4.
Mc Adams, W. H. 1954. “Heat Transmission”. 3th. ed. New York. Mc Graw Hill.
Principios Básicos de Fenómenos de Transporte
55
Ocón García, J. y Tojo Barreiro, G. 1971. “Problemas de Ingeniería Química”. T.1. Madrid, España. Aguilar
S.A. de Ediciones. p: 68-160.
Pitts, D. R. y Sissom, L. E. 1979. “Teoría y Problemas de Transferencia de Calor”. Serie de Compendios
Schaum. Traducido por: Gamboa, S. Bogotá, Colombia. Editorial Mc Graw - Hill Latinoamericana, S. A. p:
260-296.
Singh, R. P. and Heldman, D. R. 1984. “Introduction to Food Engineering”. Orlando, Florida. Academic Press,
Inc. 306 p.
Toledo, R. T. 1984. Correlation equations for calculating heat transfer coefficients. Lecture 4. III Curso
Avanzado en Tecnología de Alimentos. Facultad de Ciencia e Ingeniería en Alimentos, Universidad Técnica
de Ambato. Ecuador. 11 p.
Toledo, R. T. 1981. “Fundamentals of Food Process Engineering”. Westport, Connecticut. AVI Pub. Co. p: 216.
Juan de Dios Alvarado
Welty, J. R. 1994. “Transferencia de Calor Aplicada a la Ingeniería”. México. Editorial Limusa, Grupo Noriega
Editores. p: 247-266.
Capítulo 3
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
54
3. Cinética de Reacciones
que Ocurren en Alimentos
Cinética de Reacciones que Ocurren en Alimentos
55
3. CINÉTICA DE REACCIONES QUE OCURREN EN ALIMENTOS
La cinética química es la parte de la química-física que estudia la velocidad de las reacciones químicas, los
factores que la afectan y el mecanismo por el cual transcurren. Los cambios que ocurren en los alimentos son
el resultado de numerosas y complejas reacciones químicas y bioquímicas, acompañadas de diversos efectos
físicos.
Los alimentos de origen vegetal se caracterizan por los cambios físicos, químicos y bioquímicos que
permanentemente ocurren, en un ciclo que se puede considerar se inicia y termina con la siembra, pues, durante
su crecimiento y luego de la cosecha, continúan efectuándose reacciones de todo tipo.
Una situación similar puede ser establecida en los alimentos de origen animal; nuevamente, después del
sacrificio del animal, las reacciones continúan y en conjunto producen la descomposición de los tejidos, en
contraste con las reacciones de síntesis que son características en los animales vivos.
La aplicación consciente o inconsciente de la cinética en alimentos es muy antigua; así, por ejemplo, al utilizar
el frío para conservarlos por tiempos más largos. En el momento actual constituye una herramienta fundamental
para la tecnología e ingeniería de alimentos.
La necesidad de comercializar los alimentos en el mejor estado posible, o de conocer el tiempo en que se
esperaría mantengan sus propiedades alimenticias en un nivel adecuado, encontró en la cinética el camino
idóneo para enfrentar el problema.
Se destaca el trabajo y la publicación del Dr. Theodore T. Labuza sobre datos de tiempos de vida útil en una gran
cantidad de alimentos, agrupados de la manera siguiente: granos de cereales y harinas; cereales para desayuno;
productos tipo pasta, como los tallarines y otros fideos; alimentos fritos; pollo, carne fresca, pescado; productos
de lechería en sus diversas presentaciones; productos frescos de panadería; frutas y vegetales enlatados; frutas y
vegetales congelados; jugos concentrados, café y té; especias, azúcar y sal; alimentos deshidratados, alimentos
del mar y carnes congeladas; frutas y vegetales frescos.
Desde el punto de vista de conservación y comercialización de alimentos, se requiere considerar tres datos o
fechas que pueden ser calculados con los principios de la cinética. La fecha en que el alimento se elabora o
procesa, conocida como fecha de empaque. La fecha en que el alimento se coloca en el sitio de venta, llamada
fecha de presentación, y que en principio correspondería a la fecha de empaque de productos frescos, como
las hamburguesas. La fecha hasta la cual el producto puede ser vendido o debe removerse del sitio de venta,
denominada fecha de retiro.
Con el propósito de orientar el uso de los principios de la cinética de reacciones en la estimación de períodos
de vida útil, se necesita conocer los mecanismos principales de deterioro que persisten, según los métodos de
preservación aplicados.
Existe un deterioro que muchas veces no se considera, pero que tiene importancia pues define la calidad inicial
del producto: es el decaimiento biológico que tienen los vegetales antes de la cosecha o los animales antes del
sacrificio; este estado es provocado por microorganismos y enfermedades, y, en ciertos casos de vegetales, por
el ataque de insectos, pájaros o roedores.
Cuando una fruta, grano de cereal u otro vegetal se separa de la planta que constituye su fuente de nutrientes
Juan de Dios Alvarado
No existen criterios definidos con respecto a las propiedades que fijan estas fechas; por el contrario, en muchos
países lamentablemente no se regula la comercialización de los alimentos a base de conocimientos científicos.
Capítulo 3
56
y agua, se inician una serie de fenómenos que en conjunto se denominan envejecimiento. Este se manifiesta
por pérdida de color, sabor, textura y nutrientes. Varias reacciones de naturaleza química y bioquímica son las
responsables de estos cambios. Para prevenir o retardar el envejecimiento se puede disminuir la temperatura,
inactivar las enzimas por acción del calor, remover o ligar el agua presente en el producto, entre otros métodos.
Los microorganismos constituyen la principal causa de deterioro de los alimentos. Si existe la cantidad
suficiente de nutrientes, a partir de un microorganismo que se divida cada diez minutos, en cinco horas pueden
existir más de mil millones de microorganismos. Lo anterior indica la alta velocidad de reproducción que
poseen y que puede ser expresada por ecuaciones cinéticas.
Los métodos comunes para controlar el ataque de los microorganismos son: disminuir la temperatura para
retardar su crecimiento y reproducción; elevar la temperatura para destruirlos; remover o ligar el agua para
retardar o prevenir su crecimiento; bajar o regular el pH por adición de compuestos químicos o fermentación;
controlar el nivel de oxígeno y de otros gases, como el bióxido de carbono; manipular la composición del
alimento para remover nutrientes requeridos por los microorganismos.
Por otro lado, cuando los alimentos se procesan, ocurre daño de los tejidos, varios compuestos químicos se
liberan al entorno, reaccionan y son causa de varios cambios que disminuyen la calidad del producto. Lo cual
se conoce como deterioro químico. Entre las reacciones típicas de deterioro químico se pueden mencionar la
oxidación de lípidos, el empardeamiento no enzimático, la destrucción de vitaminas A, B y C. En este capítulo
se presentan ejemplos de este tipo de deterioro y su evaluación con ecuaciones cinéticas, que incluyen el efecto
de la temperatura.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Además, existe el deterioro físico provocado por golpes, mal manejo, marchitamiento o pérdida de agua, y por
congelación-descongelación. Estas son las causas más importantes.
Todos los cambios indicados pueden ser descritos por ecuaciones cinéticas, lo que resalta la importancia que
tienen su conocimiento y la correcta aplicación en el sector alimentario.
NOMENCLATURA DEL CAPÍTULO 3.
a
A
A’
{A}
b
{B}
(BR)
C
{C}
d
D
(EA)
(EX)
f
i
(IP)
j
J
k
k’
n
N
Q
R
t
= término de la ecuación 3.2.20.
= condición de calidad medida en un alimento
= logaritmo natural de 100 [4,605]
= concentración de un compuesto reaccionante
= término de la ecuación 3.2.20.
= concentración de un compuesto reaccionante
= grados Brix
= concentración residual de ácido ascórbico total [mg/100 g]
= concentración de un compuesto resultante
= diferencia
= color expresado como absorbancia o extinción espectrofotométrica
= energía de activación [J/g.mol]
= extinción espectrofotométrica, absorbancia o densidad óptica
= factor de dilución
= exponente en la ecuación 3.1.3.
= índice de peróxidos [m eq. O2/kg]
= exponente de la ecuación 3.1.3.
= constante en las ecuaciones cinéticas de medio orden
= constante de velocidad de reacción o velocidad específica [{}/s]
= factor de frecuencia [1/s]
= orden de reacción
= normalidad [eq.q./litro]
= medida del efecto de la temperatura sobre la velocidad de cambio
= constante de los gases [8,314 J/g.mol.K]
= tiempo [s]
Cinética de Reacciones que Ocurren en Alimentos
(TA)
(TR)
v
V
W
57
= temperatura absoluta [K]
= transmisión espectrofotométrica o transmitancia
= velocidad de reacción [{}/s]
= volumen [cm3]
= peso [kg]
Subíndices
= temperatura [C]
= inicial
= condición uno
= condición dos
= condición tres
= 10[C]
Juan de Dios Alvarado
T
0
1
2
3
10
Capítulo 3
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
58
TEMA 3.1. APLICACIÓN DE CINÉTICA QUÍMICA EN LA OXIDACIÓN
DE ACEITES
INTRODUCCIÓN
Según Caneda (1978), desde un punto de vista estrictamente científico, los trabajos de Wilhelmy en 1850, sobre
la inversión de la sacarosa, pueden considerarse como el primer estudio cinético. Define al sistema cinético
como la porción del universo en que está circunscrita la transformación química objeto del estudio. Los
clasifica en abiertos y cerrados, según existan o no ganancia o pérdida de materia con el exterior; en adición,
en isotermos, cuando su temperatura se mantiene constante; no isotermos cuando su temperatura varía con el
transcurso de la reacción, y adiabáticos cuando no hay intercambio de calor con el ambiente. El sistema puede
ser homogéneo o heterogéneo, según que la composición físico-química de sus partes sea uniforme o no.
La velocidad de reacción es la variación por unidad de tiempo de la concentración de un reactante o de
un producto. La velocidad de reacción depende de la concentración de los reactantes y, en algunos casos
especiales, también de la de los productos; es de esperar entonces que, al avanzar la reacción y modificarse las
concentraciones, varíe la velocidad. Por lo tanto, conviene referirse a velocidades instantáneas, es decir, en
intervalos de tiempo infinitamente pequeños. Esto requiere definir la velocidad de reacción como derivada de
la concentración respecto al tiempo. Dada una transformación química:
{A} + {B} = {C}
(3.1.1)
La velocidad de reacción será:
v = -d{A}/dt = -d{B}/dt = d{C}/dt
(3.1.2)
El signo negativo indica que la concentración de los reactantes {A} y {B} decrece al transcurrir el tiempo; por el
contrario, el signo de la velocidad será positivo respecto al producto de la reacción {C}, pues su concentración
aumenta con el incremento del tiempo.
Cinética de Reacciones que Ocurren en Alimentos
59
Por otro lado, en muchos casos se ha determinado en forma experimental que la velocidad de reacción se ajusta
a una expresión matemática del tipo:
v = k {A}i {B}j
(3.1.3)
En el caso de expresiones cinéticas de este tipo, se define como orden de reacción respecto a una de las
sustancias el exponente al cual está elevada la concentración de dicha sustancia en la expresión cinética.
La constante k de la expresión representa la velocidad específica, también llamada constante de velocidad
de reacción. Salvo en casos especiales, la velocidad de reacción es independiente de la concentración de los
reactivos y productos, y por lo tanto del grado de avance de la reacción.
Para el caso de reacciones de un solo reactivo y de orden n, la expresión de la velocidad de reacción puede ser
escrita:
(-d{A}/dt) = k{A}n
(3.1.4)
Reordenando e integrando entre los límites: {A0}, concentración inicial de la sustancia al tiempo cero (t=0) y
{A}, concentración de A al tiempo t, se obtiene:
(A)
∫ A{A}
-n
d{A} = k
0
t
∫ 0 dt
(1/(n-1))({A}1-n - {A0}1-n) = kt
(3.1.5)
(3.1.6)
donde n es el orden de reacción. Esta expresión matemática indica cómo varía la concentración de A a lo largo
del tiempo, en el caso de la reacción de un solo compuesto y de orden n.
Considerando n=0, por reemplazo en la ecuación (3.1.6), se obtiene:
{A} = {A0} - kt
(3.1.7)
Según la ecuación, un gráfico del tiempo contra la concentración del componente deberá ser una línea recta. El
valor de la pendiente corresponde a la constante de velocidad de reacción.
Considerando n = 0,5 por reemplazo en la ecuación (3.1.6), se obtiene:
2{A}0,5 = 2{A0}0,5 - kt
(3.1.8)
Según Labuza (1982), muchos alimentos poseen grasas insaturadas, las cuales son importantes para la nutrición
de humanos. Lamentablemente estas grasas están sujetas al ataque directo del oxígeno, a través de un mecanismo
autocatalítico que provoca la rancidez oxidativa, (autoxidación de ácidos grasos insaturados), en presencia de
oxígeno y con la ayuda de catalizadores metálicos. Como resultado, aparecen olores rancios que hacen que
el producto sea desagradable, y que pueden ser detectados por el consumidor en muy pequeñas cantidades.
Los radicales libres y peróxidos pueden reaccionar y blanquear pigmentos en vegetales secos; destruyen las
vitaminas C, E y A; degradan proteínas, y disminuyen la calidad, como en leche entera deshidratada; pueden
producir compuestos tóxicos potencialmente causantes de cáncer.
Hamilton (1983) explicó los cambios químicos asociados con la rancidez. Señaló que son el resultado de
reacciones con el oxígeno del aire que corresponde a la rancidez oxidativa, o de reacciones hidrolíticas
catalizadas por lipasas provenientes del alimento, o de microorganismos. Para el caso de la autoxidación o
rancidez oxidativa indicó que existen dos etapas: en la primera, el valor de la energía de activación es bajo,
entre 17 a 21 [kJ/mol]; en la segunda existe un ligero incremento, hasta valores de 25 a 29 [kJ/mol].
Juan de Dios Alvarado
Ecuación que, como en el caso anterior, permite establecer la constante de velocidad de reacción a partir de la
pendiente.
Capítulo 3
60
Tabla 3.1.1. Composición en Porcentaje de Ácidos Grasos Principales Determinados en Aceites y Grasas Vegetales
ÁCIDOS GRASOS
PRODUCTO (1)
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Aceites crudos
Aguacate
Ajonjolí
Algodón
Chocho
Higuerilla (2)
Linaza
Maní
Maracuyá
Soja
Zambo (3)
Zapallo (3)
Aceites refinados
Girasol
Maíz
Maní
Oliva
Soja
Grasas fundidas
Cacao
Coco (4)
Palma (pulpa)
Palma (almendra) (4)
(1)
(2)
(3)
(4)
Láurico
C12:0
200,31
0,5
Mirístico
C14:0
228,36
0,6
Palmítico
C16:0
256,41
Almitoleico
C16:1
254,40
Esteárico
C18:0
284,46
Oleico
C18:1
282,45
Linoleico
C18:2
280,44
Linolénico
C18:3
278,43
15,2
11,5
25,4
17,8
5,5
0,7
0,6
0,6
2,6
1,1
5,8
70,1
31,2
15,9
47,3
8,0
54,0
55,9
27,7
0,6
2,4
1,2
1,1
1,9
6,1
5,4
12,1
38,0
8,0
14,1
33,0
18,7
13,3
39,1
80,1
60,7
47,2
56,8
64,8
4,0
1,2
2,7
4,5
1,6
31,9
20,9
38,6
71,4
13,9
46,5
60,4
35,0
6,0
60,0
26,7
1,6
2,6
1,3
32,8
6,0
35,0
9,0
2,3
1,2
7,5
0,6
7,4
21,7
10,1
18,6
13,7
19,1
17,6
17,5
23,7
16,2
20,2
42,6
66,9
23,1
1,6
13,3
38,2
11,8
53,3
4,7
0,7
0,2
1,9
1,4
4,5
4,3
Peso formular según Perry (1963).
90 ricinoleico, 2 oleico, 5 linoleico, 3% saturados (Kirschembauer, 1964).
Según Masson Lilia y Melia María Angélica (1985).
Las grasas de coco y almendra de palma contienen además 8,5 y 1,9% de ácido caprílico, 5,2 y 2,3% de ácido cáprico; respectivamente.
Esta reacción es compleja; Aurand y Woods (1973) señalaron los mecanismos y los factores que afectan
la autoxidación. Entre ellos: el número total de enlaces insaturados en la muestra, en especial el grado de
insaturación de cada molécula; la presencia de oxígeno; la presencia de radiación luminosa desde la región
ultravioleta hasta la infrarroja. En especial la luz ultravioleta favorece la reacción, al igual que la temperatura;
la humedad parece prevenir o inhibir la reacción; trazas de varios metales, en especial cobre y hierro, actúan
como prooxidantes.
Teóricamente, se requiere una sola molécula como radical libre para iniciar la reacción de autoxidación en
cadena. Esto explicaría el hecho de que la cinética de cero orden o de medio orden permita describir la reacción
de oxidación de lípidos según lo indicado por Labuza (1982).
En la Tabla 3.1.1. se presenta la composición porcentual de ácidos grasos principales, determinada por
cromatografía de gases en muestras de aceites y grasas extraídas de productos cultivados en Ecuador por Navas
y colaboradores (1988).
OBJETIVOS
Revisar aspectos relacionados con cinética química.
Aplicar ecuaciones cinéticas y comprobar el orden de reacción de la autoxidación en aceites vegetales crudos
expuestos al aire.
Determinar las constantes de velocidad para esta reacción en diferentes aceites.
Establecer la influencia de la insaturación de los ácidos grasos sobre la rancidez oxidativa.
Cinética de Reacciones que Ocurren en Alimentos
61
MATERIALES Y MÉTODOS
Extraer por solvente aproximadamente 200 [g] de aceite, a partir de semillas secas de linaza (Linum
usitatissimun), soja (Glycine max), chocho (Lupinus mutabilis), maní (Arachis hypogaea), ricino (Ricinus
communis), zambo (Cucurbita ficifolia) o calabaza (Cucurbita maxima); se requieren por lo menos tres tipos
de aceites desolventizados por agitación a 40C, hasta no detectar olor a solvente, que puede ser éter o hexano.
Determinar por duplicado el índice de peróxidos de cada uno de los aceites, utilizando el método señalado en la
Norma INEN 277. El método se fundamenta en el hecho de que el oxígeno peroxídico, en medio ácido, oxida
el yoduro de potasio con liberación de yodo, el cual se valora con tiosulfato de sodio. En un erlenmeyer de 250
[ml] pesar exactamente 5 [g] de aceite, añadir 30 [ml] de una mezcla solvente constituida por 60% de ácido
acético glacial con 40% de cloroformo, y 0,5 [ml] de solución saturada de yoduro de potasio, agitar suavemente
el recipiente hasta que se disuelva la muestra. Luego de un minuto añadir 30 [ml] de agua destilada y valorar
con tiosulfato de sodio 0,01 [N], en forma gradual, con agitación constante y rigurosa hasta casi la desaparición
del color amarillo; añadir 0,5 [ml] de solución de almidón y agitar fuertemente para liberar todo el yodo de
la capa de cloroformo; continuar la valoración gota a gota hasta la desaparición del color azul. El índice de
peróxidos puede ser calculado por:
(IP) = V N / W
(3.1.9)
Donde (IP) es el índice de peróxidos expresado en mili equivalentes de oxígeno por kilogramo de aceite, V es
el volumen gastado de tiosulfato de sodio en [ml], N es la normalidad del tiosulfato de sodio y W el peso de la
muestra de aceite en [kg].
En cajas de Petri de 12 [cm] de diámetro colocar aproximadamente 100 [g] de aceite; para trabajar por duplicado
con los tres aceites, se requiere disponer de seis cajas. Colocarlas abiertas en una cámara que permita mantener
la temperatura constante a 20C; todos los días agitar el aceite para evitar la formación de costras superficiales;
cada tres días retirar alícuotas para la determinación del índice de peróxidos por duplicado; continuar el trabajo
por el lapso de quince días o más.
CUESTIONARIO
Consultar y reportar con respecto a la Teoría de las Colisiones y la Teoría del Complejo Activado, utilizadas
para explicar las reacciones simples o procesos elementales.
Tabular los resultados experimentales y graficarlos en forma que sean satisfechas las ecuaciones (3.1.7)
y (3.1.8). Por técnicas de correlación, decidir el orden de reacción de la autoxidación de los aceites en las
condiciones indicadas.
Considerar la Tabla 3.1.1 y discutir con respecto a la relación entre la constante de velocidad de reacción y el
contenido de ácidos grasos insaturados y poliinsaturados, con dos o más dobles enlaces.
RESULTADOS EXPERIMENTALES
En la Tabla 3.1.2. se presentan los resultados obtenidos a 20C en aceites de linaza (Linum usitatissimun),
chocho (Lupinus mutabilis) y semillas secas de zambo (Cucurbita ficifolia); la concentración de peróxidos está
expresada en mili equivalentes de oxígeno por kilogramo de aceite.
Juan de Dios Alvarado
Por técnicas de regresión lineal, establecer las ecuaciones cinéticas y el valor de las constantes de velocidad de
reacción. Discutir su significado.
Capítulo 3
62
Tabla 3.1.2 Valores del Indice de Peróxidos Registrados en Aceites Vegetales Crudos Mantenido en Contacto con
Aire a 20C por Diferentes Tiempos
LINAZA
CHOCHO
Tiempo
ZAMBO
Tiempo
(IP)
Horas
s(10-5)
0
214,5
335,5
381,0
454,0
504,0
640,0
0
7,722
12,078
13,716
16,344
18,144
23,040
1,56
2,74
3,91
4,44
4,94
5,57
7,75
2(IP)0,5
2,50
3,31
3,95
4,21
4,45
4,72
5,57
Tiempo
(IP)
Horas
s(10-5)
0
72,0
168,0
240,0
312,0
552,0
0
2,592
6,048
8,640
11,232
19,872
2,26
2,58
3,83
4,28
5,03
7,75
2(IP)0,5
3,01
3,21
3,91
4,14
4,49
5,57
Horas
s(10-5)
0
73,0
145,0
224,0
304,0
0
2,628
5,220
8,064
10,944
(IP)
2(IP)0,5
5,0
6,05
7,20
8,25
10,00
4,47
4,92
5,37
5,74
6,32
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
La graficación de los datos en la Figura 3.1.1., que corresponde a la ecuación cinética de cero orden, y en
la Figura 3.1.2., que corresponde a la ecuación cinética de medio orden, indica que estas ecuaciones son
adecuadas para describir la velocidad de reacción. En la Tabla 3.1.3. se presentan las ecuaciones de regresión
lineal correspondientes, con sus respectivos coeficientes de correlación (r).
Figura 3.1.1. Incremento de índice de peróxidos con el tiempo en
aceites vegetales
Figura 3.1.2. Graficación de cinética de medio orden para la autoxidación
de aceítes vegetales.
Cinética de Reacciones que Ocurren en Alimentos
63
Tabla 3.1.3. Ecuaciones Cinéticas para la Autoxidación de Aceites Vegetales
Producto
Cero orden
Medio orden
Linaza
Chocho
Zambo
(IP)=1,03+2,603*10-6t (r=0,976)
(IP)=2,02+2,807*10-6t (r=0,996)
(IP)=4,90+4,471*10-6t (r=0,996)
2(IP)0,5=2,39+1,316*10-6t (r=0,995)
2(IP)0,5=3,00+1,313*10-6t (r=0,996)
2(IP)0,5=4,48+1,654*10-6t (r=0,998)
La comparación de los coeficientes de correlación conduce a precisar que la cinética de medio orden es más
adecuada para describir la autoxidación de estos aceites vegetales mantenidos en condiciones isotérmicas y al
ambiente.
De las ecuaciones de regresión, los valores de las constantes de velocidad de reacción son:
Linaza : 1,316*10-6 [m eq. O2/kg]0,5/[s]
Chocho: 1,313*10-6 [m eq. O2/kg]0,5/[s]
Zambo : 1,654*10-6 [m eq. O2/kg]0,5/[s]
El signo positivo se explica por la determinación del producto resultante, que se incrementa con relación al
tiempo.
Es interesante resaltar que los valores pueden servir, entre otros propósitos, para probar o escoger antioxidantes.
Pruebas paralelas con BHA, BHT o EDTA permitirán seleccionar el mejor producto, que corresponderá al
que determine el menor valor de la constante de velocidad de reacción. Evaluaciones posteriores permitirán
controlar la calidad del producto, pues el valor de esta constante deberá mantenerse.
BIBLIOGRAFÍA Y REFERENCIAS
Aurand, L. W. and Woods, A. E. 1973. “Food Chemistry”. Westport, Connecticut. AVI Pub. Co. Inc. p:
104-142.
Caneda, R. V. 1978. “Cinética Química”. Serie de Química, Monografía Científica No. 18. Organización de
Estados Americanos, Washington. p: 1-55.
Hamilton, R. J. 1983. The chemistry of rancidity in foods. In: “Rancidity in Foods”. Allen, J. C. and
Hamilton, R. J. (Eds.). Essex, England. Applied Science Pub. Ltd. p: 1-20.
INEN. 1980. Grasas y Aceites Comestibles. Determinación del Indice de Peróxidos. Quito, Ecuador. Instituto
Ecuatoriano de Normalización. Norma INEN 277.
Kirschenbauer, H. G. 1964. “Grasas y Aceites. Química y Tecnología”. Traducido por: Gurza Bracho, P.
México. Compañía Editorial Continental S.A. 309 p.
Masson Salaüé Lilia y Mello Rojas María Angélica. 1985. “Materias Grasas de Consumo Habitual y Potencial
en Chile”. Santiago. Editorial Universitaria, Universidad de Chile. 31 p.
Navas, Gladys; Santamaría Patricia y Meléndez Martha. 1988. Contenido de ácidos grasos en aceite de
chocho y otras grasas y aceites vegetales. IV Jornadas Ecuatorianas de Ciencia y Tecnología de Alimentos.
Facultad de Ciencia e Ingeniería en Alimentos, Universidad Técnica de Ambato. 12 p.
Perry, J. H. 1963. “Chemical Engineers’ Handbook”. 4th. ed. Tokyo. Mc Graw Hill Book Company. Section
3.
Juan de Dios Alvarado
Labuza, T. P. 1982. “Shelf-Life Dating of Foods”. Westport, Connecticut. Food and Nutrition Press, Inc. p:
29, 47, 52.
Capítulo 3
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
64
TEMA 3.2. APLICACIÓN DEL TIEMPO DE VIDA MEDIA EN LA
CINÉTICA DEL EMPARDEAMIENTO DE BANANOS
INTRODUCCIÓN
Según Caneda (1978), el método de las vidas medias se utiliza para calcular el orden de una reacción. Por
definición, vida media de una reacción con respecto a un reactivo es el tiempo que debe transcurrir para que
la concentración de dicho reactivo se reduzca a la mitad del valor que tenía en el instante establecido como
tiempo cero.
La ecuación cinética general para el caso de un solo reactivo y de orden n, tiene la forma siguiente:
(1/(n-1))({A}1-n - {A0}1-n) = kt
(3.2.1)
Siendo t el tiempo y k la constante de velocidad de reacción, al tiempo t1 se tendrá:
kt1 = (1/(n-1))({A1}1-n - {A0}1-n)
(3.2.2)
Al tiempo t2:
kt2 = (1/(n-1))({A2}1-n - {A0}1-n)
(3.2.3)
Restando la ecuación (3.2.2) de la ecuación (3.2.3), se obtiene:
k(t2 - t1) = (1/(n-1))({A2}1-n - {A1}1-n)
(3.2.4)
Cinética de Reacciones que Ocurren en Alimentos
65
Si la diferencia (t2-t1) corresponde al intervalo de una vida media, por definición, la concentración {A2} será
{A1}/2; reemplazando:
kt0,5 = (1/(n-1))(({A1}/2)1-n - {A1}1-n)
kt0,5 = (1/(n-1))({A1}1-n(2)n-1 - {A1}1-n)
t0,5 = (((2)n-1 - 1) / k(n-1))({A1}1-n)
(3.2.5)
(3.2.6)
(3.2.7)
La razón ((2)n-1 - 1)/k(n-1), puede ser designada como J, una constante, pues solo depende del orden y de la
constante de velocidad de reacción. En consecuencia:
t0,5 = J({A1}1-n)
(3.2.8)
Considerando logaritmos:
log t0,5 = log J + (1-n) log {A1}
(3.2.9)
Al aplicar la ecuación a dos vidas medias sucesivas, se obtiene:
log (t2 - t1) = log J + (1-n) log {A1}
log (t3 - t2) = log J + (1-n) log {A2}
Restando la ecuación (3.2.10) de la ecuación (3.2.11):
log (t3-t2) - log (t2-t1) = (1-n)(log {A2} - log {A1})
(3.2.10)
(3.2.11)
(3.2.12)
Reordenando:
n = ((log(t3-t2) - log(t2-t1))/(log{A1} - log{A2})) + 1
(3.2.13)
La ecuación permite calcular el orden de una reacción, al conocer la variación de la concentración con respecto
al tiempo.
Labuza y Riboh (1982) señalaron que una gran cantidad de reacciones que causan deterioro de alimentos son
de cero orden o de primer orden; en ciertos casos, las diferencias suelen ser pequeñas.
Labuza (1982) indicó que el concepto de reacción puede ser extendido a la pérdida de calidad para muchos
alimentos, y también puede ser representado por una ecuación matemática en la forma siguiente:
(dA/dt) = kAn
(3.2.14)
Si se admite que n=0, llamado esquema de reacción de cero orden, la razón de deterioro será constante, cuando
la temperatura y la actividad del agua son constantes.
(dA/dt) = k
(3.2.15)
Integrando, si A0 es el estado inicial a t=0 y A el estado al tiempo t:
A
t
∫ A dA = k ∫ 0 dt
0
Reemplazando los límites se establece:
(3.2.16)
Juan de Dios Alvarado
Siendo A el factor de calidad medido, t el tiempo, k es una constante que depende en especial de la temperatura
y de la actividad del agua, y n es un factor potencial llamado orden de la reacción. En el primer miembro de
la ecuación, el signo menos se utiliza si el deterioro es una pérdida de A, y el signo más cuando se refiere a la
producción de un producto final indeseable.
Capítulo 3
66
A = A0 + kt
(3.2.17)
En muchos casos, el valor de n es diferente de cero; puede ser un valor entero o fraccionado entre 0 y 2. En el
caso de ser 1, corresponde a una ecuación de primer orden. Matemáticamente se expresa por:
ln A = ln A0 + kt
(3.2.18)
Para las ecuaciones anteriores se considera que la temperatura es constante. La parte dependiente de la
temperatura en las ecuaciones es la constante de velocidad k.
En muchos casos de deterioro de alimentos se necesita conocer la sensibilidad con respecto a cambios de
temperatura. Considerando que en cambios pequeños de temperatura entre 20 y 40C, la variación puede ser
considerada lineal, se estableció una medida denominada el Valor Q10. El cual es definido por:
Q10 = t(T) / t(T+10)
(3.2.19)
donde t(T) es el tiempo de vida útil a una temperatura T y t(T+10) es el tiempo de vida útil a una temperatura 10C
mayor que la anterior.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Para calcular este valor se requiere conocer o definir tres elementos. Una condición de pérdida de calidad, en
la cual el alimento se considera inaceptable. El orden de la reacción que permita predecir el tiempo en que se
alcanzaría la condición de ser inaceptable, que corresponde al tiempo de vida útil. Experimentación para medir
la pérdida de calidad por lo menos a dos temperaturas con diferencia de 10C.
Un valor de Q10 alto indica que el alimento es muy sensible a los cambios de temperatura; por el contrario, un
valor próximo a la unidad indica que el alimento es poco sensible a los cambios de temperatura, desde el punto
de vista del índice de calidad analizado.
El banano es la fruta de exportación con mayor importancia en Ecuador y en otros países con clima cálido.
Lamentablemente el tiempo de utilización, luego de removerse la corteza es muy corto por los cambios en color
y sabor que ocurren. Las causas de estos cambios son complejas y motivo de estudios específicos; sin embargo,
es de interés conocer, mediante una aproximación cinética, el problema de empardeamiento de la pulpa.
Con relación al empardeamiento enzimático, Jansen (1974) señaló que la enzima responsable para el
empardeamiento de las superficies cortadas de ciertas frutas vegetales es la fenolasa. Fenolasa es un término
genérico utilizado para incluir toda la terminología que describe a las enzimas que catalizan la oxidación de las
sustancias mono y ortodifenólicas, simplificadas en dos reacciones tipo: la oxidación de o-dihidroxifenoles a
o-quinonas y la hidroxilación de ciertos monohidroxifenoles a dihidroxifenoles.
En varias frutas, como manzana y pera, las reacciones no enzimáticas del tipo Maillard constituyen la forma
más importante de coloración del jugo. Estas reacciones ocurren entre los azúcares reductores y aminoácidos
como la lisina, provocando un color indeseable y cambios en el aroma y sabor; una revisión importante fue
presentada por Danehy (1986).
Según Shallenberger (1974), las reacciones de empardeamiento no enzimático son influenciadas por varios
factores, entre ellos: la temperatura; un incremento de 10C puede incrementar la velocidad de reacción entre
3 a 5 veces; pH, la velocidad es lenta a valores inferiores a 3,0; el contenido de agua, la cantidad más crítica
parece estar en el 30%; la concentración de los reaccionantes; la presencia de iones metálicos, en especial el
ión fosfato intensifica el color; el oxígeno no es indispensable. Sin embargo, las reacciones bajo condiciones
aeróbicas son cualitativamente diferentes que cuando ocurren bajo condiciones anaeróbicas.
Son numerosos los estudios sobre cinética de empardeamiento en frutas. Como ejemplos se citarán los trabajos
de Lozano y Toribio (1984), quienes trabajaron con jugos concentrados de manzana entre 65 a 75Brix;
establecieron que el empardeamiento no enzimático corresponde a una cinética de primer orden; reportaron la
Cinética de Reacciones que Ocurren en Alimentos
67
ecuación siguiente, que, en adición, considera el efecto del contenido de sólidos solubles (Brix), introduciendo
la constante a:
D = a - b exp (-kt)
a = 10,819(1,592-D0) - 0,327(1,387-D0)(BR) + 2,44*10-3(1,294-D0)(BR)2
b = a - D0
(3.2.20)
(3.2.21)
(3.2.22)
El valor de k, entre 5 y 37C, en jugo de manzana Red Delicious con 65Brix, varió de 2,8 * 10-4 /[día] a
160,0*10-4/[día]. D es el color expresado como absorbancia a 420 [nm], D0 es el color al tiempo t=0 y (BR)
son los grados Brix.
Robertson y Samaniego (1986), en jugo de limón pasteurizado y envasado, reportaron un período inicial de
atemperamiento en el que se forman los compuestos intermedios de la reacción de empardeamiento; en el
período posterior, los modelos cinéticos de cero orden y primer orden permitieron ajustar los datos. Para el
caso de cero orden, con un nivel de 3,74 [mg/litro] de oxígeno disuelto a 36C, k = 16,3/104 [día] y D0 = 0,13;
para primer orden, k = 0,97/102 [día] y ln D0 = -2,00.
OBJETIVOS
Realizar una aproximación al fenómeno de empardeamiento observado en bananos.
Determinar el orden de la cinética para los cambios de color que ocurren en diluciones de bananos, previo y
posterior a un tratamiento de blanqueado.
Definir tiempos de vida útil en pulpa de bananos y calcular el valor de Q10 correspondiente a distintas variedades,
para establecer su sensibilidad a la temperatura.
Comparar los resultados de esta cinética de empardeamiento con los valores reportados para otras frutas.
MATERIALES Y MÉTODOS
Preparar un litro de dilución con banano, utilizar 50 [g] de pulpa triturada de dos o más variedades de banano
(Seda, Catalán, Orito, Limeño, Maqueño o Barraganete); mezclar. Preparar otra muestra igual y someterla a un
blanqueado por calentamiento directo hasta ebullición, con una resistencia eléctrica cromada, para inactivación
de las enzimas, e inmediatamente enfriarla en un baño de hielo.
Agitar y filtrar una alícuota de cada jugo, y medir la transmisión en un espectrofotómetro a 420 [nm], utilizando
agua destilada como referencia; esta lectura corresponde al tiempo cero.
En cada caso, previa agitación, transferir submuestras de 200 [cm3] a erlenmeyers de capacidad suficiente, y
colocarlas individualmente en ambientes de temperatura controlada a 20 y 30C; por duplicado.
Seleccionar una condición en la cual se considera que el color y sabor del líquido sean desagradables para el
consumo, anotar la lectura espectrofotométrica correspondiente, que será considerada como la condición final
de vida útil.
CUESTIONARIO
Consultar y reportar con respecto a la química y bioquímica del empardeamiento.
Tabular los datos experimentales de transmisión, absorbancia o extinción espectrofotométrica y tiempo,
Juan de Dios Alvarado
A intervalos de doce horas, o más, durante dos días, previa agitación, retirar con pipeta una alícuota representativa,
filtrarla para realizar la lectura en el espectrofotómetro hasta obtener como mínimo cuatro datos.
Capítulo 3
68
establecidos en las muestras blanqueada y sin blanquear. En base a los valores de transmisión establecer el
orden de la velocidad de reacción, utilizando la ecuación (3.2.13), previa graficación de los datos.
Considerar los datos de absorbancia y hacer gráficos que satisfagan la ecuación de cero orden (3.2.17) y de
primer orden (3.2.18). Discutir los resultados.
Definir las ecuaciones cinéticas más adecuadas y calcular el valor de Q10 para cada variedad, según los tiempos
de vida útil seleccionados, considerando el color y sabor. Discutir los resultados.
Utilizar las ecuaciones de Lozano y Toribio (3.2.20, 3.2.21 y 3.2.22) y calcular los valores de las constantes
de velocidad, expresados en unidades del sistema internacional; tabularlos conjuntamente con los valores
reportados por Robertson y Samaniego y los establecidos en los bananos. Discutir los resultados considerando
las diferentes frutas y productos.
RESULTADOS EXPERIMENTALES
En la Tabla 3.2.1. se presentan los resultados obtenidos en diluciones con pulpa de banano o guineo Seda,
variedad Gross Michel (Musa sapientum); banano Variedad o Catalán (Musa cavendishii); banano Limeño
(Musa spp.) y Maqueño (Musa paradisiaca).
Las lecturas de transmisión espectrofotométrica fueron expresadas en términos de extinción o densidad óptica,
por aplicación de la fórmula siguiente:
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
(EX) = 2 - log (TR)
(3.2.23)
En la cual (EX) es la absorbancia o extinción y (TR) es la transmisión espectrofotométrica como porcentaje.
Figura 3.2.1. Cambio de los valores de transmición espectrofotométrica (TR) en
diluciones de bananos.
Se aprecia que los cambios registrados en las muestras sin blanquear son mayores que los registrados en
las muestras blanqueadas. Lo anterior se explica porque en las muestras sin blanquear ocurren reacciones
enzimáticas y no enzimáticas. Al blanquear las muestras se inactivan las enzimas y se espera que los cambios
de coloración o empardeamiento sean debidos a reacciones no enzimáticas o químicas.
Para el caso de las muestras que no recibieron tratamiento térmico, cuyos datos están graficados en la Figura
3.2.1. con sus respectivas ecuaciones de regresión exponencial, se puede considerar que el tiempo de vida
Cinética de Reacciones que Ocurren en Alimentos
69
media corresponde al momento en que disminuye a la mitad el valor de la transmisión espectrofotométrica,
y la vida media sucesiva será nuevamente la mitad. Ello permite establecer el orden de la reacción según la
ecuación (2.3.13).
Guineo Seda
A 20C
Valor inicial 56,85
Tiempo inicial t1=0 [s]
Primera vida media 56,85/2=28,425; log {A1} = 1,4537
3,347 = 4,073 - 4,577*10-6 t; t2 = 158619 [s]
Segunda vida media 28,425/2=14,2125; log {A2} = 1,1527
2,654 = 4,073 - 4,577*10-6 t; t3 = 310028 [s]
n = ((log(t3-t2) - log(t2-t1)) / (log{A1} - log{A2})) + 1
n = ((log(310028-158619) - log(158619)) / (1,4537 - 1,1527)) + 1
n = ((5,1802 - 5,2004) / (0,301)) + 1
n = -0,07 + 1
n = 0,93
A 30C
Valor inicial 56,85
Tiempo inicial t1=0 [s]
Primera vida media 56,85/2=28,425; log {A1} = 1,4537
3,347 = 4,121 - 8,600*10-6 t; t2 = 90000 [s]
Segunda vida media 28,425/2=14,2125; log {A2} = 1,1526
2,654 = 4,121 - 8,600*10-6 t; t3 = 170581 [s]
n = ((log(170581-90000) - log(90000)) / (1,4537 - 1,1526)) + 1
n = ((4,9062 - 4,9542) / (0,3011)) + 1
n = -0,16 + 1
n = 0,84
Tabla 3.2.1. Valores de Transmisión Espectrofotométrica (TR) y Absorbancia o Extinción (EX) Registrados en Diluciones
de Bananos sin Blanqueo y Blanqueadas Mantenidas a Dos Temperaturas por Diferentes Tiempos
Tiempo
[s]
Sin blanqueo
20C
Con blanqueo
30C
20C
(TR)
(EX)
(TR)
(EX)
0
26400
88500
198900
0
21600
83400
193800
56,85
52,55
40,85
23,15
0,245
0,279
0,389
0,635
56,85
49,60
32,80
10,50
0,245
0,305
0,484
0,979
Guineo Catalán
(Cavendish)
0
25200
87012
194400
30,30
26,10
15,25
6,80
0,519
0,583
0,817
1,167
30,30
22,20
12,70
6,05
Limeño
0
10800
61200
86400
172800
35,60
34,20
28,40
23,90
16,20
0,449
0,466
0,547
0,622
0,790
Maqueño
0
10800
86400
172800
44,45
43,75
30,25
22,50
0,352
0,359
0,519
0,648
Guineo Seda
(Gross Michel)
30C
(TR)
(EX)
(TR)
(EX)
89,50
86,80
78,00
74,65
0,048
0,061
0,108
0,127
89,50
81,50
65,10
42,85
0,048
0,089
0,186
0,368
0,519
0,654
0,896
1,218
91,55
86,65
80,80
78,80
0,038
0,062
0,093
0,103
91,55
79,70
65,40
43,25
0,038
0,099
0,184
0,364
35,60
33,20
24,50
18,50
8,90
0,449
0,479
0,611
0,733
1,051
42,60
41,60
36,60
33,90
29,50
0,371
0,381
0,437
0,470
0,530
42,60
41,40
34,20
30,90
23,00
0,371
0,383
0,466
0,510
0,638
44,45
41,35
24,50
16,60
0,352
0,384
0,611
0,780
92,40
92,15
87,75
84,15
0,034
0,036
0,057
0,075
92,40
78,40
60,30
42,20
0,034
0,106
0,220
0,375
Juan de Dios Alvarado
Nombre o variedad
Capítulo 3
70
Cálculos similares, realizados con los datos correspondientes a las otras variedades, permitieron elaborar la
Tabla 3.2.2.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Tabla 3.2.2. Valores del Orden de Reacción de la Cinética de Empardeamiento en Diluciones de
Pulpa de Bananos.
Nombre o variedad
20C
30C
Guineo Seda (Gross Michel)
Banano Catalán (Cavendish)
Limeño
Maqueño
0,93
0,97
0,97
0,99
0,84
1,17
0,92
1,05
Figura 3.2.2. Cambio de los valores de transmisión espectrofotométrica
(TR) en diluciones de bananos blanqueadas.
Se aprecia que los valores son próximos a la unidad. En consecuencia, la cinética del empardeamiento
en diluciones de bananos, expresada en términos de transmisión espectrofotométrica y en las condiciones
indicadas, es de primer orden.
Para el caso de las muestras que recibieron el tratamiento térmico para la inactivación de enzimas, cuyos datos
están graficados en la Figura 3.2.2., se establecen los resultados siguientes:
Guineo Seda
A 20C
Valor inicial 89,50
Tiempo inicial t1=0 [s]
Primera vida media 89,50/2=44,75; log {A1} = 1,6508
3,801 = 4,477 - 9,346*10-7 t; t2 = 723304 [s]
Segunda vida media 44,75/2=22,375; log {A2} = 1,3498
3,108 = 4,477 - 9,346*10-7 t; t3 = 1464798 [s]
n = ((log(t3-t2) - log(t2-t1)) / (log{A1} - log{A2})) + 1
n = ((log(1464798-723304) - log(723304)) / (1,6508 - 1,3498)) + 1
n = ((5,8701 - 5,8593) / (0,301)) + 1
n = 0,04 + 1
n = 1,04
A 30C
Valor inicial 89,50
Tiempo inicial t1=0 [s]
Cinética de Reacciones que Ocurren en Alimentos
71
Primera vida media 89,50/2=44,75; log {A1} = 1,6508
3,801 = 4,489 - 3,774*10-6 t; t2 = 182300 [s]
Segunda vida media 44,75/2=22,375; log {A2} = 1,3498
3,108 = 4,489 - 3,774*10-6 t; t3 = 365925 [s]
n = ((log(365925-182300) - log(182300)) / (0,301)) + 1
n = ((5,2639 - 5,2608) / (0,301)) + 1
n = 0,01 + 1
n = 1,01
Cálculos similares, realizados con los datos correspondientes a las otras variedades, permitieron elaborar la
Tabla 3.2.3.
Tabla 3.2.3. Valores del Orden de Reacción de la Cinética de Empardeamiento en
Diluciones Blanqueadas de Pulpa de Bananos.
NOMBRE O VARIEDAD
20C
30C
Guineo Seda (Gross Michel)
Banano Catalán (Cavendish)
Limeño
Maqueño
1,04
1,06
1,02
1,00
1,01
1,04
1,00
1,13
Se aprecia que la cinética de primer orden describe en forma satisfactoria el empardeamiento no enzimático
de diluciones de bananos, expresado como porcentaje de transmisión espectrofotométrica. Los valores de los
coeficientes de correlación de las ecuaciones exponenciales fueron próximos a -1,00.
Figura 3.2.3. Representación gráfica de la cinética de cero
orden para el cambio de los valores de extinción (EX)
en diluciones de bananos.
Juan de Dios Alvarado
En la Figura 3.2.3. están graficados los cambios de absorbancia, extinción espectrofotométrica o densidad
óptica, registrados en las diluciones de cuatro variedades de bananos a diferentes tiempos. La representación
corresponde a la cinética de cero orden definida por la ecuación (3.2.17), y se observa un ajuste excelente con
los datos experimentales, con coeficientes de correlación de 1,00 para los datos registrados a 20C, y 0,99 para
los registrados a 30C. Igual observación puede ser hecha para las pruebas correspondientes a las muestras
blanqueadas, cuya representación se encuentra en la Figura 3.2.4.
Capítulo 3
72
Figura 3.2.4. Representación gráfica de la cinética de cero
orden para el cambio de los valores de extinción (EX)
en diluciones de bananos blanqueadas.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Al transformar los valores de transmisión en extinción espectrofotométrica, se incluye un cambio logarítmico
según la ecuación (3.2.23); lo anterior explicaría el hecho de que, al considerar los valores de transmisión, el
orden de la cinética es 1 o próximo a 1; en cambio, al considerar los valores de extinción, la cinética de cero
orden describe en forma adecuada el empardeamieto global y el no enzimático.
Sin embargo, la cinética de primer orden también puede ser considerada para el tratamiento de los datos
de extinción. Según las pruebas realizadas, en especial las correspondientes al empardeamiento global, que
incluye el enzimático y el no enzimático, los coeficientes de correlación son próximos a 1 cuando se aplica el
modelo de la ecuación (3.2.18).
La representación gráfica y las ecuaciones para los cuatro tipos de bananos se incluyen en las Figuras 3.2.5. y
3.2.6. para los datos registrados en las muestras mantenidas a 20C y 30C, respectivamente. Para el caso de
las diluciones blanqueadas, el ajuste de los datos es menos satisfactorio.
Figura 3.2.5. Representación gráfica de la cinética de
primer orden para el cambio de los valores de extinción
(EX) en diluciones de bananos mantenidas a 20ºC.
Cinética de Reacciones que Ocurren en Alimentos
73
Figura 3.2.6. Representación gráfica de la cinética de
primer orden para el cambio de los valores de extinción
(EX) en diluciones de bananos mantenidas a 30ºC.
Es difícil definir los tiempos de vida útil, pues cada variedad o tipo de banano presenta sus características
propias; en adición, una condición de deterioro para una persona no es necesariamente igual para otra persona,
lo cual impide disponer de valores fijos o estandarizados.
Para el cálculo de los valores Q10 se considerarán en todos los casos las ecuaciones de cero orden, correspondientes
a los datos de extinción, y se calculará el tiempo requerido para que el incremento del valor sea del 20%.
Guineo Seda
Sin blanquear.
0,231 * 1,2 = 0,231 + 1,988*10-6 t; t = 23239 [s] a 20C
0,210 * 1,2 = 0,213 + 3,736*10-6 t; t = 11242 [s] a 30C
Q10 = t(T) / t(T+10)
Q10 = 23239 / 11242 = 2,1
Blanqueado.
0,056 * 1,2 = 0,056 + 4,078*10-7 t; t = 27464 [s] a 20C
0,050 * 1,2 = 0,050 + 1,639*10-6 t; t = 6101 [s] a 30C
Q10 = 27464 / 6101 = 4,5
Tabla 3.2.4. Valores de Q10 Determinados en Diluciones de Bananos con Relación al
Empardeamiento.
Nombre o variedad
Guineo Seda (Gross Michel)
Banano Catalán (Cavendish)
Limeño
Maqueño
Sin blanquear
Blanqueados
2,1
1,0
1,8
1,4
4,5
5,7
1,7
4,3
Juan de Dios Alvarado
Cálculos similares, realizados con los datos correspondientes a las otras variedades de bananos, permitieron
elaborar la Tabla 3.2.4.
Capítulo 3
74
Estos valores indican que, para las condiciones de trabajo señaladas, las reacciones de empardeamiento
químico o no enzimático son más sensibles a los cambios de temperatura con relación al caso de las diluciones
sin calentar, en las que también existe la influencia de las enzimas; además, es de esperarse que el guineo seda
sea más propenso a los cambios de color con relación al banano catalán, el que entre 20 y 30C presentó
prácticamente igual velocidad en el empardeamiento.
Como comentario general, se destaca la importancia del enfoque cinético, tanto para el diseño de procesos en
alimentos como para enfrentar problemas de tecnología, pues suministra las herramientas para cuantificar los
cambios y el efecto de variables o tratamientos para controlarlos. En el presente caso puede ser investigado el
efecto del pH con adición de jugo de limón o el sulfitado, como otros ejemplos de aplicación de cinética.
Se demuestra que la aproximación cinética generalizada a los cambios que ocurren en los alimentos es válida.
El fenómeno del empardeamiento, a pesar de su complejidad, puede ser descrito por ecuaciones cinéticas
simples de cero o primer orden.
BIBLIOGRAFÍA Y REFERENCIAS
Caneda, R. V. 1978. “Cinética Química”. Serie de Química, Monografía Científica No. 18. Organización de
los Estados Americanos. Washington. p: 10-12.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Danehy, J. P. 1986. Maillard reactions: Nonenzymatic browning in food systems with special reference to the
development of flavor. Adv. Food Res., 30:77-138.
Jansen, E. F. 1974. Browning, enzymic. In: “Encyclopedia of Food Technology”. Johnson, A. H. and Peterson,
M. S. (Eds.) V.2. Westport, Connecticut. AVI Pub. Co. Inc. p: 130-135.
Labuza, T. P. and Riboh, D. 1982. Theory and application of Arrhenius kinetics to the prediction of nutrient
losses in foods. Food Technol., 36(10): 66-71.
Labuza, T. P. 1982. “Shelf-Life. Dating of Foods”. Westport, Connecticut. Food and Nutrition Press Inc. p:
41-88.
Lozano, J. E. y Toribio, J. L. 1984. Pardeamiento no enzimático durante el almacenaje de jugo concentrado de
manzana. En: “La Refrigeración como Medio para Disminuir las Pérdidas Post-cosecha”. V.1. Buenos Aires,
Argentina. SECYT - OEA. p:137-157.
Robertson, G. L. and Samaniego, C. M. L. 1986. Effect of inicial dissolved oxygen levels on the degradation
of ascorbic acid and the browning of lemon juice during storage. J. Food Sci., 51: 184-187, 192.
Shallenberger, R. S. 1974. Browning reactions, nonenzymic. In: “Encyclopedia of Food Technology”.
Johnson, A. H. and Peterson, M. S. (Eds.) V.2. Westport, Connecticut. AVI Pub. Co. Inc. p: 136-139.
Cinética de Reacciones que Ocurren en Alimentos
75
TEMA 3.3. APLICACIÓN DEL MODELO DE ARRHENIUS EN LA
CINÉTICA DE DEGRADACIÓN DE LA VITAMINA C EN JUGOS DE
FRUTAS
INTRODUCCIÓN
Labuza (1982) sumarizó los tipos de deterioro que siguen una cinética de primer orden. Entre ellos se
encuentran la rancidez como la observada en aceites o vegetales secos; el crecimiento microbiano en carne
fresca y pescado o muerte de microorganismos por tratamiento térmico; la producción microbiológica de
malos sabores y exudaciones en carne, pescado y pollo; las pérdidas de vitaminas en alimentos enlatados y
secos; la pérdida de calidad proteica en alimentos secos.
Matemáticamente, para una reacción de primer orden, la velocidad de pérdida es:
- (d{A}/dt) = k{A}
(3.3.1)
A
t
∫ A(d{A}/{Ao}) = - k ∫ 0(dt)
(3.3.2)
ln ({A}/{A0}) = - kt
(3.3.3)
0
Que puede ser escrita en la forma siguiente:
log {A} = - (kt/2,303) + log {A0}
(3.3.4)
Juan de Dios Alvarado
La integración entre los límites de concentración {A0} al tiempo 0 y concentración {A} al tiempo t, conduce a
la ecuación:
Capítulo 3
76
Siendo {A} la concentración luego de un tiempo t, k la constante de velocidad y {A0} la concentración inicial.
El análisis anterior considera una temperatura constante. La parte dependiente de la temperatura es la constante
de velocidad k. Teóricamente k obedece la ecuación de Arrhenius, la cual establece que:
k = k’ e-(EA)/R(TA)
ln k = - ((EA)/R(TA)) + ln k’
(3.3.5)
(3.3.6)
Donde k es la constante de velocidad, (EA) es la energía de activación, R es la constante de los gases y (TA)
es la temperatura absoluta, k’ es una constante llamada factor de frecuencia.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Bauerfeind y Pinkert (1974), indicaron que el ácido L-ascórbico, de seis carbonos, soluble en agua, compuesto
cristalino blanco, se denomina comúnmente vitamina C o vitamina antiescorbútica; también es conocido como
ácido L-xiloascórbico, ácido hexurónico o ácido cenitámico. Se encuentra en la naturaleza en todos los tejidos
vivos en dos formas: reducido (L-ácido ascórbico) y oxidado (ácido dehidroascórbico).
El ácido ascórbico es un nutriente sensible al calor típico, es oxidado en soluciones acuosas por el oxígeno,
con la influencia de oxidasas catalíticas y/o trazas de algunos metales. Según Eskin y colaboradores (1971),
la oxidasa del ácido ascórbico está ampliamente distribuida en los tejidos de las plantas y cataliza la reacción
hasta ácido dehidroascórbico, y una reacción estrechamente relacionada tiene lugar para la reacción directa
del oxígeno del aire sin la mediación de la enzima. Las reacciones no enzimáticas de oxidación del ácido
ascórbico juegan un papel importante en el empardeamiento de jugos de cítricos. La degradación es compleja;
se ha reportado la identificación de diecisiete productos de descomposición. Una posible vía es desde ácido
L-ascórbico, ácido dehidroascórbico, ácido 2,3 dicetohexurónico y por último a furfural más dióxido de
carbono; en la que se cita a los compuestos más importantes.
Las frutas cítricas constituyen una de las fuentes principales de vitamina C. Su consumo como jugo fresco es
predominante en los países latinoamericanos; sin embargo, la cantidad de jugo procesado por acción del calor
se incrementa.
Matthews y Hall (1978) señalaron que el ácido ascórbico total es la suma de ácido L-ascórbico, ácido
L-dehidroascórbico con un valor vitamínico estimado en un 75% con respecto al anterior, ácido L-dicetogulónico
sin actividad vitamínica, y que las frutas y vegetales frescos contienen en forma predominante ácido L-ascórbico.
El término vitamina C reportado es la suma de valores de las dos formas: reducido, ácido L-ascórbico, y
oxidado, ácido L-dehidroascórbico; en consecuencia, la degradación del ácido ascórbico total está relacionada
con una disminución del contenido de vitamina C.
Varios trabajos se han realizado sobre la degradación del ácido ascórbico. Saguy y colaboradores (1978)
señalaron que la destrucción del ácido ascórbico puede seguir una ruta aeróbica o anaeróbica, y sumarizan los
factores que determinan la ruta y la velocidad de degradación, como temperatura, oxígeno, pH, catalizadores
metálicos, enzimas, concentración de azúcares y aminoácidos.
Existen estudios que demuestran que la degradación del ácido ascórbico sigue una cinética de primer orden.
Entre ellos los trabajos de Waletzko y Labuza (1976), Saguy y colaboradores (1978,a). Sin embargo, se ha
reportado que la cinética de primer orden es válida únicamente en los casos de degradación totalmente aeróbica
o totalmente anaeróbica; en situaciones intermedias la reacción depende de las concentraciones de oxígeno y
ácido ascórbico, según lo indicado por Singh y colaboradores (1976).
Labuza (1982) presentó una recopilación de datos sobre la cinética de degradación del ácido ascórbico en varios
alimentos. Señaló que la aplicación del modelo de Arrhenius permite comprender el efecto de la temperatura
sobre la reacción. En adición, Saguy y Karel (1980) reportaron valores típicos de la energía de activación para
la degradación de vitaminas.
Cinética de Reacciones que Ocurren en Alimentos
77
En frutas cítricas, Sinclair (1972) comprobó que la oxidación del ácido ascórbico en jugo de naranja, en su
estado líquido, es una reacción de primer orden cuya velocidad es una función de la temperatura, y que ocurre
lentamente cuando está expuesta al oxígeno atmosférico a temperatura ambiente. En concentrado de jugo
de naranja enlatado se estableció que la degradación del ácido ascórbico fue rápida cuando existió oxígeno
atmosférico en el espacio de cabeza; la velocidad de degradación disminuyó a concentraciones de oxígeno
menores, según lo indicado por Johnson y Toledo (1975).
Estudios más específicos, realizados en jugos de limón, por Robertson y Samaniego (1986), demostraron que
los niveles iniciales de oxígeno disuelto no tuvieron efectos significativos en la velocidad de degradación del
ácido ascórbico, durante el almacenamiento del producto envasado en frascos, y almacenado a 36C.
OBJETIVOS
Comprobar el orden de la cinética de degradación de la vitamina C en jugos de frutas a diferentes temperaturas.
Calcular el valor de las constantes de velocidad de reacción.
Determinar los valores de la energía de activación y del factor de frecuencia con la ecuación de Arrhenius.
MATERIALES Y MÉTODO
Extraer aproximadamente un litro de jugo de limón, naranja o toronja.
Diluir 2 [ml] de jugo hasta 50 [ml] con solución de ácido oxálico al 0,5% (5 [g] de ácido oxálico se disuelven
en agua hasta un litro). Pipetear 2 [ml] de esta solución en cada uno de tres tubos marcados; agregar a cada
tubo una gota de la solución de indofenol y mezclar (disolver 0,200 [g] de 2,6-diclorofenol-indofenol sódico
en 100 [ml] de agua caliente; filtrar y guardar en frasco oscuro en el refrigerador; la solución se conserva
durante dos semanas; algún color debe persistir, si no, es que el ácido ascórbico es muy concentrado para
obtener buenos resultados, debiendo hacerse una dilución con ácido oxálico. Agregar 2 [ml] de la solución
de ácido oxálico-tiourea a cada tubo (disolver 2 [g] de tiourea y 0,5 [g] de ácido oxálico en agua destilada,
llevar a volumen de 100 [ml]; la solución se conserva por tres semanas). Separar un tubo de cada grupo
como blanco o testigo; agregar a los otros dos 1 [ml] de la solución de dinitrofenilhidrazina (disolver 2 [g] de
2,4-dinitrofenilhidrazina en 100 [ml] de ácido sulfúrico aproximadamente 9 [N], preparado añadiendo 30 [ml]
de ácido sulfúrico concentrado de densidad 1,84 [g/cm3], a 90 [ml] de agua destilada en frío). Incubar todos los
tubos en un baño de agua a 37C, por tres horas exactas, y transferir directamente a un baño con hielo. Cuando
el contenido de los tubos esté frío, sin sacarlos del baño de hielo, agregar lentamente por las paredes, mediante
una bureta, 5 [ml] de ácido sulfúrico al 85% (a 100 [ml] de agua destilada; agregar 900 [ml] de ácido sulfúrico
concentrado de densidad 1,84 [g/cm3]; dejar enfriar en baño de hielo y llevar a volumen de 1000 [ml] con agua
destilada). Tapar los tubos con parafilm y agitar cada uno. En los tubos que sirven de testigo añadir 1 [ml]
de la solución de dinitrofenilhidrazina y agitar. Sacar los tubos del baño de hielo y dejar en reposo por treinta
minutos para que estén a temperatura ambiente. Leer la intensidad del complejo (EX) en espectrofotómetro a
540 [nm], previa calibración con el testigo.
Para construir la curva estándar, preparar una solución patrón disolviendo 50 [mg] de ácido ascórbico,
previamente desecado al menos durante un día sobre pentóxido de fósforo, en agua destilada hasta un volumen
de 100 [ml]; guardar en frasco oscuro y en refrigeración, es estable por tres semanas. Pipetear 0,0 - 1,0 - 2,0 3,0 - 4,0 y 5,0 [ml] de la solución patrón a balones de 100 [ml] y completar el volumen con la solución de ácido
oxálico al 0,5%. Utilizando 2 [ml] de solución, continuar el proceso con la adición de indofenol. Graficar la
concentración contra la absorbancia o densidad óptica (notar que la mayor concentración corresponde a 25 [μg/
ml]), y calcular un factor (f) del inverso de la pendiente. Un valor promedio determinado en varias pruebas
Juan de Dios Alvarado
Determinar el pH con un potenciómetro, el valor de Brix con un refractómetro y el contenido de vitamina C
según el método de la 2,4-dinitrofenilhidrazina reportado por Roe y Oesterling (1974).
Capítulo 3
78
fue f = 48,78.
Para calcular la concentración de vitamina C, expresada en [mg/100 g], en caso que se aplique el método en
forma estricta sin otras diluciones (asumiendo un valor de densidad de 1000 [kg/m3] para el jugo), aplicar:
{A} = (EX) (f) (2,5)
(3.3.7)
Distribuir el jugo en tres erlenmeyers con tapón de algodón y colocar cada uno de ellos en baños termostáticos
con agua, previamente calibrados a 40, 50 y 60C. Cada treinta minutos, por el lapso de tres horas, previa
agitación, retirar, muestras de 2 [ml] de jugo y aforar inmediatamente a 50 [ml] con la solución de ácido
oxálico; determinar el contenido de vitamina C a temperatura ambiente.
CUESTIONARIO
Consultar y reportar con respecto a la bioquímica de degradación del ácido ascórbico.
Tabular los valores del tiempo de calentamiento [s] y del contenido de vitamina C expresado en [mg/100
g], para cada una de las tres temperaturas de trabajo. Comparar los valores experimentales con los valores
reportados en la literatura. Discutir los resultados.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Graficar en escala semilogarítmica el contenido de vitamina C con relación al tiempo, para cada una de las
temperaturas de trabajo; en caso que se obtengan líneas rectas, calcular las constantes de velocidad de reacción
considerando una reacción de primer orden, con la ecuación (3.3.4).
En base a la ecuación de Arrhenius (3.3.6), hacer un gráfico y establecer el valor de la energía de activación y
del factor de frecuencia. Comparar estos valores con los reportados en la literatura especializada.
RESULTADOS EXPERIMENTALES
A continuación se presentan los resultados del trabajo realizado por Alvarado y Palacios (1989), en cuatro frutas
cítricas, libres de daños físicos y aptas para el consumo humano. En cada caso se realizaron cinco repeticiones,
una por semana, con frutas de lotes diferentes, debido a la variación en el contenido inicial de ácido ascórbico,
atribuible a diferentes factores, como: genéticos, origen del injerto, estado de madurez, conformación física
y tamaño del fruto, posición en el árbol; según lo señalado por Kefford (1959). Se trabajó con: lima (Citrus
aurantifolia), limón del Oriente (Citrus limon), limón de la Sierra (Citrus limon), mandarina de la Costa (Citrus
reticulata), mandarina de la Sierra (Citrus reticulata), toronja (Citrus paradisii).
La extracción del jugo se realizó en forma manual. Luego del filtrado se determinaron los Brix con un
refractómetro Abbe a 20C, y pH mediante un potenciómetro Photovolt Corporation. Muestras de 250 [ml]
de jugo, contenidas en erlenmeyers de cristal, fueron colocadas en baños termostáticos a 20, 40, 60 y 92C,
manteniéndose una precisión de 0,1C. Previa agitación, a los diferentes intervalos de tiempo indicados en
la Tabla 3.3.1., se retiraron alícuotas, las que fueron enfriadas rápidamente y diluidas con solución de ácido
oxálico, hasta concentraciones entre 400-1400 [mg/100 ml], para las determinaciones de la vitamina C; en
adición a la muestra de jugo original.
Para la cuantificación del ácido ascórbico total se utilizó el método de la 2,4-dinitrofenilhidrazina, previa
oxidación de la muestra para determinar el ácido ascórbico y el dehidroascórbico. Como solución extractora se
utilizó ácido oxálico y tiourea para prevenir cambios durante el análisis. Fue necesario realizar un ajuste en la
lectura espectrofotométrica en el equipo digital Varian 630, obteniéndose los mejores resultados a una longitud
de onda de 525 [nm]. En forma paralela, con cada jugo se elaboró la curva estándar con ácido L(+)-ascórbico
p.a., y se reportan los resultados como [mg/100 g], considerando la densidad de los jugos.
El cálculo de las constantes de velocidad se realizó graficando, en coordenadas semilogarítmicas, la
concentración residual expresada como porcentaje de retención, y el tiempo según la ecuación cinética de
primer orden (3.3.4), modificada para expresar la concentración como porcentaje residual de la vitamina.
Cinética de Reacciones que Ocurren en Alimentos
ln (100(C/C0)) = A’ - kt
79
(3.3.8)
Donde C es la concentración residual a un tiempo t, C0 es la concentración inicial, A’ es el valor de logaritmo
natural de 100 y k es la constante de velocidad de reacción. Por técnicas de regresión lineal se determinaron
los valores de k.
En base a la ecuación de Arrhenius (3.3.6):
ln k = ln k’ - ((EA)/R(TA))
Se graficaron en coordenadas semilogarítmicas los valores de las constantes de velocidad y el inverso de la
temperatura absoluta (TA). Mediante técnicas de regresión lineal se determinó el valor de la pendiente, para
establecer el valor de la energía de activación (EA), pues R, la constante de los gases, es 8314 [joules/g.mol.K].
El valor de k’ corresponde al factor de frecuencia.
El método de cálculo es referido por Cohen y Saguy (1985), como de mínimos cuadrados lineal con dos etapas;
éste es menos exacto que el método de mínimos cuadrados no lineal para estimar los parámetros de la ecuación
de Arrhenius; sin embargo, se utilizó por ser de fácil aplicación, y permitir una presentación más amplia de los
datos.
En la Tabla 3.3.1. se reportan los cambios de ácido ascórbico total registrados en los jugos de cuatro frutas
cítricas, en limón y mandarina en dos variedades, a cuatro temperaturas y diferentes tiempos. El método
de Roe-Oesterling (1944), previa oxidación de la muestra, determina el ácido ascórbico total; sin embargo,
considerando el hecho que en jugos de frutas es predominante el ácido L-ascórbico, los valores pueden ser
considerados como una estimación aceptable del contenido de vitamina C.
Al comparar los valores iniciales con los publicados por Nelson y Tressler (1980), se encuentran diferencias
que pueden ser explicadas por los factores señalados por Kefford (1959); en lima, un valor de 43,5 [mg/100
g] contra uno publicado de 35 [mg/100 g]; en toronja 36,9 contra 38 [mg/100 g]. Las mayores diferencias se
establecieron en jugo de limón del Oriente, un valor de 26,7 [mg/100 g] contra uno publicado de 45 [mg/100
g]; sin embargo, este valor experimental es comparable al determinado mediante cromatografía líquida por
Uzcátegui (1985) para limón Sutil de 26,87 [mg/100 g]. En adición, se destaca el hecho que las variedades de
limón y mandarina cultivadas en las zonas altas presentaron una mayor concentración de la vitamina que las
cultivadas en las zonas bajas tropicales, en donde los frutos son más grandes y rinden mayor cantidad de jugo.
A.- Lima: pH=5,92±0,08; Brix=6,34±0,42. B.- Limón del Oriente: pH=2,94±0,05; Brix=6,00±0,10. C.- Limón de la Sierra:
pH=2,74±0,05; Brix=7,56±0,59. D.- Mandarina de la Costa: pH=4,10±0,07; Brix=13,40±0,45. E.- Mandarina de la Sierra:
pH=4,02±0,15; Brix=11,10±1,14. F.- Toronja: pH=3,54±0,05; Brix=11,20±0,45.
Son escasos los valores de las constantes de velocidad de reacción para pérdida de vitamina C en frutas y
vegetales frescos durante el procesamiento térmico. Labuza (1982) señaló que una de las causas es que el
deterioro de los componentes ocurre en el orden siguiente: sabor, color, textura y con posterioridad pérdidas
nutritivas. Sin embargo, para establecer comparaciones, Saguy y colaboradores (1978) reportaron datos para
jugo de toronja con 11,2Brix, en condiciones anaeróbicas: 2,127*10-5/[s] a 61C, 4,172*10-5/[s] a 95C. Según
Juan de Dios Alvarado
Según se observa en la Figura 3.3.1., que corresponde a los datos de jugo de toronja, al graficar en escala
semilogarítmica el porcentaje remanente de ácido ascórbico total o porcentaje de retención y el tiempo, a las
cuatro temperaturas de trabajo, se cumple la linealidad prevista por la ecuación cinética de primer orden, con
coeficientes de correlación superiores -0,97. Lo anterior está de acuerdo con lo reportado por varios autores
con respecto a la cinética de degradación aeróbica del ácido ascórbico en alimentos; resultados similares se
establecieron en los jugos de todas las frutas consideradas. Como es de esperarse, el valor del punto de corte
en ordenadas de las ecuaciones es próximo a 4,6052; el logaritmo natural de 100, y la velocidad de degradación
se incrementa con la temperatura, indicado por los valores más altos de las pendientes a temperaturas mayores,
que corresponden a las constantes de velocidad de reacción [1/s].
Capítulo 3
80
lo indicado en la Figura 3.3.1., para jugo de toronja con 11,2Brix, los valores son semejantes: 1,5524*10-5/ [s]
a 60C y 5,3935*10-5/[s] a 92C.
Figura 3.3.1. Efecto de temperatura y tiempo sobre la
retención de acidos ascórbico (escala logarítmica) en
jugo de toronja. (Valores promedio de 5 pruebas).
Tabla 3.3.1. Cambios en el Contenido de Acido Ascórbico Total [mg/100 g] en Jugos de Frutas Cítricas*
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Tiempo
(segundos)
0
2700
3600
5400
7200
8100
10800
13500
14400
16200
18000
21600
25200
27000
28800
Temperatura
20C
40C
A
B
C
D
E
F
A
B
C
D
E
F
43,5
26,7
37,9
31,7
44,8
36,9
43,5
26,7
37,9
31,7
44,8
44,1
36,9
42,9
25,7
37,1
30,4
43,5
26,7
31,5
44,8
36,9
41,7
37,8
43,4
26,4
43,2
26,2
43,1
26,1
43,0
25,6
30,9
44,5
36,7
30,5
43,8
36,6
30,2
43,6
36,5
29,9
43,2
36,3
37,1
36,7
35,9
36,5
43,4
25,2
36,1
29,7
35,8
42,7
42,1
41,6
41,4
24,8
35,6
28,7
35,5
41,2
24,3
34,7
28,1
35,3
40,4
23,5
34,1
26,9
34,9
35,2
Temperatura
60C
A
B
C
92C
D
E
F
A
B
36,9
43,5
26,7
0
43,5
26,7
37,9
31,7
44,8
900
42,3
40,5
23,9
38,4
22,4
1800
41,8
25,1
36,3
29,7
40,4
35,4
36,9
21,4
2700
38,8
3600
40,3
24,3
35,3
28,6
37,2
34,4
35,4
20,4
19,3
4500
35,6
33,5
5400
39,3
23,4
34,8
27,0
33,6
32,6
7200
38,1
22,6
33,9
25,7
9000
37,1
21,6
33,1
24,4
32,0
*
Valores promedios de cinco pruebas, las determinaciones se realizaron por duplicado.
C
D
E
F
37,9
34,3
33,6
32,4
31,6
30,7
31,7
28,7
26,5
25,2
23,4
21,7
44,8
40,1
36,6
34,4
31,7
29,2
36,9
34,4
33,1
31,4
30,1
28,7
A.- Lima: pH=5,92±0,08; ºBrix=6,34±0,42. B.- Limón del Oriente: pH=2,94±0,05; ºBrix=6,00±0,10. C.- Limón
de la Sierra: pH=2,74±0,05; ºBrix=7,56±0,59. D.- Mandarina de la Costa: pH=4,10±0,07; ºBrix=13,40±0,45.
E.- Mandarina de la Sierra: pH=4,02±0,15; ºBrix=11,10±1,14. F.- Toronja: pH=3,54±0,05; ºBrix=11,20±0,45.
Son escasos los valores de las constantes de velocidad de reacción para pérdida de vitamina C en frutas y
Cinética de Reacciones que Ocurren en Alimentos
81
vegetales frescos durante el procesamiento térmico. Labuza (1982) señaló que una de las causas es que el
deterioro de los componentes ocurre en el orden siguiente: sabor, color, textura y con posterioridad pérdidas
nutritivas. Sin embargo, para establecer comparaciones, Saguy y colaboradores (1978) reportaron datos para
jugo de toronja con 11,2ºBrix, en condiciones anaeróbicas: 2,127*10-5/[s] a 61ºC, 4,172*10-5/[s] a 95ºC. Según
lo indicado en la Figura 3.3.1., para jugo de toronja con 11,2ºBrix, los valores son semejantes: 1,5524*10-5/
[s] a 60ºC y 5,3935*10-5/[s] a 92ºC.
En la Tabla 3.3.2. se reportan los valores de los términos de la ecuación cinética de primer orden para las
seis frutas consideradas, con sus respectivos coeficientes de correlación y los tiempos de vida media, que es
el tiempo en el cual se destruye la mitad del compuesto. En la columna de los valores correspondientes a la
concentración inicial de ácido ascórbico se incluye la desviación estándar de las cinco determinaciones; las
diferencias son pequeñas, con coeficientes de variación inferiores a 0,1. Los valores más altos para la constante
de velocidad de reacción se establecieron en los jugos de mandarina y limón, lo que indica que la pérdida de
la vitamina es más rápida en los jugos de estas frutas en relación a lima y toronja, con velocidades de pérdida
menores. Lo anterior se aprecia en forma clara en los tiempos de vida media expresados en horas, a 20C:
lima 381, toronja 385, mandarina Sierra 127, limón Oriente 120, mandarina Costa 85 y limón Sierra 76; las
diferencias son menos notorias conforme la temperatura aumenta.
Con el propósito de comprobar que las velocidades de reacción son diferentes, se realizó un análisis de
varianza considerando los valores correspondientes a cada determinación. Los resultados indicaron diferencias
significativas para los factores temperatura y tipo o variedad de fruta. La prueba de Tukey, a un nivel de
significación de 0,01, permitió establecer que en cada fruta existió una velocidad de degradación específica;
aun entre variedades se establecieron diferencias, como es el caso del limón y la mandarina.
Las ecuaciones cinéticas pueden ser aplicadas de dos maneras: para estimar la cantidad residual de vitamina C,
cuando un jugo se calienta a temperatura constante por determinado tiempo, o para estimar el tiempo en que se
destruye una cantidad determinada de vitamina durante el almacenamiento.
Tabla 3.3.2. Valores de los Términos de la Ecuación Cinética de Primer Orden para la Degradación de Acido Ascórbico
Total en Jugos de Frutas Cítricas a Cuatro Temperaturas.
LIMA
LIMON
(ORIENTE)
LIMON
(SIERRA)
MANDARINA
(COSTA)
MANDARINA
(SIERRA)
TORONJA
Sólidos
Solubles
Temperatura
Concentración
Inicial (CO)
(Brix)
(C)
6,34
6,34
6,34
6,34
6,00
6,00
6,00
6,00
7,56
7,56
7,56
7,56
13,40
13,40
13,40
13,40
11,10
11,10
11,10
11,10
11,20
11,20
11,20
11,20
20
40
60
92
20
40
60
92
20
40
60
92
20
40
60
92
20
40
60
92
20
40
60
92
ln [100(C/C0)] = A’ - kt
*
C0 ± desviación estándar.
Constante de
velocidad (k)
(mg/100 g)
Punto de
Corte en
Ordenadas
(A’)
(1/s)
Coeficiente
de
correlación
(-r)
43,5±2,69*
43,5
43,5
43,5
26,7±2,05
26,7
26,7
26,7
37,9±2,92
37,9
37,9
37,9
31,7±1,93
31,7
31,7
31,7
44,8±3,33
44,8
44,8
44,8
36,9±2,19
36,9
36,9
36,9
4,6068
4,6014
4,5992
4,5925
4,6100
4,5972
4,5950
4,5734
4,6158
4,6041
4,5948
4,5721
4,6068
4,6022
4,6011
4,5901
4,6095
4,6046
4,5963
4,5875
4,6066
4,6033
4,5975
4,5945
Vida
Media
(horas)
5,0562*10-7
3,9157*10-6
1,7516*10-5
5,5597*10-5
1,6080*10-6
6,6172*10-6
2,2471*10-5
6,7957*10-5
2,5191*10-6
5,8637*10-6
1,4188*10-5
4,1959*10-5
2,2635*10-6
8,6766*10-6
2,8568*10-5
8,1248*10-5
1,5128*10-6
5,8074*10-6
5,0074*10-5
9,2230*10-5
5,7548*10-7
3,0256*10-6
1,5524*10-5
5,3935*10-5
0,978
0,975
0,997
0,995
0,971
0,988
0,996
0,984
0,939
0,997
0,989
0,956
0,989
0,997
0,999
0,996
0,976
0,998
0,997
0,997
0,986
0,987
0,994
0,997
381
49
11
3
120
29
9
3
76
33
14
5
85
22
7
2
127
33
4
2
335
64
12
4
Juan de Dios Alvarado
Fruta
Capítulo 3
82
En el primer caso, como ejemplo, si se pasteuriza jugo de toronja a 92C por 13 segundos, según la ecuación
ln(100 * C/C0) = 4,5945 - 5,3935*10-5*13, el logaritmo natural del porcentaje de retención es 4,5938 y su
antilogaritmo 98,9, que indica una destrucción del 1,1% con relación al contenido original. En adición, como se
conoce la concentración inicial, la concentración residual vendrá dada por C = 98,9 * 36,9/100 = 36,5 [mg/100
g].
En el segundo caso, si el jugo de toronja se mantiene a 20C y se desea conocer el tiempo que tardará en
destruirse el 5% de la vitamina, el logaritmo natural de 95 es 4,5539 y según la ecuación respectiva: t = (4,5539
- 4,6066) / (-5,7548*10-7) = 91576 segundos = 25 horas. Se destaca que, según lo indicado, previamente
existirán cambios en el sabor, color y textura; sin embargo, los tiempos serán menores a mayores temperaturas.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
En la Figura 3.3.2. se presenta el gráfico semilogarítmico de los valores de las constantes de velocidad de
reacción correspondientes a jugo de toronja, en función del valor inverso de la temperatura absoluta, según
la ecuación de Arrhenius. Se observa que el efecto de la temperatura sobre la velocidad de degradación
del ácido ascórbico total es descrito de manera satisfactoria por la ecuación, en el intervalo de temperaturas
considerado, con un coeficiente de correlación alto de -0,992; resultados similares se establecieron en todos
los jugos. Del valor de la pendiente se calculó una energía de activación de 56,90 [kJ/g.mol], que es superior
a los publicados por Saguy y colaboradores (1978) de 20,85 [kJ/g.mol], y por Kramer (1974) para segmentos
de toronja almacenados, en base a la pérdida del 10% de la vitamina, de 30,10 [kJ/g.mol]. Al respecto, en
sistemas modelos y condiciones aeróbicas se han reportado valores más altos de la energía de activación: Blang
y Hajratwala (1972) de 45,64 [kJ/g.mol]; Lee y Labuza (1975), para humedades intermedias, de 81,20 [kJ/g.
mol]. Lo anterior indica que la destrucción aeróbica de la vitamina es más afectada por la temperatura que la
destrucción anaeróbica.
Figura 3.3.2. Gráfico de Arrthenius para determinar la energía de
activación en la cinética de degradación de ácido ascórbico en
jugo de toronja.
Tabla 3.3.3. Valores de los Coeficientes de la Ecuación de Arrhenius y de la Energía de Activación para la
Cinética de Degradación de Acido Ascórbico en Jugos de Frutas Cítricas.
Fruta
ln (k’)
- ((EA)/R)
[K]
-r
(EA)
[kJ/g.mol]
Lima
Limón Oriente
Limón Sierra
Mandarina Costa
Mandarina Sierra
Toronja
9,6492
5,8854
1,4600
5,4163
8,7286
9,1364
6987,0678
5595,5114
4211,9567
5360,0446
6442,2546
6843,6251
0,9846
0,9942
0,9996
0,9939
0,9669
0,9921
58,09
46,52
35,02
44,56
53,56
56,90
ln k = ln k’ - ((EA)/R(TA)); k’ en [1/s]
En la Tabla 3.3.3. se presentan los valores de los términos de la ecuación de Arrhenius, los coeficientes de
correlación y los valores de la energía de activación de las frutas consideradas.
Cinética de Reacciones que Ocurren en Alimentos
83
Con estas ecuaciones se calculan los valores de la constante de velocidad (k) a diferentes temperaturas, en el
intervalo de 20 a 92C. A 37C, para jugo de toronja, ln k = 9,1364 - (6843,6251/310) = -12,9398 y k =
2,401*10-6/[s] = 0,21/[día]. Por igual procedimiento se estableció en lima, 0,22/[día]; limón del Oriente, 0,45/
[día]; limón de la Sierra, 0,47/[día]; mandarina de la Costa, 0,60/[día]; mandarina de la Sierra, 0,50/[día]. Los
valores son del mismo orden que el reportado por Saguy y colaboradores (1978) en jugo de toronja, 1/[día];
pero son muy superiores a los reportados por otros autores a temperaturas comunes de almacenamiento. Esta
observación fue explicada por el hecho de que existe un incremento drástico en la velocidad de reacción a
temperaturas superiores a 27C, según lo indicado por Nagy y Smoot (1977).
Con relación a los valores de la energía de activación, Lund (1977) señaló que es usual admitir que el ácido
ascórbico es muy lábil al calor, pero muy pocos datos cinéticos están disponibles para la determinación de estos
valores; su recopilación de datos para el caso de la degradación térmica de componentes alimenticios, al igual
que los de Labuza (1982), llevan a establecer que la tiamina es la vitamina considerada en una gran extensión,
con valores para la energía de activación del orden de 84 a 126 [kJ/g.mol], según lo indicado por Saguy y Karel
(1980). Los valores de la energía de activación determinados para la degradación aeróbica del ácido ascórbico
total, en jugos de frutas cítricas, son inferiores: están en un intervalo de 35 a 58 [kJ/g.mol].
Se reconoce que un tratamiento térmico adecuado en alimentos permite retener un porcentaje alto de las
vitaminas y otros nutrientes; las pérdidas mayores ocurren por un manejo inadecuado durante la cadena
alimenticia, y en operaciones como el blanqueado o el almacenamiento. Benterud (1977) concluyó que más
del 90% de la vitamina C se retiene en jugos enlatados de frutas cítricas con alta acidez; en puré de frutas, pH
próximo a 3,5, con adición de ácido ascórbico y esterilizados en autoclave por 30 minutos a 95C, utilizando
envases de cristal, se establecieron pérdidas del 10%.
Como ejemplo de aplicación del método de dos etapas, se realizará el cálculo de las pérdidas de vitamina C que
se esperaría en jugo de mandarina de la Costa, si se somete al tratamiento térmico de esterilización indicado.
Según la ecuación de Arrhenius:
ln k = 5,4163 - (5360,0446/368) = -9,1490
k = 1,0632*10-4/[s]
Según la ecuación cinética de primer orden:
ln (100 * C/C0) = 4,6052 - 1,0632*10-4 * 1800 = 4,4138
(100 * C/C0) = 82,58
El porcentaje de retención corresponde a 83% de ácido ascórbico; para un contenido inicial de 31,7 [mg/100
g], el contenido residual es 26,3 [mg/100 g].
Resultados similares se pueden establecer en todos los jugos de frutas cítricas analizadas, para diferentes
condiciones de temperatura-tiempo en el blanqueado, evacuado, pasteurización o esterilización. Lo anterior
es de especial interés en tecnologías de alimentos que requieren reponer las pérdidas del nutriente, o cuando se
necesita realizar cálculos dietéticos, luego de preparaciones domésticas.
Alvarado, J. de D. y Palacios Nelly. 1989. Efecto de la temperatura sobre la degradación aeróbica de la
vitamina C en jugos de frutas cítricas. Arch. Lat. Am. Nutr., 39(4): 601-612.
Bauerfeind, J. C. and Pinkert, D. M. 1974. Ascorbic acid and food technology. In: Johnson, A. H. and
Peterson, M. S. (Eds.). “Encyclopedia of Food Technology”. V.2. Westport, Connecticut. AVI Pub. Co. Inc.
p: 67-75.
Juan de Dios Alvarado
BIBLIOGRAFÍA Y REFERENCIAS
Capítulo 3
84
Benterud, A. 1977. Vitamin losses during thermal processing. In: “Physical, Chemical and Biological Changes
in Food Caused by Thermal Processing”. Hoyem, T. and Kvale, O. (Eds.). London, England. Applied Science
Pub. Ltd. p: 185-201.
Blang, S. M. and Hajratwala, B. 1972. Kinetics of aerobic oxidation of ascorbic acid. J. Pharm. Sci., 61(4):
556-561.
Cohen, E. and Saguy. I. 1985. Statistical evaluation of Arrhenius model and its aplicability in prediction of
food quality losses. J. Food Proc. Preserv., 9: 273-290.
Eskin, N.; Henderson, A. M. and Towsend, R. J. 1971. “Biochemistry of Foods”. New York. Academic Press
Inc. p:67-75.
Johnson, R. L. and Toledo, R. T. 1975. Storage stability of 55Brix orange juice concentrate aseptically
packaged in plastic and glass containers. J. Food Sci., 40: 433-435.
Kefford, J. F. 1959. The chemical constituents of citrus fruits. Adv. Food Res., 9: 285-372.
Kramer, A. 1974. Storage retention of nutrients. Food Technol., 28: 50-60
Labuza, T, P. 1982. “Shelf-life. Dating of Foods”. Westport, Connecticut. AVI Pub. Co., 500 p.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Lee, S. H. and Labuza, T. P. 1975. Destruction of ascorbic acid as a function of water activity. J. Food Sci.,
40: 370-373.
Lund, D. B. 1977. Effects of blanching, pasteurization and sterilization on nutrients. In: “Nutrition Evaluation
of Food Processing”. 2nd. ed. Harris, R. S. and Karmas, E. (Eds.). Westport, Connecticut. AVI Pub. Co., p:
205-240.
Matthews, R. F. and Hall, J. W. 1978. Ascorbic acid, dehydroascorbic acid and diketogulonic acid in frozen
green peppers. J. Food Sci., 43: 532-534.
Nagy, S. and Smoot, J. M. 1977. Temperature and storage effects on percent retention and percent U. S.
recommended dietary allowance of vitamin C in canned single-strength orange juice. J. Agric. Food Chem.,
25: 135-138.
Nelson, P. E. and Tressler, D. K. 1980. “Fruit and Vegetable Juice Processing Technology”. 3rd. ed. Westport,
Connecticut. AVI Pub. Co. Inc. 603 p.
Robertson, G. L. and Samaniego C. M. L. 1986. Effect of initial dissolved oxygen levels on the degradation
of ascorbic acid and the browning of lemon juice during storage. J. Food Sci., 51: 184-187, 192.
Roe, J. H. and Oesterling, M. H. 1944. The determination of dehydroascorbic acid and ascorbic acid in plant
tissues by the 2-4 dinitrophenylhydrazine method. J. Biol. Chem., 152: 511-517.
Saguy, I. and Karel, M. 1980. Modeling of quality deterioration during food processing and storage. Food
Technol., 34(2): 67-77.
Saguy, I.; Kopelman, I. J. and Mizrahi, S. 1978. Simulation of ascorbic acid stability during heat processing
and concentration of grapefruit juice. J. Food Proc. Eng., 2: 213-225.
Saguy, I.; Kopelman, I. J. and Mizrahi, S. 1978,a. Extent of nonenzymic browning in grapefruit juice during
thermal and concentration processes: kinetics and prediction. J. Food Proc. Preserv., 2: 175-184.
Cinética de Reacciones que Ocurren en Alimentos
85
Sinclair, W. B. 1972. “The grapefruit, its composition. Physiology and Products”. University of California.
Division of Agricultural Sciences.
Singh, R. P.; Heldman, D. R. and Kirk, J. R. 1976. Kinetics of quality degradation: ascorbic acid oxidation in
infant formula during storage. J. Food Sci., 41: 304-307.
Uzcátegui, E. 1985. Contenido de ácido ascórbico en algunas frutas y vegetales exóticos del Ecuador,
determinado por cromatografía de alta presión con fase reversa. Memorias del II Encuentro Ecuatoriano de
Tecnología Alternativa. Facultad de Ciencia e Ingeniería en Alimentos, Universidad Técnica de Ambato. p:
129-139.
Juan de Dios Alvarado
Waletzko, P. and Labuza, T. P. 1976. Accelerated shelf-life testing of an intermediate moisture food in air and
in oxigen free atmosphere. J. Food Sci., 41: 1338-1340.
Propiedades Mecánicas y Ópticas
85
Juan de Dios Alvarado
4. Propiedades Mecánicas
y Ópticas
Capítulo 4
86
4. PROPIEDADES MECÁNICAS Y ÓPTICAS
Una de las preocupaciones principales que existen en el sector alimentario es conocer los datos de las
propiedades físicas de cada alimento, sea en estado fresco como en procesado.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Existen varias razones para explicar la necesidad de esta información. Entre ellas: sirven como índices de
control de calidad y en muchos casos orientan criterios con relación a la composición química y los rendimientos
que se esperarían, al conocer las propiedades físicas de la materia prima. Son indispensables para el diseño,
instalación, operación y control de los procesos, equipos y plantas utilizadas en el procesamiento de alimentos.
En consecuencia, no es extraño que en el momento actual se publiquen libros dedicados de manera especial
a las propiedades físicas de los alimentos. En el Reino Unido, Lewis publicó su obra que apareció en 1987
y en la que se incluyen los principios físicos relacionados con las operaciones utilizadas en la fabricación de
alimentos. En 1986, Rao y Rizvi publicaron en los Estados Unidos de Norteamérica su obra, que incluye las
propiedades más utilizadas en la Ingeniería de Alimentos. Jowitt y un grupo distinguido de investigadores
editaron una obra en 1983, que recoge los resultados de un proyecto multinacional realizado en Europa con
el propósito de estandarizar los métodos y recopilar información relacionada con las principales propiedades
físicas de alimentos. Existen también bases de datos para uso en computadora, como la elaborada por Paul
Singh.
Se requiere considerar que los alimentos poseen una gran variabilidad, por cuya razón se necesita disponer de
datos específicos, en el caso que estén disponibles. Los alimentos son materiales biológicos, y su composición,
estructura y características físicas varían aun dentro del mismo grupo; dependen del lugar de cultivo, fecha de
la cosecha, clima, manejo luego de la cosecha, entre otras causas. Por lo anterior, no es conveniente generalizar
las condiciones de procesamiento para un alimento; es necesario incluir constantemente las propiedades
específicas, según las diferentes condiciones de un proceso, para tratar de obtener productos con la mejor
calidad posible.
Desafortunadamente, en la mayoría de los casos esta información es escasa; no está disponible o simplemente
no existe. Se recurre a datos como los del agua, o de productos que se reconoce como similares, lo que
ocasiona que la aplicación de los principios físicos muchas veces sean ejercicios numéricos totalmente alejados
de la realidad. Lo anterior explica la inclusión y la extensión dedicadas a las propiedades mecánicas de los
alimentos, el detalle de los métodos y las posibles aplicaciones.
En este capítulo se consideran propiedades mecánicas simples, como la gravedad específica, la densidad y la
tensión superficial; y una propiedad óptica, el índice de refracción. Se detallan los métodos y los resultados
obtenidos en productos de consumo general, intentando asociar los resultados con la composición o aplicaciones
de diseño. En los temas relacionados con tallarines y carnes, se busca realizar un aproximación a la textura a
través de las propiedades mecánicas.
La textura de un alimento es, en esencia, un conjunto de características físicas; sin embargo, es extremadamente
difícil medir la textura de un producto alimenticio por medios instrumentales o mecánicos, con la seguridad,
consistencia, sensibilidad y discriminación de la que es capaz el hombre, a través de sus sentidos; las técnicas
en este campo están en proceso de desarrollo. Se destacan el trabajo de Rao y Steffe, relacionado con las
propiedades viscoelásticas de alimentos; en adición, el enfoque de Aguilera y Stanley, quienes presentaron una
Propiedades Mecánicas y Ópticas
87
visión de la microestructura de los alimentos y su influencia en la textura.
a’
A
(AF)
(AL)
b
b’
(BR)
c
c’
C
(CV)
d
d’
D
(DA)
(DB)
(DC)
(DE)
(DF)
(DH)
(DI)
(DJ)
(DL)
(DM)
(DP)
(DR)
(DS)
(DT)
(DAG)
(DBA)
(DBF)
e
e’
E
(EH)
(EHA)
(EHF)
f
f’
F
F’
g
g’
G
(GE)
h
h’
H
= coeficiente de la ecuación de Short
= área [m2]
= área transversal en la sección más delgada de una fibra cilíndrica [m2]
= contenido de almidón [g/100 g]
= pendiente
= coeficiente de la ecuación de Short
= grados Brix
= circunferencia [m]
= coeficiente de la ecuación de Short
= contenido de sólidos no grasos [g/100 g]
= coeficiente de variación
= diferencia
= coeficiente de la ecuación de Short
= densidad [kg/m3]
= densidad aparente [kg/m3]
= densidad de bulto [kg/m3]
= densidad de los sólidos no grasos [kg/m3]
= desviación estándar
= densidad de la materia grasa [kg/m3]
= densidad del agua [kg/m3]
= diámetro inicial [m]
= densidad de jugos [kg/m3]
= densidad de leches [kg/m3]
= densidad promedio [kg/m3]
= densidad de partícula [kg/m3]
= densidad real [kg/m3]
= densidad aparente seca [kg/m3]
= diámetro luego de determinado tiempo de tracción [m]
= densidad de aceites o grasas [kg/m3]
= densidad de bulto apretada [kg/m3]
= densidad de bulto floja [kg/m3]
= base de los logaritmos naturales [2,7182818]
= coeficiente de la ecuación de Kubota y colaboradores
= fracción unitaria del volumen de espacios con aire
= volumen de espacios con aire [porcentaje]
= volumen de espacios con aire medido con vibración [porcentaje]
= volumen de espacios con aire medido sin vibración [porcentaje]
= función
= coeficiente de la ecuación de Kubota y colaboradores
= contenido de grasa [g/100 g]
= fuerza o carga [N]
= constante gravitacional [9,81 m/s2]
= coeficiente de la ecuación de Flores Luque y colaboradores
= gravedad específica de leches
= gravedad específica
= altura o descenso vertical [m]
= coeficiente de las ecuaciones polinómicas de segundo grado que relacionan la densidad de leches
con la temperatura
= humedad [g/100 g]
Juan de Dios Alvarado
NOMENCLATURA DEL CAPITULO 4
Capítulo 4
88
i’
I
(ID)
(IL)
(IR)
(IS)
(IY)
j’
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
l
L
(LF)
(LI)
(LM)
m
M
(MS)
(MY)
n
N
p’
P
(PE)
(PM)
q’
Q
r
r’
r2
R
s’
S
t’
T
(TA)
u’
U
V
V’
(VA)
(VR)
w
W
x
X
Y
= coeficiente de las ecuaciones polinómicas de segundo grado que relacionan la densidad de leches
con la temperatura
= contenido de lactosa [g/100 g]
= incremento del diámetro [porcentaje]
= incremento de la longitud [porcentaje]
= índice de refracción
= índice de saponificación [mg/g]
= índice de yodo [g.I2/100 g]
= coeficiente de las ecuaciones polinómicas de segundo grado que relacionan la densidad de leches
con la temperatura
= longitud inicial o unitaria [m]
= grados lactodensimétricos
= longitud final [m]
= longitud original [m]
= longitud en estiramiento [m]
= masa [kg]
= masa de harinas [kg]
= contenido de materia seca [g/100 g]
= módulo de Young [N/m2 o Pa]
= número de observaciones
= número de partículas
= coeficiente de regresión de las ecuaciones para calcular la densidad de aceites y grasas como
función de la temperatura
= contenido de proteína [g/100 g]
= peso específico [N/m3]
= peso formular representativo de aceites y grasas
= coeficiente de regresión de las ecuaciones para calcular la densidad de aceites y grasas como
función de la temperatura
= alargamiento a la rotura
= coeficiente de correlación
= coeficiente de regresión de las ecuaciones para calcular el índice de refracción de aceites y grasas
como función de la temperatura
= coeficiente de determinación
= radio [m]
= coeficiente de regresión de las ecuaciones para calcular el índice de refracción de aceites y grasas
como función de la temperatura
= contenido de sólidos totales [g/100 g]
= coeficiente de regresión de las ecuaciones para calcular la tensión superficial de jugos de frutas
como función de la temperatura
= temperatura [C]
= temperatura absoluta [K]
= coeficiente de regresión de las ecuaciones para calcular la tensión superficial de jugos de frutas
como función de la temperatura
= tensión [N/m2 o Pa]
= volumen [m3]
= volumen ocupado por un solvente [m3]
= volumen aparente [m3]
= volumen real [m3]
= peso [kg]
= peso aparente [g o kg]
= fracción unitaria de un componente
= diámetro de partícula [micras]
= diámetro promedio de partículas [micras]
= estricción
Propiedades Mecánicas y Ópticas
Z
89
= módulo de cizalla [N/m2]
Letras griegas
α
ß
τ
δ
ε
μ
π
Σ
= ángulo de reposo
= coeficiente volumétrico de expansión térmica [1/K o 1/C]
= tensión superficial [N/m]
= distancia de alargamiento o deformación [m]
= deformación
= razón de Poisson
= 3,1416
= sumatorio
a
d
g
i
f
l
m
n
p
q
r
s
T
v
w
z
= agua
= diámetro
= geométrico
= inicial
= final
= lineal o aritmético
= másico
= límite de tamaño de partícula
= término de la ecuación (4.2.7)
= término de la ecuación (4.2.7)
= cambio de volumen
= superficie
= temperatura
= volumen
= agua
= producto seco
0
1
2
3
4
= cero, condición inicial, límite inferior
= vacío
= con grano
= con grano y líquido
= grano añadido
Juan de Dios Alvarado
Subíndices
Capítulo 4
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
90
TEMA 4.1.
APLICACIÓN DEL PRINCIPIO DE ARQUÍMEDES PARA
DETERMINAR EL CONTENIDO DE SOLIDOS EN PAPAS
INTRODUCCIÓN
Arquímedes, aproximadamente 250 años antes de Cristo, postuló su principio que dice: “Todo cuerpo total o
parcialmente sumergido en un fluido, experimenta un esfuerzo dirigido hacia arriba, igual al peso del fluido que
desaloja”. Este principio se puede explicar en la forma siguiente.
Merkel (1983) definió al peso específico de un cuerpo (PE), como el peso (w) por unidad de volumen (V),
expresado en newtons por metro cúbico.
(PE) = w / V
(4.1.1)
Un cuerpo total o parcialmente sumergido en un líquido experimenta una fuerza resultante, causada por la
estática del fluido llamada fuerza de flotación (F’). La fuerza de flotación siempre actúa verticalmente en
dirección contraria a la gravedad; su magnitud es igual al peso de fluido desplazado por el objeto, expresado
en forma de ecuación:
F’ = (PE) V
Siendo V el volumen de líquido desplazado [m3].
(4.1.2)
Propiedades Mecánicas y Ópticas
91
Cuando se registra el peso de un objeto en el aire (w) y luego sumergido en agua (wa), la diferencia corresponderá
a la fuerza de flotación.
w - wa = (PE)a V
(4.1.3)
Con el peso específico del agua, (PE)a = 9800 [N/m3], se determina el volumen desalojado y el valor del peso
específico del cuerpo.
La gravedad específica (GE) fue definida por Hall y colaboradores, (1978), como la relación entre el peso de una
sustancia y el peso de un volumen igual de agua, a 4C, según los físicos, y a 15,6C, según los ingenieros; en
consecuencia, la gravedad específica (GE) corresponde por definición al peso específico relativo con respecto
al agua. Debido a que el volumen de un cuerpo sumergido es igual al volumen del agua desplazada, la relación
de los pesos específicos es la misma que la de los pesos del alimento y de un volumen igual de agua.
Estos pesos pueden determinarse pesando la muestra en el aire y en el agua; su diferencia corresponde a la
pérdida de peso aparente en el agua, que es el peso de agua desalojado según el principio de Arquímedes; por
lo anterior, la gravedad específica puede ser calculada por:
(GE) = w / (w - wa)
(4.1.4)
Ordóñez, (1981), indicó que los valores de la gravedad específica, materia seca y almidón en papas, son
elementos importantes en la selección de cultivares para distintos tipos de procesamiento industrial. A través
del dato experimental de la gravedad específica de los tubérculos se pueden obtener los contenidos de almidón
y de materia seca, aplicando las distintas tablas de conversión o ecuaciones establecidas.
Sin embargo, en el valor de la gravedad específica influyen numerosos factores: composición química y tamaño
de los gránulos de almidón; composición del líquido intercelular del parénquima y de la masa de gases en este
espacio y en el interior del tejido; de la suberización de la piel; del grado de hidratación del parénquima, entre
los factores más importantes.
Con respecto a la composición, existen varias ecuaciones para correlacionar la gravedad específica con el
contenido de materia seca y de almidón en papas. Entre ellas, Ordóñez (1981) cita a las siguientes:
Davin (1970).
(MS) = ((GE) - 0,992) / 0,0042
(4.1.5)
Fitzpatrik y colaboradores (1969).
(MS) = -196,98 + 201,72 (GE)
(4.1.6)
Quarnby y Ratowsky (1972).
(4.1.7)
Verma (1971).
(MS) = -163,0181 + 169,3354 (GE)
(4.1.8)
Quarnby y colaboradores (1972).
(MS) = 240,414 - ( 237,215 / (GE) )
(4.1.9)
Juan de Dios Alvarado
(MS) = -207,709 + 211,04 (GE)
Capítulo 4
92
Von Scheele, citado por Murphy (1959).
(MS) = 24,182 + 211,04 ((GE) - 1,0988)
(4.1.10)
Con relación al contenido de almidón, que constituye entre el 60 al 70% del total de la materia seca de las
papas y es el componente que más influye en el valor de la gravedad específica, se han reportado las ecuaciones
siguientes:
Verma (1971).
(AL) = -181,4600 + 181,7187 (GE)
(4.1.11)
Von Scheele, citado por Murphy (1959).
(AL) = 17,564 + 199,07 ((GE) - 1,0988)
(4.1.12)
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
En todos los casos, los valores de materia seca (MS) y almidón (AL) están dados como porcentaje, y (GE) es
la gravedad específica.
Las ecuaciones indicadas son el resultado de muchas determinaciones en diferentes cosechas, variedades y
años.
Brown (1960), de acuerdo con los trabajos de Heinze, indicó que la relación entre la gravedad específica y la
materia sólida en los tubérculos no es constante y que el rendimiento teórico de papas fritas puede fluctuar;
sin embargo, la relación es lo suficientemente constante para ayudar a predecir el rendimiento. Reportó datos
establecidos durante la elaboración de papas fritas cortadas en rodajas.
Existe poca información que considere a las numerosas variedades de papas conocidas. Al respecto, el IIT de
la Escuela Politécnica Nacional (1979) publicó datos de la gravedad específica de algunas variedades de papa.
Así: María = 1,092; Santa Catalina = 1,082; Chola = 1,084; Bolona = 1,101; Capiro = 1,082; Leona = 1,097
y CFP-313 = 1,098. Sus correspondiente valores promedios de sólidos totales en la pulpa fueron: 21,6; 20,6;
20,7; 23,2; 20,1; 22,3 y 22,6 [g/100 g].
OBJETIVOS
Señalar la importancia de pruebas simples y rápidas en la caracterización de materia prima, para su aplicación
industrial.
Establecer ecuaciones que permitan el cálculo de la materia seca en base a la gravedad específica de distintas
variedades de papas.
Hacer estimaciones del contenido de almidón que se esperaría encontrar en los tubérculos analizados.
MATERIALES Y MÉTODO
De cuatro o más variedades de papas (Solanum tuberosum), seleccionar veinte o más tubérculos sanos.
Limpiar individualmente los tubérculos de una de las variedades, y determinar el valor de la gravedad específica
con el uso de una balanza apropiada, mediante registro del peso en el aire y sumergido en un recipiente con un
litro de agua destilada. Continuar el registro de los pesos con los tubérculos de las variedades restantes.
Separar al azar tres papas de cada una de las variedades, y cortarlas diametralmente. Uno de los pedazos servirá
para determinar el contenido de la materia seca en estufa a 103C, o en una balanza para registro de humedad.
Propiedades Mecánicas y Ópticas
93
CUESTIONARIO
Consultar información relacionada con el almidón de papa: gránulos, composición, estructura; y sobre
almidones modificados.
Para cada variedad, determinar los valores del peso específico con las ecuaciones (4.1.1 y 4.1.3), de la gravedad
específica (4.1.4), y de la materia seca. Calcular la media, la moda y la desviación estándar. Tabular los
resultados y discutirlos.
Hacer un gráfico con los valores promedios de la gravedad específica contra sus correspondientes de materia
seca; establecer la ecuación de regresión y el coeficiente de correlación.
Construir un gráfico que permita comparar la relación entre el contenido de materia seca y la gravedad específica
según los datos experimentales, y las ecuaciones (4.1.5) a (4.1.10). Discutir los resultados.
Aplicar las ecuaciones (4.1.11) y (4.1.12) para estimar el contenido de almidón de cada una de las variedades
analizadas; comentar sobre posibles usos industriales.
RESULTADOS EXPERIMENTALES
Con el uso de balanzas que permiten pesar el producto en el aire y sumergido en agua destilada, balanzas para
la determinación de gravedad específica, se registraron los datos de la Tabla 4.1.1., correspondientes a las
variedades de papas conocidas en el comercio con los nombres de: Cecilia, Uvilla, Gabriela, Leona y Rubí.
Tabla 4.1.1. Datos de Pesos [g] de Papas para la Determinación de la Gravedad Especifica
Uvilla
Gabriela
Leona
Rubí
Waire
Wagua
Waire
Wagua
Waire
Wagua
Waire
Wagua
Waire
Wagua
112,30
93,32
107,88
49,36
98,74
66,37
58,84
42,44
52,27
70,48
57,25
54,23
40,67
57,40
42,28
121,26
70,85
53,64
46,02
52,35
6,88
6,21
8,43
3,64
6,82
5,03
4,78
2,84
3,43
5,14
4,75
3,76
2,58
4,30
2,96
7,87
5,22
4,07
3,28
4,06
64,53
46,54
75,67
33,48
53,88
28,40
63,15
34,20
92,57
64,18
67,15
119,23
48,98
28,80
166,26
47,08
29,88
36,30
32,70
116,14
4,22
3,00
5,45
1,99
3,85
1,38
4,26
1,67
6,40
3,72
6,40
7,66
3,81
1,82
10,65
2,40
1,69
2,71
2,39
6,98
115,18
112,50
116,40
57,93
98,20
63,88
32,17
31,66
50,86
63,43
110,44
65,74
146,95
79,52
61,17
48,87
58,21
137,31
47,97
107,30
7,88
7,81
7,24
4,22
7,21
5,26
2,60
2,09
3,95
4,84
8,76
5,22
10,46
4,98
4,73
3,79
4,51
11,10
4,03
7,07
74,98
80,04
32,89
42,37
41,97
40,94
37,97
39,98
22,42
76,28
43,70
59,76
26,94
44,92
80,50
39,31
43,30
32,68
51,20
30,16
6,53
7,67
3,04
3,66
3,37
3,66
3,25
3,02
1,79
6,39
3,48
5,04
2,33
3,98
6,79
3,49
3,77
2,52
3,27
2,77
94,00
68,90
85,70
100,30
87,40
77,50
75,40
107,25
71,55
78,25
144,99
129,11
91,31
85,79
71,24
61,50
94,86
84,33
71,86
64,16
5,80
4,36
4,87
5,23
6,06
4,99
5,71
6,64
4,92
5,50
6,02
7,41
5,18
6,46
4,41
4,56
4,90
7,27
7,99
6,94
La diversidad de los pesos observada en cada variedad es consecuencia de la falta de uniformidad en el tamaño.
Esta situación es característica en los cultivos considerados nativos.
Juan de Dios Alvarado
Cecilia
Capítulo 4
94
Con los valores iniciales de la variedad Cecilia se realizaron los cálculos para las propiedades consideradas;
igual procedimiento se repitió con todos los tubérculos de las distintas variedades. Esto permitió elaborar la
Tabla 4.1.2., en la que se incluyen los valores experimentales de humedad y de sólidos totales.
Cecilia.
Peso en el aire 112,30 g; peso sumergido en agua 6,88 g.
Expresado en newtons
w = 0,11230 [kg] * 9,81 [m/s2] = 1,1017 [N]
wa = 0,00688 [kg] * 9,81 [m/s2] = 0,0675 [N]
Según la ecuación (4.1.3)
w - wa = (PE)a V
V = (w - wa) / (PE)a
V = (1,1017 - 0,0675) [N] / 9800 [N/m3] = 1,0553*10-4 [m3]
Según la ecuación (4.1.1)
(PE) = w / V
(PE) = 1,1017 [N] / 1,0553*10-4 [m3] = 10440 [N/m3]
La gravedad específica es calculada por:
(GE) = (PE) / (PE)a
(GE) = 10440 [N/m3] / 9800 [N/m3] = 1,065
O simplemente por aplicación de la ecuación (4.1.4)
(GE) = w / (w - wa)
(GE) = 112,30 / (112,30 - 6,88) = 1,065
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Tabla 4.1.2. Valores Estadísticos de Gravedad Especifica y de Materia Seca Determinados en Distintas Variedades de Papas
Gravedad Específica
NOMBRE
COMERCIAL
Media
Desviación estándar
Cecilia
Uvilla
Gabriela
Leona
Rubí
1,078
1,070
1,080
1,092
1,074
0,007
0,013
0,008
0,008
0,004
Humedad
Materia seca
Moda
[%]
[%]
1,079
1,069
1,084
1,095
1,066
79,8
80,1
78,5
76,8
79,2
20,2
19,9
21,5
23,2
20,8
Figura 4.1.1. Gravedad específica contra contenido de materia
seca en distintas variedades de papas cultivadas en Ecuador
Según se observa en la Figura 4.1.1., existe una relación directa entre el contenido de materia seca y la gravedad
específica. Se incluyen los datos obtenidos con otras variedades en la Escuela Politécnica Nacional, para
establecer la concordancia de los resultados y las correspondientes ecuaciones de correlación.
Propiedades Mecánicas y Ópticas
95
Figura 4.1.2. Comparación de ecuaciones de la relación
materia seca y gravedad específica de papas.
En la Figura 4.1.2. están representadas las ecuaciones recopiladas, conjuntamente con la ecuación establecida
con los datos experimentales de las variedades consideradas.
(MS) = -138,36 + 147,83 (GE)
(4.1.13)
En general las ecuaciones recopiladas corresponden a una variedad. El hecho de que la ecuación presentada
incluye cinco variedades, y de que la establecida con los datos de la Escuela Politécnica Nacional siete
variedades, puede explicar las diferencias; sin embargo, se aprecia que el contenido de materia seca, para un
valor de gravedad específica, es similar.
La determinación de la gravedad específica es rápida, simple y barata. Al existir la posibilidad de correlacionarla
con el contenido de almidón, cuya determinación es demorada, relativamente complicada y con el uso de
reactivos se constituye en un medio valioso para control y estimaciones del rendimiento.
En la Tabla 4.1.3. se presenta el contenido de almidón que se esperaría encontrar en los tubérculos analizados.
Se destaca la papa Leona como fuente potencial de almidón.
Tabla 4.1.3. Contenido Calculado de Almidón en Cinco Variedades de Papas.
NOMBRE COMERCIAL
Cecilia
Uvilla
Gabriela
Leona
Rubí
Almidón
[g/100 g]
Según Verma (1971)
Según von Scheele (1959)
14,4
13,0
14,8
17,0
13,7
13,4
11,8
13,8
16,2
12,6
BIBLIOGRAFÍA Y REFERENCIAS
Hall, C. W.; Farrall, A. W. and Rippen, A. L. 1978. “Encyclopedia of Food Engineering”. Westport, Connecticut. AVI
Pub. Co. Inc. p: 619.
Instituto de Investigaciones Tecnológicas. 1979. “Farinología y Panificación con Harinas Compuestas”. Quito, Ecuador.
Escuela Politécnica Nacional. p: 102.
Merkel, J. A. 1983. “Basic Engineering Principles”. 2nd. ed. Westport, Connecticut. AVI Pub. Co. Inc. p: 105-144.
Ordóñez, Ceferina; Limongelli, J. C. Chiesa, A. Abarza, C. Martinnuzzi, F. Aguilar, G. H. Pagano, E. E. y Szentivanyi, N.
1981. Papas chips VIII. Tablas de conversión y los parámetros de calidad de los tubérculos de papa (Solanum tuberosum
L.) materia prima para la industria. Rev. Facultad de Agronomía, 2(3): 123-131. Universidad de Buenos Aires. Argentina.
Juan de Dios Alvarado
Brown, H. D. 1960. Problems of the potato chip industry. Processing and technology. Adv. Food Res., 10:181-231.
Capítulo 4
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
96
TEMA 4.2. APLICACIÓN DE LA DENSIDAD PARA CARACTERIZAR
GRANOS Y HARINAS
INTRODUCCIÓN
De acuerdo con Couto Moreira y colaboradores (1985), el conocimiento de la masa específica de productos
agrícolas es de aplicación directa en problemas de secado, aireación, almacenamiento y empacado. También
se ha establecido que las semillas de mayor masa específica poseen, normalmente, embriones bien formados y
mayor cantidad de reservas, siendo de manera potencial las más vigorosas.
La densidad de una sustancia, en [g/cm3] o unidades equivalentes, es aproximadamente igual, numéricamente,
a su masa específica; pero estos valores son totalmente diferentes en unidades inglesas.
En granos y semillas se acostumbra expresar esta propiedad en términos de: densidad aparente o de bulto, sin
considerar los espacios entre los granos, y densidad real.
Rossi y Roa (1980), determinaron la densidad aparente de productos alimenticios, utilizando un recipiente
cilíndrico de aluminio de 10 [cm] de diámetro y 6 [cm] de alto y una balanza semianalítica; con el uso de la
relación siguiente:
(DA) = m/(VA)
(4.2.1)
Donde (DA) es la densidad aparente [kg/m3], m es la masa de los granos en el recipiente [kg] y (VA) es el
volumen del recipiente [m3].
Propiedades Mecánicas y Ópticas
97
Para la determinación de la densidad real, utilizaron una probeta de vidrio transparente de 1000 [cm3], que
contenía 500 [cm3] de agua; añadieron una cierta cantidad de producto cuya masa era conocida y midieron la
diferencia de volumen. La densidad real del producto se expresa por:
(DR) = m/(VR)
(4.2.2)
(DR) es la densidad real [kg/m3] y (VR) es la diferencia de volumen de agua en la probeta [m3].
El cálculo de los espacios con aire entre el material (E) se realiza con la ecuación:
E = 1 - ((DA)/(DR))
(4.2.3)
Indicaron que en las ecuaciones de secado se encuentra generalmente el valor de la densidad aparente de
producto seco (DS), que se obtiene descontando la masa de agua definida por la humedad del producto. Para
maíz con 14,3% de humedad presentaron los valores siguientes: densidad aparente 847 [kg/m3]; densidad
aparente seca 726 [kg/m3]; densidad real 1232 [kg/m3]; espacios libres 0,312.
En base al mismo principio de cuantificación de volumen con un líquido, Mohsenin (1970) señaló que el
líquido más eficaz es el tolueno, por las razones siguientes: pequeña tendencia a penetración en los granos,
baja tensión superficial que posibilita un recubrimiento suave de la superficie de los granos, pequeña acción
disolvente sobre los constituyentes del grano en especial grasas, gravedad específica relativamente baja.
En adición, Couto y colaboradores, (1985), no encontraron diferencias de significado estadístico entre los
valores de la masa específica establecidos con tolueno y con aceite de soja, que facilita el trabajo y es de menor
costo, en arroz, fréjol, soja y trigo; en las pruebas realizadas con agua los valores fueron consistentemente
menores.
El método utilizado por estos autores, para determinar la densidad real, es más exacto y preciso. Consiste en
utilizar diez balones volumétricos con tapa, de 10,00 [ml] o 25,00 [ml], según el tamaño del grano, a los cuales
se pesa en balanza analítica; se afora con un líquido complementador de volumen (tolueno, aceite de soja, agua
destilada) y se pesa. La relación entre el peso del líquido obtenido por diferencia y el volumen del matraz
permite cuantificar la densidad del líquido, cuando no es conocida. Para determinar la densidad aparente se
introducen los granos hasta el nivel de la marca, y se establece y calcula la relación peso de los granos sobre
volumen. Para determinar la densidad real se introducen los granos hasta el inicio del cuello y se pesan; se
complementa el volumen hasta la marca con cada líquido y se vuelve a pesar. Por diferencia se obtiene el
peso del líquido, y como se conoce su densidad se establece el volumen ocupado por el líquido. Al restar del
volumen total del matraz se obtiene el volumen ocupado por los granos; como se conoce el peso de los granos,
la densidad real puede ser cuantificada.
La humedad, a su vez, está influenciada por varias causas, como el grado de madurez en el momento de la
cosecha y venta. Orozco (1983) determinó que existen diferencias en la humedad entre diecisiete variedades de
maíz en el momento de la comercialización. La variedad Canguil fue la de mayor humedad, 18,7%; variedades
como Chillos (amarillo), Morado, Chulpi y Mayceño presentaron valores menores; el valor más bajo se registró
en la variedad P.A.8 con 11,8% de humedad.
Con relación a harinas, Heldman y Singh (1981) señalaron que los productos alimenticios secos constituyen una
porción considerable del número total de alimentos disponibles para el consumidor. El diseño de sistemas de
manejo de productos secos, como harinas, requiere el conocimiento de sus propiedades. Entre ellas: densidad
de bulto floja, densidad de bulto apretada, densidad aparente de partícula, tamaño de partícula, distribución de
tamaño de partícula, ángulo de reposo y coeficiente de fricción.
Juan de Dios Alvarado
Uno de los factores que influyen en los valores de la densidad de granos agrícolas es la humedad del producto.
Según los datos indicados por Brooker y colaboradores (1981) se establece que los valores de la densidad
aparente dependen, además de la humedad, de los espacios libres entre los granos.
Capítulo 4
98
La densidad de bulto es definida por la ecuación siguiente:
(DB) = M/V
(4.2.4)
Donde (DB) es la densidad de bulto, M la masa y V el volumen. Aunque esta ecuación es relativamente simple
y similar a la ecuación (4.2.1), en productos pulverulentos, como harinas, dos tipos de densidad de bulto han
sido designados: floja, si el producto se coloca en un recipiente de volumen conocido sin vibración; y apretada,
si se utiliza vibración hasta que se mantenga el volumen constante. Como es de esperarse, el valor de la
densidad de bulto será dependiente de las características de la harina, del tamaño de partícula y muchos factores
que influyen sobre estas características.
La densidad de partícula de un producto alimenticio seco también es una medida de la cantidad de aire que
puede estar atrapado entre las partículas individuales, y puede ser calculada por:
(DP) = M/(V - V’)
(4.2.5)
Siendo V’ el volumen ocupado en un picnómetro por un solvente de densidad conocida. Se aprecia la similitud
con la ecuación (4.2.2), que corresponde a la densidad real.
De igual modo, la cantidad de espacios vacíos, expresada como porcentaje, puede ser calculada por:
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
(EH) = (1 - ((DB)/(DP))) * 100
(4.2.6)
Siendo (EH) el volumen de espacios con aire como porcentaje.
Otras propiedades de interés son la porosidad, que es definida como la relación entre los espacios libres en
las partículas y el volumen total. La tortuosidad, que es un factor relacionado con la dificultad que tienen los
gases para atravesar un sólido, por desviaciones de los conductos o vías. El tamaño y distribución de los poros.
Karathanos y Saravacos (1993) presentaron datos de estas propiedades para dos tipos de almidones.
Henderson y Perry (1980) indicaron que los materiales reducidos en tamaño pueden ser clasificados en tres
grupos o clases. Rango dimensionable: cuando las partículas o unidades pueden ser medidas con seguridad, y
son vistas fácilmente, tienen un tamaño de 3,175 [mm] o más. Rango tamizable: cuando las partículas tienen
un tamaño entre 3,175 y 0,074 [mm]. Rango microscópico: cuando las partículas tienen dimensiones menores
a 0,074 [mm].
Las harinas, según su origen y proceso de molienda, pueden pertenecer a las dos últimas clases. Como
referencia, Villavecchia (1963) indicó los valores siguientes: granos de almidón grandes, como los de papa,
con un diámetro superior a 30 [micras]; medianos, con un diámetro entre 20 y 30 [micras], como los de trigo,
maíz, centeno, cebada; pequeños, si su diámetro es de 10 [micras] o menos, como los de arroz y avena.
Según Heldman y Singh (1981), una propiedad muy importante de alimentos granulares y polvos es el tamaño
de partícula y la distribución del tamaño. Aunque alguna anotación del diámetro medio de partícula puede ser
útil en la descripción del producto, la idea completa no es clara hasta que la distribución de tamaño también
sea descrita.
Es importante considerar el tipo de diámetro medio que se utiliza en una distribución del tamaño de partícula.
Mugele y Evans (1951) desarrollaron una expresión generalizada, que puede ser usada para definir todos los
tipos de diámetros medios. Esta expresión es:
xn
q-p
X = ( x (Xq)(dΣN/dX)dX) / (
0
qp
∫
xn
∫ x (X )(dΣN/dX)dX)
0
p
(4.2.7)
Propiedades Mecánicas y Ópticas
99
q-p
X = (Σ(Xq N)) / (Σ(Xp N))
(4.2.8)
qp
Siendo X el diámetro medio y N el número de partículas, los exponentes p y q fueron presentados para los
diferentes tipos de diámetros medios.
Como ejemplo, al reemplazar los valores, el diámetro medio numérico, lineal o aritmético, es definido por:
Xl = Σ (XN) / N
Símbolo
Xl
Xs
Xv
Xm
Xsd
Xvd
Xvs
Xms
Nombre del diámetro medio p
Lineal (aritmético)
Superficie
Volumen
Masa
Superficie-diámetro
Volumen-diámetro
Volumen-superficie
Masa-superficie
(4.2.9)
q
Orden
0
0
0
0
1
1
2
3
1
2
3
3
2
3
3
4
1
2
3
3
3
4
5
7
Por otro lado, se indica que la distribución del tamaño de partícula de muchos productos alimenticios granulares
o secos no es descrita por la distribución normal. La distribución usada para describir muchos productos
alimenticios secos es la función de densidad log-normal siguiente:
f(X) = (1/ln σg (2π)0,5)exp - (0,5((ln X - ln )/(ln σg))2)
(4.2.10)
Con la media log-geométrica ( ), definida por:
ln Xg = Σ (N ln ) / Σ N
(4.2.11)
Y la desviación estándar geométrica, definida por:
ln σg = ((Σ(N(ln X - ln )2))/N)0,5
(4.2.12)
En adición, Henderson y Perry (1980) señalaron que, cuando un material granular fluye libremente desde un
punto, hasta formar un montículo en una superficie horizontal, la forma del montículo es característica para
cada material. El ángulo que el lado del montículo forma con la horizontal se denomina ángulo de reposo
(α). Para un producto determinado, varía con la humedad el contenido de material extraño presente y el tipo de
superficie. La tangente de este ángulo es el coeficiente de fricción del material. Cuando se desea descargar por
gravedad el material desde un recipiente, la inclinación en el fondo deberá superar el coeficiente de fricción.
Considerando un montículo de altura h y radio R:
tan α = h / R
(4.2.13)
Juan de Dios Alvarado
Tanto la media geométrica, como la desviación estándar geométrica, son usualmente determinadas utilizando
un papel de distribución log-normal. Luego de graficar en ordenadas el peso o el número de partículas, en
porcentaje acumulativo, contra el diámetro en micrones, la desviación estándar geométrica se calcula dividiendo
el tamaño de partícula correspondiente a 15,879, del porcentaje acumulativo, para el tamaño de partícula
correspondiente a 50 del porcentaje acumulativo. El tamaño de partícula correspondiente a 50 del porcentaje
acumulativo es la media geométrica de la distribución.
Capítulo 4
100
En relación con la circunferencia, c = 2π R; por reemplazo:
tan α = 2π h / c
(4.2.14)
OBJETIVOS
Determinar los valores de la densidad aparente y real en granos agrícolas y comprobar la influencia de la
humedad.
Seleccionar un método adecuado para determinar la densidad de granos y harinas.
Medir ángulos de reposo en granos y harinas.
Caracterizar harinas de consumo general, en términos de los valores de densidad, espacios con aire y diámetro
de las partículas.
MATERIALES Y MÉTODOS
Seleccionar un producto (cereal, leguminosa, oleaginosa), que esté disponible en el mercado en forma húmeda
y seca; por ejemplo, choclo y maíz. Disponer en cada caso de un kilogramo.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Separar una cantidad pequeña de cada muestra, moler y determinar por duplicado la humedad en estufa a
103C por 24 horas.
Seguir el método descrito por Rossi y Roa y determinar por quintuplicado la densidad aparente y la densidad
real, en cada una de las muestras.
Seguir el método utilizado por Couto y colaboradores y determinar por quintuplicado la densidad aparente y
la densidad real; en el caso de la densidad real, trabajar con tolueno, aceite de soja comercial y agua destilada.
Cuidar que no existan cambios notorios en la temperatura.
Con la ayuda de un embudo colocado en un soporte metálico, dejar caer desde una distancia de 10 [cm] un
kilogramo de grano, medir la altura en el centro y el diámetro o la circunferencia del montículo formado.
Repetir la operación con igual peso de muestra nueve veces más. Trabajar sobre madera lisa y sobre un pedazo
de lija.
Para el caso de las harinas, utilizar tres tipos diferentes, provenientes de un cereal (cebada, maíz, trigo, arroz o
quinua), una leguminosa (arveja, haba, lenteja o chocho) y un tubérculo (papa, yuca o camote). Determinar la
humedad en la estufa, balanza para humedad o equipo Brabender.
Con cada una de la harinas, para las determinaciones de la densidad, utilizar un matraz aforado de 10 [ml],
pesarlo vacío en balanza analítica, llenar con harina hasta la marca y volver a pesar; añadir lentamente benceno
o tolueno, cuya densidad debe ser conocida, hasta la marca y volver a pesar. Repetir la prueba, con el uso de un
vibrador, hasta que la harina introducida se compacte. Trabajar por duplicado.
Para llevar a cabo el ensayo microscópico del tamaño de partícula de las harinas, poner en un erlenmeyer de
250 [ml], aproximadamente 5 [g] de harina y añadir en porciones pequeñas unos 50 [cm3] de agua destilada,
agitando suavemente con una varilla de vidrio de punta aguda para separar entre si las partículas. Con la varilla
tomar una gota del agua que tiene en suspensión las partículas, cuidando que no haya grumos, y colocarla en
el punto central de un portaobjetos; dejar caer libremente sobre la gota un cubreobjetos. Hacer la observación
en el microscopio, y con la ayuda de un micrómetro establecer el número de partículas con su diámetro
correspondiente, considerando la dimensión mayor. Trabajar por duplicado.
Propiedades Mecánicas y Ópticas
101
Determinar los ángulos de reposo y los coeficientes de fricción, según el método indicado para granos.
CUESTIONARIO
Aplicar las ecuaciones (4.2.1) y (4.2.2); tabular por grupos de cinco observaciones todos los valores de
densidad aparente, densidad de producto seco y densidad real; tanto para los granos secos, como para los
granos húmedos. Comparar estos datos con otros valores consultados. Qué observaciones puede hacer con
relación al efecto de la humedad sobre la densidad?.
Calcular los valores de espacios con aire entre granos con la ecuación (4.2.3), y compararlos con otros valores
publicados; considerar los dos métodos utilizados.
De cada grupo de cinco observaciones, calcular el valor promedio y el coeficiente de variación; establecer qué
método es el más recomendable, para las determinaciones previamente indicadas en granos.
RESULTADOS EXPERIMENTALES
Tabla 4.2.1. Valores Registrados para Determinar la Densidad de Granos de Chocho por Diferentes Métodos*
GRANO SECO
(Humedad 10,2 g/100 g)
W1
[g]
W2
[g]
W3
[g]
GRANO COCIDO Y HÚMEDO
(Humedad 67,3 g/100 g)
W4
[g]
Vr
[cm3]
W1
[g]
W2
[g]
87,21
86,24
86,41
86,40
86,43
604,30
611,04
609,04
603,24
603,40
W3
[g]
W4
[g]
Vr
[cm3]
100
100
100
100
100
94
90
90
92
93
1. Método según Rossi y Roa.
Cilindros plásticos de 0,095 [m] de diámetro y 0,124 [m] de altura.
(VA) = 8,789*10-4 [m3].
87,21
86,24
86,41
86,40
86,43
628,46
627,28
627,43
631,53
631,56
Probetas de 500 [ml] con 300 [cm3] de agua
100
100
100
100
100
90
93
90
91
94
2. Método según Couto Moreira y colaboradores, en picnómetros de 50 [ml].
Con agua, densidad a 20C 998,2 [kg/m3]
31,57931
31,73336
33,25258
33,48412
33,67741
64,24711
63,18525
64,37821
64,37165
64,38886
84,13917
83,19091
83,78197
84,31010
84,93784
31,64053
31,88654
32,72549
34,04423
33,43947
59,01638
60,85912
60,24820
60,33820
59,96025
81,34690
80,72076
81,14881
81,68016
81,57989
32,05470
33,14179
32,68930
32,25730
32,94730
64,63413
64,33013
63,91011
62,61010
63,06411
83,88513
84,12566
83,55772
82,66475
83,52938
33,65346
31,66418
32,79502
33,99712
31,93600
62,80584
63,05302
60,16470
63,12975
61,54575
81,16312
79,08723
78,86531
80,57313
78,77009
61,01040
61,48573
61,21700
62,96956
59,09527
79,96070
78,67940
78,84867
80,22270
77,99070
Con tolueno de densidad 870 [kg/m3]
*
W1
W2
W3
W4
Vr
65,08813
83,98113
34,32723
33,43854
63,18713
82,81943
32,85579
63,63613
82,13143
32,37879
63,71813
82,54343
33,96572
65,44130
83,56250
peso del recipiente o del picnómetro vacío.
peso del recipiente o del picnómetro con grano.
Peso del picnómetro con grano y con líquido.
peso de grano añadido al agua en la probeta.
cambio de volumen registrado en la probeta por adición de granos.
33,65346
31,58448
32,72570
33,88272
31,89104
Juan de Dios Alvarado
Con aceite de soja de densidad 920 [kg/m3]
Capítulo 4
102
Consultar y reportar con respecto a las características de los gránulos de almidón de las harinas consideradas.
Con los resultados establecidos en las harinas, aplicar la ecuación (4.2.4) para calcular los valores de las
densidades de bulto, floja y apretada; la ecuación (4.2.5) para la densidad de partícula; y la ecuación (4.2.6)
para los espacios con aire. Tabular los valores expresados en [kg/m3], y discutir los resultados considerando
las distintas densidades y productos.
Con la ecuación (4.2.7) y los datos de las observaciones microscópicas, calcular todos los tipos de diámetros
medios. Comentar los resultados y aplicaciones.
En papel log-normal, para cada clase de harina, graficar el porcentaje del número acumulado de partículas,
contra el diámetro representativo en micras de mayor a menor, y establecer los valores de la media geométrica
y de la desviación estándar geométrica. ¿Qué significan estos valores?.
Con los valores promedios resultantes de la aplicación de la ecuación (4.2.13) o (4.2.14), calcular los ángulos
de reposo y los coeficientes de fricción. Tabular y discutir los resultados.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
ALIMENTOS GRANULARES
En la Tabla 4.2.1. se presentan los resultados obtenidos en granos de chocho (Lupinus mutabilis), leguminosa
que se caracteriza por tener un contenido elevado de proteína, próximo al 50% en base seca; y de grasa,
próximo al 20% en base seca; como parte negativa, posee un contenido alto de alcaloides, del orden de 3%.
Sin embargo, su utilización es muy limitada, situación que debe cambiar por las ventajas que ofrece y la
característica de ser un cultivo adaptado a condiciones naturales prevalentes en las zonas andinas altas.
Los cálculos siguientes, realizados con los primeros valores de los granos secos y de los granos húmedos,
indican el procedimiento seguido para determinar los valores presentados en la Tabla 4.2.2.
Granos secos.
Según el método de Rossi y Roa.
Densidad aparente:
(DA) = m/(VA) = (628,46-87,21)10-3[kg]/8,789*10-4[m3] = 616 [kg/m3]
Densidad real:
(DR) = m/(VR) = 100*10-3[kg]/90*10-6[m3] = 1111 [kg/m3]
Densidad aparente del producto seco:
(DS) = (DA)(xz) = 616(1,000-0,102) = 553 [kg/m3]
Espacios con aire:
E = 1 - ((DA)/(DR)) = 1-(616/1111) = 0,446
Según el método de Couto Moreira y colaboradores.
Con agua:
(DA) = m/(VA) = (64,24711-31,57931)10-3[kg]/50*10-6[m3] = 653 [kg/m3]
(DR) = m/(VR)
m = 64,24711*10-3 - 31,57931*10-3 = 0,0326678 [kg]
(VR) = (50*10-6[m3])-(84,13917-64,24711)*10-3[kg]/(998,2[kg/m3])
(VR) = 3,0072*10-5 [m3]
(DR) = 0,0326678[kg]/3,0072*10-5[m3] = 1086 [kg/m3]
(DS) = (DA)(xz) = 653(1,000-0,102) = 586 [kg/m3]
E = 1 - ((DA)/(DR)) = 1-(653/1086) = 0,399
Propiedades Mecánicas y Ópticas
103
Con aceite de soja:
(DA) = m/(VA) = (64,63413-32,05470)10-3[kg]/50*10-6[m3] = 652 [kg/m3]
(DR) = m/(VR)
m = 64,63413*10-3 - 32,05470*10-3 = 0,0325794 [kg]
(VR) = (50*10-6[m3])-(83,88513-64,63413)*10-3[kg]/(920,0[kg/m3])
(VR) = 2,9086*10-5 [m3]
(DR) = 0,0325794[kg]/2,9086*10-5[m3] = 1120 [kg/m3]
(DS) = 652 * 0,898 = 585 [kg/m3]
E = 1 - ((DA)/(DR)) = 1-(652/1120) = 0,418
Con tolueno:
(DA) = m/(VA) = (65,08813-34,32723)10-3[kg]/50*10-6[m3] = 615 [kg/m3]
(DR) = m/(VR)
m = 65,08813*10-3 - 34,32723*10-3 = 0,0307609 [kg]
(VR) = (50*10-6[m3])-(83,98113-65,08813)*10-3[kg]/(870,0[kg/m3])
(VR) = 2,8284*10-5 [m3]
(DR) = 0,0307609[kg]/2,8284*10-5[m3] = 1088 [kg/m3]
(DS) = 615 * 0,898 = 552 [kg/m3]
E = 1 - ((DA)/(DR)) = 1-(615/1088) = 0,435
Granos húmedos.
Según el método de Rossi y Roa.
(DA) = m/(VA) = (0,60430-0,08721)/8,789*10-4 = 588 [kg/m3]
(DR) = m/(VR) = 0,100/94*10-6 = 1064 [kg/m3]
(DS) = (DA)(xz) = 588(1,000-0,673) = 192 [kg/m3]
E = 1 - ((DA)/(DR)) = 1-(588/1064) = 0,447
Según el método de Couto Moreira y colaboradores.
Con agua:
(DA) = m/(VA) = (0,05901638-0,03164053)/50*10-6 = 548 [kg/m3]
(DR) = m/(VR) = 0,02737585/27,629213*10-6 = 991 [kg/m3]
(DS) = (DA)(xz) = 548 * 0,327 = 179 [kg/m3]
E = 1 - ((DA)/(DR)) = 1-(548/991) = 0,447
Con aceite de soja:
(DA) = m/(VA) = (0,06280584-0,03365346)/50*10-6 = 583 [kg/m3]
(DR) = m/(VR) = 0,02915238/30,046435*10-6 = 970 [kg/m3]
(DS) = (DA)(xz) = 583 * 0,327 = 191 [kg/m3]
E = 1 - ((DA)/(DR)) = 1-(583/970) = 0,399
Con tolueno:
Un análisis general de los datos de la Tabla 4.2.2. permite establecer que, independientemente del método, todos
los valores de la densidad de los granos secos son superiores a los de los granos húmedos. Las diferencias son
más notorias en los valores de la densidad real.
Según los coeficientes de variación, la densidad aparente puede ser determinada por el método aplicado
por Rossi y Roa. que utiliza recipientes relativamente grandes; por el contrario, la densidad real debe ser
determinada por el método de Couto Moreira y colaboradores con el uso de picnómetros; el tolueno se presenta
como el líquido más apropiado, sin descartar el uso de aceite de soja por razones de costo, el agua es el líquido
Juan de Dios Alvarado
(DA) = m/(VA) = (0,06101040-0,03365346)/50*10-6 = 547 [kg/m3]
(DR) = m/(VR) = 0,02735694/28,218046*10-6 = 969 [kg/m3]
(DS) = (DA)(xz) = 547 * 0,327 = 179 [kg/m3]
E = 1 - ((DA)/(DR)) = 1-(547/969) = 0,436
Capítulo 4
104
menos apropiado.
Con estos criterios los valores representativos de las densidades para granos de chocho son:
Densidad aparente del grano seco con una humedad de 10,2% = 622 [kg/m3].
Densidad aparente del grano cocido con una humedad de 67,3% = 596 [kg/m3].
Densidad aparente del grano seco libre de humedad = 559 [kg/m3].
Densidad aparente del grano cocido libre de humedad = 195 [kg/m3].
Densidad real del grano seco con una humedad de 10,2% = 1085 [kg/m3].
Densidad real del grano cocido con una humedad de 67,3% = 968 [kg/m3].
Los valores de los espacios con aire expresados como fracción unitaria son: 0,430 para los granos secos y
0,452 para los granos húmedos, según el método de Rossi y Roa; los que son similares a otros publicados por
diferentes autores a pesar de la diferencia en la forma, que necesariamente influye en la propiedad determinada.
Valores típicos para granos secos son: maíz 0,400; trigo 0,426; arroz 0,465; soja 0,338.
Tabla 4.2.2. Valores de Densidad Determinados en Granos de Chocho
Método de Rossi y Roa
Método de Couto Moreira y colaboradores
Con agua
*(DA)
(DS)
(DR)
(E)
(DA)
(DS)
Con aceite de soja
(DR)
(E)
(DA)
Con tolueno
(DS)
(DR)
(E)
(DA)
(DS)
(DR)
(E)
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Muestras secas
1
2
3
4
5
616
616
616
632
632
553
553
553
568
568
1111
1075
1111
1099
1064
0,446
0,427
0,446
0,425
0,406
653
629
622
618
614
586
565
559
555
551
1086
1050
1018
1029
1044
0,399
0,401
0,389
0,399
0,412
652
624
624
607
602
585
560
560
545
541
1120
1095
1090
1076
1085
0,418
0,430
0,428
0,436
0,445
615
595
616
627
630
552
534
553
563
566
1088
1084
1071
1105
1079
0,435
0,451
0,425
0,433
0,416
DM.
DE.
CV.
622
8,8
1,4
559
8,2
1,5
1092
21,5
2,0
0,430
0,017
3,9
627
15
2,5
563
14
2,4
1045
25,9
2,5
0,400
0,008
2,0
622
20
3,1
558
17
3,1
1093
16,5
1,5
0,431
0,010
2,3
617
14
2,2
554
13
2,3
1085
12,7
1,2
0,432
0,013
3,0
Muestras húmedas
1
2
3
4
5
588
598
595
599
599
192
196
195
196
196
1064
1111
1111
1087
1075
0,447
0,462
0,464
0,445
0,443
548
579
550
526
530
179
189
180
172
173
991
962
947
919
936
0,447
0,398
0,419
0,428
0,434
583
623
547
583
593
191
204
179
191
194
970
937
922
939
947
0,399
0,335
0,407
0,379
0,374
547
598
570
582
544
179
196
186
190
178
969
989
958
964
962
0,436
0,395
0,405
0,396
0,435
DM.
DE.
CV.
596
4,7
0,8
195
1,7
0,9
1090
21,2
1,9
0,452
0,010
2,2
547
21
3,8
179
6,8
3,8
951
27,3
2,9
0,425
0,018
4,3
586
27
4,6
192
8,9
4,7
943
17,6
1,9
0,379
0,028
7,4
568
23
4,0
186
7,6
4,1
968
12,2
1,3
0,413
0,021
5,0
(DA) densidad aparente [kg/m3]; (DS) densidad aparente del producto seco [kg/m3]; (DR) densidad real [kg/m3]; (E) fracción
unitaria del volumen de espacios con aire; DM. valor promedio; DE. desviación estándar; CV. coeficiente de variación * 100.
*
Resultados de pruebas similares realizadas con varios cereales se presentan en la Tabla 4.2.3.
Tabla 4.2.3. Valores de Densidad y Espacios Libres con Aire Determinados en Granos Agrícolas con Diferente Humedad
PRODUCTO
Densidad aparente
Maíz
Duro (Gallina)
Blanco
Amarillo(Chillos)
Morocho
Canguil
Chulpi
Trigo
Suave
Arroz
Pilado
Chocho
Amargo
* H humedad [g/100 g]
Densidad real
Espacios con aire
H
(DA)
H
(DA)
H
(DR)
H
(DR)
H
(E)
H
(E)
10,2
12,6
11,5
11,6
10,6
10,8
812
779
635
791
891
734
12,3
14,8
12,6
12,2
11,3
12,4
801
690
618
711
786
723
10,2
12,6
11,5
11,6
10,6
10,8
1263
1066
1016
1144
1252
1154
12,3
14,8
12,6
12,2
11,3
12,4
1252
1048
988
1121
1189
1144
10,2
12,6
11,5
11,6
10,6
10,8
0,357
0,269
0,375
0,309
0,288
0,364
12,3
14,8
12,6
12,2
11,3
12,4
0,360
0,342
0,374
0,366
0,339
0,368
17,5
730
41,5
658
17,5
1335
41,5
1250
17,5
0,453
41,5
0,474
19,4
608
64,5
580
19,4
1102
64,5
1047
19,4
0,448
64,5
0,446
*
10,2
622
67,3
596
10,2 1085 67,3
968
(DA) densidad aparente [kg/m3]. (DR) densidad real [kg/m3].
10,2 0,427 67,3 0,384
(E) espacios libres, con aire [%/100]
Propiedades Mecánicas y Ópticas
105
ALIMENTOS PULVERULENTOS
En el caso de las harinas, por la dificultad de obtener datos, en la Tabla 4.2.4. se presentan los resultados
experimentales obtenidos en muestras provenientes de cuatro cereales: maíz, trigo, arroz y cebada; de dos
leguminosas: arveja y haba; de dos tubérculos: papa y yuca; y de una fruta: plátano.
A continuación se realizan los cálculos numéricos, según los datos establecidos en la harina de maíz. Aplicando
las ecuaciones (4.2.4), (4.2.5) y (4.2.6) se obtiene:
Densidad de bulto floja.
(DBF) = M/V = (13,710-10,270)10-3[kg]/10*10-6[m3] = 344 [kg/m3]
Densidad de bulto apretada.
(DBA) = M/V = (17,225-10,270)10-3[kg]/10*10-6[m3] = 696 [kg/m3]
Tabla 4.2.4. Valores Registrados para la Caracterización de Harinas
Determinación
CEREALES
LEGUMINOSAS
TUBÉRCULOS*
FRUTA
Maíz
Trigo
Arroz
Cebada
Arveja
Haba
Papa
Yuca
Plátano
11,2
11,6
11,3
10,2
10,1
11,4
17,5
12,0
8,2
Peso del matraz de 10
ml vacío [g]
10,270
9,055
10,050
9,595
10,215
9,015
9,470
10,805
9,675
Peso con harina sin
vibración [g]
13,710
13,025
14,950
13,495
14,810
14,655
14,145
17,250
14,320
Peso con harina con
vibración [g]
17,225
16,355
17,900
16,710
17,870
17,315
17,600
19,735
17,440
Peso con harina con
vibración y tolueno [g]
20,620
20,170
20,650
20,050
20,940
20,800
20,545
22,145
19,760
22
35
43
4
44
58
71
58
15
2
62
19
9
Diámetro representativo
de partículas [micras]
10
20
30
40
50
Número de partículas
93
40
13
3
39
96
14
27
3
65
48
23
5
2
50
38
8
11
2
40
33
17
9
2
45
22
21
7
3
Características del montículo [cm] con harina de maíz.
Sobre superficie lisa
Altura
6,85
Diámetro
18,85
Sobre superficie rugosa (lija)
Altura
7,65
Diámetro
14,80
*
Almidón
Densidad de partícula.
(DP) = M/(V-V’)
V’ = (20,620-17,225)10-3[kg]/(870 [kg/m3]) = 3,902*10-6 [m3]
(DP) = (17,225-10,270)10-3[kg]/(10-3,902)*10-6[m3] = 1141 [kg/m3]
Juan de Dios Alvarado
Humedad [g/100g]
Capítulo 4
106
Espacios con aire como porcentaje del volumen con la harina sin vibración.
(EHF) = (1-((DBF)/(DP))*100
(EHF) = (1-(344/1141))*100 = 69,9
Espacios con aire como porcentaje del volumen con la harina compactada.
(EHA) = (1-((DBA)/(DP))*100
(EHA) = (1-(696/1141))*100 = 39,0
Igual procedimiento se realizó con los datos de las otras harinas. Los resultados se presentan en la Tabla 4.2.5.
Los valores de la densidad de bulto apretada y de los espacios con aire correspondientes son mejores índices de
control por ser reproducibles; los valores de la densidad de partícula mantienen concordancia con los valores
de la densidad real de los granos.
Tabla 4.2.5. Valores de Densidad Y Porcentaje de Espacios Vacios Determinados en Harinas
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
DENSIDAD [kg/m3]
ESPACIOS CON AIRE
PRODUCTO
Floja
Apretada
Partícula
Floja
Apretada
Maíz
Trigo
Arroz
Cebada
Arveja
Haba
Papa
Yuca
Plátano
344
397
490
390
460
564
468
645
465
696
730
785
712
766
830
813
893
777
1141
1300
1148
1155
1183
1385
1229
1235
1059
69,9
69,5
57,3
66,2
61,1
59,3
61,9
47,8
56,1
39,0
43,8
31,6
38,4
35,2
40,1
33,8
27,7
26,6
Según los contajes realizados al microscopio con la harina de maíz, los valores de los diversos tipos de
diámetros definidos previamente son:
Diámetro medio lineal o aritmético.
Xl = Σ(XN)/N
Xl = (10*93+20*40+30*13+40*3+50*39)/188 = 22,3 [micras]
Diámetro medio por superficie.
Xs = Σ(X2N)/N
Xs = (100*93+400*40+900*13+2500*39)/188 = 741,0 [micras]
Diámetro medio por volumen.
Xv = Σ(X3N)/N
Xv = (1000*93+8000*40+27000*13+64000*3+125000*39)/188 = 31016,0 [micras]
Diámetro medio para masa.
Xm = Σ(X3N)/N
Xm = (1000*93+8000*40+27000*13+64000*3+125000*39)/188 = 31016,0 [micras]
Diámetro medio por la relación superficie y diámetro.
Xsd = Σ(X2N)/Σ(XN)
Propiedades Mecánicas y Ópticas
107
Xsd = (139308)/(4192,4) = 33,2 [micras]
Diámetro medio por la relación volumen y diámetro.
Xvd = Σ(X3N)/Σ(XN)
Xvd = (5831008)/(4192,4) = 1390,9 [micras]
Diámetro medio por la relación volumen y superficie.
Xvs = Σ(X3N)/Σ(X2N)
Xvs = (5831008)/(139308) = 41,9 [micras]
Diámetro medio por la relación masa y superficie.
Xms = Σ(X4N)/Σ(X3N)
Xms =(10000*93+160000*40+810000*13+2560000*3+6250000*39)/(5831008)
= 46,2[micras]
Los cálculos se repiten con los datos correspondientes a las otras harinas. Los resultados se presentan en la
Tabla 4.2.6.
Tabla 4.2.6. Dimensiones de Partículas de Harinas
TIPO DE DIÁMETRO
MEDIO (micras)
Aritmético
Superficie
Volumen
Masa
Superficie-diámetro
Volumen-diámetro
Volumen-superficie
Masa-superficie
*
Almidón
Maíz
Trigo
Arroz
Cebada
Arveja
Haba
Papa*
Yuca*
Plátano
22
741
31016
31016
33
1391
42
46
16
316
8064
8064
20
520
25
29
18
415
11469
11469
23
631
28
32
19
459
13982
13982
25
747
30
35
20
514
15733
15733
26
783
31
35
20
519
16439
16439
26
826
32
36
31
1157
48777
48777
37
1580
42
45
22
566
16676
16676
26
766
29
32
14
243
5078
5078
17
360
21
24
Estos valores son útiles como índices de control de molinos o tamices, en cálculos de ingeniería relacionados
con el transporte neumático, y como índices de calidad para detectar mezclas.
En las muestras analizadas se destaca que las partículas del almidón de papa presentaron las dimensiones
mayores, y las de harina de plátano las más bajas. Entre los cereales, los valores menores los presentó la harina
de trigo; valores superiores se establecieron en la harina de arroz, seguido de la harina de cebada y de maíz. Lo
anterior permite tener una idea del grado de molienda que es factible obtener por los procedimientos normales.
Según se observa en la Figura 4.2.1., en determinados casos la distribución logarítmica normal describe la
distribución del tamaño de partículas. Como ejemplos, se grafican los datos correspondientes a las harinas de
un cereal, el arroz; una leguminosa, la haba; y un tubérculo, el almidón de yuca. Los resultados de la lectura en
esta Figura y de la aplicación de las ecuaciones (4.2.11) y (4.2.12), se presentan en la Tabla 4.2.7.
Tabla 4.2.7. Valores de la Media Geométrica y Desviación Estándar Geométrica Determinados en Partículas de Harinas*
MÉTODO GRÁFICO
SEGÚN ECUACIONES
σg
Arroz
Haba
Yuca
* Valores en micras.
21
23
26
1,48
1,52
1,27
σg
16,2
17,1
21,9
1,53
1,70
1,63
Las diferencias de los valores obtenidos mediante el gráfico, y con las ecuaciones, señalan la conveniencia de
la aplicación de las ecuaciones para el cálculo del diámetro medio geométrico de las partículas de harinas y de
la desviación estándar geométrica.
Juan de Dios Alvarado
PRODUCTO
Capítulo 4
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
108
Figura 4.2.1. Diámetro representativo contra número acumulada de partículas en harinas.
Papel de probabilidad log. normal.
Por último, considerando los datos de la harina de maíz y la aplicación de la ecuación (4.2.13), se obtiene:
Sobre una superficie de mampostería lisa.
Coeficiente de fricción.
tan α = h/R = 0,0685/(0,1885/2) = 0,727
Ángulo de reposo.
α = 36
Sobre una superficie áspera de lija.
Propiedades Mecánicas y Ópticas
109
Coeficiente de fricción.
tan α = h/R = 0,0765/(0,148/2) = 1,034
α = 46
Se espera que los valores sean diferentes según las condiciones de prueba, el tipo y las características de los
granos.
BIBLIOGRAFÍA Y REFERENCIAS
Brooker, D. B.; Bakker-Arkema, F. D. and Hall, C. W. 1981. “Drying Cereal Grains”. Westport, Connecticut,
AVI Pub. Co. Inc. 265 p.
Couto Moreira, S.; Chaves, M. A. y de Oliveira, L. M. 1985. Comparacáo da eficiéncia de líquidos na
determinacáo da massa específica aparente de gráos agrícolas. Rev. Bra. de Armaz., 9 y 10:22-24.
Heldman, D. R. and Singh, R. P. 1981. “Food Process Engineering”. 2nd. ed. Westport, Connecticut, AVI Pub.
Co. Inc. p: 65-69.
Henderson, S. M. and Perry, R. L. 1980. “Agricultural Process Engineering”. 3ra. ed. Westport, Connecticut,
AVI Pub. Co. Inc. p: 40-42.
Karathanos, V. T. and Saravacos, G. D. 1993. Porosity and pore size distribution of starch materials. J. Food
Engng., 18:259-280.
Mugele, K. A. and Evans, H. D. 1951. Droplet size distributions in sprays. Ind. Eng. Chem., 43:1317.
Mohsenin, N. N. 1970. “Physical Properties of Plant and Animal Materials”. V.1. New York, N. Y., Gordon
and Breach Pub. 742 p.
Orozco, C. 1983. “Composición Química Proximal de Diferentes Variedades de Maíz”. Tesis Licenciado en
Nutrición y Dietética. Riobamba, Ecuador. Escuela Superior Politécnica de Chimborazo. p: 28.
Rossi, S. J. y Roa, G. 1980. “Secagem e Armazenamento de Produtos Agropecuários con uso de Energía Solar
e Ar Natural”. Sáo Paulo, Brasil. Academia de Ciéncias do Estado de Sáo Paulo. p:121-124
Juan de Dios Alvarado
Villavecchia, V. 1963. “Tratado de Química Analítica Aplicada”. V.II. Versión de José Estrella. 3ra. ed.
Barcelona, España. Editorial Gustavo Gili, S. A. p: 22-47.
Capítulo 4
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
110
TEMA 4.3. APLICACIÓN DE LA DENSIDAD DE LECHES,
JUGOS Y ACEITES PARA CALCULAR EL CONTENIDO DE SUS
COMPONENTES QUÍMICOS PRINCIPALES
INTRODUCCIÓN
Entre las determinaciones más comunes que se realizan en los alimentos líquidos están el peso específico o
gravedad específica y la densidad.
Leches
Harper y Hall (1976) señalaron que los hidrómetros, como el lactodensímetro de Quevenne, se utilizan para
determinar la gravedad específica de leches (G), y corresponde a:
(G) = (DL) / (DH)
(4.3.1)
Entonces la densidad (DL), en el caso de la leche, puede ser expresada a una temperatura particular como
relativa a la del agua a 4C (DH), por:
(DL) = (G) (DH)
(4.3.2)
Con relación a los componentes el agua es el compuesto predominante en la leche y en el suero resultante de la
fabricación del queso; varias de sus propiedades físicas y térmicas cambian con la temperatura. Estos cambios
son muy notorios si se encuentran en diferente estado físico. Según Fennema y Powrie (1964) la densidad del
hielo a 0C es 0,9168 [g/ml], comparada con 0,9999 [g/ml] para agua a la misma temperatura, la expansión
resultante cuando el agua a 0C cambia a hielo a la misma temperatura, es aproximadamente del 9%. Si bien
los cambios que ocurren en alimentos no son iguales a los del agua por la presencia de otros componentes, se
espera que los cambios que ocurren en el agua influyan en los cambios registrados en los alimentos.
Propiedades Mecánicas y Ópticas
111
La grasa y los glóbulos grasos, las proteínas y las micelas de caseína, los azúcares y la lactosa, las sales, los
minerales; tienen un efecto definitivo sobre las propiedades físicas de la leche, y en forma particular sobre la
densidad. Aguilera y Stanley (1990) presentaron la microestructura de la leche, sus componentes, los cambios
que ocurren cuando se la procesa, y de varios de los productos elaborados. Señalaron que posiblemente,
como en ningún otro caso de la tecnología de alimentos, es tan evidente como en la leche la relación entre la
microestructura con la macroestructura.
Según Norma INEN, los sólidos totales de la leche son el producto resultante de su desecación mediante
procedimientos normalizados; es decir, estarían constituidos por los hidratos de carbono, grasas, proteínas y
minerales, como fracciones predominantes. Si a los sólidos totales se les disminuye el contenido de grasas, se
obtiene el residuo magro o sólidos sin grasa.
De lo anterior se desprende que la densidad de productos fluidos deberá ser un promedio de las densidades de
los componentes individuales de la leche; entonces será dependiente de la concentración de estos componentes,
del grado de hidratación de las proteínas y del volumen específico del sistema graso de la leche.
Una ecuación general basada en lo indicado, que considera los componentes principales expresados en
porcentaje en peso: agua (H), grasa (F) y sólidos no grasos (C), es:
(DL) = (H+F+C) / ((H/(DH)) + (F/(DF)) + (C/(DC)))
(4.3.3)
Todos los valores de densidad están expresados en [kg/m3].
Fleischman reordenó la ecuación y sustituyó los valores del peso específico del agua (0,999), de la grasa (0,93)
y de los sólidos no grasos (1,6007), estableciendo una función lineal que relaciona a los sólidos totales (S), con
el contenido de grasa y el peso específico de la leche. Expresada en términos de grados lactodensimétricos (L),
la ecuación se obtiene de la manera siguiente:
(DL) = (G)(DH) = (G)(999)
(4.3.4)
Reemplazando valores en la ecuación (4.3.3):
999 (G) = (H+F+C) / ((H/999) + (F/930) + (C/1607))
(4.3.5)
Por otro lado se conoce que:
H + F + C = 100
H = 100 - S
S=F+C
(4.3.6)
(4.3.7)
(4.3.8)
Reemplazando los términos se obtiene:
999 (G) = (100) / (((100-S)/999)+(F/930)+((S-F)/1607))
(4.3.9)
999 (G) = (100)/((1494510(100-S)+1605393 F+929070(S-F))/1,49301*109) (4.3.10)
Operando con los valores numéricos y agrupando términos:
(G) = (1,49451*108) / (1494510 (100-S) + 1605393 F + 929070 (S-F))
(4.3.11)
(G) = (1,49451*108) / (1,4951*108 + 676323 F - 565440 S)
(4.3.12)
Juan de Dios Alvarado
Resolviendo el segundo miembro de la ecuación:
Capítulo 4
112
Considerando los valores inversos y operando:
1/(G) = 1 + 4,52265*10-3 F - 3,78344*10-3 S
(4.3.13)
Multiplicando por 1000 los dos miembros de la ecuación y resolviendo:
((1000 - 1000(G)) / 3,78344(G)) = 1,1954 F - S
(4.3.14)
Como los grados lactodensimétricos corresponden a:
L = 1000(G) - 1000
(4.3.15)
Por reemplazo se obtiene:
(-L / 3,78344(G)) = 1,1954 F - S
S = 1,1954 F + 0,2643 (L/G)
(4.3.16)
(4.3.17)
Que compara con la ecuación (4.3.18) presentada por Fleischman, las diferencias se explican por los valores
de densidad utilizados.
S(15C) = 1,2 F + 0,2665 (L/G)
(4.3.18)
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Babcock simplificó aun más esta ecuación y propuso la forma siguiente:
S = 1,2 F + 0,25 L
(4.3.19)
Otras ecuaciones similares se han propuesto; sin embargo, la mayor dificultad radica en el peso específico de la
grasa, que no es constante, pues depende de la cantidad que se encuentra parcialmente líquida y parcialmente
sólida. Para superar este problema se han desarrollado métodos que realizan cambios en las condiciones
térmicas de medida (Sharp y Hart; Harrington).
Uno de los métodos que han merecido atención es el indicado por Watson (1957), quien propuso efectuar las
lecturas en el lactodensímetro después de calentamiento a 38,9C, para asegurar completamente el estado
líquido de la grasa de la leche. Su fórmula es:
S = 1,33 F + (273 L / (L + 1000)) - 0,40
(4.3.20)
En términos de sólidos no grasos:
C = 0,33 F + (273 L / (L+1000)) - 0,40
C = 0,33 F + 272,6 - (273000/(L+1000))
(4.3.21)
(4.3.22)
El INEN aceptó una de estas formas de la ecuación, reportando la expresión siguiente para el caso de realizar
las determinaciones a 20C.
S = 0,250 ((DL) - 1000) + 1,22 F + 0,72
(4.3.23)
En las Normas se especifica que el valor de la densidad relativa (gravedad específica), en el caso de leche
fresca, debe estar en el rango de 1,027 a 1,032, con un contenido mínimo de sólidos totales del 11,70%; para
leche pasteurizada, los valores correspondientes son de 1,028 a 1,032 y 11,38%.
Por otro lado, Betscher (1960) estableció que el efecto del contenido de grasa y de sólidos no grasos sobre la
gravedad específica de la leche es lineal, y propuso la ecuación siguiente:
Propiedades Mecánicas y Ópticas
113
G = 1,0 + (0,0035 C) - (0,001 F)
(4.3.24)
Que expresada en términos de densidad corresponde a:
(DL) = (1,0 + (0,0035 C) - (0,001 F)) (DH)
(4.3.25)
Cervinka y colaboradores (1976) propusieron aplicar técnicas de regresión múltiple para relacionar los sólidos
totales con el contenido de proteína (P), grasa (F) y lactosa (I), expresados como porcentaje. Establecieron un
coeficiente de correlación alto en la ecuación siguiente:
S = 2,76914 + 1,03111 F + 1,00097 P + 0,52934 I
(4.3.26)
Se conoce que la temperatura tiene un efecto notorio sobre los valores de la densidad de la leche. En general
existe una relación inversa entre la densidad y la temperatura. Sin embargo, Fernández-Martín (1982) señaló
que no existe ecuación alguna que correlacione estas variables para intervalos amplios. Las relaciones
publicadas son parciales.
La dependencia de la densidad con la temperatura es diferente en el agua que en la leche, debido principalmente
a la naturaleza compleja de esta última, por la presencia de los sistemas de proteínas y lípidos; así la leche
entera fresca alcanza su máxima densidad a -5C, el agua a 4C. Según Harper y Hall (1976), en el rango
de temperaturas de 10 a 40C, se puede considerar que el cambio es lineal. Señalan que sobre los 40C los
valores son cuestionados por falta de concordancia entre investigadores.
La relación entre densidad y temperatura fue estudiada, entre otros investigadores, por Short (1955), quien
propuso la ecuación siguiente:
(DL) = (1 + (a’ - b’T + c’T2 - d’T3) 10-4) 103
(4.3.27)
Siendo T la temperatura en [C], y los valores de los coeficientes cambian según la composición, de la manera
siguiente:
Leche descremada (8,7% C)
Leche entera (3% F)
Corrección por diferencia de 1% C
Corrección por diferencia de 1% F
a’
366
350
3,8
4,8
b’
1,46
3,58
0,08
0,39
c’
0,023
0,049
-0,010
0,0061
d’
0,0016
0,0010
-0,00004
0,00002
Al ser una ecuación polinómica de tercer grado, la función no es lineal; aplica hasta 45C.
Con el propósito de buscar aplicaciones prácticas a las determinaciones de la densidad, como en control
de calidad para detectar adulteraciones o para estimar el contenido de algún componente fue conveniente
establecer ecuaciones que consideren tanto el efecto de los componentes principales como de la temperatura.
(DL) = 0,3 T - 0,03 T2 - 0,7 F - 0,01 F2 + 1034,5
(4.3.28)
Otra ecuación que relaciona la densidad con la temperatura, el contenido de grasa y de sólidos no grasos, es la
de Watson y Tittsler (1961), que aplica entre 0 a 10C.
(DL) = 1003,073 - 0,179 T - 0,368 F + 3,744 C
(4.3.29)
Por técnicas de regresión múltiple, considerando 146 observaciones de muestras de leche analizadas durante
Juan de Dios Alvarado
Bakshi y Smith (1984) presentaron una ecuación de regresión múltiple de segundo grado, que relaciona la
densidad con la temperatura y la materia grasa, en un intervalo de 0 a 30C y hasta un contenido de 30% de
grasa, con un coeficiente de determinación r2 = 0,98.
Capítulo 4
114
cinco años, en un intervalo de 10 a 80C, Alvarado (1987) obtuvo una primera ecuación que considera como
variable dependiente a la densidad (DL), y como variables independientes al porcentaje de sólidos totales (S)
y a la temperatura (T).
(DL) = 1011 - 0,7184 T + 2,5893 S
(r2 = 0,9288)
(4.3.30)
Y una segunda ecuación que considera como variable dependiente a la densidad (DL), y como variables
independientes a la temperatura (T), al porcentaje de grasa (F) y al porcentaje de sólidos no grasos (C).
(DL) = 1010 - 0,7081 T - 0,5880 F + 3,6771 C
(r2 = 0,9560)
(4.3.31)
Jugos
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
La densidad de jugos de frutas y hortalizas designa a la masa o cantidad de materia contenida en una unidad
de su volumen; se expresa actualmente en [kg/m3]. En muchos casos se utilizan hidrómetros para medir la
gravedad específica; se necesita multiplicarla por la densidad del agua, a la temperatura en que se realiza la
medición, para obtener el valor de la densidad, según lo señalado por Singh y Heldman (1984).
En ocasiones se comete el error de aceptar que los valores establecidos para el agua son iguales a los de un
jugo, sin considerar la presencia de los otros componentes. Al respecto, García y Burón (1980) consideraron
a los zumos y purés de frutas y hortalizas como una suspensión de partículas sólidas (restos de estructuras
vegetales), en un líquido constituido por una solución coloidal de pectinas; en otra, verdadera de azúcares,
ácidos orgánicos y sales.
Durante la obtención industrial de jugos se separan las partículas sólidas, y por el bajo contenido de pectinas la
solución verdadera es predominante con relación a los valores de la densidad, en la cual los azúcares sacarosa,
glucosa, fructosa son los componentes mayores.
Kimball (1986) analizó las variaciones volumétricas en soluciones de sacarosa de diferentes concentraciones,
expresadas como grados Brix, por ser de importancia primaria en las industrias de azúcar y jugos de frutas.
Indicó que a concentraciones bajas de sacarosa, los enlaces de hidrógeno de sus moléculas forman un racimo
denso con las moléculas de agua. Si la concentración se incrementa, las moléculas de sacarosa se dilatan y
debilitan al racimo, hasta que la concentración alcanza 22Brix, que revela un cambio de la forma cristalina
al estado de solución; luego, a mayor concentración, la expansión comienza a decrecer hasta 66Brix y la
densidad de la solución excede las densidades combinadas de los componentes. Reporta la ecuación siguiente,
para el cálculo de la densidad de soluciones de sacarosa en función de los grados Brix.
2
D = (0,524484 e((BR)+330,872) /170435) 103
(4.3.32)
Donde D es la densidad en [kg/m3], (BR) son los grados Brix, que es una medida del contenido de sólidos
solubles, y e es la base de los logaritmos naturales.
En el caso de jugos de frutas, al existir variaciones en su composición, atribuibles a muchos factores, como:
tipo de fruta, aspectos genéticos, variedad, grado de madurez, posición en el árbol, tamaño, estado nutricional
del árbol, prácticas hortícolas, clima (Kefford, 1959) son de esperarse variaciones en los valores de la densidad.
Lo anterior explicaría la dispersión de los datos o que sean presentados entre límites (Nelson y Tressler, 1980).
Es evidente que la magnitud de la densidad está influenciada significativamente por la temperatura. En muchos
líquidos la densidad disminuye de manera consistente cuando se incrementa la temperatura. En otros productos
alimenticios líquidos se han establecido ecuaciones polinómicas de segundo y tercer grado, las cuales describen
más exactamente la relación entre la densidad y la temperatura.
Propiedades Mecánicas y Ópticas
115
Directamente relacionado con los cambios de la densidad con la temperatura está el coeficiente volumétrico
de expansión térmica. Touloukian y colaboradores (1977) lo definen considerando que se añade calor a un
material para que exista un cambio en temperatura desde (TA)i a (TA)f; hay un cambio correspondiente en
volumen de Vi a Vf. Para describir este cambio, el coeficiente volumétrico medio de expansión térmica es
definido por:
ß = (Vf - Vi) / Vi((TA)f - (TA)i)
(4.3.33)
Donde ß es el coeficiente volumétrico de expansión térmica, V el volumen y (TA) la temperatura absoluta.
Según Wilson y colaboradores (1966), el volumen (VT) de una masa de un líquido (w) a una temperatura (T),
se relaciona con el volumen de la misma masa a 0C (V0), por la ecuación:
VT = V0 (1 + ßT)
(4.3.34)
Considerando la masa:
(VT/w) = (V0/w)(1 + ßT)
(4.3.35)
La relación V/w corresponde al inverso de la densidad y:
(1/DT) = (1/D0) (1 + ßT)
(4.3.36)
Operando:
(1/DT) = (1/D0) + (ß/D0) T
(4.3.37)
Un gráfico de T contra (1/DT) será una línea recta con una pendiente (ß/D0); como el valor de D0 puede
ser establecido del punto de corte en ordenadas, el coeficiente volumétrico de expansión térmica puede ser
determinado por la pendiente.
Aceites y grasas
En términos absolutos, la densidad se expresa en kilogramos por metro cúbico; sin embargo, en aceites es
práctica común utilizar el valor de la densidad relativa, que corresponde a la razón entre la masa de la sustancia
y la masa de un volumen igual de agua a 4C.
La densidad de un líquido a una temperatura particular (T) es el producto de la densidad relativa del líquido,
que es la relación del peso de un volumen dado del líquido al peso del mismo volumen de agua a la misma
temperatura, por la densidad del agua a igual temperatura. Escrito como ecuación:
T (agua)
(4.3.38)
Donde D es la densidad, W es el peso aparente del líquido y Ww es el peso aparente del agua a la temperatura T.
En muchos casos los valores se expresan como gravedad específica: en Europa a 15C, en Estados Unidos de
América a 25C, y en el caso de grasas a 60C con relación al agua a 25C.
Según Swern (1979), la densidad de los ácidos grasos y de los glicéridos aumenta conforme disminuye su peso
molecular y existe mayor insaturación. Reportó la ecuación desarrollada por Lund, que relaciona la gravedad
específica de aceites líquidos a 15C con el índice de saponificación y con el índice de yodo, de la manera
siguiente:
Juan de Dios Alvarado
T (líquido)
D4 (agua) = (W/Ww) DT (agua)
Capítulo 4
116
(GE)
15
15
= 0,8475 + 0,00030 (IS) + 0,00014 (IY)
(4.3.39)
Expresión en la cual (GE) es la gravedad específica; (IS) es el índice de saponificación, que corresponde
al número de miligramos de hidróxido de potasio requeridos para saponificar completamente un gramo de
sustancia grasa, y permite deducir la cantidad de los ácidos totales libres o combinados contenidos en una
grasa; (IY) es el índice de yodo que corresponde a los gramos de yodo que pueden ser fijados por cien gramos
de una sustancia grasa y permite deducir el grado de insaturación.
Con relación al efecto de la temperatura, se conoce que la densidad de los aceites disminuye conforme se
incrementa la temperatura. Según Swern (1979), la variación es lineal en el intervalo de temperaturas en que
se procesan ordinariamente los aceites, que va desde 66 a 250C. En adición, los datos de Tschubik y Maslow,
reportados por Lewis (1987), permiten establecer que la variación lineal se mantiene hasta temperaturas de
-20C en aceites de maíz, girasol, soja y algodón.
Se han reportado ecuaciones para el cálculo de la densidad de aceites como función de la temperatura. Kubota
y colaboradores (1982), con datos de aceites de ocho vegetales (soja, colza, maíz, cacahuate o maní, ajonjolí,
coco, algodón y oliva), establecieron que regresiones lineales permitían obtener, en la mayoría de los casos, un
mejor ajuste de los datos. La forma de la ecuación es:
(DAG) = e’ + f’(TA)
(4.3.40)
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Los valores de e’ cambian entre 1110 a 1130, y f’ varía desde -0,674 en aceite de algodón, hasta -0,706 en
aceite de coco. (TA) es la temperatura absoluta en [K] y (DAG) la densidad en [kg/m3].
Flores Luque y colaboradores (1982) trabajaron con aceites de oliva, girasol y soja. Ellos establecieron que el
volumen específico, que corresponde al inverso de la densidad, pudo ser ajustado con la temperatura absoluta
mediante una relación lineal, escrita en la forma siguiente:
(1/(DAG)) = (1/(DAG)20) + g’ ((TA) - 293,2)
(4.3.41)
Señalaron que para cada género de aceite considerado, ni la procedencia, ni los cambios que en su composición
provocan las diversas etapas de la refinación, alteran significativamente los valores del volumen específico
a 20C; por el contrario, entre los valores del parámetro g’ existieron diferencias de significado en algunos
casos, sin establecerse un efecto claro por la procedencia o por la refinación. Reportaron los valores promedios
siguientes, para el intercepto y la pendiente: girasol, 1,086 [ml/g] y 8,28*10-4; oliva, 1,095 [ml/g] y 8,47*10-4;
soja, 1,086 [ml/g] y 8,21*10-4.
Choi y Okos (1986) presentaron la ecuación siguiente para el cálculo de la densidad de grasas como función
de la temperatura.
(DAG) = 925,59 - 0,41757 T
(4.3.42)
Indicaron que para el caso de grasa de leche, aceite vegetal, manteca de cerdo y aceite de maíz entre los límites
de -40 a 150C, la relación entre la densidad y la temperatura en C, es lineal.
Alvarado (1994) comprobó el cumplimiento de esta relación lineal en grasa fundida de cacao, y que el
coeficiente volumétrico de expansión térmica, calculado con los datos del inverso de la densidad, volumen
específico se mantiene constante en forma independiente del intervalo de temperaturas considerado.
OBJETIVOS
Señalar la importancia de conocer la dependencia entre los componentes principales de los alimentos y sus
propiedades físicas, en forma específica sobre la densidad.
Propiedades Mecánicas y Ópticas
117
Observar los cambios en los valores de la densidad de la leche, de jugos y de aceites, con relación al contenido
de sólidos u otros componentes y a la temperatura.
Determinar los valores del coeficiente volumétrico de expansión térmica en los productos líquidos indicados.
En leches, comprobar las ecuaciones de Fleischman y Babcock.
Establecer ecuaciones que relacionen a los valores de la densidad de leches con el contenido de sólidos y la
temperatura.
Buscar aplicaciones prácticas a los resultados obtenidos.
MATERIALES Y MÉTODOS
Leches
Preparar muestras de aproximadamente dos litros de leche cruda de vaca y leche pasteurizada; determinar por
triplicado, en los dos casos, el contenido de grasa por el método de Gerber y de sólidos totales por desecación
en estufa a 103C por tres horas, previa exposición de la cápsula, por treinta minutos, al vapor de un baño de
agua en ebullición.
De cada muestra preparar cinco submuestras con la adición de 0, 1, 2, 3 y 4% de lactosa. Colocar en probetas
una cantidad de submuestra suficiente para utilizar un hidrómetro y sumergirla en un baño termostático.
Calibrar el baño a 15, 20, 39 y 60C o temperaturas similares y hacer las correspondientes lecturas de
gravedad específica, permitiendo que se alcance el equilibrio.
Jugos
Seleccionar dos frutas y hortalizas existentes en el mercado, aptas para consumo humano. Realizar la extracción
de un litro de jugo por presión manual y tamizar en tela para separar las partículas sólidas; inmediatamente
determinar el contenido de sólidos solubles por el método refractométrico, utilizando el refractómetro Abbe
termostatizado a 20C. Expresar los resultados como grados Brix.
Para definir el efecto de la temperatura sobre la densidad relativa utilizar picnómetros de tubo capilar, baños
termostáticos y balanza analítica con una precisión de 0,0001 gramos. Determinar los valores de densidad
entre 10 y 80C a intervalos de 10C, utilizando agua destilada como referencia.
Para establecer los valores del coeficiente volumétrico de expansión térmica aplicar los principios señalados
por Wilson y colaboradores (1966); considerar intervalos de 10C y reportar el valor a la temperatura promedio.
Aceites y grasas
Extraer, mediante solvente, aproximadamente 50 gramos de aceite o grasa de semillas de dos oleaginosas secas.
Juan de Dios Alvarado
Para conocer el efecto del contenido de sólidos solubles sobre la densidad, trabajar por duplicado con una
repetición, utilizando hidrómetros y baños termostáticos con una precisión de 0,5C. A partir de las muestras
de jugos, por adición de cantidades conocidas de sacarosa, preparar dos muestras adicionales y medir los
grados Brix. Expresar los valores de la gravedad específica como densidad relativa, multiplicando por los
valores de la densidad del agua, realizar las medidas a 20, 40, 60 y 80C.
Capítulo 4
118
Trabajar por duplicado y determinar la densidad con picnómetros de tubo capilar, balanza analítica y baño
termostático, utilizando agua destilada como referencia. Iniciar las determinaciones a 20C o temperaturas
mayores que aseguren el estado líquido de la muestra; elevar la temperatura del baño termostático en 10C
antes de hacer la siguiente determinación; continuar el procedimiento hasta obtener cinco datos o más.
CUESTIONARIO
Leches
Consultar y reportar aspectos relacionados con las proteínas, grasas y azúcares de la leche. ¿Qué influencia
tienen sobre la densidad?.
Por balance de materiales calcular el contenido de grasa y de sólidos totales de las submuestras. Graficar en
ordenadas los valores de sólidos totales contra (L/G) y (L) a 15C; establecer por regresión lineal, la pendiente
y punto de corte en ordenadas. Comparar los valores con los de las ecuaciones de Fleischman y de Babcock.
Graficar los valores experimentales de la densidad en [kg/m3] como función de la temperatura en C, para cada
una de las diez submuestras, establecer las ecuaciones correspondientes por regresión polinómica de segundo
y tercer grado en base al procedimiento descrito por Romo (1973). Presentarlas y discutir los resultados.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Considerar en forma separada, los datos de leche entera y de leche pasteurizada, aplicar técnicas de regresión
múltiple para establecer ecuaciones que sean comparables con las ecuaciones (4.3.30) y (4.3.31). Señalar
posibles aplicaciones.
Comparar los resultados que se obtienen con la aplicación de las ecuaciones indicadas en la Introducción y los
establecidos experimentalmente.
Jugos
Con los datos correspondientes a cada temperatura, graficar los valores de grados Brix contra la densidad, y por
técnicas de regresión lineal establecer las ecuaciones con sus respectivos coeficientes de correlación. Discutir
los resultados, considerando la ecuación de Kimball (4.3.32), con los datos a 20C.
Para cada producto, hacer un gráfico de la temperatura contra la densidad, aplicar técnicas de regresión lineal,
cuadrática y cúbica; según los coeficientes de correlación seleccionar la ecuación más adecuada. Discutir los
resultados y el significado de los términos de la ecuación seleccionada.
Para cada producto, construir un gráfico para determinar los valores del coeficiente volumétrico de expansión
térmica. Discutir los resultados. Comparándolos con datos publicados, señalar el significado y las aplicaciones
de esta propiedad.
Aceites
Consultar y reportar lo relacionado con la química de los aceites y grasas comestibles.
Para cada producto, graficar la temperatura contra la densidad, determinar las ecuaciones lineales de regresión
y los respectivos coeficientes de correlación. Discutir los resultados.
Utilizar las ecuaciones (4.3.39), (4.3.40), (4.3.41) y (4.3.42); tabular los resultados conjuntamente con los datos
experimentales y discutirlos.
Para cada producto, determinar el valor del coeficiente volumétrico de expansión térmica y compararlo con los
valores reportados para aceites y grasas.
Propiedades Mecánicas y Ópticas
119
RESULTADOS EXPERIMENTALES
Leches y suero
A continuación, en la Tabla 4.3.1., se presentan los resultados de gravedad específica obtenidos en leche cruda
de vaca con 4,0% de grasa y en leche pasteurizada 3,2% de grasa; además, los datos obtenidos en suero
dulce, proveniente de la elaboración de queso fresco, con 0,3% de grasa. Se incluyen los datos de la densidad
calculados según la ecuación (4.3.2); de grasa y de sólidos totales, calculados por balance de materiales a partir
de los datos experimentales de la muestra original.
Según se observa en la Figura 4.3.1., al graficar los valores de la división de los grados lactodensimétricos para
la gravedad específica, contra el contenido de sólidos totales expresado como porcentaje, existe una relación
directa definida por una ecuación lineal, según lo indicado por Fleischman. Al comparar los valores, se
establece que el valor de la pendiente es inferior en 11% al de la ecuación de Fleischman; mientras que el
valor del intercepto corresponde a un valor de grasa del 3,6%, el valor numérico de la ecuación según los datos
experimentales, es 1,3.
Resultados similares pueden ser obtenidos al analizar la Figura 4.3.2., que corresponde a la ecuación de
Babcock.
Se destaca entonces la validez de las ecuaciones de Fleischman y Babcock; un mayor número de pruebas
permitirá definir valores de los coeficientes de la ecuación lineal de regresión que sean más reales para
determinadas leches. Se hace notar que por las diferencias en la composición de las leches, debidas a varios
factores como la raza, alimentación, época del año, período de gestación, los términos de las ecuaciones serán
próximos pero no necesariamente iguales.
Es fácil comprobar que la relación entre la densidad y la temperatura, en las muestras de leche cruda y en las
muestras de leche pasteurizada, es curvilínea.
Tabla 4.3.1. Valores de la Gravedad Especifica y de la Densidad de Leches con Adición de Lactosa y de Suero a Diferentes
Temperaturas
Leche cruda
15
20
30
40
50
Grasa (%)
Sólidos totales (%)
Leche pasteurizada
15
19
27
40
55
66
Grasa (%)
Sólidos totales (%)
Suero
10
14
25
40
55
70
Densidad en [kg/m3]
0
1,0
añadida
2,0
(%)
3,0
(G)
(DL)
(G)
(DL)
(G)
(DL)
1,029
1,028
1,026
1,021
1,016
4,0
11,5
1028
1026
1022
1013
1004
1,034
1,032
1,031
1,029
1,024
4,0
12,4
1033
1030
1027
1021
1012
1,038
1,037
1,036
1,033
1,029
3,9
13,2
1037
1035
1032
1025
1017
1,024
1,022
1,020
1,018
1,008
1,004
3,2
9,9
1023
1020
1016
1010
994
984
1,028
1,026
1,024
1,020
1,010
1,006
3,2
10,8
1027
1024
1020
1012
996
986
1,030
1,028
1,026
1,024
1,012
1,008
3,2
11,7
1029
1026
1022
1016
998
988
1,025
1,024
1,022
1,018
1,010
1,004
1025
1023
1019
1010
996
982
4,0
(G)
(DL)
(G)
(DL)
1,036
1,034
1,032
1,028
1,016
1,014
3,1
12,5
1035
1032
1028
1020
1001
994
1,038
1,036
1,035
1,032
1,020
1,018
3,1
13,4
1037
1034
1031
1024
1005
998
Juan de Dios Alvarado
Lactosa
Temperatura [C]
Capítulo 4
120
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Figura 4.3.1. Valores de grados lactodensimétricos sobre
gravedad específica contra porcentaje de sólidos totales en
leches de vacuno
Figura 4.3.2. Valores de grados lactodensimétricos contra
porcentaje de sólidos totales en leches de vacuno
Según lo descrito por Romo (1973), considerando los datos de leche cruda sin adición de lactosa, que
corresponde al producto natural, los términos de la ecuación polinómica de segundo grado se determinan en la
forma siguiente:
Sumatorio
Promedio
(DL)
(T)
(T)2
(T)3
(T)4
(DL)(T)
(DL)(T)2
1028
1026
1022
1013
1004
5093
1018,6
15
20
30
40
50
155
31
225
400
900
1600
2500
5625
3375
8000
27000
64000
125000
227375
50625
160000
810000
2560000
6250000
9830625
15420
20520
30660
40520
50200
157320
231300
410400
919800
1620800
2510000
5692300
Σ(T-)2 = 5625 - ((155)2/5) = 820
Σ(T- )3 = 227375 - ((155 * 5625)/5) = 53000
Σ(T- )4 = 9830625 - ((5625)2/5) = 3502500
Σ(T- )(DL-) = 157320 - ((5093 * 155/5)) = -563
Σ(T- )2(DL- ) = 5692300 - ((5093 * 5625/5)) = -37325
Resolviendo el sistema de ecuaciones:
Propiedades Mecánicas y Ópticas
121
h’ Σ(T- )2 + i’ Σ(T-)3 = Σ(T- )(DL-)
h’ Σ(T-)3 + i’ Σ(T-)4 = Σ(T-)2(DL-)
h’(820) + i’(53000) = -563
h’(53000) + i’(3502500) = -37325
-h’(43460000) - i’(2,809*109) = 29839000
h’(43460000) + i’(2,87207*109) = -30606500
------------------------------------------------------------/
i’(63050000) = -767500
i’ = -0,0122
h’(820) - 0,0122(53000) = -563
h’(820) - 646,6 = -563
h’ = 0,1020
j’ = - h’ - i’(ΣT2/n)
j’ = 1018,6 - 0,1020 * 31 + 0,0122 (5625/5)
j’ = 1029
La ecuación es:
(4.3.43)
(DL) = 1029 + 0,1020(T) - 0,0122 (T)2
Existen programas de computación desarrollados para determinar los coeficientes de regresión de las ecuaciones
polinómicas. Utilizando el programa estadístico de una calculadora Hewlett-Packard 41C, se establecieron las
ecuaciones de la Tabla 4.3.2., con sus respectivos coeficientes de correlación.
Tabla 4.3.2. Términos de las Ecuaciones de Segundo Grado Establecidos para la Relación Densidad y Temperatura en
Leches de Vaca Y Suero
(DL) = h’+ i’(T) + j’(T)2
Cantidad de lactosa añadida
[%]
Leche cruda
0
1,0
2,0
Leche pasteurizada
0
1,0
2,0
3,0
4,0
Suero
h’
i’
-j’
r
1029
1033
1037
0,1020
0,1028
0,1344
0,0122
0,0104
0,0108
0,998
0,997
0,999
1026
1032
1032
1042
1042
1027
-0,1332
-0,2584
-0,0972
-0,3732
-0,2116
-0,1748
0,0077
0,0068
0,0087
0,0057
0,0071
0,0068
0,997
0,999
0,996
0,994
0,992
0,999
Una de las aplicaciones que debe ser considerada para estas ecuaciones, además del cálculo de la densidad, es
su utilidad como mecanismo de control. El tratamiento térmico provoca cambios en la forma de la función,
según se desprende de los valores de los coeficientes de las ecuaciones de segundo orden correspondientes a
leche cruda y leche pasteurizada; también las adulteraciones producirán cambios notorios en los valores de los
términos de las ecuaciones.
Para los datos indicados, mediante técnicas de regresión lineal múltiple con dos variables independientes (la
temperatura y el contenido de sólidos); y con tres variables independientes (la temperatura, el porcentaje de
grasa y el porcentaje de sólidos no grasos), se obtuvieron las ecuaciones siguientes:
Juan de Dios Alvarado
Se recuerda que las ecuaciones polinómicas pueden ser aplicadas en el intervalo de valores experimentales;
en el presente caso entre 10 y 50C, para las muestras de leche cruda y entre 10 y 70C, para las muestras
de leche pasteurizada y de suero. En adición, son específicas para las muestras consideradas y no pueden ser
generalizadas. Pequeños cambios en los valores experimentales provocan cambios notorios en la forma de la
función.
Capítulo 4
122
Leche cruda
(DL) = 965 - 0,604(T) + 6,331(S); (r2 =0,969)
(DL) = 974 - 0,604(T) - 4,398(F) + 6,206(C); (r2 =0,969)
(4.3.44)
(4.3.45)
Leche pasteurizada
(DL) = 997 - 0,793(T) + 3,993(S); (r2 =0,976)
(DL) = 1093 - 0,793(T) - 23,888(F) + 3,074(C); (r2 =0,978)
(4.3.46)
(4.3.47)
Estas ecuaciones no pueden ser generalizadas, pero permiten realizar estimaciones de la densidad y observar
como se interrelacionan las propiedades físicas con los componentes químicos. Lo anterior es útil como
herramientas de control rutinario, en plantas procesadoras donde se dispone de suficientes datos experimentales.
Jugos
A continuación se presentan los resultados obtenidos en los jugos de las frutas indicadas en la Tabla 4.3.3., en
la que se incluye el contenido de sólidos solubles, expresado como grados Brix.
Tabla 4.3.3. Contenido de Solidos Solubles (Brix) de Jugos de Frutas Consideradas para la Determinación de la Densidad
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Nombre vulgar
Nombre botánico*
Carica pentagona
BABACO
Musa paradisiaca sapientum
BANANO
Prunus capuli
CAPULÍ
Prunus salicina
CLAUDIA
Fragaria vesca
FRESA
Fragaria chiloensis
FRUTILLA
Citrus limetta
LIMA
Citrus aurantifolia
LIMÓN
Citrus nobilis
MANDARINA
Malus sylvestris
MANZANA
Passiflora edulis
MARACUYÁ
Rubus glaucus
MORA
Citrus sinensis
NARANJA
Solanum quitoensis
NARANJILLA
Carica papaya
PAPAYA
Pirus communis
PERA
Ananas comosus
PIÑA
Passiflora molísima
TAXO
Cypomandra betácea
TOMATE ÁRBOL
Lycopersicum esculentum
TOMATE RIÑÓN
TORONJA
Citrus paradisi
Opuntia vulgaris
TUNA
Vitis vinifera
UVA
*
Según la Tabla de Composición de los Alimentos Ecuatorianos, 1965.
Brix
7,8
5,0
20,0
13,0
7,1
8,7
7,2
8,2
10,6
12,7
14,1
9,7
8,4
7,4
10,8
12,8
12,8
8,5
4,0
7,1
8,3
14,1
14,4
En la Figura 4.3.3. se representan los valores de los grados Brix contra los valores de la densidad de jugos
extraídos de babaco, lima, limón, naranja, naranjilla, papaya, piña, tomate y toronja; determinados a 20 y
80C.
Se aprecia que el contenido natural de sólidos solubles, que en una gran extensión corresponden a azúcares,
es diferente para las diversas frutas; el jugo de naranjilla presentó un valor del orden de 7Brix, el de piña
15Brix. Sobre los datos correspondientes a 20C se procedió a graficar los valores calculados con la ecuación
exponencial de Kimball (4.3.32); se observa una muy buena concordancia con los valores experimentales, en
especial hasta los 22Brix. A valores mayores, se presentan ligeras diferencias. Sin embargo, la distribución de
los datos orientó una correlación de tipo lineal más simple y fácil de manejar. Con 62 observaciones y con un
coeficiente de correlación de 0,995, para 20C, se estableció:
Propiedades Mecánicas y Ópticas
(4.3.48)
Figura 4.3.3. Dnsidad de jugos de frutas como función del contenido de sólidos solubles.
Juan de Dios Alvarado
(DJ) = 996 + 4,17 (BR)
123
Capítulo 4
124
En la cual (DJ) es la densidad del jugo y (BR) los grados Brix entre 5 a 30Brix, intervalo que es común
encontrar en las tecnologías relacionadas con procesamiento de frutas.
Resultados similares se establecieron a temperaturas mayores, notándose un ligero decrecimiento en el valor
de las pendientes hasta 4,01 a 80C; el valor del punto de corte en ordenadas disminuyó hasta 947. Se hace
notar que las muestras con contenidos mayores de sólidos se obtuvieron por adición de cantidades conocidas
de sacarosa comercial.
Entre 10 y 80C, el efecto de la temperatura sobre la densidad de jugos no es lineal; la relación es curvilínea
con características propias para cada fruta (Alvarado y Romero, 1991).
Mediante técnicas de regresión polinómicas de segundo y tercer grado, se establecieron ecuaciones para cada
uno de los jugos. Los valores del coeficiente de correlación más próximos a la unidad se obtuvieron en todos
los casos con las ecuaciones de tercer grado, las cuales se reportan en la Tabla 4.3.4.
Tabla 4.3.4. Términos de las Ecuaciones para el Cálculo de la Densidad [kg/m3] de Jugos de Frutas como Función
de la Temperatura [C].
(DJ) = a’- b’(T) + c’(T)2 - d’(T)3
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Fruta
Abridor (Prunus spp)
Babaco (Carica pentagona)
Banano (Musa cavendishii)
Capulí (Prunus capuli)
Claudia (Prunus salicina)
Durazno (Prunus persica)
Fresa (Fragaria vesca)
Frutilla (Fragaria chiloensis)
Lima (Citrus aurantifolia)
Limón (Citrus limon)
Mandarina (Citrus reticulata)
Mango (Mangifera indica)
Manzana (Malus communis)
Maracuyá (Passiflora edulis)
Melón (Cucumis melo)
Mora (Rubus glaucus)
Mortiño (Vaccinium floribundum)
Naranja (Citrus sinensis)
Naranjilla (Solanum quitoense)
Papaya (Carica papaya)
Pera (Pyrus communis)
Piña (Ananas comosus)
Sandía (Citrullus vulgaris)
Taxo (Passiflora mollisima)
Tomate de árbol (Cyphomandra betacea)
Tomate (Lycopersicon esculentum)
Toronja (Citrus reticulata)
Tuna (Opuntia tuna)
Uva (Vitis vinifera)
Fuente: Alvarado y Romero (1991).
Intervalo de aplicación 0 - 80C.
a’
b’
c’*103
d’*105
1059
1033
1019
1078
1066
1078
1035
1033
1031
1046
1043
1087
1053
1069
1024
1034
1047
1047
1037
1053
1074
1059
1037
1051
1048
1025
1048
1059
1072
0,346
0,265
0,258
0,452
0,299
0,426
0,387
0,211
0,357
0,778
0,335
1,064
0,216
0,562
0,499
0,263
0,431
0,416
0,354
0,639
0,579
0,343
0,707
0,594
0,463
0,536
0,702
0,256
0,331
3,196
1,178
4,555
6,875
1,758
5,941
6,600
3,536
5,275
16,325
2,333
21,887
6,495
8,704
13,332
0,561
6,733
4,526
2,957
12,145
6,150
1,509
19,180
9,540
10,290
11,537
5,509
3,536
1,018
4,662
10,489
6,293
7,770
4,985
7,252
9,911
5,827
5,128
16,810
4,156
26,160
9,125
11,271
15,380
3,225
9,013
5,785
3,729
13,230
6,680
4,143
21,445
10,213
11,888
17,410
5,050
5,827
2,903
Las ecuaciones calculan la densidad de jugos de frutas a temperaturas de almacenamiento y procesamiento.
Esto es de interés en cálculos de ingeniería de alimentos y en la industria que trabaja con frutas, en especial si
se dispone de equipos de computación que simplifican el uso de este tipo de ecuaciones.
Observaciones experimentales y la graficación de estas ecuaciones mostraron que, entre 45 y 60C, los valores
de la densidad permanecen aproximadamente constantes; a temperaturas menores y mayores la disminución de
los valores es marcada. Posiblemente este comportamiento esté asociado con la inactivación de las enzimas, y
explicaría los cambios de la función, descritos por las ecuaciones de tercer grado.
Propiedades Mecánicas y Ópticas
125
Además se procuró una correlación múltiple, que considere el efecto conjunto de los sólidos solubles y de la
temperatura sobre la densidad de jugos. Por utilizar funciones lineales, el intervalo de aplicación con relación
a la temperatura se redujo hasta 40C; sin embargo, presenta la ventaja de ser una ecuación general aplicable
a jugos de todas las frutas consideradas.
Figura 4.3.4 Comparación de valores experimentales y calculados de densidad en jugos de frutas.
Con 96 observaciones, entre 5 a 25Brix, que cubre los valores más probables que se encuentran en los jugos
naturales, y entre 10 y 40C, se estableció un coeficiente de correlación de 0,98 para la ecuación siguiente:
(DJ) = 1008 + 4,15 (BR) - 0,60 T
(4.3.49)
En la Figura 4.3.4., para propósito de comparación, se presentan los valores experimentales y los calculados
con esta ecuación general (4.3.49), de la densidad a varias temperaturas en jugos naturales de: capulí, que
presentó el mayor contenido de sólidos solubles, manzana, mandarinas, babaco, y bananos diluidos con agua
destilada. La ecuación no permite establecer resultados exactos por no ser curvilínea; sin embargo, el ajuste con
los datos experimentales es aceptable, con diferencias menores al 1%. Igual situación se registró en la mayoría
de los jugos de las frutas consideradas. Las mayores diferencias se presentaron en jugo de taxo a 40C, con
una diferencia de 17 unidades (1036 [kg/m3] experimental y 1019 [kg/m3] calculado), que en términos de
porcentaje es el 1,6%. Por lo anterior se señala que, para propósitos prácticos en tecnología y cálculos básicos
Juan de Dios Alvarado
Donde (DJ) la densidad del jugo en [kg/m3], (BR) son los grados Brix y T es la temperatura en [C].
Capítulo 4
126
de ingeniería, la ecuación propuesta es útil, en los intervalos de Brix y temperatura indicados.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
En la Figura 4.3.5. se presenta un ejemplo del cálculo de los coeficientes volumétricos de expansión térmica
en jugo de manzana. Se aprecia que la linealidad, correspondiente a las ecuaciones indicadas por Touloukian
y Wilson, se cumple en intervalos pequeños de temperatura. Entre 20 y 30C, el valor del punto de corte en
ordenadas, establecido mediante regresión lineal, es: 1/D0 = 9,4894*10-4 y D0 = 1054; el valor de la pendiente
es 2,00*10-7. Según la ecuación (4.3.37):
b = (ß/D0) = 2,00*10-7
ß = 2*10-7 * 1054 = 2,1*10-4 / [C]
Figura 4.3.5. Valores del inverso de la densidad contra temperatura contra temperatura para el cálculo
de coeficiente de expansión de jugo de manzana*.
*Valores promedios de dos determinaciones por duplicado.
El valor se encuentra registrado en la Tabla 4.3.5. bajo la columna de 25C, conjuntamente con los valores
correspondientes a los otros jugos naturales. Singh y Heldman (1984) reportaron datos para el agua, que a 20C
es 2,1*10-4 / [K]; valor igual al calculado. A temperaturas mayores, los valores del coeficiente volumétrico de
expansión térmica de los jugos aumentan en todos los casos. Igual situación se reportó para el agua. Se señala
que los valores de los jugos tienden a ser mayores.
Con el propósito de ampliar la información presentada para jugos, en la Tabla 4.3.6. se incluyen los valores
de la densidad, determinados con picnómetros de tubo capilar a diferentes temperaturas, de jugos de dieciséis
productos agrícolas, en especial hortalizas.
En los jugos obtenidos de tubérculos, la presencia del almidón influye marcadamente sobre los valores de
la densidad. En jugos de leguminosas, la presencia de cantidades apreciables de proteína y la consecuente
formación de espuma, impide realizar las determinaciones a temperaturas sobre los 50C. Se destacan los
valores altos de la densidad en los jugos de caña de azúcar y remolacha, utilizados para la obtención de sacarosa.
Propiedades Mecánicas y Ópticas
127
Según se observa en la Figura 4.3.6., las ecuaciones polinómicas de tercer grado establecen satisfactoriamente
los cambios en los valores de la densidad con relación a la temperatura. Las ecuaciones correspondientes a los
jugos de ají, caña de azúcar, papa, rábano, remolacha y zanahoria amarilla, se presentan y grafican con línea
continua.
Figura 4.3.6. Valores de dencidad a diferentes temperaturas en jugos de caña de azúcar y hortalizas.
Tabla 4.3.5. Valores del Coeficiente Volumétrico de Expansión Térmica (ß) Establecidos en Jugos de Frutas con Datos
de Densidad.
T E M PE RAT U RA
F R U TA
15
25
35
45
[C]
55
65
75
5,1
5,1
6,2
5,5
6,2
5,7
4,8
7,2
6,7
5,2
4,7
7,4
5,7
5,7
5,3
4,6
5,9
4,9
6,0
7,3
7,7
6,5
7,6
6,6
5,6
9,2
8,3
6,0
5,5
9,1
7,1
6,7
6,2
5,3
7,1
5,4
7,1
BABACO
BANANO ORITO*
FRESA
FRUTILLA
LIMÓN
MANDARINA COSTA
MANDARINA SIERRA
MANZANA
MARACUYÁ
MORA
NARANJA
NARANJILLA
PAPAYA
PIÑA
TAXO
TORONJA
TUNA
UVA
*
1,8
1,9
0,7
1,9
0,9
1,6
1,9
0,4
1,7
2,1
2,0
1,6
1,2
2,3
1,7
2,4
2,5
Diluido con agua destilada 5:1 w/w.
2,5
2,0
2,0
2,6
2,1
2,6
2,7
2,1
2,7
2,7
2,6
3,0
2,2
3,2
2,7
3,0
1,9
3,1
3,4
3,0
3,4
3,7
3,4
3,5
3,3
3,7
4,2
3,5
3,5
4,5
3,4
4,0
3,5
3,4
2,9
3,7
4,3
4,0
4,8
4,6
4,6
4,4
4,1
5,4
5,5
4,4
4,0
5,8
4,5
4,9
4,3
4,0
3,7
4,3
9,5
7,7
9,2
7,8
6,4
11,2
10,0
7,0
6,2
11,0
8,3
7,7
7,2
6,0
6,2
Juan de Dios Alvarado
ß * 104 [1/K]
Capítulo 4
128
Aceites y grasas
Muestras de dieciocho productos grasos, extraídos de quince semillas vegetales, se utilizaron para las
determinaciones de la densidad a diferentes temperaturas, con el empleo de picnómetros de tubo capilar.
En la Tabla 4.3.7. se presentan los datos y los términos de las ecuaciones de regresión lineal que relacionan la
densidad con la temperatura, con su respectivo coeficiente de determinación, para cada uno de los productos
considerados. Los valores del coeficiente de determinación próximos a la unidad establecen, en todos los
casos, que la regresión lineal es apropiada para calcular los valores de la densidad a las diferentes temperaturas.
Los valores del intercepto de las ecuaciones de regresión, incluidas en esta Tabla, muestran una ligera variación,
que va desde 918 en grasa de pulpa de palma hasta 969 [kg/m3] en aceite crudo de higuerilla, que presentó los
valores más altos de densidad; sin embargo, la variación es pequeña, expresada como porcentaje corresponde
al 6%.
Tabla 4.3.6. Densidad de Jugos de Hortalizas Y Tubérculos a Diferentes Temperaturas*
TEMPERATURA [C]
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
PRODUCTO
10
20
1037 1035
Ají (Capsicum spp)
Arveja (Pisum sativum)
1018 1015
1076 1073
Caña de azúcar (Saccharum officinarum)
1028 1026
Cebolla blanca (Allium fistolosum)
1036 1032
Cebolla paiteña (Allium cepa)
1014 1012
Coliflor (Brassica oleracea)
Fréjol (Phaseolus vulgaris)
1037 1035
1024 1019
Haba (Vicia faba)
1023 1021
Papa (Solanum tuberosum)
1014 1012
Pepinillo (Cucumis sativus)
Pimiento (Capsicum annuum)
1019 1017
1018 1016
Rábano (Raphanus sativus)
1042 1040
Remolacha (Beta vulgaris)
1030 1028
Yuca (Manihot esculenta)
Zanahoria amarilla (Daucus carota)
1034 1032
1023 1021
Zapallo (Cucurbita maxima)
*
Valores promedios de 2 determinaciones por duplicado [kg/m3].
30
40
50
60
70
pH
Brix
1032
1012
1070
1022
1027
1009
1032
979
1018
1009
1013
1013
1038
1024
1029
1019
1027
1004
1067
1020
1019
1007
1024
1022
992
1063
1014
1016
1009
1057
1009
1051
1004
1003
997
992
1015
1007
1009
1009
1034
1021
1027
1016
1011
1003
1002
1005
1030
1018
1022
1011
1005
997
992
999
1024
1013
1015
1003
4,9
7,0
4,4
6,1
6,3
7,2
6,9
6,6
6,6
5,5
6,0
6,8
6,5
6,7
6,4
6,9
9,1
5,3
18,6
6,7
9,1
6,7
7,3
6,0
5,6
3,8
4,6
4,0
10,4
6,6
8,3
5,4
992
992
1016
1007
994
Tabla 4.3.7. Densidad de Aceites Y Grasas Vegetales a Diferentes Temperaturas*
PRODUCTO
TEMPERATURA [C]
20
Aceites crudos
Aguacate
Ajonjolí
Algodón
Chocho
Higuerilla
Linaza
Maní
Maracuyá
Soja
Aceites refinados
Girasol
Maíz
Maní
Oliva
Soja
Grasas fundidas
Cacao
Coco
Palma (pulpa)
Palma (almendra)
30
40
(DAG) = p’- q’T
50
60
70
p’
q’
r2
916
922
921
916
956
928
914
921
918
911
915
913
909
949
922
908
915
912
905
908
907
903
943
915
901
908
907
899
901
900
896
936
908
895
901
899
891
895
892
890
929
901
887
894
893
886
890
886
883
923
894
880
887
886
929
934
935
929
969
924
928
935
931
0,617
0,649
0,700
0,654
0,663
0,686
0,683
0,686
0,643
0,996
0,996
0,998
0,999
0,999
0,999
0,998
0,999
0,997
921
918
913
912
920
913
912
908
907
913
907
906
901
899
906
902
898
894
893
899
896
892
887
886
892
889
887
881
880
884
932
931
927
926
934
0,617
0,637
0,657
0,654
0,714
0,996
0,997
0,998
0,998
0,999
916
896
909
894
909
891
903
886
903
883
896
879
893
875
889
872
888
869
882
923
938
918
930
0,730
0,720
0,700
0,680
0,999
0,992
0,994
0,999
*
Valores promedios de dos determinaciones por duplicado. (DAG) = densidad [kg/m3]
T = temperatura [C] . r2 = coeficiente de determinación.
Propiedades Mecánicas y Ópticas
129
Los valores del coeficiente de regresión de las ecuaciones lineales, que corresponden a la pendiente, son muy
próximos a otros publicados. Hall y colaboradores (1978) señalaron que, entre 66 y 260C la densidad de los
aceites comunes disminuye en 0,64 por cada grado Celcius de incremento; en el presente caso la disminución
está entre 0,61 a 0,73. Existen diferencias con el valor de la pendiente en la ecuación de Choi y Okos (1986),
-0,41757, posiblemente debidas al intervalo de temperatura considerado por estos autores, que va desde -40C
hasta 150C; se conoce que ocurren cambios en el estado físico en especial a temperaturas bajas.
En general, las ecuaciones presentadas calculan la densidad para cada uno de los aceites y grasas en estado
líquido con bastante exactitud y en un intervalo amplio de temperaturas, según se observa en la Figura 4.3.7.
Con el propósito de confirmar lo indicado por Swern (1979), con relación al efecto de los componentes, e
incluir el efecto observado de la temperatura sobre la densidad de aceites y grasas vegetales, se procedió a
realizar un análisis de regresión lineal múltiple con tres variables independientes: peso formular promedio de
ácidos grasos como indicativo de la longitud de las cadenas hidrocarbonadas, índice de yodo como indicativo
del grado de insaturación y temperatura; como variable dependiente se consideró a la densidad.
La ecuación siguiente se estableció considerando 97 observaciones, correspondientes a todos los productos
indicados en la Tabla 4.3.7., excepto el aceite de higuerilla por presentar un comportamiento anómalo atribuible
a su composición especial. Con un coeficiente de correlación r = 0,969, se obtuvo:
(DAG) = 983 - 0,2470(PM) + 0,1546(IY) - 0,6753(T)
(4.3.50)
Juan de Dios Alvarado
Figura 4.3.7. Valores de densidad a diferentes temperaturas en aceites y grasas vegetales.
Capítulo 4
130
El signo negativo del coeficiente de regresión del peso formular indica que los valores de la densidad serán
más altos mientras más bajo sea el peso formular promedio. La insaturación, según el índice de yodo, provoca
un incremento de la densidad; en adición, su coeficiente de regresión es similar al de la ecuación de Lund que,
considerando las unidades, corresponde a 0,14. El coeficiente de regresión para la temperatura es un valor
ligeramente superior a 0,64 sugerido por Hall y colaboradores (1978), y muy próximo a los determinados por
Kubota y colaboradores (1982). El signo negativo ratifica la relación inversa entre la densidad y la temperatura.
La ecuación calcula el valor de la densidad de aceites y grasas vegetales a diferentes temperaturas, en un
intervalo que es común durante su procesamiento. Además, puede ser aplicada para orientar criterios sobre la
posible composición de ácidos grasos.
Como se esperaba, la relación entre el volumen específico expresado en [m3/kg] y la temperatura en C es lineal,
con coeficientes de correlación superiores a 0,99. En la Tabla 4.3.8. se presentan los términos de la ecuación de
regresión lineal para los diferentes productos, con sus respectivos coeficientes de determinación. Los valores
del intercepto y de la pendiente son comparables con los reportados por Flores Luque y colaboradores (1982);
las diferencias para el caso de los aceites de girasol, oliva y soja, en unidades equivalentes, son pequeñas al
considerar la procedencia y posibles cambios durante la refinación.
Tabla 4.3.8. Coeficiente Volumétrico de Expansión Térmica de Aceites Y Grasas Vegetales
(1/(DAG)T) = (1/(DAG)0)+(ß/(DAG)0)T
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
PRODUCTO
r2
ß
[1/K]*104
(1/(DAG)0)*103
(ß/(DAG)0)*107
Aceites crudos*
Aguacate
Ajonjolí
Algodón
Chocho
Higuerilla
Linaza
Maní
Maracuyá
Soja
1,075
1,069
1,069
1,076
1,031
1,060
1,076
1,068
1,073
7,603
7,909
8,583
8,089
7,513
8,262
8,486
8,391
7,901
0,995
0,997
0,998
0,999
0,999
0,999
0,997
0,998
0,996
7,1
7,4
8,0
7,5
7,3
7,8
7,9
7,9
7,4
Aceites refinados*
Girasol
Maíz
Maní
Oliva
Soja
1,072
1,073
1,078
1,079
1,069
7,539
7,827
8,167
8,150
8,779
0,996
0,997
0,997
0,998
0,999
7,0
7,3
7,6
7,6
8,2
Grasas fundidas**
Cacao
Coco
Palma (pulpa)
Palma (almendra)
1,081
1,065
1,088
1,074
9,365
8,856
8,988
8,479
0,999
0,991
0,994
0,999
8,7
8,3
8,3
7,9
*
**
Entre 20 y 70C
Entre 35 y 70C
Se destaca, que incluido el aceite de higuerilla, los valores del coeficiente volumétrico de expansión térmica de
los aceites están en un intervalo estrecho de valores, entre 0,0007 y 0,0008 por cada grado Celcius o Kelvin de
diferencia de temperaturas; valores ligeramente superiores se presentan en las grasas. Los valores son superiores
a los establecidos en agua y jugos de frutas a temperaturas bajas hasta 50C; sin embargo, a temperaturas
mayores la situación es contraria, pues en las materias grasas el coeficiente volumétrico permanece constante.
En agua y jugos de frutas se incrementa con la temperatura.
Propiedades Mecánicas y Ópticas
131
Perry (1963) reportó el coeficiente cúbico de expansión para aceite de oliva a 20C; el valor 0,000721 es similar
a 0,00076 presentado. Cálculos realizados con datos de densidad publicados confirman la variación mínima
de este coeficiente, el cual es útil para propósito de cálculos en ingeniería o como índice de control de calidad.
BIBLIOGRAFÍA Y REFERENCIAS
Aguilera, J. M. and Stanley, D. W. 1990. “Microestructural Principles of Food Processing & Engineering”.
Essex, England. Elsevier Science Publishers Ltd. p:193-235.
Alvarado, J. de D. 1994. Variación de las propiedades físicas de la grasa de cacao con la temperatura. Grasas
y Aceites. 45(5):318-322.
Alvarado, J. de D. und Romero, C. H. 1991. Physikalische Eigenschaften von Früchten - Dichte und Viskosität
von Fruchtsäfte in Abhängigkeit von löslicher Trockensubstanz und Temperatur. Flüssiges Obst, 58:18-22.
Alvarado, J. de D. 1987. Propiedades físicas de la leche. Universidad Técnica de Ambato, Facultad de Ciencia
e Ingeniería en Alimentos. Cuadernos Técnicos de Tecnología e Ingeniería de Alimentos, 4(1):2-11.
Bakshi, A. S. y Smith, D. E. 1984. Effect of content and temperature on viscosity in relation to pumping
requirements of fluid milk products. J. Dairy Sci., 67: 1157-1160.
Betscher, J. J. 1960. “Friction Characteristics of Fluid Milk Products”. Ph.D. Thesis. Ohio State University.
Columbus, United States of America.
Cervinka, V.; Rolf, V. W. Lockbart, L. M. and Gibson, T. J. 1976. Density of milk related with components.
J. Milk Food Technol., 39(12): 845-847.
Choi, Y. and Okos, M. R. 1986. Effects of temperature and composition on the thermal properties of foods.
In: “Food Engineering and Process Applications”. V.1. Transport Phenomena. La Maguer, M. and Jelen, P.
(Eds.). England. Elsevier Applied Science Pub. p: 93-101.
Fennema, O. y W. D. Powrie. 1964. Fundamentals of low-temperature food preservation. Adv. Food Res.,
13: 219-347.
Fernández-Martín, F. 1982. Las propiedades físicas de alimentos y la ingeniería de procesos. I. Productos
lácteos. Alimentación Equipos y Tecnología. 6:55-63.
Flores Luque, V.; Cabrera Martín, J. y Gómez Herrera, C. 1982. Variaciones de la viscosidad y de la densidad
con la temperatura en aceites de oliva, girasol y soja españoles. Grasas y Aceites, 33(6): 334-339.
Hall, C. W.; Farral, A. W. and Rippen, A. L. 1978. “Encyclopedia of Food Engineering”. V.1. Westport,
Connecticut. AVI Pub. Co. Inc. p:305-311.
Harper, W. J. and Hall, C. W. 1976. “Dairy Technology and Engineering”. Westport, Connecticut. AVI Pub.
Co. Inc. 631 p.
INEN. Normas Ecuatorianas sobre leche y productos lácteos. Quito, Ecuador. Instituto Ecuatoriano de
Normalización. Normas INEN: 9, 10, 11, 12, 14.
Juan de Dios Alvarado
García, Teresa y Burón Arias, I. 1980. Relación entre la estructura y las propiedades reológicas de los zumos
y purés de frutas y hortalizas. Rev. Agroquím. Tecnol. Aliment., 20(1): 70-78.
Capítulo 4
132
Kefford, J. F. 1959. The chemical constituents of citrus fruits. Adv. Food Res., 9: 285-372.
Kimball, D. A. 1986. Volumetric variations in sucrose solutions and equations that can be used to replace
specific gravity tables. J. Food Sci., 51(2): 529-530.
Kubota, K.; Kurisu, S. Susuki, K. Matsumoto, T, and Hasaka, H. 1982. Study on the viscosity and density
equations respected temperature of vegetable oils and salad and frying oils. Nippon Shokugin Kogyo Gakkaishi,
29(4): 195-201.
Lewis, M. J. 1987. “Physical Properties of Foods and Food Processing Systems”. Chichester, England. Ellis
Herwood Ltd. 465 p.
Muñoz, J. E. 1978. “La Leche y sus Derivados”. Quito, Ecuador. Editorial Casa de la Cultura Ecuatoriana.
530 p.
Nelson, P. E. and Tressler, D. K. 1980. “Fruit and Vegetable Juice Processing Technology”. 3rd.ed. Wesport,
Conn., AVI Pub. Co. Inc. 603 p.
Perry, J. H. 1963. “Chemical Engineers’Handbook” 4th. ed. Tokyo, Japón. Mc Graw Hill Book Company.
3-70.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Romo, L. A. 1973. “Métodos de Experimentación Científica”. Quito, Ecuador. Editorial Universitaria. U.
C. p: 439-445.
Short, A. L. 1955. The temperature coefficient of expansión of raw milk. J. Dairy Res., 22: 69-73.
Singh, R. P. and Heldman, D. R. 1984. “Introduction to Food Engineering”. Orlando, Florida. Academic
Press Inc. p: 28.
Swern, D. 1979. “Bailey’s Industrial Oil and Fat Products”. 4th. ed. V.1. New York. Interscience Pub., John
Wiley & Sons. p:177-232.
Touloukian, Y. S.; Kirby, R. K. Taylor, R. E. and Lee, T. Y. R. 1977. Thermal Expansión. In: “Thermophysical
Properties of Matter”. V.13. American Society for Metals Handbook. New York. IFI/PLENUM. p. 3a.
Watson, P. D. 1957. Determination of the solids in milk by a lactometric method at 102F. J. Dairy Sci., 40:
394-402.
Watson, P. D. and Tittsler, R. P. 1961. Density of milk at low temperatures. J. Dairy Sci., 44: 416-420.
Wilson, J. M.; Newcombe, R. J. Denaro, A. R. y Rickett, R. M. W. 1966. “Prácticas de Química-Física”.
Traducido por G. Gutiérrez. Barcelona, España. Editorial Acribia. 360 p.
Propiedades Mecánicas y Ópticas
133
TEMA 4.4. APLICACIÓN DE LA TENSIÓN SUPERFICIAL COMO
INDICE DE PUREZA EN JUGOS DE FRUTAS
INTRODUCCIÓN
Romo (1981) señaló que el concepto de tensión superficial es mecánico y se define como la fuerza que actúa
paralela a una superficie plana en ángulo recto a una línea de unidad de longitud. El fenómeno se origina
a causa de que, mientras las fuerzas de atracción entre las moléculas del líquido son simétricas, las de las
moléculas en la superficie son asimétricas, con el resultado que las moléculas de la superficie están sujetas a
una atracción hacia adentro en dirección normal a la superficie.
Según Lewis (1987), estas fuerzas tienden a minimizar la superficie del fluido, y los fluidos que tienen valores
altos de tensión superficial también tienen valores altos de calor latente.
Se conoce que cuando aumenta la temperatura de un líquido su tensión superficial disminuye. Esto es explicable
por el mayor movimiento molecular, que disminuye la fuerza de atracción y la acumulación en la superficie
de moléculas de vapor, que ejercen una atracción opuesta a la fuerza de cohesión. Lewis (1987) indicó que a
temperaturas que no sean próximas a la temperatura crítica, esta interrelación es aproximadamente lineal para
muchos alimentos líquidos.
Son escasos los datos publicados de tensión superficial de alimentos a diferentes temperaturas. En el caso de
jugos de frutas existen valores aislados Crivaro y colaboradores (1980) señalaron que un valor promedio para
Juan de Dios Alvarado
Maron y Prutton (1968) indicaron que el efecto de las sustancias disueltas sobre la tensión superficial del
solvente es diverso. Existen solutos como la sacarosa que provocan un ligero incremento. Los no electrolitos
o electrolitos débiles en agua provocan una disminución. En alimentos, la presencia de proteínas y grasas
afectan la tensión superficial. Bertsch (1983) presentó valores para leche entera y leche descremada, según las
ecuaciones respectivas a 20C. La tensión superficial de leche entera es 51 [mN/m] y de leche descremada 53
[mN/m]. El valor correspondiente al agua es 73 [mN/m], que se caracteriza por ser alto.
Capítulo 4
134
jugo de naranja a 20C es 0,065 [N/m], con un intervalo de variación entre 0,061 a 0,069 [N/m].
Kouloheris (1974) señaló que el conocimiento de la tensión superficial es importante en tecnologías de alimentos,
como índice de control para establecer la pureza de un producto. Por ejemplo, en azúcar de remolacha, cuando
las impurezas coloidales se incrementan, existe una disminución de la tensión superficial hasta alcanzar un
mínimo cerca de los 25Brix.
OBJETIVOS
Establecer el efecto de la temperatura sobre la tensión superficial de jugos de frutas.
Explorar el efecto de la presencia de compuestos emulsionantes sobre la tensión superficial de jugos.
Tabla 4.4.1. Tensión Superficial de Jugos de Frutas a Diferentes Temperaturas*
TEMPERATURA [C]
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
NOMBRE
*
Babaco (Carica pentagona)
Claudia (Prunus salicina)
Variedad Reina
Variedad Nelly
Fresa (Fragaria vesca)
Frutilla (Fragaria chiloensis)
Lima (Citrus aurantifolia)
Procedencia Costa
Procedencia Oriente
Limón (Citrus limon)
Procedencia Costa
Procedencia Valle
Mandarina (Citrus reticulata)
Procedencia Costa
Procedencia Valle
Manzana (Malus communis)
Variedad Emilia
Maracuyá (Passiflora edulis)
Variedad Amarilla
Melón (Cucumis melo)
Mora (Rubus glaucus)
Naranja (Citrus sinensis)
Procedencia Costa
Procedencia Oriente
Naranjilla (Solanum quitoense)
Papaya (Carica papaya)
Pera (Pyrus communis)
Piña (Ananas comosus)
Sandía (Citrullus vulgaris)
Taxo (Passiflora mollissima)
Tomate (lycopersicon esculentum)
Procedencia Costa
Procedencia Valle
Tomate de árbol (Cyphomandra betacea)
Variedad Común
Variedad Mora
Toronja (Citrus paradisii)
Uva (Vitis vinifera)
Valores promedios de dos muestras por duplicado.
10
20
30
50
60
70
57
56
47
42
61
60
58
61
58
59
55
59
57
58
51
57
53
54
44
51
49
49
38
49
61
58
58
56
52
49
50
47
45
43
41
38
54
57
51
53
50
51
46
46
45
42
41
39
39
38
13,0
9,4
63
65
61
61
58
57
56
55
52
52
45
41
43
37
87,6
11,9
70
67
65
63
60
56
53
85,3
93,9
86,5
14,7
3,2
8,8
58
65
64
55
62
59
52
59
57
49
52
53
47
47
49
44
44
44
40
41
43
90,4
90,8
92,4
88,7
81,2
84,7
92,8
89,1
8,6
9,1
7,4
11,1
14,8
13,9
7,2
10,9
65
66
59
55
64
64
60
69
59
63
53
52
61
62
58
65
55
58
51
50
52
56
52
62
51
56
49
47
50
52
49
55
48
53
41
40
48
48
47
50
37
50
38
38
45
44
45
48
34
44
35
34
44
40
44
42
94,5
95,2
5,4
4,8
59
60
57
57
56
56
53
53
50
49
48
44
43
42
87,4
86,9
91,1
86,1
10,5
12,6
8,9
13,9
57
55
61
71
55
53
59
68
54
51
57
63
52
49
55
60
51
48
52
56
46
43
49
51
42
39
47
49
HUMEDAD
[%]
Brix
92,5
7,5
70
64
59
86,8
87,3
92,0
86,6
13,2
12,7
6,7
12,6
68
64
66
68
63
61
60
63
89,9
92,9
7,6
7,1
62
66
91,6
92,1
8,4
8,9
87,0
90,6
40
τ [N/m] 10
3
MATERIALES Y MÉTODOS
De una fruta, extraer en forma manual aproximadamente 250 [cm3] de jugo y tamizarlo. Con el uso de un
Propiedades Mecánicas y Ópticas
135
estalagnómetro y balanza analítica, determinar la tensión superficial utilizando el estalagnómetro de Traube a
20, 40 y 60C, previa estabilización de la muestra en baño termostático.
CUESTIONARIO
Consultar y reportar con relación a los métodos utilizados para determinar la tensión superficial y sus
aplicaciones en tecnología, ingeniería y control de calidad de alimentos.
Hacer un gráfico, temperatura contra tensión superficial, establecer por técnicas de regresión la ecuación que
mejor se ajuste con los datos experimentales. Discutir los resultados.
RESULTADOS EXPERIMENTALES
Se trabajó con veintidós frutas. En siete casos se consideró la variedad o la procedencia para una mejor
caracterización. En la Tabla 4.4.1. constan los nombres, incluido el nombre botánico.
Los jugos se obtuvieron por presión manual de por lo menos cincuenta y siete unidades, seguido de tamizado
en tela para separación de sólidos. En los jugos se determinó la humedad por duplicado, mediante secado en
estufa, según el método indicado en la Norma INEN 382 y el contenido de sólidos solubles por lectura en el
refractómetro Abbe a 20C, según los grados Brix.
Las determinaciones de la tensión superficial relativa se realizaron por duplicado en todos los jugos y en las
dos muestras a intervalos de 10C, entre 10 y 70C, utilizando baños termostáticos con una precisión de
0,5C. El método adaptado corresponde al del peso de la gota con el estalagmómetro de Traube, según las
especificaciones indicadas por Anda (1975), y con agua destilada como líquido de referencia. Los valores
utilizados de la densidad de los jugos, son los presentados por Alvarado y Romero (1989). Los análisis de
regresión y correlación se realizaron con el paquete estadístico de una calculadora Hewlett Packard 41 CV.
En la Tabla 4.4.1. constan los valores de la tensión superficial determinados en jugos de frutas a diferentes
temperaturas por Ortiz (1988). Todos los jugos de frutas presentaron valores inferiores a los del agua a la
misma temperatura, y estos valores disminuyen conforme aumenta la temperatura.
Entre 10 y 20C los jugos de uva, manzana, babaco y taxo presentaron los valores más altos, a 20C entre
0,064 a 0,068 [N/m]; en el otro extremo, los jugos de limón, papaya y tomate de árbol presentaron los valores
más bajos, entre 0,051 a 0,055 [N/m], un 30% menos que el valor de la tensión superficial del agua. Cada fruta
presentó un comportamiento particular, lo que provoca la dispersión de valores para todo el conjunto de frutas
a una misma temperatura. La composición, en especial el contenido de pectinas, proteínas y grasas, afecta la
tensión superficial en los jugos y es la causa principal de la disminución observada con respecto al agua.
En la Tabla 4.4.2. se presentan los términos de las ecuaciones de regresión lineal, correspondientes a cada uno
de los jugos con su respectivo coeficiente de determinación. En la mayoría de frutas consideradas, el intercepto
está entre 0,060 a 0,070 [N/m], que son valores intermedios entre los del agua y de la leche de vaca. Al respecto
se señala que el contenido de proteína y grasa de la leche de vaca es mayor que el de los jugos, lo que explica
su menor tensión superficial. Los valores de las pendientes indican que el efecto de la temperatura es mayor
en los jugos que el observado en el agua y en la leche de vaca.
Al comparar los datos a 10 y 70C, los valores respectivos de la tensión superficial para el agua son, 0,0743 y
0,0646 [N/m], según Lange’s (1967); para leche entera, 0,0522 y 0,0456 [N/m]; en el caso de jugo de claudia
Juan de Dios Alvarado
En jugo de naranja, en la cultivada en la Región Oriental, se determinó un valor de 0,063 [N/m] a 20C, que
es comparable con el establecido por Crivaro y colaboradores (1980) para naranjas cultivadas en Argentina.
Los datos obtenidos en naranjas de la costa confirman las pequeñas diferencia de valores registradas entre
variedades de una misma especie de fruta.
Capítulo 4
136
variedad Nelly, que presentó la menor variación, los valores respectivos calculados son 0,065 y 0,052 [mN/m],
mientras que en jugo de naranja procedente de la costa la disminución es mayor, desde 0,065 hasta 0,034 [N/m].
Por los altos coeficientes de determinación se establece que la regresión lineal es apropiada para calcular la
tensión superficial de jugos de frutas en estado líquido a diferentes temperaturas, lo que está de acuerdo con lo
indicado por Lewis (1987).
Los componentes principales de los sólidos solubles en los jugos de frutas son los azúcares (sacarosa, glucosa,
frutosa); con el propósito de conocer su efecto sobre la tensión superficial, conjuntamente con la temperatura,
con todas las observaciones (n=203) se realizó un análisis de regresión lineal múltiple. La ecuación obtenida
es:
τ = 0,064 + 0,0003 (BR) - 0,00035 T
(4.4.1)
Donde τ es la tensión superficial (N/m), (BR) son los grados Brix y T es la temperatura [C].
Tabla 4.4.2. Ecuaciones de Regresión Lineal que Relacionan a la Tensión Superficial con la Temperatura en Jugos de Frutas*.
τ = t’ - u’T
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
NOMBRE
Babaco
Claudia
Variedad Reina
Variedad Nelly
Fresa
Frutilla
Lima
Procedencia Costa
Procedencia Oriente
Limón
Procedencia Costa
Procedencia Valle
Mandarina
Procedencia Costa
Procedencia Valle
Manzana
Variedad Emilia
Maracuyá
Variedad Amarilla
Melón
Mora
Naranja
Procedencia Costa
Procedencia Oriente
Naranjilla
Papaya
Pera
Piña
Sandía
Taxo
Tomate
Procedencia Costa
Procedencia Valle
Tomate de árbol
Variedad Común
Variedad Mora
Toronja
Uva
*
t’
u’
r2
0,073
0,00043
0,96
0,070
0,067
0,071
0,070
0,00029
0,00022
0,00044
0,00030
0,98
0,90
0,97
0,97
0,067
0,069
0,00037
0,00044
0,98
0,98
0,057
0,060
0,00025
0,00034
0,98
0,98
0,068
0,071
0,00035
0,00046
0,96
0,95
0,073
0,00028
0,99
0,061
0,070
0,067
0,00029
0,00043
0,00036
1,00
0,98
0,99
0,070
0,070
0,063
0,060
0,066
0,069
0,062
0,074
0,00051
0,00035
0,00040
0,00036
0,00034
0,00041
0,00028
0,00045
0,97
0,98
0,97
0,98
0,92
0,99
0,95
0,99
0,063
0,064
0,00026
0,00031
0,97
0,97
0,060
0,058
0,064
0,075
0,00024
0,00025
0,00024
0,00038
0,93
0,95
0,99
0,99
τ en [N/m] y T en [C]
Un análisis de la ecuación establece que el contenido de azúcares provoca un ligero incremento en la tensión
superficial, 0,0003 [N/m] por cada Brix, que estaría de acuerdo con lo indicado por Maron y Prutton
Propiedades Mecánicas y Ópticas
137
(1968); sin embargo, Weast (1971) reportó datos para soluciones de sacarosa, según los cuales se produce un
incremento del orden de 0,00005 [N/m] por cada Brix. Lo anterior señala que los azúcares tienen un efecto
limitado sobre los valores de la tensión superficial de jugos de frutas, y que otros componentes como proteínas,
grasas, pectinas, son la causa principal de la disminución observada con relación al agua. El coeficiente de
determinación (r2=0,713) indica que el 71% de las observaciones puede ser descrita por la regresión lineal, la
cual está representada en la Figura 4.4.1., con los valores experimentales.
Por la dificultad de encontrar valores de tensión superficial para jugos de frutas, la ecuación presentada el útil
para su cálculo en un intervalo desde 5 hasta 15Brix, que comprende el contenido natural de sólidos solubles
en jugos naturales de frutas, y entre 0 y 90C. Para mayor exactitud se deben utilizar las ecuaciones específicas
de cada fruta.
La presencia de impurezas como las gomas, el incremento de pectinas, proteínas y grasas, que actúan como
emulsionantes, provocará una disminución en la tensión superficial de los jugos.
Figura 4.4.1. Representación de valores experimentales y calculados de tensión
superficial a diferentes temperaturas y contenidos de sólidos solubles en jugos
de frutas*.
* Valores promedios de dos determinaciones por duplicado.
BIBLIOGRAFÍA Y REFERENCIAS
Alvarado, J. de D. and Romero, C. 1989. Physical properties of fruits. I-II. Density and viscosity of juices as
function of soluble solids content and temperature. Lat. Am. Appl. Res. (LAAR), 19: 15-21.
Bertsch, A. J. 1983. Surface tensión of whole and skim-milk between 18 and 135C. J. Dairy Res., 50: 259267.
Crivaro, N. O.; Carrón, R. B. García, P. M. y Salpeter, I. R. 1980. Composición química de frutas III. La
Alimentación Latinoamericana. p: 6-22.
INEN. 1978. Determinación de la Humedad de Jugos de Frutas. Quito, Ecuador. Instituto Ecuatoriano de
Normalización. Norma INEN 382.
Juan de Dios Alvarado
Anda, L. 1975. “Manual de Prácticas de Físico-Química”. Ambato, Ecuador. Facultad de Ciencia e Ingeniería
en Alimentos, Universidad Técnica de Ambato. p: 15-17.
Capítulo 4
138
Kouloheris, A. P. 1974. Surface tensión. In: “Encyclopedia of Food Technology”. V.2. Johnson, A. H. and
Peterson, N. S. (Eds.). Westport, Connecticut. AVI Pub. Co. Inc. p: 878-879.
Lange’s. 1967. “Handbook of Chemistry”. 20th ed. New York. Mc. Graw Hill Book Co. p: 1663.
Lewis, M. J. 1987. “Physical Properties of Foods Processing Systems”. Chichester, England. Ellis Horwood
Ltd. p: 169-184.
Maron, S. H. y Prutton, C. F. 1968. “Fundamentos de Fisicoquímica”. México, CRAT. Editorial Limusa Wiley.
p: 813-847.
Ortiz, Hilda. 1988. “Determinación de la Tensión Superficial de Jugos de Frutas a Diferentes Temperaturas”.
Tesis de Ingeniera en Alimentos. Facultad de Ciencia e Ingeniería en Alimentos, Universidad Técnica de
Ambato. Ecuador. 60 p.
Romo, L. A. 1981. “Coloideofísica, Coloideoquímica y Fenómenos de Superficie”. Quito, Ecuador. Editorial
Universitaria. p: 183-233.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Weast, R. C. 1971. “Handbook of Chemistry and Physics”. 51th. ed. Cleveland, Ohio. The Chemical Rubber
Co. F - 29.
Propiedades Mecánicas y Ópticas
139
TEMA 4.5. APLICACIÓN DEL MODULO DE YOUNG COMO MEDIDA
DE CONTROL EN TALLARINES
INTRODUCCIÓN
Según Charm (1981), el término tensión designa a la fuerza por unidad de área actuando sobre un cuerpo. Si
A es el área transversal de la fibra y F’ la fuerza, entonces la tensión U será igual a:
U = F’/A
(4.5.1)
En ciertos materiales, y en general para valores bajos de deformación, según Nash (1969), la tensión es
proporcional a la deformación. En forma de ecuación:
(4.5.2)
(MY) es el módulo de Young o módulo de elasticidad y ε es el alargamiento unitario o deformación por tensión,
definido por:
ε=δ/l
(4.5.3)
Donde δ es la distancia del alargamiento y l la longitud unitaria.
Por reemplazo se establece que:
(MY) = F’ l/ (A δ)
(4.5.4)
Juan de Dios Alvarado
U = (MY) ε
Capítulo 4
140
En el caso de colocar horizontalmente la muestra sujetándola en ambos extremos y aplicar una carga en el
centro.
(MY) = M g l3 / 12 π R4 h
(4.5.5)
Donde M es la carga en [kg]; g es la constante gravitacional [9,81 m/s2]; l el largo en [m]; π es 3,1416; R es el
radio del tallarín en [m]; h es el descenso vertical en el centro en [m].
Muller (1977), reportó valores del módulo de Young determinados en fideos tipo tallarín secos, que van desde
0,27*1010 hasta 0,30*1010 [N/m2]. Señaló que cambios en la estructura y la composición, y en la temperatura,
modificaron ligeramente estos valores.
Son cuerpos isótropos aquellos que tienen la propiedad de transmitir igualmente, en todas las direcciones,
cualquier acción recibida en un punto de su masa. Según Muller (1977), en el caso de tallarines se puede
decidir si el producto es o no isótropo, calculando los cocientes de hinchamiento de los fideos en agua con
relación al tiempo; si el aumento del diámetro dividido para el aumento en longitud es un valor constante en
diferentes tiempos, el producto puede ser considerado como isótropo, en caso contrario como anisótropo.
OBJETIVOS
Determinar el módulo de Young en tallarines y establecer el efecto de la humedad.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
En muestras de tallarines comprobar su anisotropía.
MATERIALES Y MÉTODOS
Preparar una muestra patrón de tallarines, manteniéndolos por lo menos dos días en un desecador que contenga
una disolución concentrada de nitrato sódico (25C, 65% HR); por exposición en cámara saturada de humedad
o inmersión en agua por tiempos cortos, obtener muestras con diferente humedad. En todos los casos determinar
en estufa, mediante un equipo Brabender, o con una balanza apropiada, la humedad.
Con ayuda de soportes y pinzas colocar dos hojas de bisturí o de afeitar, separadas 20 cm y a una altura de 15
cm. Colocar un tallarín de la muestra patrón sobre los bordes de las hojas de bisturí, aplicar sucesivamente
varios pesos conocidos sobre el centro y medir el descenso vertical en forma precisa; repetir la operación por
dos ocasiones utilizando otros tallarines.
Seguir igual procedimiento con las muestras de tallarines con diferente humedad.
En un tallarín medir exactamente la longitud con un vernier y el diámetro con un micrómetro, sumergirlo en
agua sobre papel aluminio y cada quince minutos, por el lapso de una hora o más; medir el largo y el diámetro
(en tres sitios diferentes para establecer el promedio); calcular los cambios registrados como porcentaje de
hinchamiento. Trabajar por duplicado.
CUESTIONARIO
Hallar la ecuación (4.5.5), indicada para determinar el módulo de Young en cuerpos de sección circular cuando
se aplica la carga en el centro, y la ecuación que aplicaría si la carga fuese aplicada en un extremo manteniéndose
rígido el otro. Establecer las ecuaciones anteriores para cuerpos de sección cuadrada.
Graficar la carga aplicada [kg] contra el descenso vertical [m], trazar la mejor recta que pase a través de los
puntos representados; leer el descenso correspondiente a una determinada carga y calcular el módulo de Young
para la muestra patrón, aplicando la ecuación respectiva; comparar el valor obtenido con los reportados. Seguir
igual procedimiento para las muestras con diferente humedad, discutir los resultados.
Propiedades Mecánicas y Ópticas
141
Hacer un gráfico de módulo de Young [N/m2] contra contenido de humedad [g/100 g], y establecer la ecuación
correspondiente a la función representada.
Con los datos de hinchamiento de fideos en agua, tabular los datos como porcentaje a los diferentes tiempos,
tanto para el ancho como para el largo. Decidir con respecto a la isotropía de los fideos.
RESULTADOS EXPERIMENTALES
Las pruebas se efectuaron con ayuda de dos soportes metálicos de laboratorio, con pinzas para sujetar las hojas
de bisturí, separadas a una distancia de 0,20 [m], sobre las cuales se fijaron los tallarines. Un hilo colocado en
forma paralela a la muestra sirvió como referencia para la medida del descenso vertical con un micrómetro.
En la mitad del tallarín se añadieron, en forma sucesiva, pesos conocidos (clips), registrándose en cada caso
la distancia entre el punto central y el nivel inicial. Los datos registrados en pruebas realizadas con tallarines
comerciales de diferente humedad, se indican en la Tabla 4.5.1.
Tabla 4.5.1. Descenso Vertical Registrado en Tallarines con Diferente Humedad para Determinar el Modulo de Young*
Muestra 1
Muestra 2
Descenso vertical [mm]
Muestra 3
Muestra 4
Muestra 5
2,05
4,09
6,13
8,16
10,19
3,13
5,03
7,10
8,78
11,35
4,72
8,68
11,12
14,04
17,92
6,73
10,71
13,41
15,99
20,35
9,55
14,94
19,09
23,05
15,65
20,48
20,3
8,73*10-4
23,2
8,88*10-4
11,0
17,6
18,6
Humedad [g/100 g]**
Radio [m]
8,62*10-4
8,85*10-4
8,75*10-4
*
Valores promedios de tres pruebas.
**
Obtenida por inmersión en agua durante 0, 2, 4, 6 y 8 minutos a 20C.
Figura 4.5.1. Carga aplicada contra descanso vertical registrado en tallarines.
Juan de Dios Alvarado
Peso añadido
[g]
Capítulo 4
142
En la Figura 4.5.1. están graficados los datos de la carga aplicada contra el descenso vertical, registrado en los
tallarines. Se observa que la función es lineal, por lo que se procedió a trazar en línea contínua, los valores
calculados con las ecuaciones de regresión correspondientes. En especial, en la muestra patrón con 11,0 g de
agua/100 g de muestra, el intercepto es próximo a cero como se espera; las muestras humedecidas presentaron
un comportamiento diferente.
Para calcular el módulo de Young, según la ecuación de regresión correspondiente al tallarín con 11,0% de
humedad, o con la Figura 4.5.1., se establece que para una carga de 0,005 [kg] el descenso vertical es 0,00596
[m].
La aplicación de la ecuación (4.5.5) conduce a:
(MY) = M g l3 / 12 π R4 h
(MY) = 0,005[kg]*9,81[m/s2]*(0,20)3[m3]/12*3,1416*(8,62*10-4)4 [m4] *0,00596[m]
(MY) = 3,16*109 [N/m2]
El valor es comparable al reportado por Muller (1973), 3,0*109 [N/m2].
Igual procedimiento se aplicó en las muestras con diferente humedad, los resultados se presentan en la Tabla
4.5.2.
Según se observa en la Figura 4.5.2., existe una asociación alta entre el módulo de Young y la humedad de
tallarines, definida por la ecuación siguiente de regresión lineal, con un coeficiente de correlación de -0,995.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Tabla 4.5.2. Valores del Modulo de Young Determinados en TallarinesCilíndricos con
Diferente Humedad
Humedad
[g/100 g]
Módulo de Young
[N/m2]
11,0
17,6
18,6
20,3
23,2
3,16*109
1,78*109
1,53*109
1,09*109
0,74*109
Figura 4.5.2. Relación entre el módulo de Young y la humedad de los tallarines.
Propiedades Mecánicas y Ópticas
143
(MY) = 5,37*109 - 2,045*108 (H)
(4.5.8)
Donde (MY) es el módulo de Young en [N/m2] y (H) es la humedad en [g/100 g]. Esta relación es de interés
para propósitos de control de humedad; en adición, los valores del módulo de Young permiten tener una idea
de la elasticidad y resistencia de estos fideos.
C. Se incluyen los valores
calculados del incremento en el largo y en el diámetro mediante las ecuaciones siguientes:
En la Tabla 4.5.3. se presentan los resultados de las pruebas de deformación, obtenidos con tallarines cilíndricos mantenidos en agua a 20
(IL) = 100((LM)-(LI))/(LI)
(ID) = 100((DT)-(DI))/(DI)
(4.5.6)
(4.5.7)
Tabla 4.5.3. Variación de la Longitud Y del Diámetro en Tallarines Sumergidos en Agua a Diferentes Tiempos
MUESTRA 1
MUESTRA 2
(ID)/(IL)
Tiempo
[s]
Longitud
(IL)
Diámetro
(ID)
Longitud
(IL)
Diámetro
(ID)
0
900
1800
2700
3600
103,8
104,0
104,2
104,3
104,4
0
0,192
0,385
0,482
0,969
1,6
1,8
1,9
2,0
2,0
0
12,5
18,8
25,0
25,0
106,5
106,8
106,9
106,9
107,0
0
0,282
0,376
0,376
0,469
1,6
1,8
1,9
2,0
2,0
0
12,5
18,8
25,0
25,0
Muestra
1
Muestra
2
65,1
48,8
51,9
25,8
44,3
50,0
64,5
53,3
Donde, (IL) es el incremento de la longitud como porcentaje, (LM) es la longitud medida a determinado
tiempo, (LI) es la longitud inicial, (ID) es el incremento del diámetro como porcentaje, (DT) es el diámetro
medido a determinado tiempo y (DI) es el diámetro inicial.
Según los valores de la razón entre el incremento del diámetro y el incremento de la longitud, se comprueba
fácilmente la anisotropía de los fideos señalada por Muller (1977).
BIBLIOGRAFÍA
Charm, S. E. 1981. “The Fundamentals of Food Engineering”. 2nd. ed. Westport, Connecticut. AVI Pub. Co.
Inc. 622 p.
Muller, H. G. 1977. “Introducción a la Reología de los Alimentos”. Zaragoza, España. Editorial Acribia.
174 p.
Juan de Dios Alvarado
Nash, W. A. 1969. “Resistencia de Materiales”. Serie de Compendios Schaum. Colombia. Libros Mc GrawHill. 299 p.
Capítulo 4
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
144
TEMA 4.6. APLICACIÓN DE LAS PROPIEDADES MECÁNICAS PARA
CARACTERIZAR CARNES
INTRODUCCIÓN
Según Aguilera y Stanley (1990), hay tres tipos comunes de esfuerzos que son aplicados a los materiales: de
compresión, de tensión y de cizalla. Reológicamente, un material se puede deformar en tres formas: elástica,
plástica y viscosa. Por su heterogeneidad, estos comportamientos se presentan en los materiales alimentarios.
Singer (1971) señaló que en el caso de un esfuerzo simple, que se caracteriza por ser uniforme y existe cuando
la resultante de las fuerzas aplicadas pasa por el centro del área de la sección considerada, se denomina tensión
en el material a la fuerza por unidad de área.
U = F’/ A
(4.6.1)
Donde U es la tensión en el material o fuerza por unidad de área, F’ es la carga aplicada y A es el área
transversal perpendicular a la carga.
Cuando se aplica una carga axial en una prueba a tracción y se produce un alargamiento del material, se expresa
en términos de alargamientos unitarios o deformaciones. Entonces, el valor de la deformación es:
ε=δ/l
ε es la deformación media, δ es el alargamiento y l es la longitud inicial.
(4.6.2)
Propiedades Mecánicas y Ópticas
145
La representación gráfica de los valores de esfuerzo y sus correspondientes de deformación se conoce como
el diagrama esfuerzo-deformación del material, y puede adoptar numerosas formas, dependiendo de las
características del material y tipo de prueba.
Stiopin (1976) puntualizó detalles de ensayos a tracción para obtener las características mecánicas del material.
Indicó que los resultados dependen de la forma de la probeta o muestra de ensayo, de la velocidad con que
se desarrollan las deformaciones, de la temperatura a la que se lleva a cabo el ensayo, entre otras; por lo
que es necesario trabajar en condiciones estandarizadas y en las pruebas estáticas trabajar como mínimo con
dos muestras idénticas. Al referirse a los diagramas convencionales de tracción, o sea aquellos calculados
considerando el área inicial de la sección y la longitud inicial de la muestra, señaló que esta debe ser del orden
de diez veces el diámetro; en el caso de que existan deformaciones plásticas grandes, es decir que admitan
grandes alargamientos sin destruirse, se necesita disponer del diagrama real de tracción, en el que la tensión se
calcula a base del área efectiva de la sección transversal, considerando las disminuciones.
Nash (1969) presentó gráficos tensión-deformación típicos de varios materiales; un esquema característico de
un metal dúctil o plástico tiene la forma indicada por la curva I, el caucho presenta un comportamiento indicado
por la curva II. La línea continua corresponde al diagrama real, la línea punteada al diagrama convencional.
Diagrama 1. Esquema para identificar las secciones y puntos importantes de los gráficos
tensión - deformación.
A la ordenada en el punto 1 se le conoce como límite de proporcionalidad; un punto casi coincidente en la
ordenada corresponde al límite elástico, que es la tensión máxima que puede producirse durante un ensayo de
tracción simple sin que exista deformación permanente o residual cuando se suprime totalmente la carga. En
ciertos materiales se presenta el límite de fluencia, con un valor ligeramente superior a los anteriores, en el que
se produce un aumento de la deformación sin aumento de la tensión. Luego de este límite el gráfico se vuelve
horizontal.
La región de la curva que va desde el límite de proporcionalidad hasta el punto de rotura, se conoce como zona
plástica; la ordenada del punto 2 corresponde al límite de resistencia.
Juan de Dios Alvarado
Desde el origen hasta el punto 1 se presenta un segmento rectilíneo; esta región de la curva es conocida como
zona elástica y es en la que se cumple la Ley de Hooke. Según Muller (1977), muchos alimentos sólidos, como
la carne, son estructuralmente muy complejos y no cumplen esta ley, salvo si, acaso, dentro de un rango de
tensiones muy reducido.
Capítulo 4
146
La ordenada en el punto 3 corresponde a la resistencia de rotura del material. Como referencia, según Muller
(1977), para tallarines no cocidos corresponde a 1,8*107 [Pa], para caucho de 1,5 a 2,0*108 [Pa]. Perry (1986),
reportó valores de fuerza máxima de rotura, determinados en una máquina Instron, para filetes reestructurados
de carne molida; en carne de res la variación observada está entre 0,184 a 0,618 [MPa].
Otras propiedades también pueden ser determinadas por el diagrama tensión-deformación. Entre ellas Nash
(1969) definió las siguientes:
Módulo de resiliencia, que es la capacidad de absorber energía en la zona elástica; se calcula según el área bajo
la sección 0-1 del diagrama, y está expresado en [N/m3].
Módulo de tenacidad, que es la capacidad de absorber energía en la zona plástica; se calcula por el área total
bajo la curva desde el origen hasta la rotura, y está expresado en [N/m3].
Estricción, definida por:
Y = 100 (A-(AF))/A
(4.6.3)
Siendo (AF) el área en la sección más delgada en el momento de la rotura.
Alargamiento de rotura, definido por:
Q = 100 ((LF)-l)/l
(4.6.4)
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Siendo (LF) la longitud final después de la rotura.
En adición, según Charm (1981), en los límites de elasticidad de una barra, existe una relación constante entre
la contracción lateral y el alargamiento axial, conocida como la razón de Poisson, que para el caso de forma
cilíndrica es definido por:
μ = -((DT)-(DI))/((LM)-l))
(4.6.5)
Donde, (DT) y (LM) son el diámetro y el largo medidos a una tracción determinada antes de alcanzar el límite de
proporcionalidad, (DI) y l son las dimensiones originales. Muller (1977) reportó valores de 0,50, establecidos
en queso cheddar, masa de harina, papa, gelatina con 80% de agua y caucho. Adam y colaboradores (1980), en
rodajas de papas crudas, también reportaron un valor de 0,5 para la razón de Poisson.
Según Singer (1971), existe una relación entre el módulo de elasticidad o de Young (MY), el módulo de
Poisson (μ) y el módulo de rigidez transversal o módulo de cizalla (Z).
Z = (MY)/2(1+μ)
(4.6.6)
La relación calcula el módulo de rigidez, si se conocen los dos módulos adicionales. Adam y colaboradores
(1980) reportaron un valor de 3,711 [MPa] para el módulo de elasticidad de papas crudas.
Sin embargo, en el caso de alimentos, estos conceptos y valores deben ser considerados como referenciales.
Al respecto, Aguilera y Stanley (1990) señalaron que existen varias presunciones que no se cumplen en
las condiciones de prueba. Se presume que se conocen las dimensiones durante la aplicación de la fuerza,
situación que es muy difícil que se cumpla, pues los materiales sujetos a una fuerza cambian sus dimensiones
tanto en dirección paralela como perpendicular al eje de aplicación. Los modelos establecen que el esfuerzo
y la deformación resultante están distribuidos uniformemente, como si la muestra fuese totalmente uniforme;
situación que no se encuentra en alimentos. Se considera que las deformaciones son pequeñas. En alimentos
las pruebas muchas veces se realizan hasta el rompimiento. Estado en el cual no se cumple la teoría clásica de
elasticidad.
Propiedades Mecánicas y Ópticas
147
OBJETIVOS
Conocer el comportamiento de fibras de carne cuando son sometidas a tracción.
Determinar el orden de magnitud de los valores de algunas propiedades mecánicas de carnes.
Comparar las propiedades mecánicas de carnes provenientes de diversos animales.
MATERIALES Y MÉTODOS
Trabajar con carne de res, cerdo, cordero o pollo; elaborar en cada caso cuatro muestras idénticas, cortando
pedazos delgados en sentido paralelo a las fibras; formar las muestras para que adquieran las características de
cilindros uniformes delgados, de aproximadamente 0,005 [m] de diámetro.
Con la ayuda de un soporte y pinza, sujetar firmemente uno de los extremos, dejar libres 0,075 [m] y sujetar un
dispositivo para adicionar pesos en sentido vertical; con el uso de un micrómetro medir el diámetro del cilindro
en la zona superior, media e inferior.
Adicionar en forma sucesiva pesas de aproximadamente 5 [g] y determinar el aumento en la longitud con el uso
de un nonio y los diámetros luego de cada adición de pesas, hasta que se produzca la rotura. Repetir la prueba
con la segunda muestra, cuidando que el diámetro y la longitud iniciales sean similares o iguales a la muestra
anterior.
Con las muestras tres y cuatro, hacer la misma operación, pero adicionando las pesas de 5 [g] en forma alternada:
luego de realizar las medidas, retirar las pesas y permitir que la muestra se contraiga antes de adicionar más
pesas. Tratar de establecer el límite elástico y la fluencia, para lo cual las medidas se realizarán luego de
transcurrir un minuto de la adición de cada pesa. Continuar el trabajo hasta que se produzca la rotura.
CUESTIONARIO
RESULTADOS EXPERIMENTALES
Tabla 4.6.1. Datos de Deformación Registrados en Muestras Cilíndricas de Carne de Res Sometidas a la Tracción
de Diferentes Pesos
ADICIÓN ALTERNADA DE PESO
Diámetro [mm]
Peso
[kg]103
Longitud
[mm]
0
13,86
26,94
39,83
52,92
66,07
79,05
92,04
104,92
118,67
131,41
144,40
157,34
170,21
183,29
196,27
209,21
222,20
228,71
75,0
76,0
78,5
81,0
82,0
82,5
85,0
86,0
88,0
89,8
91,0
94,0
97,0
99,4
102,0
103,0
105,5
108,0
Rotura
Superior
Medio
Inferior
Promedio
6,2
5,4
5,0
4,5
3,8
3,2
2,8
2,8
2,8
2,8
2,8
2,8
2,8
2,6
2,6
2,6
2,6
2,4
5,6
5,4
5,0
4,5
4,1
3,7
2,9
2,8
2,7
2,7
2,7
2,7
2,6
2,4
2,4
2,4
2,4
2,2
5,0
4,5
4,3
3,9
3,8
3,5
3,3
3,2
3,0
2,7
2,7
2,7
2,7
2,7
2,2
1,2
1,0
0,6
5,60
5,10
4,77
4,30
3,90
3,47
3,00
2,93
2,83
2,73
2,73
2,73
2,70
2,57
2,40
2,07
2,00
1,73
Peso
[kg]103
0
14,08
27,16
40,05
53,14
66,29
79,27
92,26
105,14
118,15
130,89
143,88
156,82
169,69
182,77
195,75
208,69
221,68
234,70
247,54
260,06
Longitud
[mm]
93,0
95,5
96,3
99,4
102,2
102,4
103,4
103,5
105,0
105,0
107,1
107,8
108,4
110,0
111,0
111,9
113,3
114,0
115,0
120,7
Rotura
Diámetro [mm]
Superior
Medio
Inferior
Promedio
3,7
3,4
3,3
3,3
3,3
3,0
2,6
2,5
2,5
2,4
2,3
2,0
1,8
1,7
1,6
1,6
1,4
1,4
1,4
1,2
3,7
3,7
3,5
3,3
3,2
3,0
2,8
2,6
2,4
2,2
2,2
2,1
2,0
2,0
1,9
1,7
1,7
1,7
1,5
1,4
3,7
3,7
3,6
3,6
3,4
3,4
2,7
2,6
2,6
2,3
2,2
2,0
2,0
2,0
2,0
2,0
1,7
1,7
1,7
1,5
3,70
3,60
3,47
3,40
3,30
3,13
2,70
2,57
2,50
2,30
2,23
2,03
1,93
1,90
1,83
1,77
1,60
1,60
1,53
1,37
Juan de Dios Alvarado
ADICIÓN CONSECUTIVA DE PESO
Capítulo 4
148
Con los datos registrados en las muestras uno y dos, construir los diagramas reales de tensión-deformación
considerando la sección transversal promedio correspondiente; expresar la tensión en pascales y las medidas
de longitud en metros. Compararlos con otros publicados.
Construir los diagramas reales de tensión-deformación con los datos promedios establecidos con las muestras
tres y cuatro, cuando la adición de pesos se realizó en forma alternada.
Considerando las figuras, establecer los valores de: límite de proporcionalidad, límite de fluencia, límite de
resistencia, límite de rotura, módulo de resiliencia, módulo de tenacidad, estricción y alargamiento de rotura.
Tabular y discutir los resultados.
Para cada muestra determinar el valor de la razón de Poisson, calcular el promedio general y analizar el
resultado. De igual manera establecer el módulo de elasticidad y calcular el módulo de rigidez.
¿Qué aplicaciones en el campo práctico tienen los valores establecidos y qué limitaciones?.
Cuando se trabajó con músculo proveniente de la pierna de res, colocando monedas de peso conocido en una
canasta de alambre ubicada en la parte inferior, se registraron los datos presentados en la Tabla 4.6.1.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
En las muestras de carnes de vacuno se aprecia una disminución notoria y continua de los diámetros; razón por
la cual, al existir deformaciones plásticas grandes, no se justifica la elaboración del gráfico tensión-deformación
convencional.
El cálculo de la tensión y de la deformación se realizó de la manera siguiente, para obtener los datos de los
diagramas de tensión-deformación reales.
Adición consecutiva de peso.
U = F’/ A
F’ = 0,01386 [kg] * 9,81 [m/s2] = 0,1360 [N]
A = 3,1416 * (0,00510)2 [m2]/4 = 2,043*10-5 [m2]
U = 0,1360 [N]/2,043*10-5 [m2] = 6657 [Pa]
ε
ε=δ/l
= (0,0760-0,0750)/(0,0750) = 0,013
Adición alternada de peso.
U = F’/ A
F’ = 0,01408 [kg] * 9,81 [m/s2] = 0,1381 [N]
A = 3,1416 * (0,00360)2 [m2]/4 = 1,018*10-5 [m2]
U = 0,1381 [N]/1,018*10-5 [m2] = 13566 [Pa]
ε
ε=δ/l
= (0,0955-0,0930)/(0,0930) = 0,027
Estos resultados y los correspondientes al resto de medidas se incluyen en la Tabla 4.6.2.
Al graficar los datos de deformación (ε) contra tensión (U), se obtienen las curvas representadas en las Figuras
4.6.1. y 4.6.2., que corresponden a los casos de adición consecutiva y adición alternada de peso, respectivamente.
La forma de las curvas se asemeja a la reportada para caucho.
Propiedades Mecánicas y Ópticas
149
Tabla 4.6.2. Valores de Tensión y Deformación Registrados en Muestras Cilíndricas de Carne de Res
ADICIÓN CONSECUTIVA DE PESO
10
ADICIÓN ALTERNADA DE PESO
U
[Pa]10-3
ε
103
U
[Pa]10-3
ε
103
0
7
15
27
43
69
110
134
164
199
220
242
270
322
397
572
653
927
0
13
47
80
93
100
138
147
173
197
213
253
293
325
360
373
407
440
0
14
28
43
61
85
136
174
210
279
329
436
526
587
682
780
1018
1082
1252
1647
0
27
35
69
99
101
112
113
129
129
152
159
166
183
194
203
218
226
237
298
3
10
3
Figura 4.6.2. Curva tensión-deformación real obtenida en carne de res con la adición alternada de peso.
Juan de Dios Alvarado
Figura 4.6.1. Curva tensión-deformación real obtenida en carne de res con la adición consecutiva de peso.
Capítulo 4
150
Tabla 4.6.3. Datos de Deformación Registrados en Muestras Cilíndricas de Carne de Cerdo Sometidas a la Tracción
de Diferentes Pesos
ADICIÓN CONSECUTIVA DE PESO
Peso
[kg]103
Longitud
[mm]
0
12,67
25,34
38,01
50,68
63,35
76,02
88,69
101,36
114,03
126,70
139,37
152,04
164,71
177,38
190,05
202,72
215,39
228,06
61,2
61,6
63,3
63,9
65,0
66,6
67,0
68,0
69,2
69,7
70,0
71,0
71,8
73,5
73,8
75,0
75,7
75,9
Rotura
ADICIÓN ALTERNADA DE PESO
Diámetro [mm]
Superior
Medio
Inferior
Promedio
3,5
3,5
3,4
3,3
3,2
3,1
3,0
2,9
2,8
2,8
2,7
2,7
2,6
2,5
2,5
2,3
2,3
2,1
3,9
3,9
3,8
3,7
3,7
3,6
3,4
3,2
3,1
3,0
2,9
2,8
2,8
2,7
2,7
2,5
2,4
2,3
4,1
4,1
4,0
4,0
3,8
3,8
3,7
3,6
3,6
3,5
3,3
3,3
3,2
3,1
3,1
3,0
2,9
2,7
3,83
3,83
3,73
3,67
3,60
3,50
3,37
3,23
3,17
3,10
2,97
2,93
2,87
2,77
2,27
2,60
2,53
2,37
Peso
[kg]103
Longitud
[mm]
0
12,68
25,36
38,04
50,72
63,40
76,08
88,76
101,44
114,12
126,80
139,48
152,16
164,84
177,52
66,9
68,0
68,5
69,6
70,5
71,0
72,0
73,0
74,0
75,0
76,0
76,7
78,0
83,0
Rotura
Diámetro [mm]
Superior
Medio
Inferior
Promedio
3,8
2,9
2,9
2,8
2,7
2,6
2,5
2,5
2,4
2,3
2,3
2,2
2,1
1,8
2,9
2,7
2,6
2,4
2,3
2,2
2,2
2,2
2,1
2,0
1,9
1,8
1,7
1,7
1,9
1,8
1,8
1,7
1,4
1,4
1,4
1,4
1,2
1,1
1,0
1,0
0,9
0,9
2,60
2,47
2,43
2,30
2,13
2,07
2,03
2,03
1,90
1,80
1,73
1,67
1,57
1,47
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Como en el caso anterior, los cálculos de tensión y deformación para la primera adición de peso, se realizaron
de la manera siguiente.
10
3
10
3
Figura 4.6.3. Curva tensión-deformación real obtenida en carne de cerdo con la adición
consecutiva de peso.
10
3
10
3
Figura 4.6.4. Curva tensión-deformación real obtenida en carne de cerdo con la adición alternada
de peso.
Propiedades Mecánicas y Ópticas
151
De las pruebas con adición alternada de peso, se comprueba que las carnes no presentan un comportamiento
estrictamente elástico: algún grado de deformación se mantuvo desde la adición y remoción posterior del
primer peso; sin embargo, las muestras se contraen luego del alargamiento, demostrando elasticidad.
Según las figuras, se puede considerar que a tensiones bajas del orden de 50000 pascales, existe una zona
elástica; sin embargo, en una gran extensión el comportamiento mecánico de las muestras de fibras de carne
hasta la rotura, es plástico.
Para comparación y con el mismo método, en la Tabla 4.6.3. se presentan los resultados obtenidos cuando se
trabajó con músculo de la pierna de cerdo.
Adición consecutiva de peso.
U = F’/ A
F’ = 0,01267 [kg] * 9,81 [m/s2] = 0,1243 [N]
A = 3,1416 * (0,00383)2 [m2]/4 = 1,152*10-5 [m2]
U = 0,1243 [N]/1,152*10-5 [m2] = 10790 [Pa]
ε=δ/l
= (0,0616-0,0612)/(0,0612) = 0,007
ε
Adición alternada de peso.
U = F’/ A
F’ = 0,01268 [kg] * 9,81 [m/s2] = 0,1244 [N]
A = 3,1416 * (0,00247)2 [m2]/4 = 4,792*10-6 [m2]
U = 0,1244 [N]/4,792*10-5 [m2] = 25960 [Pa]
ε=δ/l
= (0,0680-0,0669)/(0,0669) = 0,016
Los valores calculados con todos los datos, están incluidos en la Tabla 4.6.4.
ε
Tabla 4.6.4. Valores de Tensión y Deformación Registrados en Muestras Cilíndricas de Carne de Cerdo
ADICIÓN ALTERNADA DE PESO
U
[Pa]10-3
ε
103
U
[Pa]10-3
ε
103
0
11
23
35
49
65
84
106
126
148
179
203
231
268
298
351
396
479
0
7
34
44
62
88
95
111
131
139
144
160
173
201
206
225
237
240
0
26
54
90
140
185
231
269
351
440
529
625
771
953
0
16
24
40
54
61
76
91
106
121
136
146
166
241
La graficación de estos valores se encuentra en las Figuras 4.6.3. y 4.6.4., para el caso de adición consecutiva de
peso y adición alternada de peso, respectivamente. La forma de las curvas es característica y tiene semejanza
con la reportada para caucho. Con el propósito de establecer comparaciones, se consideró la presencia de una
zona elástica para valores bajos de tensión.
Juan de Dios Alvarado
ADICIÓN CONSECUTIVA DE PESO
Capítulo 4
152
A continuación se presentan ejemplos del cálculo de las propiedades mecánicas principales para las carnes de
res y de cerdo.
Carne de res, adición continua de peso. (Figura 4.6.1.)
Límite de proporcionalidad: 43000 [Pa]
Límite elástico: 69000 [Pa]
Límite de fluencia: 110000 [Pa]
Límite de rotura: 927000 [Pa]
Módulo de resiliencia, calculado por el área: 2000 [N/m3]
Módulo de tenacidad, calculado por el área: 117500 [N/m3]
Estricción:
Y = 100(A-(AF))/A
= 3,1416*(0,0056)2[m2]/4 = 2,463*10-5 [m2]
(AF) = 3,1416*(0,0006)2[m2]/4 = 2,827*10-7 [m2]
Y = 100(246,3*10-7-2,827*10-7)/246,3*10-7 = 99
A
Alargamiento de rotura:
Q
Q = 100((LF)-l)/l
= 100((0,108)-0,075)/0,075 = 44
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Carne de res, adición alternada de peso. (Figura 4.6.2.)
Límite de proporcionalidad: 61000 [Pa]
Límite elástico: 85000 [Pa]
Límite de rotura: 1647000 [Pa]
Módulo de resiliencia: 3050 [N/m3]
Módulo de tenacidad: 163000 [N/m3]
Estricción:
Y = 100(A-(AF))/A
= 3,1416*(0,0037)2[m2]/4 = 1,075*10-5 [m2]
(AF) = 3,1416*(0,0012)2[m2]/4 = 1,131*10-6 [m2]
Y = 100(1,075*10-5-0,1131*10-5)/1,075*10-5 = 89
A
Alargamiento de rotura:
Q
Q = 100((LF)-l)/l
= 100(0,1207-0,0930)/0,0930 = 30
Los valores correspondientes a las dos condiciones de trabajo en carnes de ganado vacuno y porcino, se
incluyen en la Tabla 4.6.5.
Tabla 4.6.5. Valores de Propiedades Mecánicas Determinadas en Muestras de Carnes de Res y de Cerdo
Sometidas a Tracción
Carne de res
Propiedad
Límite de proporcionalidad [Pa]
Límite elástico [Pa]
Límite de fluencia [Pa]
Límite de rotura [Pa]
Límite de resiliencia [N/m3]
Módulo de tenacidad [N/m3]
Estricción
Alargamiento de rotura
Carne de cerdo
Consecutiva
Alternada
Consecutiva
Alternada
43000
69000
110000
927000
2000
117500
99
44
61000
85000
49000
65000
84000
479000
1500
34000
70
24
90000
140000
1647000
3050
163000
89
30
953000
1800
112000
88
24
Propiedades Mecánicas y Ópticas
153
Según estos resultados, la carne de cerdo es ligeramente más elástica que la carne de res. En los dos casos
los valores de tensión en los cuales se puede considerar un comportamiento elástico son bajos, inferiores a
105 pascales. Al considerar los valores del límite de rotura, módulo de resiliencia y en especial el módulo de
tenacidad, se concluye que la carne de res es más resistente a la acción mecánica que la carne de cerdo. Lo
anterior está de acuerdo con la mayor dureza que presenta en general la carne de res con relación a la carne
de cerdo durante la masticación. Los valores más altos de estricción y alargamiento registrados en la carne de
res, señalan que la carne de res es más resistente a los esfuerzos mecánicos con relación a la carne de cerdo.
El módulo de elasticidad, conocido también como módulo de Young, para las dos condiciones de trabajo se
calculó con la ecuación siguiente:
(MY) = U / ε
Carne de res, adición consecutiva de peso.
(MY) = 7000 [Pa] / 0,013 = 0,54 [MPa]
(MY) = 15000 [Pa] / 0,047 = 0,32 [MPa]
(MY) = 27000 [Pa] / 0,080 = 0,34 [MPa]
(MY) = 43000 [Pa] / 0,093 = 0,46 [MPa]
(MY) = (0,54+0,32+0,34+0,46)/4 = 0,42 [MPa]
Carne de res, adición alternada de peso.
(MY) = 14000 [Pa] / 0,027 = 0,52 [MPa]
(MY) = 28000 [Pa] / 0,035 = 0,80 [MPa]
(MY) = 43000 [Pa] / 0,069 = 0,62 [MPa]
(MY) = 61000 [Pa] / 0,099 = 0,62 [MPa]
(MY) = (0,52+0,80+0,62+0,62)/4 = 0,64 [MPa]
Estos resultados y los obtenidos con los datos de las muestras de carne de cerdo, conforman la Tabla 4.6.6.
Tabla 4.6.6. Valores del Modulo de Young Estimados en Muestras de Carnes de Res y de Cerdo Sometidas
a Tracción
Carne de res
Característica
Módulo de elasticidad o de Young
[MPa]
Carne de cerdo
Consecutiva
Alternada
Consecutiva
Alternada
0,42
0,64
0,96
2,04
Se debe indicar que los valores son referenciales y específicos para las muestras consideradas. El tipo de
músculo, la presencia de tendones, la composición y las características de las muestras con relación a sus
dimensiones, provocan cambios sustanciales en los valores.
BIBLIOGRAFÍA Y REFERENCIAS
Adam, M.; Celba, J. and Havlicek, Z. 1980. Texture of some solid and semisolid foods. In: “Food Process Engineering”. V.1. Linko, P.;
Malkki, Y. Olkku, J. and Larinkari, J. (Eds.). London, England. Applied Science Publishers Ltd. p: 265-273.
Aguilera, J. M. and Stanley, D. W. 1990. “Microstructural Principles of Food Processing & Engineering”. England. Elsevier Science
Publishers Ltd. 343p.
Berry, B. W. 1986. Factors affecting the rheological properties of restructured beef steaks. In: “Food Engineering and Process
Applications”. V.1. Le Maguer, M. and Jelen, P. (Eds.). Essex, England. Elsevier Applied Science Publishers. p: 49-62.
Bourne, M. C. 1982. “Food Texture and Viscosity: Concept and Measurement”. New York. Academic Press, Inc. 325 p.
Juan de Dios Alvarado
El propósito fundamental es indicar la forma cómo los diagramas tensión-deformación pueden ser utilizados
para caracterizar carnes. El uso de equipos automáticos de tracción-compresión o de otros equipos desarrollados
para medir la textura (Bourne, 1982), permitirán mejorar el método y, previa estandarización, obtener datos que
reflejen de mejor manera las propiedades mecánicas de carnes y otros alimentos.
Capítulo 4
154
Charm, S. E. 1981. “The Fundamentals of Food Engineering”. 3rd. ed. Westport, Connecticut. AVI Pub. Co. Inc. p: 544-584.
Muller, H. G. 1977. “Introducción a la Reología de los Alimentos”. Traducido por: Burgos, T. Zaragoza, España. Editorial Acribia.
174 p.
Nash, W. A. 1969. “Teoría y Problemas de Resistencia de Materiales”. Serie de Compendios Schaum. Traducido por: Baratech, M. y
Baratech, F. Bogotá, Colombia. Libros Mc Graw Hill. p: 1-20.
Singer, F. L. 1971. “Resistencia de Materiales”. Traducido por: Torrent, R. y Gutiérrez, A. Madrid, España. Ediciones del Castillo S.
A. p: 19-79.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Stiopin, P. A. 1976. “Resistencia de Materiales”. 2da. ed. Traducido por Gutiérrez Mora, P. Moscú, URSS. Editorial MIR. 368 p.
Propiedades Mecánicas y Ópticas
155
TEMA 4.7. APLICACIÓN DEL ÍNDICE DE REFRACCIÓN PARA
EXPLORAR LA ESTRUCTURA DE ÁCIDOS GRASOS
INTRODUCCIÓN
Swern (1979) comprendió las relaciones entre el índice de refracción y la estructura o composición de los
ácidos grasos y glicéridos de la forma siguiente. Los índices de refracción de las grasas y de los ácidos
grasos se incrementan con el incremento de la longitud de las cadenas hidrocarbonadas, pero la diferencia
entre los miembros adyacentes es menor conforme aumenta su peso molecular. Los índices de refracción de
las grasas y de los ácidos grasos se incrementan con el número de dobles enlaces y con un incremento en la
conjugación. Los índices de refracción de los glicéridos simples son considerablemente mayores que los de sus
correspondientes ácidos grasos. Los índices de refracción de los glicéridos mixtos son, en general, cercanos a
los de las mezclas correspondientes de glicéridos simples. Los índices de refracción de los monoglicéridos son
considerablemente mayores que los de sus correspondientes triglicéridos simples.
En general, los índices de refracción de las grasas naturales están relacionados con su valor promedio de
insaturación en una forma aproximadamente lineal.
Para el caso de aceites frescos de algodón, maní, soja y linaza, Pickering y Cowlishaw (1922) publicaron la
ecuación siguiente.
(IR)40 = 1,4515 + 0,0001171 (IY)
(4.7.1)
Juan de Dios Alvarado
Una de las determinaciones bastante utilizadas para la identificación y control de aceites, es el índice de
refracción, definido como el grado de deflexión de un rayo de luz que pasa de un medio transparente a otro.
Capítulo 4
156
(IR) es el índice de refracción medido a 40C, (IY) es el índice de yodo, que corresponde a los gramos de yodo
que pueden ser fijados por 100 gramos de una sustancia grasa y permite deducir el grado de insaturación.
Otra ecuación de uso general, recomendada Zeleny y Nevstadt (1940), para aceites de linaza y de soja a 25C
es:
(IR)25 = 1,45765 + 0,0001164 (IY)
(4.7.2)
Kirschenbauer (1964) presentó los límites de variación del índice de refracción de numerosos aceites y grasas.
Existen diferencias entre los extractos etéreos obtenidos de una misma especie vegetal y esto dificulta las
comparaciones; sin embargo, los valores registrados en muchos de los casos son similares a los reportados a
igual temperatura por diversos autores. Johnson y Peterson (1974) recopilaron los datos siguientes, obtenidos
por diferentes autores, para manteca de cacao a 40C: Minifie, 1,4560 - 1,4580; Fincke, 1,4565 - 1,4578;
Jensen, 1,4565 - 1,4575.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Los valores determinados en los aceites crudos son apenas inferiores a los de aceites refinados. Lo anterior
se explica por reacciones de oxidación y polimerización que ocurren durante la refinación y que provocan
aumentos en el valor del índice de refracción. Los valores más bajos se presentaron en las grasas fundidas; en
adición, se conoce que al incrementarse la temperatura, el índice de refracción disminuye. Swern (1979) señaló
que la disminución observada en numerosos derivados grasos es del orden de 0,0004/[C].
Según Braverman (1967), los aceites y grasas vegetales son mezclas de triglicéridos, en las que los ácidos
grasos que se esterifican con la glicerina suelen ser distintos entre sí, cumpliendo el principio de máxima
heterogeneidad. Es menos corriente la presencia de dos ácidos grasos iguales y raro el caso de tres ácidos
grasos iguales; lo anterior explica la dificultad de cuantificar la longitud de las cadenas hidrocarbonadas.
Alvarado (1994) intentó una aproximación considerando la composición porcentual de ácidos grasos como
fracción unitaria, multiplicada por su respectivo peso formular. El valor calculado es un peso formular
representativo de los ácidos grasos presentes en el aceite o grasa, y fué considerado como un indicador de
la longitud de las cadenas, pues el efecto de la insaturación es pequeño con relación al número de átomos de
carbono que constituyen la cadena.
OBJETIVOS
En aceites o grasas extraídas de semillas, establecer el efecto de la temperatura sobre el índice de refracción.
Determinar si existe relación entre el índice de refracción y la estructura de los ácidos grasos presentes en
aceites o grasas de consumo humano, con respecto a la longitud de las cadenas y al grado de insaturación.
MATERIALES Y MÉTODOS
Se requiere trabajar, por lo menos, con seis muestras de aceites y cuatro grasas, provenientes de productos
diferentes; en cada caso disponer de 20 ml.
En un refractómetro Abbe medir por triplicado el índice de refracción según lo indicado en la Norma INEN 42
u otro método estandarizado, termostatizando el equipo a intervalos de 10C entre 10 y 80C; la medida en las
grasas se debe realizar desde los 30C con el producto en estado líquido.
En todas las muestras determinar por duplicado los valores del índice de yodo, según el método descrito en la
Norma INEN 37, que se fundamenta en el hecho que cuando se somete a una cantidad de sustancia a la acción
del reactivo de Wijs, se libera el yodo en exceso con yoduro de potasio y se lo titula con tiosulfato de sodio. En
la preparación de reactivos aplicar lo indicado en al Norma INEN 36.
Propiedades Mecánicas y Ópticas
157
CUESTIONARIO
Tabular los valores promedios del índice de refracción, determinados a las distintas temperaturas, para todas
las muestras. Hacer un gráfico temperatura contra índice de refracción y establecer las ecuaciones de regresión
correspondientes a cada producto. Discutir el efecto de la temperatura sobre el índice de refracción.
Consultar la composición de ácidos grasos de las muestras consideradas; calcular los valores del peso formular
promedio y tabularlos con los valores del índice de yodo. Establecer si existe correlación entre: índice de
refracción medido a 40C e índice de yodo, índice de refracción medido a 40C y peso formular promedio.
Discutir la posible aplicación de las ecuaciones de regresión correspondientes, comparándolas con otras
ecuaciones reportadas.
Por técnicas de regresión, establecer una ecuación lineal múltiple que relacione el índice de refracción a 40C
con el índice de yodo y el peso formular promedio, como una medida del peso molecular. Discutir las posibles
aplicaciones.
RESULTADOS EXPERIMENTALES
En la Tabla 4.7.1. se presentan los valores del índice de refracción, determinados a diferentes temperaturas, en
grasas extraídas de catorce productos.
Tabla 4.7.1. Valores del Índice de Refracción Determinados en Aceites y Grasas Vegetales a Diferentes Temperaturas*
Temperatura [C]
10
20
30
40
50
60
70
80
1,4747
1,4776
1,4749
1,4758
1,4770
1,4860
1,4783
1,4752
1,4797
1,4793
1,4708
1,4740
1,4721
1,4722
1,4733
1,4828
1,4747
1,4717
1,4760
1,4757
1,4675
1,4702
1,4686
1,4685
1,4699
1,4790
1,4708
1,4679
1,4724
1,4720
1,4643
1,4667
1,4649
1,4653
1,4661
1,4750
1,4673
1,4643
1,4685
1,4683
1,4602
1,4631
1,4616
1,4632
1,4626
1,4720
1,4636
1,4609
1,4650
1,4648
1,4568
1,4595
1,4578
1,4576
1,4592
1,4680
1,4603
1,4573
1,4615
1,4610
1,4530
1,4558
1,4539
1,4542
1,4553
1,4644
1,4566
1,4538
1,4580
1,4575
1,4499
1,4526
1,4510
1,4506
1,4526
1,4609
1,4530
1,4503
1,4548
1,4541
1,4614
1,4538
1,4620
1,4539
*
Valores promedios de dos muestras por triplicado.
1,4576
1,4502
1,4590
1,4505
1,4541
1,4463
1,4546
1,4465
1,4505
1,4426
1,4514
1,4430
1,4468
1,4388
1,4477
1,4393
1,4434
1,4357
1,4442
1,4356
Aceites
Aguacate
Ajonjolí
Algodón
Chocho
Girasol
Linaza
Maíz
Maní
Maracuyá
Soja
Grasas
Cacao
Coco
Palma
Palmisto
Se trabajó con diez aceites vegetales provenientes de: Aguacate variedad Guatemalteco (Persea americana).
Ajonjolí (Sesamun indicum). Algodón (Gossypium hirsutum). Chocho (Lupinus mutabilis). Girasol (Elianthus
annuus). Linaza (Linum usitatissimum). Maíz, gérmen (Zea mays). Maní (Arachis hypogaea). Maracuyá,
semillas de la variedad Amarilla (Passiflora edulis). Soja (Glycine max). Cuatro grasas vegetales provenientes
de: Cacao, (Theobroma cacao). Coco (Coco nucifera). Palma, proveniente de la pulpa (Elaeis guineensis).
Palmisto, proveniente de la almendra (Elaeis guineensis).
Las muestras se obtuvieron por extracción en equipos soxhlet, utilizando hexano como solvente, previa
deshidratación de la materia prima.
Según se observa en la Figura 4.7.1., los valores del índice de refracción disminuyen conforme la temperatura
se incrementa. Los aceites presentan valores más altos, destacándose el aceite de linaza; los valores más bajos
corresponden a las grasas, en especial coco y palmisto.
Juan de Dios Alvarado
Producto
Capítulo 4
158
Las relaciones lineales parecen ser adecuadas para describir los cambios del índice de refracción con la
temperatura. En la Tabla 4.7.2. se presentan los términos de regresión y los coeficientes de correlación, que
al ser próximos a -1,00, confirman la alta asociación lineal entre estas dos variables. Los valores de las
pendientes son prácticamente iguales y confirman lo indicado por Swern (1979); el índice de refracción en
todos los casos aquí considerados disminuye 0,0004 unidades por cada grado centígrado de incremento.
La composición de ácidos grasos, como muchas de las propiedades químicas de los alimentos, es variable;
sin embargo, existen publicaciones como Masson y Mella (1985); Kirschenbauer (1964), que reportan la
composición porcentual de ácidos grasos en un elevado número de aceites y grasas.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Para las muestras consideradas, Navas y colaboradoras (1988) determinaron por cromatografía de gases
la composición porcentual de los ácidos grasos principales. Los resultados se incluyen en la Tabla 4.7.3.,
conjuntamente con los valores determinados del índice de yodo y el peso formular promedio o representativo.
Figura 4.7.1. Cambiio de los valores del índice de refracción con la temperatura en aceites y
grasas vejetales
Propiedades Mecánicas y Ópticas
159
Para el caso del aceite de aguacate, el peso formular promedio se calcula de la manera siguiente:
Ácido graso
Palmítico
Palmitoleico
Esteárico
Oleico
Linoleico
Linolénico
Peso formular
256,41
254,40
284,46
282,45
280,44
278,43
Porcentaje como fracción
0,152
0,055
0,006
0,701
0,080
0,006
38,97
13,99
1,71
198,00
22,44
1,67
───
276,78
Peso formular promedio:
Tabla 4.7.2. Términos de la Ecuación Lineal de Regresión y Coeficientes de Correlación Establecidos entre
el Índice de Refracción y la Temperatura en Aceites y Grasas Vegetales
Producto
Aceites
Aguacate
Ajonjolí
Algodón
Chocho
Girasol
Linaza
Maíz
Maní
Maracuyá
Soja
Grasas
Cacao
Coco
Palma
Palmisto
(IR) = r’ - s’ (T)
r2
r’
s’
1,4782
1,4811
1,4789
1,4796
1,4804
1,4898
1,4818
1,4787
1,4831
1,4829
3,5571*10-4
3,5917*10-4
3,5000*10-4
3,5857*10-4
3,5286*10-4
3,6155*10-4
3,6048*10-4
3,5595*10-4
3,5774*10-4
3,6179*10-4
0,999
1,000
0,999
0,995
0,999
0,999
1,000
1,000
0,999
1,000
1,4721
1,4647
1,4730
1,4650
3,6000*10-4
3,6686*10-4
3,6029*10-4
3,6743*10-4
1,000
0,999
0,998
1,000
T en C.
Al correlacionar los valores del índice de refracción medido a 40C, con los valores del índice de yodo para las
catorce muestras consideradas, se estableció una asociación muy alta (r=0,965). En consecuencia, el grado de
insaturación de un aceite o grasa definido por el número de dobles enlaces presentes en las cadenas de ácidos,
puede ser estimado a partir del índice de refracción.
Lo anterior es de interés práctico en tecnología de alimentos, pues la medida del índice de refracción es rápida y
fácil: requiere poca cantidad de muestra y resulta económica con relación a la determinación química del índice
de yodo, en especial por los reactivos y tiempo utilizado.
La ecuación de regresión establecida es:
(IR) = 1,4508 + 1,3622*10-4 (IY)
(4.7.3)
Una menor asociación se estableció al relacionar el índice de refracción medido a 40C, con el peso formular
promedio de los ácidos grasos presentes en los aceites y grasas (r=0,849). La ecuación de regresión siguiente
confirma que el índice de refracción se incrementa con la longitud de las cadenas:
(IR)40 = 1,3939 + 2,6042*10-4 (PM)
(4.7.4)
Las ecuaciones que calculan una variable a partir de dos o más variables dependientes se denominan de
regresión múltiple, y son útiles en alimentos para establecer la influencia de diferentes componentes sobre
una propiedad. El grado de relación existente entre tres o más variables está definido por el coeficiente de
Juan de Dios Alvarado
La ecuación anterior es semejante a la de Pickering y Cowlishaw (4.7.1).
Capítulo 4
160
correlación múltiple. Saltos (1986) presentó ejemplos de aplicación en alimentos.
Como ilustración, con los datos presentados se estableció una ecuación de regresión múltiple, que considera
como variables independientes al índice de yodo y al peso formular promedio, y como variable dependiente
al índice de refracción medido a 40C en las catorce muestras. Esta relación presentó un coeficiente de
correlación múltiple de r=0,975, que permite confirma el alto grado de asociación que existe entre las variables
consideradas.
(IR)40 = 1,4284 + 1,0420*10-4 (IY) + 9,5140*10-5 (PM)
(4.7.5)
Tabla 4.7.3. Composición Porcentual de Ácidos Grasos Principales, Índice de Yodo y Peso Formular Promedio de Aceites
y Grasas Vegetales
Ácidos grasos [%]
Palmítico
Esteárico
Oleico
Linoleico
Linolénico
15,2
11,5
25,4
17,8
17,6
7,4
17,5
21,7
10,1
18,6
0,6
2,6
1,1
5,8
4,0
2,4
1,2
1,2
1,1
1,9
70,1
31,2
15,9
47,3
31,9
12,1
20,9
38,0
8,0
14,1
8,0
54,0
55,9
27,7
46,5
13,3
60,4
39,1
80,1
60,7
0,6
38,2
11,8
53,3
4,7
26,7
1,6
2,6
1,3
32,8
6,0
35,0
9,0
2,3
1,2
7,5
0,6
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Producto
Aceites
Aguacate
Ajonjolí
Algodón
Chocho
Girasol
Linaza
Maíz
Maní
Maracuyá
Soja
Grasas
Cacao
Coco
Palma
Palmisto
1,4
64,8
4,5
Índice
de Yodo
[cg/g]
Peso
molecular
representativo
calculado
73
110
109
93
132
180
115
93
138
132
276,78
278,23
273,83
277,32
277,01
277,70
276,70
276,04
278,04
276,19
41
12
49
17
272,99
214,42
267,61
213,96
Además de los ácidos indicados, se consideraron los ácidos grasos siguientes que están presentes en los
aceites y grasas. Aguacate: palmitoleico, 5,5. Ajonjolí: palmitoleico, 0,7. Algodón: laúrico, 0,5; mirístico,
0,6; palmitoleico, 0,6. Maracuyá: palmitoleico, 0,7. Soja: palmitoleico, 0,2. Coco: caprílico, 8,5; cáprico,
5,2; láurico, 42,6; mirístico, 23,1. Palma: mirístico, 1,6. Palmisto: caprílico, 1,9; cáprico, 2,3; láurico, 66,9;
mirístico, 13,3.
*
BIBLIOGRAFÍA Y REFERENCIAS
Alvarado, J. de D. 1994. Propiedades físicas de aceites y grasas vegetales: Efecto de la composición y de la
temperatura. I Congreso Internacional y X Congreso Nacional de Ingeniería Bioquímica. Instituto Politécnico
Nacional, México. C06.
Braverman, J. 1967. “Introducción a la Bioquímica de los Alimentos”. Traducido por Sanz Pérez y Burgos
Gonzáles. Barcelona, España. Ediciones Omega. p:255-273.
INEN. 1973. Grasas y Aceites Comestibles. Preparación de la solución de Wijs. Quito, Ecuador. Instituto
Ecuatoriano de Normalización. Norma INEN 36. 6 p.
INEN. 1973. Grasas y Aceites Comestibles. Determinación del índice de yodo. Quito, Ecuador. Instituto
Ecuatoriano de Normalización. Norma INEN 37. 6 p.
INEN. 1973. Grasas y Aceites Comestibles. Determinación del índice de refracción. Quito, Ecuador. Instituto
Ecuatoriano de Normalización. Norma INEN 42. 7 p.
Propiedades Mecánicas y Ópticas
161
Johnson, A. H. and Peterson, M. S. 1974. “Encyclopedia of Food Technology”. V.2. Westport, Connecticut,
AVI Pub. Co. Inc. p: 389-396.
Kirschenbauer, H. G. 1964. “Grasas y Aceites. Química y Tecnología”. Traducido por Gurza Bracho. México.
Editorial Continental. p: 247-249.
Masson L. y Mella M. A. 1985. “Materias Grasas de Consumo Habitual y Potencial en Chile. Composición
en Ácidos Grasos”. Santiago, Chile. Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile.
31 p.
Navas G.; Santamaría P. y Meléndez M. 1988. Contenido de ácidos grasos en aceite de chocho y otras grasas
y aceites vegetales. IV Jornadas Ecuatorianas de Ciencia y Tecnología de Alimentos. Facultad de Ciencia e
Ingeniería en Alimentos, Universidad Técnica de Ambato. 12 p.
Pickering, G. F. and Cowlishaw, G. E. 1922. J. Soc. Chem. Ind., 41:74.
Saltos, H. A. 1986. “Estadística de Inferencia”. Ambato, Ecuador. Editorial Pio XII. p:144-167.
Swern, D. 1979. “Bailey’s Industrial Oil and Fat Products”. 4th. ed. V.1. Ch.3. New York. Interscience Pub.,
John Wiley & Sons. p: 177-232.
Juan de Dios Alvarado
Zeleny, L. and Nevstadt, M. H. 1940. U. S. Dept. Agric., Tech. Bulletin,
Propiedades Reológicas
175
Juan de Dios Alvarado
5. Propiedades Reológicas
Capítulo 5
176
5. PROPIEDADES REOLÓGICAS
Los fluidos constituyen la mayor parte de los alimentos que ingiere el hombre; los adultos consumen más
productos líquidos y pastosos que alimentos sólidos por la facilidad de ingestión y digestión; en los niños y
recién nacidos la importancia de los alimentos fluidos y particularmente líquidos es fundamental.
Cuando un alimento se procesa, el mismo está sujeto a un movimiento constante; en la práctica es muy difícil
pensar en un producto que no requiera movilización.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Se atribuye el uso de la palabra Reología al Profesor Crawford, quien la utilizó para definir a la ciencia del
flujo. En el momento actual se acepta que la Reología es la ciencia dedicada al estudio de la deformación y el
flujo; su desarrollo, en especial durante los últimos años, es notorio. Merece destacarse el trabajo del Profesor
Prentice, relacionado con la reología de productos alimentarios y su medida.
Varias son las razones para determinar las propiedades reológicas de alimentos. Son básicas en la ingeniería de
procesos para el diseño de plantas, en el cálculo de requerimientos de bombeo; para establecer las dimensiones
de tuberías y válvulas; para realizar mezclas; además, se utilizan en el cálculo de operaciones básicas con
transferencia de calor, masa y cantidad de movimiento. También se aprovechan para control instrumental de
calidad del material crudo previo al procesamiento, de productos intermedios durante la manufactura, y de los
productos finales después de la producción. Sirven para evaluar la calidad preferida por el consumidor por
medio de correlaciones entre las medidas reológicas y pruebas sensoriales. Permiten elucidar la estructura o
composición de alimentos y analizar los cambios estructurales que ocurren durante un proceso.
Se definen a los fluidos como las sustancias que fluyen sin desintegrarse cuando se aplica una presión, lo cual
incluye a gases, líquidos y ciertos sólidos. En especial, para el caso de los líquidos se requieren diferentes
esfuerzos de cizalla, para permitir que las moléculas de una capa pasen a otra a cierta velocidad. La relación
entre el esfuerzo de cizalla requerido para inducir una determinada velocidad de deformación en cizalla,
caracteriza el comportamiento reológico de un fluido.
En los fluidos llamados newtonianos, el esfuerzo de cizalla es directamente proporcional a la velocidad de
deformación en cizalla o, abreviadamente, velocidad de cizalla y la constante de proporcionalidad corresponde
a la viscosidad. Muchos fluidos alimentarios se desvían de este comportamiento; pertenecen al grupo de los
fluidos no-newtonianos, en los cuales el término índice de consistencia es equivalente a una viscosidad nonewtoniana. Pero para definir el flujo se requiere de otros términos: el índice de comportamiento al flujo y, en
ciertos casos, el esfuerzo de fluencia (tensión mínima de deformación o umbral de fluencia).
En este capítulo se desarrollan cuatro temas: el primero sobre la viscosidad de alimentos que presentan
características de fluidos newtonianos. Los temas restantes tienen relación con fluidos no-newtonianos. Se
presenta información sobre productos lácteos y pulpas de frutas, en especial de pulpa de bananos.
NOMENCLATURA DEL CAPITULO 5
a
a’
A
= número de observaciones
= coeficiente de la ecuación de Fernández-Martín (5.1.28)
= área [m2]
A0, A1, A2
(AC)
(AT)
b’
B0, B1, B2
(BR)
(BT)
c
c’
C0, C1, C2
d
(DF)
e
(EA)
f
f’
F
(FS)
g’
h
h’
i
i’
j
j’
k
k’
K
K’
K*
(KV)
l’
L
n
N
P
r
r2
R
(RG)
S
t

T
(TA)
U
U’
(UF)
(UFB)
v
v*
V
(VA)
= coeficientes de la ecuación de Fernández-Martín (5.1.29)
= área de una sección tubular [m2]
= presión tangencial [N/m2]
= coeficiente de la ecuación de Fernández-Martín (5.1.28)
= coeficientes de la ecuación de Fernández-Martín (5.1.29)
= grados Brix
= coeficiente tixotrópico de ruptura [N.s/m2]
= esfuerzo de fluencia [Pa]
= constante de la ecuación de Fernández-Martín (5.1.28)
= coeficientes de la ecuación de Fernández-Martín (5.1.29)
= diferencia
= densidad de un fluido [kg/m3]
= base de los logaritmos naturales (2,7182818)
= energía de activación [J/g.mol]
= factor para calcular el esfuerzo de fluencia
= coeficiente de la ecuación (5.1.31)
= fuerza [N]
= lectura en el viscosímetro como porcentaje de la escala total
= coeficiente de la ecuación (5.1.32)
= altura [m]
= coeficiente de la ecuación de Kubota y colaboradores (5.1.33)
= coeficiente de las ecuaciones para calcular la viscosidad de jugos de frutas cítricas
= exponente de la ecuación (5.1.31)
= coeficiente de las ecuaciones para calcular la viscosidad de jugos de frutas cítricas
= coeficiente de la ecuación (5.1.32)
= constante para calcular el índice de consistencia [Pa.sn]
= coeficiente de la ecuación de Kubota y colaboradores (5.1.33)
= índice de consistencia [Pa.sn]
= término de la ecuación de Casson [(Pa.s)0,5]
= constante de un viscosímetro [m]
= constante del resorte de un viscosímetro Brookfield LV [673,7*10-7 N.m]
= coeficiente de la ecuación de Flores Luque y colaboradores (5.1.34)
= longitud [m]
= índice de comportamiento al flujo [sin dimensiones]
= velocidad de rotación [revoluciones por minuto [rpm]]
= presión [Pa]
= distancia radial [m]
= coeficiente de determinación
= radio [m]
= constante de los gases [8,314 J/g.mol.K]
= contenido de sólidos totales [g/100 g]
= tiempo [s]
= valor de la distribución de Student con (a - 2) grados de libertad
= temperatura [C]
= temperatura absoluta [K]
= viscosidad medida a la menor velocidad de rotación de un viscosímetro [Pa.s]
= viscosidad medida a la velocidad siguiente a la menor velocidad de rotación de un viscosímetro
[Pa.s]
= esfuerzo de fluencia o umbral de fluencia [dina/cm2]
= esfuerzo de fluencia Brookfield, extrapolado [Pa]
= velocidad [m/s]
= velocidad promedio [m/s]
= velocidad angular [rad/s]
= viscosidad de aceites [Pa.s]
177
Juan de Dios Alvarado
Propiedades Reológicas
Capítulo 5
178
(VJ)
(VL)
w
W
x
X
X1
X2
X3
Y
z
Z
= viscosidad de jugos [Pa.s]
= viscosidad de leches [Pa.s]
= peso [kg]
= razón de flujo volumétrico [m3/s]
= distancia [m]
= suma definida por la ecuación (5.2.17)
= suma definida por la ecuación (5.2.14)
= suma definida por la ecuación (5.2.15)
= suma definida por la ecuación (5.2.16)
= suma definida por la ecuación (5.2.18)
= pendiente
= suma definida por la ecuación (5.2.19)
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Letras griegas
α
β
γ
δ
μ
π
τ
τ*
Υ
Ω
= relación entre el radio del recipiente y el radio del rotor [sin dimensiones]
= intervalo de confianza de n, definido por la ecuación (5.2.21)
= intervalo de confianza de K, definido por la ecuación (5.2.26)
= espacio anular [m]
= viscosidad [Pa.s]
= 3,1416
= esfuerzo de cizalla o esfuerzo cortante [Pa]
= esfuerzo de cizalla sobre el rotor [Pa]
= velocidad de deformación en cizalla o velocidad de cizalla [1/s]
= torque [N.m]
Subíndices
a
b
c
F
g
i
n
s
w
= adaptador de un viscosímetro
= rotor de un viscosímetro
= corregido
= aparente, ficticia
= referencia
= interior
= newtoniano
= seudoplástico
= pared
0
1
= en el punto de corte en ordenadas o condición 0
= en el punto 1
Propiedades Reológicas
179
TEMA 5.1. APLICACIÓN DE LA VISCOSIDAD PARA DETERMINAR
LA ENERGÍA DE ACTIVACIÓN DE FLUJO EN LECHES, JUGOS Y
ACEITES
INTRODUCCIÓN
Charm (1981) indicó que la consistencia de un fluido es la propiedad que gobierna sus características de
flujo. Aquellos fluidos que mantienen la consistencia constante de manera independiente de la velocidad son
conocidos como newtonianos.
La ecuación de Poiseuille es extensamente aplicada en viscometría con tubo capilar para fluidos newtonianos.
Toledo (1981) citó su derivación en la forma siguiente:
F = (P1-P2) (πr2)
(5.1.1)
El esfuerzo cortante τ en un tubo de radio r, desde el centro del tubo, será la fuerza dividida por el área
superficial de un cilindro con un radio r y longitud L.
τ=F/2πrL
Por reemplazo:
(5.1.2)
Juan de Dios Alvarado
Si se considera a un fluido que fluye a través de un tubo, la fuerza que tiene que ser aplicada sobre el fluido
para que fluya, es representada por la diferencia de presiones (P1-P2), multiplicada por el área de la sección
transversal del tubo.
Capítulo 5
180
τ = (P1-P2)(πr2)/2πrL = (P1-P2)r/2L
(5.1.3)
La ley de Newton de la viscosidad para fluidos incomprensibles y newtonianos puede ser escrita como:
τ = -μ(dv/dr)
(5.1.4)
Siendo μ la viscosidad, v la velocidad y r el radio; reemplazando:
(P1-P2)r/2L = -μ(dv/dr)
(5.1.5)
Al despejar dv se obtiene:
dv = -(P1-P2)(rdr)/2Lμ
(5.1.6)
Para las condiciones límites r=R; v=0:
v
r
∫ 0 dv = (-(P -P )/2Lμ) ∫ Rr dr
1
(5.1.7)
2
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
v = (P1-P2)(R2-r2)/4Lμ
(5.1.8)
La velocidad promedio se determina considerando el volumen que fluye a través de una sección cilíndrica de
radio dr e integrando este volumen para el radio total del tubo:
(AC) = 2 π r dr
(5.1.9)
El volumen que fluye a través de la sección diferencial es:
dW = v (AC) = v (2 π r dr)
(5.1.10)
Siendo W la razón de flujo volumétrico, integrando:
W = v (2π) r
R
∫ r dr
(5.1.11)
Sin embargo, W también es igual a la velocidad promedio v* multiplicada por el área de la sección cruzada
del tubo:
W = v* (π R2)
(5.1.12)
Lo que permite establecer:
R
∫ 0 dr
(5.1.13)
v* = (2π/π R2) v r R dr
0
(5.1.14)
v* (π R2) = v (2π) r
∫
Al reemplazar v, definida por la ecuación (5.1.8):
R
∫ 0 (P -P ) (R -r ) r dr / 4 L μ
R
v* = (2(P -P )/4LμR ) ∫ 0 (R r-r ) dr
(5.1.16)
v* = ((P1-P2)/2LμR2)(R4/4)
(5.1.17)
v* = (2/R2)
2
1
2
1
2
2
2
2
3
(5.1.15)
Propiedades Reológicas
v* = (P1-P2) R2 / 8 L μ
181
(5.1.18)
Si (P1-P2)=ΔP:
v* = ΔP R2 / 8 L μ
(5.1.19)
Que es la ecuación de Poiseuille y es la base para la operación de los viscosímetros de tubo y capilares. En el
caso de viscosímetros capilares, la presión necesaria para inducir el flujo se genera por la altura h disponible
para la caída libre del fluido; entonces:
ΔP = (DF)h
(5.1.20)
(DF) la densidad del fluido, por reemplazo, se obtiene:
v* = (DF) h R2 / 8 L μ
(5.1.21)
Si el tiempo requerido por el viscosímetro para descargar un volumen fijo de fluido es t, entonces:
v* = L / t
(5.1.22)
Al reemplazar:
L / t = (DF) h R2 / 8 L μ
(5.1.23)
Si se despeja la viscosidad:
μ = (DF) h R2 t / 8 L2
(5.1.24)
Para un viscosímetro dado, h, R2 y 8L2 son constantes; en consecuencia, la expresión puede ser escrita en la
forma siguiente:
μ = K*(DF)t
(5.1.25)
Donde K* es la constante del viscosímetro, que se determina mediante una prueba con un fluido (agua) de
viscosidad y densidad conocidas, registrándose el tiempo de flujo para una temperatura dada. Luego se repite
la prueba con el fluido bajo consideración de densidad conocida.
Según Rao (1977), durante el procesamiento, almacenamiento, transporte, comercialización y consumo de
alimentos líquidos, se registran diferentes temperaturas; por esta razón sus propiedades reológicas se estudian
como función de la temperatura. Con pocas excepciones, el efecto de la temperatura sobre la viscosidad se
expresa por la ecuación.
μ = μ0 e(EA)/(RG)(TA)
(5.1.26)
ln μ = ln μ0 + ((EA) / (RG)(TA))
(5.1.27)
Donde (EA) es la energía de activación, (RG) es la constante de los gases, (TA) es la temperatura absoluta y
μ0 es una constante.
Leches
Rao (1977), señaló que a pesar de su naturaleza compleja, la leche normal se comporta como un líquido
Juan de Dios Alvarado
Que linealizada corresponde a:
Capítulo 5
182
newtoniano. Indicó que Cox (1952) y Fernández-Martín (1972), entre otros investigadores, establecieron
independientemente que la viscosidad de la leche depende de la temperatura, la concentración y el estado
físico de la grasa y proteínas. Este, a su vez, es afectado por los tratamientos térmicos y mecánicos.
Con relación a la concentración, Harper y Hall (1976) indicaron que en leches hay un incremento en la
viscosidad, con un incremento del contenido de sólidos y con una disminución de la temperatura. Presentaron
los gráficos de Peeples, en los que se puede apreciar que, a mayor contenido de grasa y de sólidos no grasos,
la viscosidad se incrementa.
Fernández-Martín (1972) reportó que el efecto de la temperatura sobre la viscosidad puede ser descrito por
ecuaciones de segundo grado, del tipo.
log (VL) = a’ + b’ T + c’ T2
(5.1.28)
También estableció una ecuación general que relaciona a la viscosidad, en centipoises, con la temperatura, T
en [C] y los sólidos totales S.
log (VL) = A0+A1T+A2T2+(B0+B1T+B2T2)S+(C0+C1T+C2T2)S2
(5.1.29)
Donde:
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
A0 = 0,2490. A1 = - 0,013. A2 = 0,000052.
B0 = 0,02549. B1 = - 0,000098. B2 = 0,0000004.
C0 = 0,000543. C1 = - 0,0000139. C2 = 0,000000117.
Jugos
Rao y colaboradores (1984), de acuerdo con varios autores, señalaron que el conocimiento del comportamiento
de flujo de jugos concentrados de frutas se utiliza en control de calidad, evaluación sensorial y aplicaciones de
ingeniería relacionadas con el procesamiento y manejo de alimentos; en el último caso, el conocimiento de los
modelos de flujo aplicables, es necesario para el diseño de sistemas de transporte de fluidos y otras operaciones.
El efecto de la concentración y de la temperatura sobre las propiedades del fluido debe ser conocido para
entender operaciones unitarias como evaporación y transferencia de calor.
En varias tecnologías aplicadas a jugos de frutas, es práctica común la preparación de jarabes por adición
de sacarosa. Al respecto, Rao (1977) reportó que las soluciones de azúcar presentan un comportamiento
newtoniano; se ha sugerido que estos datos de viscosidad pueden ser utilizados como estándares. En soluciones
de azúcar se ha establecido que el logaritmo de la viscosidad y la concentración de sólidos están asociados
linealmente.
Con relación a jugos de frutas, Costell y Durán (1982) consideraron que todos los productos líquidos derivados
de fruta son básicamente sistemas bifásicos, compuestos por partículas sólidas dispersas en un medio acuoso.
En el caso de los zumos obtenidos por expresión, señalaron que el comportamiento reológico de los zumos y
concentrados de frutas cítricas tiene una estrecha relación con el contenido y tipo de pectinas, y el contenido en
pulpa; la magnitud de la influencia de cada una de estas características dependerá de la interacción entre ambas,
según la composición de cada producto.
Ibarz y colaboradores (1987) señalaron que los jugos de manzana y pera presentaron un comportamiento
newtoniano, al igual que sus concentrados hasta 71Brix. El mismo comportamiento fue establecido en jugos
naturales tamizados de doce frutas por Alvarado y Romero (1991).
Se conoce que el efecto de la temperatura sobre la viscosidad de jugos es descrito por la ecuación tipo Arrhenius:
(VJ) = μ0 exp ((EA)/(RG)(TA))
(5.1.30)
Donde (VJ) es la viscosidad del jugo, μ0 es una constante, (EA) es la energía de activación de flujo, (RG) es la
Propiedades Reológicas
183
constante de los gases [8,314 J/g.molK] y (TA) es la temperatura absoluta.
Rao y colaboradores (1984), combinaron los efectos de la concentración y temperatura, con el propósito de
obtener ecuaciones simples para el cálculo de la viscosidad. El modelo tipo potencial:
(VJ) = f’ (BR)i’ exp ((EA)/(RG)(TA))
(5.1.31)
El modelo tipo exponencial:
(VJ) = g’ exp (j’(BR)) exp ((EA)/(RG)(TA))
(5.1.32)
Los valores de f’, i’ y (EA) se determinan por análisis de regresión lineal múltiple, al igual que los valores de
los coeficientes g’, j’ y (EA).
Por otro lado, ecuaciones empíricas de regresión múltiple fueron reportadas en otros alimentos fluidos, que
relacionan la viscosidad con algún componente y con la temperatura (Bakshi y Smith, 1984).
Aceites
Flores Luque y colaboradores (1982) señalaron que en tratados antiguos sobre aceites se indicó que la viscosidad
aumenta con el peso molecular de los ácidos grasos y disminuye con el grado de insaturación; además, depende
de la distribución de los ácidos grasos en los triglicéridos.
Según Swern (1979), las viscosidades relativamente altas de los aceites, superiores a las del agua, se deben a
las atracciones intermoleculares de las cadenas largas de ácidos grasos que constituyen los triglicéridos. En
general, la viscosidad de los aceites decrece ligeramente con un incremento en la insaturación. La hidrogenación
provoca un pequeño aumento de la viscosidad. Los aceites que contienen ácidos grasos de bajo peso molecular
son ligeramente menos viscosos que los aceites de un grado de insaturación equivalente que contienen ácidos
grasos de alto peso molecular.
Como en otros líquidos, en los aceites la viscosidad disminuye cuando la temperatura se incrementa. En
términos generales existe una relación aproximadamente lineal entre el logaritmo de la viscosidad y la
temperatura. En base a datos experimentales, diversas ecuaciones se han propuesto para calcular la viscosidad
de aceites como función de la temperatura.
Kubota y colaboradores (1982) determinaron la viscosidad de ocho aceites vegetales, y estudiaron la aplicación
de varios modelos matemáticos utilizados para calcular la viscosidad como función de la temperatura; entre
10 y 60C establecieron que el mejor ajuste con los datos experimentales se obtuvo con la ecuación:
(VA) = h’ exp (k’/(TA)3)
(5.1.33)
Flores Luque y colaboradores (1982) trabajaron con aceites de oliva, girasol y soja crudos, durante la
refinación y refinados. Señalaron que las variaciones de la viscosidad con la temperatura absoluta se ajustaron
satisfactoriamente a la ecuación:
ln ((VA)/(VA)(20)) = -l’((TA)-293,2)/((TA)-151)
(5.1.34)
Presentaron valores globales de la viscosidad a 20C, (VA)(20), en [mPa.s] y del parámetro l’, que permiten
calcular la viscosidad de los aceites a diferentes temperaturas que son comunes durante su procesamiento,
expresadas en [K]. Para girasol, oliva y soja los valores respectivos son: (VA)(20) 66, 79 y 60; l’ 6,37, 6,70 y
6,19.
Juan de Dios Alvarado
Los autores reportaron los valores de los parámetros h’ y k’ para calcular la viscosidad en [g/cm.s], cuando se
expresa la temperatura en [K].
Capítulo 5
184
Al igual que en los otros fluidos alimenticios considerados, el modelo de Arrhenius es adecuado para describir
el efecto de la temperatura sobre la viscosidad de aceites. Alvarado (1995) presentó datos de la energía
de activación obtenidos en doce aceites y tres grasas vegetales; los valores de las grasas fundidas fueron
ligeramente superiores a los de aceites, excepto el aceite de higuerilla (ricino) que presentó el valor más alto,
45,0 [kJ/mol]. Los límites inferior y superior se registraron en aceite de linaza, 22,2 [kJ/mol], y grasa de la
almendra de palma africana, 33,1 [kJ/mol]; respectivamente.
OBJETIVOS
Revisar conocimientos básicos sobre la viscosidad.
Determinar los valores de la viscosidad a diferentes temperaturas, en muestras de leche cruda y con la adición
de lactosa, jugos de frutas y de otros vegetales, y aceites.
Establecer ecuaciones para calcular la viscosidad como función de la temperatura.
Determinar los valores de la energía de activación para producir flujo.
MATERIALES Y MÉTODOS.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Trabajar con leche cruda de vaca y con adición de lactosa a dos niveles 5 y 10% (w/w), jugos filtrados de frutas
y aceites vegetales crudos.
Determinar el contenido de sólidos totales en las muestras de leche por desecación en estufa a 103C por tres
horas, previo calentamiento en baño de agua por treinta minutos. Con un refractómetro Abbe medir el índice
de refracción a 20 y 40C en los jugos y aceites, respectivamente.
Registrar el tiempo de flujo a distintas temperaturas, utilizando viscosímetros tipo Ostwald y agua destilada
como referencia. Antes de cada determinación lavar el viscosímetro de cristal con mezcla sulfocrómica y
secar con acetona y corriente de aire. Crosby (1968) presentó varias recomendaciones adecuadas para medir
la viscosidad.
En los jugos de frutas y en los aceites comprobar el comportamiento newtoniano; utilizar un viscosímetro
rotacional con el adaptador para muestras pequeñas, que corresponda a la geometría de cilindros concéntricos
de abertura estrecha.
CUESTIONARIO
Definir los términos: viscosidad absoluta, viscosidad cinemática y viscosidad relativa; establecer los factores
de transformación de unidades entre los sistemas inglés, cegesimal e internacional.
Consultar y reportar estudios relacionados con la viscosidad de leches y de productos de lechería, de jugos y de
aceites. ¿Cuál es la influencia de los constituyentes y de la temperatura?.
Consultar los valores de la densidad y de la viscosidad del agua a las temperaturas de trabajo, y de la densidad
de los fluidos considerados. Con la ecuación (5.1.25) establecer los valores de la viscosidad para todas las
temperaturas y expresarlos en [Pa.s].
Para las muestras de leche, hacer un gráfico de viscosidad [Pa.s] contra temperatura [C]. Incluir el gráfico
resultante de la aplicación de la ecuación de Fernández-Martín (5.1.29) y el de leche entera reportado por
Peeples, previa transformación de unidades; comparar las curvas y discutirlas. Por regresión, establecer las
ecuaciones para calcular la viscosidad como función de la temperatura.
Propiedades Reológicas
185
Construir gráficos según la ecuación de Arrhenius, discutir su aplicación en el caso de las muestras de leche.
Calcular los valores de la energía de activación, compararlos con otros publicados y señalar sus aplicaciones.
Para el caso de jugos y aceites, hacer gráficos que relacionen la viscosidad con la temperatura y establecer las
ecuaciones que describan la función. Comparar los resultados con los establecidos según otras ecuaciones
reportadas para jugos de frutas o aceites, y discutirlos.
Determinar los valores de la energía de activación para flujo, mediante graficación y aplicación de la ecuación
de Arrhenius. Discutir los resultados por comparación con valores publicados para jugos y productos grasos.
RESULTADOS EXPERIMENTALES
Leches
En la Tabla 5.1.1. se presentan los resultados obtenidos en muestras de leche cruda de vaca y con la adición
de 5 y 10% de lactosa, para establecer su efecto, sobre los valores de la viscosidad determinados a diferentes
temperaturas.
El contenido de grasa de la muestra original fue 3,8 [g/100 g]; sólidos totales, expresado en [g/100 g], 12,7 para
la muestra original, 17,0 para la muestra con la adición de 5% de lactosa, y 20,3 para la muestra con la adición
de 10% de lactosa.
Tabla 5.1.1. Viscosidad de Muestras de Leche de Vaca con Distinto Contenido de Sólidos Totales a Diferentes Temperaturas*
Temperatura
[C]
[K]
Viscosidad [mPa.s]
[1/K]10
10
283,2
15
288,2
20
293,2
298,2
25
30
303,2
35
308,2
313,2
40
45
318,2
50
323,2
55
328,2
333,2
60
* Valores promedios de dos determinaciones.
3,53
3,47
3,41
3,35
3,30
3,24
3,19
3,14
3,09
3,05
3,00
3
12,7% sólidos
17,0% sólidos
20,3% sólidos
2,25
1,98
1,68
1,50
1,34
1,20
1,02
0,91
0,88
0,81
0,70
2,69
2,29
1,92
1,66
1,47
1,27
1,08
0,99
0,95
0,86
0,74
2,93
2,48
2,03
1,83
1,56
1,45
1,25
1,17
1,09
1,01
0,84
Al graficar los valores de la viscosidad a diferentes temperaturas, según se observa en la Figura 5.1.1., es fácil
comprobar que los valores de la viscosidad se incrementan conforme aumenta el contenido de sólidos totales
por adición de lactosa; las diferencias son mayores a temperaturas bajas, conforme aumenta la temperatura;
disminuyen las diferencias debidas al contenido de sólidos.
Juan de Dios Alvarado
Se trabajó con agua destilada como referencia para calibrar los viscosímetros tipo Ostwald y definir las
constantes de los viscosímetros. Los valores de la densidad y de la viscosidad del agua corresponden a los
reportados por Heldman y Singh (1981). Los valores de la densidad de las leches fueron calculados con la
aplicación de las ecuaciones propuestas por Alvarado (1987), para establecer los valores de la viscosidad con
la ecuación (5.1.25).
Capítulo 5
186
Figura 5.1.1. Viscosidad de muestra de leche de vaca a diferentes temperaturas
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Las ecuaciones polinómicas de segundo y tercer grado describen de mejor manera la relación entre la viscosidad
de leches y la temperatura; sin embargo, para propósitos de cálculo, las relaciones exponenciales establecen
un buen ajuste con los datos experimentales y pueden ser aplicadas para fines prácticos. Se recuerda que la
muestra con 12,7% de sólidos totales es de leche natural.
Figura 5.1.2. Gráfico tipo Arrhenius para valores de viscosidad de muestras de leche de vaca.
La Figura 5.1.2. corresponde a la representación gráfica de la ecuación de Arrhenius para las tres muestras
consideradas. Se comprueba que la ecuación es válida para establecer el efecto de la temperatura sobre la
viscosidad de leches, con coeficientes de correlación superiores a 0,99. Los valores de la energía de activación,
calculados según las pendientes, 18,1; 19,8 y 18,4 [kJ/g.mol], son superiores al reportado para agua por
Saravacos (1970) de 14,9 [kJ/g.mol]. En consecuencia se requiere más energía para iniciar el flujo en leches
que en agua; el efecto de la temperatura sobre los cambios de la viscosidad es mayor en las leches. El valor de
18,1 [kJ/g.mol] puede ser considerado como representativo para leche entera cruda de vaca.
Propiedades Reológicas
187
Jugos
Para el caso de jugos, a continuación en la Tabla 5.1.2. se presentan los resultados establecidos en cinco frutas
cítricas por Alvarado (1987a).
Tabla 5.1.2. Viscosidad de Jugos de Frutas Cítricas con Diferentes Contenidos de Sólidos Solubles
Fruta
Brix*
Viscosidad [Pa.s]*103
10C
30C
50C
Lima
2,12
2,77
3,73
5,04
1,28
1,61
2,08
2,65
0,83
1,06
1,30
1,59
7,6
16,5
25,9
30,7
Limón
2,10
2,80
3,70
5,60
1,20
1,60
2,10
3,10
0,83
1,05
1,30
1,75
7,0
15,5
23,8
31,6
Mandarina
1,90
2,50
3,50
5,00
1,10
1,40
1,85
2,70
0,70
0,91
1,15
1,60
9,3
17,8
25,6
33,3
Naranja
2,35
3,00
4,00
6,10
1,20
1,60
2,10
3,10
0,77
0,94
1,35
1,75
7,8
16,4
24,6
32,1
Toronja
2,95
3,45
4,30
6,95
1,50
1,70
2,30
3,40
0,95
1,10
1,40
1,95
8,7
17,0
24,8
31,8
* Los primeros datos son del jugo natural, los tres restantes con adición de sacarosa.
Se trabajó con frutas del género Citrus por ser de amplio consumo: lima (Citrus limetta), limón (Citrus limon),
mandarina (Citrus reticulata), naranja (Citrus sinensis) y toronja (Citrus paradisii). Los jugos se obtuvieron
por presión manual seguido de tamizado a través de tela; a partir del jugo original, por adición de cantidades
conocidas de sacarosa comercial, se prepararon hasta cinco muestras adicionales en las cuales se determinó el
contenido de sólidos solubles como grados Brix, por lectura directa en un refractómetro Abbe a 20C.
La viscosidad se determinó con un viscosímetro rotacional Brookfield LV con adaptador UL, que corresponde a
cilindros coaxiales de abertura estrecha, previa termostatización de 16 [cm3] de muestra en un baño termostático
a 10, 30 y 50C, con una precisión de 0,5C.
El comportamiento newtoniano se comprobó realizando las medidas a diferentes velocidades de rotación. En
cada caso se calculó el esfuerzo de cizalla y la velocidad de cizalla, con el uso de los datos suministrados por
la empresa fabricante del equipo: constante del viscosímetro K’=673,7*10-7 [N/m2], radio del cilindro interior
Ri=0,012575 [m], radio del cilindro exterior Ro=0,01381 [m], altura del cilindro L=0,09239 [m].
En la Figura 5.1.3. se observa que, al graficar los valores de la velocidad de cizalla contra el esfuerzo de cizalla
en jugos naturales a 10C, se establece la linealidad con respecto al origen; lo anterior es característico de
los fluidos newtonianos. En adición, se comprobó que este comportamiento se mantuvo a concentraciones
superiores, hasta 35Brix y 50C. Expresado en términos de viscosidad a diferentes velocidades de cizalla, la
variación en ningún caso superó los 0,1 [mPa.s] para la misma muestra a igual temperatura. Lo anterior está de
acuerdo con lo establecido por Ibarz y colaboradores (1987), en jugos de manzana y pera.
Juan de Dios Alvarado
Los análisis estadísticos de regresión y correlación se realizaron con los programas de una calculadora HewlettPackard 41 C.
Capítulo 5
188
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS

Figura 5.1.3. Comportamiento newtoniano de jugos de frutas cítricas obtenidas
por expresión
Figura 5.1.4. Representación del modelo potencial para la relación viscosidad-sólidos
solubles en jugo de toronja.
Propiedades Reológicas
189
Para determinar la relación entre la viscosidad y los grados Brix, se graficó en coordenadas logarítmicas los
valores correspondientes, según el modelo potencial. En la Figura 5.1.4. se indican los resultados para jugo
de toronja a tres temperaturas, se nota un bajo ajuste de los datos con respecto a la linealidad prevista por el
modelo; este aspecto se repitió en todas las frutas.
Un mejor ajuste de los datos, con valores más altos del coeficiente de correlación, se estableció con la
aplicación del modelo exponencial de acuerdo con lo indicado por varios autores en los últimos años (Rao
y colaboradores, 1984; Vitali y Rao, 1984a). Según se observa en la Figura 5.1.5., al graficar los datos de
jugo de toronja en coordenadas semilogarítmicas se cumple la linealidad, en especial hasta los 25Brix. A
concentraciones mayores existen ligeras desviaciones.
Figura 5.1.5. Representación del modelo exponencial para la relación viscosidadsólidos en jugo de toronja.
Juan de Dios Alvarado
En la Tabla 5.1.3. se reportan los valores de los términos de la ecuación exponencial correspondientes a las
cinco frutas, para las tres temperaturas y con sus respectivos coeficientes de determinación. En todos los casos
el ajuste de los datos experimentales de la viscosidad con los calculados fue bueno. La diferencia mayor, del
11%, se registró en jugo de toronja a 10C y 25Brix. Las diferencias observadas en las otras frutas, de manera
general, fueron inferiores al 5%. Estas ecuaciones son especialmente válidas en un intervalo de 5 a 35Brix.
A valores superiores se esperan ligeras desviaciones, posiblemente debido a la presencia de un comportamiento
no-newtoniano.
Capítulo 5
190
Tabla 5.1.3. Ecuaciones para Calcular la Viscosidad Como Función del Contenido de Sólidos Solubles en Jugos de
Frutas Cítricas*
(VJ) = i exp (j(BR))
Fruta
10C
i
j
30C
r2
Lima
1,56
0,0358
0,986
Limón
1,55
0,0391
0,993
Mandarina
1,26
0,0405
0,997
Naranja
1,66
0,0386
0,964
Toronja
2,02
0,0348
0,964
* (VJ) = viscosidad [mPa.s]. (BR) = grados Brix.
50C
i
j
r2
i
j
r2
0,99
0,90
0,75
0,87
1,03
0,0306
0,0379
0,0371
0,0383
0,0343
0,991
0,995
0,992
0,994
0,975
0,66
0,66
0,50
0,57
0,70
0,0270
0,0298
0,0340
0,0348
0,0299
0,963
0,996
0,996
0,993
0,984
La interrelación entre la viscosidad, el contenido de sólidos solubles y la temperatura absoluta, fue descrita en
forma satisfactoria por el modelo exponencial. En la Tabla 5.1.4. se reportan las ecuaciones linealizadas de
regresión múltiple, establecidas en un rango de 5 a 35Brix y 10 a 50C. Los valores de los coeficientes de
determinación superiores a 0,99, excepto en el jugo de toronja, demuestran que el modelo es idóneo para todas
las frutas cítricas consideradas.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Se aprecia que los valores de las constantes de regresión son similares. Esta observación se explica por tratarse
de jugos de frutas del mismo género. Los valores de la energía de activación calculados con estas ecuaciones
están entre 19,5 a 22,2 [kJ/g.mol], y son similares a valores publicados en la literatura para flujo viscoso de
jugos. Saravacos (1970) presentó un valor de 22,2 [kJ/g.mol], para jugo de naranja filtrado.
Según lo reportado por Ibarz y colaboradores (1987) la energía de activación en jugos concentrados es mayor.
En jugo de manzana con 71Brix determinó un valor de 50,2 [kJ/g.mol] y en jugo de pera con 70Brix 54,8
[kJ/g.mol].
Figura 5.1.6. Gráfico tipo Arrhenius pra valores de viscosidad de jugos de frutas.
Propiedades Reológicas
191
Tabla 5.1.4. Ecuaciones para el Cálculo de la Viscosidad Como Función de los Grados Brix y de la
Temperatura Absoluta Establecidas en Jugos de Frutas Cítricas*
Lima
ln (VJ) = -7,7486 + 0,031(BR) + 2346 / (TA)
r2 = 0,990
Limón
ln (VJ) = -7,8129 + 0,036(BR) + 2353 / (TA)
r2 = 0,990
Mandarina
ln (VJ) = -8,3086 + 0,037(BR) + 2435 / (TA)
r2 = 0,994
r2 = 0,992
Naranja
ln (VJ) = -8,7946 + 0,037(BR) + 2636 / (TA)
r2 = 0,981
Toronja
ln (VJ) = -8,7154 + 0,033(BR) + 2671 / (TA)
* (VJ) = viscosidad del jugo [mPa.s]. (BR) = grados Brix. (TA) = temperatura absoluta [K].
También se comprobó que la ecuación tipo Arrhenius es adecuada para establecer el efecto de la temperatura
sobre la viscosidad de jugos filtrados o tamizados, según se observa en la Figura 5.1.6., que corresponde a los
jugos naturales con aproximadamente 10% de sólidos.
En la Tabla 5.1.5. se transcriben los términos de la ecuación tipo Arrhenius y los datos de la energía de
activación, obtenidos en jugos de quince jugos vegetales, publicados por Alvarado (1993).
En cálculos de ingeniería es común el uso de ecuaciones con números adimensionales constituidos por los
valores de las propiedades físicas y térmicas, entre ellas la viscosidad; las inexactitudes en esta propiedad
conducen a errores que pueden hacer impracticable su uso. Las relaciones presentadas disminuyen en forma
considerable este riesgo cuando se trabaja con las ecuaciones específicas.
El conocimiento de la relación entre la viscosidad y el contenido de sólidos solubles en los jugos se utiliza en
tecnologías de alimentos para estimar el rendimiento de un producto, la variedad o el grado de madurez de la
fruta que sirve como materia prima, entre otras aplicaciones.
Tabla 5.1.5. Términos de la Ecuación tipo Arrhenius y Valores de la Energía de Activación para Flujo de Jugos
Producto
μo
[Pa.s]
1,9083*10-7
Babaco
1,5560*10-6
Lima
8,1371*10-7
Limón
3,2922*10-7
Mandarina
5,8067*10-7
Manzana
6,3816*10-7
Naranja
6,0946*10-7
Naranjilla
9,2169*10-7
Pera
2,1734*10-7
Piña
1,4323*10-7
Sandía
4,5455*10-7
Toronja
4,0747*10-7
Uva
5,3586*10-7
Caña
2,5323*10-7
Remolacha
1,0898*10-6
Zanahoria
μ = μo exp (Ea/RTa). Aplica entre 273 y 373K.
Ea
[kJ/g.mol]
Coeficiente de correlación
23,7
16,5
18,1
21,3
19,7
19,2
19,1
18,9
22,2
16,7
20,0
20,6
19,6
20,8
17,3
0,9997
0,9974
0,9984
0,9963
0,9943
0,9969
0,9976
0,9986
0,9956
0,9991
0,9989
0,9978
0,9979
0,9979
0,9986
Diversos autores reconocen el comportamiento newtoniano de los aceites; sin embargo, Lewis (1987) señaló
que a velocidades de deformación altas se puede presentar un comportamiento seudoplástico. En general,
el comportamiento reológico de los aceites comestibles es descrito en forma suficiente por el coeficiente de
viscosidad, o la viscosidad a una determinada temperatura.
Las determinaciones de los valores de la viscosidad se realizaron con un viscosímetro rotacional Brookfield
LVTD, con el adaptador UL, que corresponde al tipo de cilindros coaxiales de abertura estrecha, previa
termostatización de 16 [cm3] de la muestra entre 20 hasta 70C, a intervalos de 10C, con una precisión de
0,2C.
Para cada temperatura se realizaron lecturas por lo menos a cuatro velocidades de rotación, calculándose los
valores de la viscosidad promedios [mPa.s], con los factores correspondientes indicados por la casa fabricante.
Juan de Dios Alvarado
Aceites
Capítulo 5
192
Las diferencias al trabajar a 60 y 30 revoluciones por minuto fueron pequeñas. En la mayoría de casos inferiores
a una unidad; excepto en el aceite de higuerilla, que presentó diferencias ligeramente mayores cuando se
trabajó a 1,5, 0,6 y 0,3 revoluciones por minuto.
En la Tabla 5.1.6. se presentan los valores determinados en aceites crudos provenientes de nueve vegetales. La
viscosidad de los productos grasos es muy superior a la del agua, leche y jugos de frutas con comportamiento
newtoniano. Los datos presentados para aceites son un orden de magnitud superiores. En el aceite de higuerilla
se registraron los valores más altos; dos órdenes de magnitud superiores, según Swern (1979), debido al ácido
ricinoleico, que forma fácilmente puentes de hidrógeno intermoleculares.
Los valores de la viscosidad presentados, son similares a los publicados en la literatura. Weast (1970) reportó
datos para aceites de ricino, algodón, linaza, oliva, colza. En soja a 20C, 69,3; 30C, 40,6; 50C, 20,6 [mPa.s],
que se comparan con los de aceite crudo de soja 63,5, 41,9 y 22,6 [mPa.s], respectivamente.
Esta y otras comparaciones, inclusive con datos de grasas (Alvarado, 1995), indican que los datos de la
viscosidad varían en un intervalo relativamente estrecho de valores para cada aceite, sin importar el hecho de
ser extraídos de productos cultivados en diferentes regiones y épocas del año o luego de ser refinados.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Las diferencias en los valores de la viscosidad entre los distintos aceites y grasas son mayores a temperaturas
bajas. A temperaturas mayores hasta 70C los valores convergen, las diferencias son menores y en ciertos
casos existen productos que presentan valores más altos, al contrario de lo observado a 20C.
Figura 5.1.7. Gráfico tipo Arrhenius para valores de viscosidad de aceites.
Propiedades Reológicas
193
Tabla 5.1.6. Viscosidad de Aceites Vegetales a Diferentes Temperaturas*
T e m p e r a t u r a [C]
Producto
20
30
63,3
46,7
Aguacate (Persea gratissima)
67,9
48,6
Ajonjolí (Sesamum indicum)
62,2
42,8
Algodón (Gossypium hirsutum)
75,6
55,4
Chocho (Lupinus mutabilis)
763,0
346,0
Higuerilla (Ricinus communis)
47,7
35,2
Linaza (Linum usitatissimum)
74,2
48,8
Maní (Arachis hypogaea)
60,4
41,0
Maracuyá (Passiflora edulis)
41,9
63,5
Soja (Glycine max)
* Valores promedios de dos muestras por duplicado [mPa.s].
40
50
60
70
36,5
35,1
30,5
35,4
193,0
25,9
34,3
29,4
30,1
29,0
24,5
22,5
25,5
116,0
20,1
25,7
23,0
22,6
20,2
19,1
17,3
18,8
72,0
15,9
18,8
17,0
15,7
15,1
16,0
12,9
13,7
51,0
12,7
13,7
14,1
12,6
Para facilitar el empleo de la información se graficaron los datos calculados con el modelo de Arrhenius,
incluyéndose la escala correspondiente en C, según se observa en la Figura 5.1.7.. Se aprecia que los valores
más altos de la viscosidad corresponden al aceite de higuerilla. Los valores más bajos se registraron en el aceite
de linaza. El resto de los productos presentaron valores intermedios entre límites próximos.
En la Tabla 5.1.7. se presentan los parámetros de la ecuación de Arrhenius linealizada, considerando los datos
de la viscosidad a diferentes temperaturas.
Los valores del coeficiente de determinación superiores a 0,99 señalan que la variación de la viscosidad de
aceites y grasas con la temperatura, es descrita en forma apropiada por este modelo, con la ventaja adicional
que permite estimar la viscosidad en un intervalo más amplio de temperaturas, que es común durante el
procesamiento y uso de los aceites.
Tabla 5.1.7. Términos de la Ecuación tipo Arrhenius y Valores de la Energía de Activación para Flujo de Aceites Vegetales
ln (VA) = -ln μ0 + ((EA)/(RG)(TA))
Producto
ln μ0
Aguacate
Ajonjolí
Algodón
Chocho
Higuerilla
Linaza
Maní
Maracuyá
Soja
5,512
6,016
6,580
7,536
11,956
5,240
7,105
5,941
6,997
(EA)
(EA)/(RG)
r
2
[kJ/g.mol]
2842
2997
3136
3485
5417
2667
3340
2932
3262
0,991
0,995
0,999
0,998
0,993
0,999
0,999
0,996
0,998
23,6
24,9
26,1
29,0
45,0
22,2
27,8
24,4
27,1
Los valores de la energía de activación de flujo viscoso indicados están entre 22 a 29 [kJ/g.mol], excepto
el aceite de higuerilla, que presentó un valor mayor de 45,0 [kJ/g.mol]. Estos valores son superiores a los
correspondientes del agua, leche y jugos de frutas filtrados, con valores próximos a 20 [kJ/g.mol], indicando
que para el transporte de aceites se requerirá mayor cantidad de energía que para los otros fluidos indicados.
Alvarado, J. de D. 1995. Efecto de la temperatura y de la composición de ácidos grasos sobre el índice de refracción y
las propiedades mecánicas de aceites y grasas vegetales. Revista Internacional Grasas y Aceites. (Enviado para revisión).
Alvarado, J. de D. 1993. Nota. Viscosidad y energía de activación de jugos filtrados. Rev. Esp. Cienc. Tecnol. Aliment.,
33(1):87-93.
Alvarado, J. de D. and Romero, C. 1991. Physikalische eigenschaften von früchten. Dichte und viskosität von fruchtsäften
in abhängigkeit von löslicher trockensubstanz und temperatur. Flüssiges Obst, 58: 18-22.
Alvarado, J. de D. 1987. “Propiedades Físicas de la Leche”. Universidad Técnica de Ambato, Facultad de Ciencia e
Ingeniería en Alimentos. Ambato, Ecuador. Cuadernos Técnicos de Tecnología e Ingeniería de Alimentos, 4(1): 1-51.
Juan de Dios Alvarado
BIBLIOGRAFÍA Y REFERENCIAS
Capítulo 5
194
Alvarado J. de D. 1987a. Interrelaciones entre viscosidad, sólidos solubles y temperatura en jugos de frutas. Anales del
II Congreso Argentino y I Hispano Latinoamericano de Reología. Bregni, C. (Ed.). Buenos Aires, Argentina. p: 25-28.
Bakshi, A. S. and Smith, D. E. 1984. Effect of fat content and temperature on viscosity in relation to pumping requeriments
of fluid milk products. J. Dairy Sci., 67: 1157-1160.
Costell, E. y Durán, L. 1982. Reología físico-química de los zumos y purés de frutas. Rev. Agroquim. Tecnol. Aliment.,
22: 80-94.
Cox, C. P. 1952. Changes with temperature in the viscosity of whole milk. J. Dairy Res., 19: 72-82.
Crosby, E. J. 1968. “Experimentos Sobre Fenómenos de Transporte”. Buenos Aires, Argentina. CRAT. Editorial Hispano
Americano S. A. p: 13-27.
Charm, S. E. 1981. “The Fundamentals of Food Engineering” 3rd. ed. Westport, Connecticut. AVI Pub. Co. Inc. p: 54.
Fernández-Martín, F. 1972. Influence of temperature and composition on some physical properties of milk and milk
concentrates. II. Viscosity. J. Dairy Res., 39: 75-82.
Flores Luque, V.; Cabrera Martin, J. y Gómez Herrera, C. 1982. Variaciones de la viscosidad y de la densidad con la
temperatura en aceites de oliva, girasol y soja españoles. Grasas y Aceites, 33(6): 334-339.
Harper, W. J. and Hall, C. W. 1976. “Dairy Technology and Engineering”. Westport, Connecticut. AVI Pub. Co. Inc. p:
447-449.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Heldman, D. R. and Singh, R. P. 1981. “Food Process Engineering”. Westport, Connecticut. AVI Pub. Co. Inc. p: 393.
Ibarz, A.; Vicente, M. and Graell, J. 1987. Rhelogical behaviour of apple juice and pear juice and their concentrates. J.
Food Eng., 6: 257-267.
Kubota, K.; Kurisu, S. Suzuki, K. Matsumoto, T. and Hasaka, K. 1982. Study on the viscosity and density equations
respected temperature of vegetable oils and salad frying oils. Nippon Shokugin Kogyo Gakkaishi, 29(4): 195-201.
Lewis, M. J. 1987. “Physical Properties of Foods and Food Processing Systems”. Chichester, England. Ellis Herwood
Ltd. 465 p.
Rao, M. A.; Cooley, H. J. and Vitali A. A. 1984. Flow properties of concentrated juices at low temperatures. Food
Technology. 38: 113-119.
Rao, M. A. 1977. Rheology of liquid foods. A review. J. Texture Studies, 8: 135-168.
Saravacos, G. D. 1970. Effect of temperature on viscosity of fruit juices and purees. J. Food Sci., 35: 122-125.
Swern; D. 1979. “Bailey’s Industrial Oil and Fat Products”. 4th. ed. V.1. Ch.3. New York. Interscience Publishers, John
Willey & Sons. p: 177-232.
Toledo, R. T. 1981. “Fundamentals of Food Process Engineering”. Westport, Connecticut. AVI Pub. Co. Inc. p: 152-163.
Vitali, A. A. and Rao, M. A. 1984. Flow properties of low-pulp concentrated orange juice: serum viscosity and effect of
pulp content. J. Food Sci., 49: 876-881.
Vitali, A. A. and Rao, M. A. 1984a. Flow properties of low-pulp concentrated orange juice: effect of temperature and
concentration. J. Food Sci., 49: 882-888.
Weast, R. C. 1970. “Handbook of Chemistry and Physics”. 51 st. Cleveland, Ohio. The Chemical Rubber Co. Section D
and F.
Propiedades Reológicas
195
TEMA 5.2. APLICACIÓN DE LOS PARÁMETROS REOLÓGICOS
COMO INDICES DE CONTROL DE CALIDAD EN PRODUCTOS
LÁCTEOS
INTRODUCCIÓN
Gasparetto (1983) propuso una clasificación de los fluidos en tres grandes grupos. Fluidos que se comportan
de manera independiente del tiempo cuando son sometidos a tensión; fluidos que son dependientes del
tiempo, y fluidos viscoelásticos. La clasificación es arbitraria, pues según las condiciones un fluido puede
presentar características diferentes; sin embargo, tiene la ventaja de permitir ubicar a productos alimenticios
en determinados grupos.
Para el caso de los fluidos con comportamiento independiente del tiempo, Toledo (1981) señaló los siguientes
modelos aplicables a alimentos fluidos. Varios de ellos son conocidos como modelos de fluido, según la ley
de la potencia.
Fluidos newtonianos, en los cuales el esfuerzo de cizalla (τ) es directamente proporcional a la velocidad de


cizalla (dv/dx) o simplemente ():
τ = μ ( )
(5.2.1)
Juan de Dios Alvarado
La relación entre el esfuerzo (τ) requerido para inducir una determinada velocidad de deformación en cizalla
(dv/dx), define el comportamiento reológico de un fluido.
Capítulo 5
196
En cuyo caso es correcto llamar a la constante μ, viscosidad.
Los fluidos que se desvían de este comportamiento son llamados no-newtonianos, en los cuales el término
“viscosidad aparente” se utiliza como un índice de la consistencia del fluido; entre estos se encuentran:
Fluidos dilatantes, en los cuales la viscosidad aparente aumenta a medida que aumenta la velocidad de cizalla:

τ = K (  )n
(5.2.2)
Siendo K el índice de consistencia del fluido, y n el índice de comportamiento al flujo, que en el presente caso
será mayor que la unidad.
Fluidos seudoplásticos, en los cuales la viscosidad aparente disminuye a medida que aumenta la velocidad de
cizalla, en consecuencia el índice de comportamiento al flujo será menor que la unidad.

τ = K (  )n
(5.2.3)
Fluidos bingham o plásticos, los cuales requieren un esfuerzo inicial para que comience el flujo, luego del
cual el comportamiento es newtoniano. En la ecuación se incluye a la constante c que se denomina esfuerzo
de fluencia.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS

τ = K(  ) + c
(5.2.4)
Fluidos bingham-seudoplásticos o tipo mixto, los cuales, además de necesitar un esfuerzo inicial, presentan un
comportamiento seudoplástico.

τ = K (  )n + c
(5.2.5)
En adición, para el caso de los fluidos no-newtonianos con comportamiento independiente del tiempo, existen
varios modelos empíricos que describen su comportamiento reológico; entre ellos el modelo de HerschelBulkley (H-B), aplicable a muchos alimentos según Osorio y Steffe (1984) Powell-Eyring y Croley-Kitges
entre otros. Steffe (1992) sumarizó los modelos más utilizados, entre los que se incluye el de Casson, aceptado
para interpretar el comportamiento de chocolate líquido.
Con relación a los fluidos dependientes del tiempo, Muller (1977) indicó casos de tixotropía y reopexia,
y señaló la necesidad de hacer las mediciones en condiciones exactamente iguales, a intervalos de tiempo
cuidadosamente elegidos al aumentar y disminuir la velocidad de cizalla. En estos fluidos, cuando se grafica
la velocidad de cizalla contra el esfuerzo de cizalla, se establece una ojiva de histéresis, pues los datos durante
el incremento de la velocidad de cizalla no coinciden con los datos obtenidos a continuación, disminuyendo la
velocidad de cizalla.
La tixotropía es una disminución en la viscosidad aparente, por la acción de esfuerzos de cizalla, seguida de
una recuperación gradual cuando se retira el esfuerzo. La reopexia, denominada en la actualidad tixotropía
negativa, se caracteriza por un aumento de la viscosidad aparente bajo esfuerzo de cizalla, seguido de una
recuperación gradual cuando se retira el esfuerzo. Los dos efectos indicados son función del tiempo.
Un modelo utilizado para definir el comportamiento tixotrópico de alimentos es el de Weltman (Pauletti y
colaboradores, 1986).
τ = (AT) - (BT) ln t
(5.2.6)
Donde (AT) es la presión tangencial necesaria para iniciar el cizallamiento [N/m2] y (BT) es el coeficiente de
ruptura tixotrópico [N.s/m2], que representa el valor de la disminución de la presión tangencial ocurrida durante
un determinado período de cizallamiento, a un gradiente de deformación constante.
Propiedades Reológicas
197
Rao (1977) indicó que algunos alimentos líquidos exhiben propiedades tanto viscosas como elásticas, y se
denominan alimentos viscoelásticos. Las propiedades viscosas son propias de un líquido y la recuperación
elástica parcial es característica de un sólido. Entre este tipo de alimentos, Muller (1977) cita a los siguientes:
mezclas de helados, sangre coagulada, queso, masa de harina de trigo, espumas de proteína.
Por otro lado, el desarrollo de la tecnología relacionada con productos lácteos permite en el momento actual
disponer de muchos y diversos productos, con diferentes características reológicas. Existen casos en los cuales
durante el procesamiento de un alimento sus propiedades cambian, Prentice (1984) presentó como un caso
histórico al queso, que comienza como un fluido newtoniano, la leche, y termina en un producto sólido, con
diversos cambios reológicos durante su elaboración. Durante la manufactura y en especial en la coagulación,
los cambios reológicos son notorios con el aparecimiento de la cuajada.
A continuación se consideran las características de cuatro productos: crema batida, mantequilla, dulce de leche
y yogurt.
Rao (1977) se refirió a trabajos previos de Prentice, destacando que estructuralmente la crema difiere de la leche
debido a su mayor concentración de glóbulos grasos y de la leche concentrada por el contenido de azúcares.
La cantidad de grasa es uno de los factores más importantes que afectan a las propiedades reológicas de la
crema. La naturaleza seudoplástica de la crema se atribuye a la tendencia de los glóbulos grasos a formar un
arreglo más ordenado bajo el efecto de cizalla. Otros autores reportaron un comportamiento newtoniano para
la crema luego de ser separada de la leche: entre ellos Bakshi y Smith (1984), Steffe y colaboradores (1986).
La mantequilla es un ejemplo típico de grasa plástica, con comportamiento tipo bingham. Se requiere un
esfuerzo de fluencia para iniciar el flujo. Según Prentice (1982), la mantequilla consiste de una mezcla de grasa
en la cual están dispersas partículas de agua, cuyos diámetros están en el rango de las micras hasta un 15% en
volumen; el agua puede contener sales disueltas y otros constituyentes derivados de la leche, que no afectan a
las propiedades reológicas, al igual que los sólidos; en especial proteínas presentes en una proporción del 1%
en volumen.
Es de especial interés el valor del esfuerzo de fluencia de la mantequilla, calculado en 3,5 [kPa], para que no
se deforme en condiciones de comercialización, y también para que al ser untada en pan forme capas delgadas
y uniformes. Se estima que una razón de corte 1000/[s], se aplica con el cuchillo cuando la mantequilla se
distribuye sobre el pan. Estos datos se utilizan para mejorar la calidad del producto.
El yogurt se obtiene por fermentación de la leche, la cual provoca la formación de geles. Harper y Hall (1976)
señalaron que los microorganismos principales que intervienen en el proceso son el Streptococcus thermophilus
y el Lactobacillus bulgaricus, en proporciones adecuadas para actuar en simbiosis; en adición a otras bacterias
que no son indispensables para el proceso. Entre ellas, Thermobacterium yoghurt, Thermobacterium bulgaricus
y Plocamo bacterium yoghourtii.
Según Oner y colaboradores (1986), los principales cambios que ocurren en la formación del yogurt son la
cantidad de biomasa y la concentración de lactosa, galactosa, glucosa, ácido láctico y otros productos ácidos.
El aumento de la acidez define el tiempo de fermentación, generalmente la acidez final es de 0,9 a 1,0%, luego
de tres horas de acción de los microorganismos a 40-45C. Estos cambios químicos y bioquímicos están
asociados con transformaciones físicas, que se reflejan en las propiedades reológicas del producto.
Parnell-Clunies y colaboradores (1986) resumieron las variables que afectan a las propiedades físicas del yogurt.
Juan de Dios Alvarado
Pauletti y colaboradores (1986) verificaron la existencia de un efecto tixotrópico en el comportamiento
reológico del flujo de dulce de leche. Señalaron que el uso del viscosímetro Brookfield no es el más adecuado
para lograr medidas absolutas; sin embargo, para comprobar el efecto tixotrópico puede ser utilizado con el
empleo del accesorio “Helipat Stand”, que permite superar los problemas de deslizamiento del rotor, que
aparece en las muestras con un contenido alto de sólidos.
Capítulo 5
198
Ellas son: el tratamiento térmico de la leche, el contenido de proteína, la homogeneización, la acidez, el cultivo
de microorganismos, el manejo mecánico del coágulo y la presencia de estabilizadores. Establecieron que el
tratamiento térmico de la leche con temperaturas altas y tiempos cortos (HTST), parece ser una alternativa
viable a la pasteurización a bajas temperaturas en recipientes. El tratamiento a temperaturas ultra altas (UHT)
provoca yogurts de baja viscosidad. En todos los casos consideraron un comportamiento reológico tipo mixto,
con la presencia de esfuerzo de fluencia.
OBJETIVOS
Comprender el uso de varios accesorios de viscosímetros rotacionales utilizados en alimentos.
Determinar los parámetros reológicos en muestras de crema batida de leche.
Comprobar el comportamiento plástico y determinar los parámetros reológicos en muestras de mantequilla.
Verificar el comportamiento tixotrópico del dulce de leche.
Registrar los cambios reológicos que ocurren durante la elaboración de yogurt.
Discutir la aplicación de las propiedades reológicas como índices de control de calidad en productos lácteos.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
MATERIALES Y MÉTODOS
Figura 5.2.1. Partes de un viscosímetro Brookfield con accesorios para
incluir un movimiento vertical.
Propiedades Reológicas
199
Crema batida de leche
Batir aproximadamente 50 [g] de crema de leche hasta que adquiera una consistencia pastosa.
Trabajar con un viscosímetro Brookfield con el adaptador para muestras pequeñas. Colocar en la cámara para
la muestra 8 [ml] de crema, por las paredes, para evitar la formación de burbujas de aire; acoplar la cámara a la
camisa para agua en forma que quede introducida y fija en su lugar; unir el sistema al viscosímetro, según las
especificaciones indicadas por la casa fabricante.
Con la ayuda de un baño termostático hacer circular por la camisa agua a 30C por quince minutos; conectar el
equipo con la tecla de encendido; fijar la velocidad en 0,3 [RPM] con el disco selector de velocidades; hacer
funcionar el motor con la tecla de arranque y realizar la lectura a los tres minutos, o cuando la variación en
la lectura no sea mayor que 0,2; suspender el movimiento con la tecla de arranque, fijar la velocidad en 0,6 y
repetir la lectura; seguir la operación a velocidades mayores. Verificar los datos disminuyendo la velocidad de
rotación.
Mantequilla
Fundir 500 [g] de mantequilla y colocarla en un vaso de 600 [ml] para su termostatización a 50C.
Armar el viscosímetro con el rotor #1, sin el brazo protector. Para llevar a cero el equipo, mover la tecla de
encedido para suministrar energía al equipo, que debe estar nivelado; seleccionar la velocidad en 12 [RPM] y
hacer funcionar el motor con la tecla de arranque; permitir que gire libremente el rotor hasta que se estabilice la
lectura; con el adminículo correspondiente ajustar a cero y apagar el motor. Introducir el rotor hasta la marca
en la mantequilla; regular la velocidad en 0,3 [RPM] y hacer funcionar el motor. Si en la pantalla no aparece
una lectura, significa que el intervalo de medida no es adecuado. Cambiar el rotor al #2 y repetir la medida,
continuar con el #3 y, si es necesario, con el #4. Establecido el rotor adecuado, hacer las medidas aumentando
la velocidad por lo menos a dos valores diferentes (0,6 y 1,5) o más.
Dulce de leche
Termostatizar a 50C aproximadamente 500 [g] de dulce de leche comercial, colocado en un vaso de 600 [ml];
medir los parámetros reológicos utilizando el rotor adecuado.
Armar el viscosímetro con el “Helipath Stand” y el rotor T-A, según lo indicado en la Figura 5.2.1. Conectar el
registrador y comprobar su funcionamiento. Fijar el selector a una velocidad constante de 3 [RPM]. Introducir
hasta la marca el rotor en el dulce de leche, poner en funcionamiento el equipo y el motor, conectar el registrador
y hacer el registro en forma continua por veinte minutos. Repetir la determinación con el rotor T-B.
A medio litro de leche entera pasteurizada a 80C por 10 minutos, añadir un 3% del cultivo iniciador, agitar
vigorosamente y mantener la temperatura a 40C. Al inicio de la fermentación y al final, cuando el pH descienda
hasta 4,5, retirar muestras, y medir los parámetros reológicos con el accesorio adecuado de un viscosímetro
rotacional, según la consistencia de la muestra estabilizada a 40C.
CALCULO DE LOS PARÁMETROS REOLÓGICOS
Por la diversidad de los productos considerados se esperan varios tipos de flujo y una amplia variación en los
datos a obtenerse, lo que obliga a utilizar accesorios del viscosímetro rotacional con geometría diferente. A
continuación se presentan cuatro casos: dos para fluidos newtonianos y dos para fluidos no-newtonianos, que
siguen la ley de la potencia.
Juan de Dios Alvarado
Yogurt
Preparar un cultivo madre, con cepas liofilizadas que contienen cantidades iguales de L. bulgaricus y S.
thermophilus. En leche entera con 11% de sólidos, esterilizada a 92C por 30 minutos y enfriada hasta 40C,
inocular las cepas en una proporción de 3% y permitir su desarrollo hasta la coagulación. Enfriar hasta 5C y
mantener en refrigeración, hasta el momento de usarlo como iniciador de la fermentación.
Capítulo 5
200
A. Fluidos newtonianos, viscosímetro de cilindros concéntricos de abertura estrecha.
Corresponde a los adaptadores UL y para muestras pequeñas. En este caso, expresar los datos registrados en el
viscosímetro en términos de esfuerzo de cizalla [Pa], con la aplicación de la ecuación siguiente, indicada por
la casa fabricante.
(5.2.7)
τ = Ω / 2 π L R b2
Donde Ω es el torque que corresponde al producto de la constante del viscosímetro (673,7*10-7 [N.m]) por la
lectura del viscosímetro expresada en forma decimal; Rb es el radio del rotor; L es la longitud del rotor.
De igual modo calcular los valores de la velocidad de cizalla (1/[s]), con el uso de la ecuación:

 = (2R 2/(R 2-R 2))(2πN/60)
a
a
b
(5.2.8)
Ra es el radio del recipiente del adaptador; N es el número de revoluciones por minuto.
La viscosidad se determina con la ecuación (5.2.1).
B. Fluidos newtonianos, viscosímetro de cilindro simple.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Con los datos registrados a diferentes velocidades de rotación, utilizar los valores indicados a continuación,
suministrados por la casa fabricante, según el rotor utilizado, y determinar los valores de la viscosidad en
[mPa.s], reportar el valor promedio.
Velocidad
[RPM]
Rotor 1
Factor que multiplica la lectura del viscosímetro
Rotor 2
Rotor 3
Rotor 4
0,3
0,6
1,5
3
6
12
30
60
200
100
40
20
10
5
2
1
1000
500
200
100
50
25
10
5
4000
2000
800
400
200
100
40
20
20000
10000
4000
2000
1000
500
200
100
C. Fluidos no-newtonianos, viscosímetro de cilindros concéntricos de
abertura estrecha.
Los valores del esfuerzo de cizalla (τ) a las diferentes velocidades de rotación, se calculan con la ecuación
(5.2.7).
Según Steffe (1992), una aproximación de la velocidad de cizalla se obtiene con la ecuación siguiente:

 = (4πN/60 n) (α2/n/(α2/n - 1))
(5.2.9)
El índice de comportamiento al flujo (n), se determina previamente por la pendiente de un gráfico ln(2πN/60)
contra ln(τ), para usar la ecuación anterior, en la cual:
α = (Ra/Rb)
El valor del índice de consistencia se calcula con la ecuación (5.2.2) o (5.2.3).
D. Fluidos no-newtonianos, viscosímetro de cilindro simple.
(5.2.10)
Propiedades Reológicas
201
Utilizar la técnica numérica presentada por Hyman (1976), para el tratamiento de datos que llevan a caracterizar
a fluidos que siguen el modelo de la ley de la potencia. El método es una adaptación estadística de las técnicas
estandarizadas para el ajuste de curvas características de los fluidos seudoplásticos, con la ventaja de eliminar
apreciaciones subjetivas y proporcionar información sobre los intervalos de confianza de los dos parámetros
reológicos.
CUESTIONARIO
En todas las pruebas, con los datos experimentales, hacer un gráfico del valor de la velocidad de rotación
expresada en revoluciones por minuto, contra la lectura registrada en el viscosímetro expresada como
porcentaje. Decidir con relación al comportamiento newtoniano o no-newtoniano del producto.
Establecer la geometría de acuerdo con el accesorio utilizado en el viscosímetro rotacional para hacer las
determinaciones; calcular los valores de la velocidad de cizalla y del esfuerzo de cizalla. Construir un gráfico
Υ contra τ, establecer la ecuación por técnicas de regresión, y determinar el valor de la viscosidad o del índice
de consistencia y del índice de comportamiento al flujo, para cada producto considerado.
Explicar la causa por la cual, en las pruebas con los diferentes rotores, en ocasiones no se obtienen lecturas en
el viscosímetro rotacional.
Demostrar que los factores suministrados por la casa fabricante para los diferentes rotores en la geometría de
cilindro simple, se obtienen de la relación entre esfuerzo de cizalla y velocidad de cizalla.
La casa comercial presentó dos métodos para estimar los valores del esfuerzo de fluencia. El primero se
denomina “umbral de fluencia Brookfield” y se calcula con la siguiente ecuación.
(UFB) = (U-U’)/100
(5.2.11)
Siendo U la viscosidad a la menor velocidad disponible en el equipo y U’ a la velocidad inmediata superior.
En el segundo método, se grafica la velocidad de rotación en revoluciones por minuto contra las lecturas en el
viscosímetro, la línea es extrapolada hasta cortar el eje en 0 [RPM]; para el caso de utilizar rotores cilíndricos:
(UF) = N0 f
(5.2.12)
(UF) es el umbral de fluencia expresado en [dinas/cm2], N0 el valor correspondiente al corte en ordenadas y f
un factor:
Rotor
f
LV - 1
LV - 2
LV - 3
LV - 4
1,72
7,11
27,4
134,0
Con los datos obtenidos en las muestras del dulce de leche, analizar el gráfico del registrador, decidir con
relación a la existencia o no de un comportamiento tixotrópico. Por técnicas de regresión determinar los
términos de la ecuación (5.2.6), y trazar el gráfico correspondiente. ¿Qué importancia tiene para la industria la
presencia de tixotropía en el dulce de leche?.
Con los datos obtenidos al incio y al final de la fermentación del yogurt, analizar los tipos de flujo presentados
y el cambio de los valores de la viscosidad y de los parámetros reológicos. Discutir la conveniencia de utilizar
medidas reológicas para controlar el proceso de elaboración de este producto lácteo.
Juan de Dios Alvarado
Calcular por los dos métodos el esfuerzo de fluencia para las muestras de mantequilla fundida y discutir los
resultados.
Capítulo 5
202
RESULTADOS EXPERIMENTALES
Crema batida de leche
Cuando se trabajó con el adaptador para muestras pequeñas de un equipo Brookfield LVTD, con la muestra
termostatizada a 30C, se registraron las lecturas indicadas en la Tabla 5.2.1., que corresponden a dos muestras
comerciales de crema de leche sometidas a batido manual, para destacar el cambio en la consistencia.
Tabla 5.2.1. Datos Registrados con un Viscosímetro Rotacional en Muestras de Crema Batida de Leche
Velocidad
Muestra 1
Muestra 2
[RPM]
2πN/60
[rad/s]
Lectura
[%]
τ
[Pa]
Υ
[1/s]
0,3
0,6
1,5
3
6
12
0,031
0,062
0,157
0,314
0,628
1,256
18,1
23,5
34,0
43,5
0,80
1,04
1,50
1,92
0,454
0,908
2,268
4,536
Lectura
[%]
τ
[Pa]
Υ
[1/s]
22,3
30,0
42,2
55,0
0,99
1,33
1,87
2,43
2,207
4,414
8,829
17,658
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
En la Figura 5.2.2. se observa que, al graficar los valores de la velocidad de rotación, expresados en revoluciones
por minuto [RPM], contra las lecturas registradas en el equipo, expresadas como porcentaje, las dos muestras
presentan curvatura. Lo anterior es característico de los fluidos no-newtonianos. Su comportamiento es
seudoplástico, pues la viscosidad aparente disminuye a medida que aumenta la velocidad de cizalla, determinada
por la velocidad de rotación.
Figura 5.2.2. Cambio en la lectura del torque a diferentes velocidades de rotación en muestras
de crema batida de leche.
Los cálculos de los valores del esfuerzo de cizalla y de la velocidad de cizalla se realizaron con las ecuaciones
(5.2.7) y (5.2.9), respectivamente. Con los datos de la muestra 1 se obtuvo:
Propiedades Reológicas
203
τ = Ω / 2π L Rb2
τ = 673,7*10-7[N.m]*0,181/2*3,1416*0,03172[m]*(0,00874)2[m2]
τ = 0,80 [N/m2] = 0,80 [Pa]
El mismo procedimiento se siguió para el resto de lecturas registradas en el viscosímetro.
Para calcular los valores de la velocidad de cizalla con la ecuación (5.2.9), se requiere conocer el índice de
comportamiento al flujo. Por análisis de regresión entre ln(2πN/60) contra ln(τ), el valor de la pendiente es, n
= 0,381. En consecuencia:
α = (Ra/Rb)
α = (0,009525[m]/0,00874[m]) = 1,0898

 = (4πN/60 n) (α2/n/(α2/n - 1))

 =(4*3,1416*0,3/60*0,381)((1,08982/0,381)/(1,08982/0,381 - 1))

 = 0,454 [1/s]
Cálculos similares se realizaron para todas las lecturas de las dos muestras. Los resultados están incluidos en
la Tabla 5.2.1.
La relación correspondiente a los fluidos seudoplásticos es una ecuación potencial; en consecuencia, un gráfico
logarítmico permitirá linealizar la función y verificar el cumplimiento del modelo. En la Figura 5.2.3. se
aprecia que lo anterior se cumple para las dos muestras, con coeficientes de correlación superiores a 0,99.
Según el modelo de la ley de la potencia, el índice de consistencia (K) corresponde al antilogaritmo del punto
de corte en ordenadas de las ecuaciones indicadas en la Figura 5.2.3.; en consecuencia, el valor de la muestra
1 es 1,083 [Pa.sn], y de la muestra 2 es 0,702 [Pa.sn]. Estos valores son altos para crema de leche, y se explican
por el batido de las muestras hasta que adquieran una consistencia pastosa y aseguren el comportamiento nonewtoniano.
Las diferencias observadas entre las dos muestras se deben a diversas causas. Entre ellas: contenido de materia
grasa, circunstancias de extracción y batido, condiciones y tiempo de almacenamiento. Esto permite pensar en
Juan de Dios Alvarado
Figura 5.2.3. Reograma de muestras de crema batida de leche.
Capítulo 5
204
el índice de consistencia, como una medida para control de calidad.
Los valores del índice de comportamiento al flujo son 0,38 y 0,44, indican una gran desviación con respecto a
los fluidos newtonianos, en los cuales el valor de este índice es 1,0. En consecuencia, este parámetro también
puede ser usado como índice de control, durante el batido de la crema para la elaboración de mantequilla u
otros productos con crema batida.
Mantequilla
Cuando se trabajó con muestras de mantequilla termostatizadas a 50C, y en un vaso de cristal alto de 600 [ml],
en cuyo caso el sistema puede ser considerado como de cilindros concéntricos de abertura ancha o simplemente
de cilindro simple se obtuvieron los resultados indicados en la Tabla 5.2.3. Se utilizó el rotor LV-1.
La determinación del umbral de fluencia Brookfield, se debe realizar con los valores registrados a velocidades
de rotación muy bajas; sin embargo, al no obtenerse lecturas a 0,3 y 0,6 [RPM], la estimación se realizó con
los primeros valores de la Tabla 5.2.3.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Tabla 5.2.3 Datos Registrados con un Viscosímetro Rotacional en Muestras de Mantequilla y Valores de Viscosidad
Calculados con Factores de Conversión
Velocidad
LV-1
Muestra 1
Muestra 2
[RPM]
Factor
Lectura
μ [mPa.s]
Lectura
μ [mPa.s]
3
6
12
30
60
20
10
5
2
1
1,5
2,2
4,4
10,6
22,0
30
22
22
21
22
2,4
4,9
8,9
21,3
44,5
48
49
45
43
45
60
Figura 5.2.4. Gráfico pra determinar el umbral de fluencia de muestras de mantequilla
según en método Brookfield.
(UFB) = (U-U’)/100
(UFB)1 = (30-22)/100 = 0,08 [mPa.s]
(UFB)2 = (48-49)/100 = -0,01 [mPa.s]
En la Figura 5.2.4., al graficar la velocidad de rotación contra la lectura en el viscosímetro, se aprecia que existe
una relación lineal; por técnicas de regresión se determinaron los valores del punto de corte en ordenadas para
las dos muestras, que fueron 0,11 y 0,12. El umbral de fluencia se calculó por:
Propiedades Reológicas
205
(UF) = N0 f
(UF)1 = 0,11*1,72 = 0,19 [dina/cm2] = 0,019 [Pa]
(UF)2 = 0,12*1,72 = 0,21 [dina/cm2] = 0,021 [Pa]
Los valores relativamente bajos se explican por la temperatura a la que se realizaron las determinaciones, a
50C la grasa está fundida. En adición estos datos son referenciales, por el cálculo de la viscosidad con el uso
de factores válidos en fluidos newtonianos.
Según se observa en la Figura 5.2.5., en la que están graficados los datos de la velocidad de rotación contra
la viscosidad, existe un incremento inicial repentino, y luego, conforme aumenta la velocidad de rotación, la
viscosidad calculada permanece aproximadamente constante.
Figura 5.2.5. Gráfico comprobador el comportamiento Binghan de mantequilla.
Lo anterior es característico de los fluidos bingham, en los que se requiere un esfuerzo inicial para que ocurra el
flujo; luego de lo cual el comportamiento es igual al de los fluidos newtonianos, pues la razón entre el esfuerzo
de cizalla y la velocidad de cizalla es aproximadamente constante. En consecuencia, el comportamiento como
grasa plástica reportado para mantequilla se comprueba en las dos muestras consideradas.
Dulce de leche
Cuando se trabajó con el adaptador Helipat Stand, que permite incluir un movimiento vertical uniforme, además
de la rotación a 3 [RPM] con el rotor T-R, que se caracteriza por poseer una barra horizontal se registraron en
forma automática los datos recopilados en la Tabla 5.2.4 para una muestra de dulce de leche.
La disminución de los valores registrados conforme transcurre el tiempo indica que el dulce de leche pertenece
al grupo de fluidos con un comportamiento dependiente del tiempo. Esta disminución está asociada con un
ablandamiento del producto, que caracteriza a los fluidos tixotrópicos.
Para verificar el modelo de Weltman, expresado en la ecuación (5.2.6), se requiere calcular el torque, que está
relacionado en forma directa con el esfuerzo de cizalla; según los datos de la casa fabricante.
Los valores registrados en el viscosímetro a los diferentes tiempos, están incluidos en la Tabla 5.2.4.,
conjuntamente con los valores calculados para el torque según las lecturas proporcionadas por el equipo.
La ecuación obtenida por análisis de regresión es:
Ω = 2,5803*10-5 - 2,3986*10-6 ln t
(5.2.13)
El alto coeficiente de correlación (r=-0,930), confirma la validez del modelo en la muestra de dulce de leche.
Juan de Dios Alvarado
Ω = 673,7*10-7[N.m](0,276) = 1,859*10-5 [N.m]
Capítulo 5
206
Yogurt
Los valores determinados en muestras de yogurt, inoculado con 3% (v/v) de cultivo iniciador y mantenido a
40C para su fermentación, se presentan en la Tabla 5.2.5. Al inicio del proceso de formación del yogurt el
producto mantuvo las características de la leche; su comportamiento fue newtoniano y las medidas se realizaron
con el adaptador UL del viscosímetro rotacional, que corresponde a la geometría de cilindros concéntricos de
abertura angosta y es adecuado para fluidos de viscosidad baja. Conforme avanza la fermentación se aprecian
cambios en la consistencia; el producto se torna espeso, y, al final de tres horas de proceso, se necesitó utilizar
el rotor LV2, que corresponde a la geometría de cilindro simple.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Tabla 5.2.4. Datos Registrados con un Viscosímetro Rotacional en Dulce de Leche a Diversos Tiempos
Tiempo
Valor registrado [%]
Torque (Ω) [N.m]105
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
27,6
28,0
27,3
26,7
25,2
24,7
23,2
23,1
22,6
22,5
21,8
21,1
19,7
19,5
19,2
1,859
1,886
1,839
1,799
1,698
1,664
1,563
1,556
1,522
1,516
1,469
1,422
1,327
1,314
1,294
Tabla 5.2.5. Datos Registrados con un Viscosímetro Rotacional en Yogurt a 40C
Velocidad de
rotación
[rpm]
1,5
3,0
6,0
12,0
30,0
60,0
Inicio de la fermentación
(Adaptador UL)
(FS)
[%]
1,9
3,6
7,5
16,1
τ
[Pa]
0,0139
0,0264
0,0550
0,1182


[1/s]
7,355
14,709
36,774
73,548
Final de la fermentación
(Adaptador LV2)


μ
[Pa.s]
(FS)
[%]
τ
[Pa]
[1/s]
0,0019
0,0018
0,0015
0,0016
8,5
11,1
13,7
17,2
22,7
29,8
0,566
0,739
0,912
1,146
1,512
1,985
0,946
1,893
3,785
7,570
18,925
37,850
En la muestra obtenida al inicio de la fermentación los valores del esfuerzo de cizalla, y de la velocidad de
deformación en cizalla, se calcularon con las ecuaciones (5.2.7) y (5.2.8), respectivamente. Al operar con los
primeros valores se obtiene:
τ = Ω / 2 π L R b2
τ = 673,7*10-7(1,9/100)/6,2832*0,09239(0,012575)2 = 0,0139

 = (2R 2/(R 2-R 2))(2πN/60)
a
a
b

 =(2(0,01381)2/((0,01381)2-(0,012575)2))(6,2832*6,0/60)=7,355
Cálculos similares realizados con el resto de valores a las distintas velocidades de rotación conducen a obtener
pares de datos, para determinar a la viscosidad con la ecuación (5.2.1).

τ = μ ()
μ = 0,0139/7,355 = 0,0019 [Pa.s]
El valor promedio de las cuatro observaciones 0,0017 [Pa.s] es la viscosidad de la leche con el iniciador, para
la elaboración de yogurt.
Propiedades Reológicas
207
Al final de la fermentación, la muestra coagulada obviamente presentó un comportamiento reológico diferente.
El cálculo de los parámetros reológicos es más complicado. Una aproximación considerada adecuada para este
caso es la propuesta por Hyman (1976), en la que se requiere calcular varios términos y sumas en la forma que
se indica a continuación.
N
log N
(log N)2
(FS)
log(FS)
(log(FS))2
logNlog(FS)
1,5
3,0
6,0
12,0
30,0
60,0
0,1761
0,4771
0,7782
1,0792
1,4771
1,7782
0,0310
0,2276
0,6055
1,1646
2,1819
3,1618
8,5
11,1
13,7
17,2
22,7
29,8
0,9294
1,0453
1,1367
1,2355
1,3560
1,4742
0,8638
1,0927
1,2921
1,5265
1,8388
2,1733
0,1637
0,4987
0,8846
1,3334
2,0029
2,6214
=
5,7659
7,3724
7,1771
8,7872
7,5047
X1 = a (log N)2 - ( log N)2
X1 = 6(7,3724) - (5,7659)2 = 10,9888
(5.2.14)
X2 = a (log (FS))2 - ( log (FS))2
X2 = 6(8,7872) - (7,1771)2 = 1,2124
(5.2.15)
X3 = a (log N (log (FS)) - (( log N)  log (FS))
X3 = 6(7,5047) - (5,7659)(7,1771) = 3,6458
(5.2.16)
X = (X1X2 - (X3)2)/a(a-2)X2
X = (10,9888*1,2124 - (3,6458)2)/6*4*1,2124 = 0,001064

 = (1/a)  log N

 = (1/6)5,7659 = 0,9610
(5.2.17)
Z = (1/a)  log (FS)
Z = (1/6)7,1771 = 1,1962
(5.2.19)
(5.2.18)
El índice de comportamiento al flujo se calcula con:
n = X3/X1
(5.2.20)
n = 3,6458/10,9888 = 0,332
Los límites de confianza de n están definidos por n±β y:
(5.2.21)
El valor del estadístico  se consulta en tablas, como la publicada por Hyman (1976). En el presente caso, 0,05
= 2,776.
β = 2,776((0,001064)2(10,9888+(6*0,9610)2)/6*10,9888)0,5=0,002
Para calcular el índice de consistencia K, se procede de la siguiente forma:
k = (15n/π)n (10)Z - nY
k = (15*0,332/3,1416)0,332(10)1,1962 - 0,332*0,9610 = 8,782
(5.2.22)
Juan de Dios Alvarado
β =  (X2(X1 + (aY)2)/aX1)0,5
Capítulo 5
208
El esfuerzo de cizalla es definido por:
τ = ((FS)/100)(KV)/2πL(Rb)2
τ = ((FS)/100)(673,7*10-7)/2*3,1416*0,06121(0,005128)2
τ = 0,0666(FS)
(5.2.23)
(5.2.24)
Por analogía, se establece que:
K = 0,0666k
(5.2.25)
K = 0,0666*8,782 = 0,585 [Pa.sn]
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Los límites
 de confianza de K están definidos por K±γ y:


 = KX((a/X2)+(((X1)+(aY)2)/aX1)(1+log(n/2))2))0,5
= 2,776*0,585*0,001064 ((6/1,2124)+(((10,988+(6*0,9619)2)/
6*10,9888) (1+log(0,332/2))2))0,5 = 0,004
(5.2.26)



Figura 5.2.6. Curvas de flujo obtenidas en muestras de yogurt a 40ºC
El modelo de la ley de la potencia para fluidos seudoplásticos se considera adecuado para describir el flujo del
yogurt al final de su elaboración. La ecuación es:
τ = 0,585 (4πN/60*0,33)0,33
(5.2.27)
La representación gráfica de esta ecuación, conjuntamente con la de la muestra obtenida al inicio de la
fermentación, se encuentran en la Figura 5.2.6. Se aprecian diferencias notables en la forma y obviamente en
los valores. Por lo indicado, se concluye que el proceso de elaboración, entre otros factores, provoca cambios
marcados en los parámetros reológicos del yogurt. En consecuencia, pueden ser utilizados como medidas de
control durante el proceso y para fijar características de calidad.
Propiedades Reológicas
209
BIBLIOGRAFÍA Y REFERENCIAS
Bakshi, A. S. and Smith, D. E. 1984. Effect of fat content ant temperature on viscosity in relation to pumping
requeriments of fluid milk products. J. Dairy Sci., 67: 1157-1160.
Gasparetto, C. A. 1983. Comportamento reológico dos fluidos reais. Em: “Tópicos de Laboratório Didático
em Fenómenos de Transporte”. Freire, J. T. y Gubulin, J. C. (Ed.). Sao Carlos, Brasil. DEQ-UFS Car. p:
13-29.
Harper, W. J. and Hall, C. W. 1976. “Dairy Technology and Engineering”. Westport, Connecticut. The AVI Pub.
Co. Inc. p:238-241.
Hyman, W. A. 1976. Rheology of power law fluids. Ind. Eng. Chem. Fundam., 15(3):215-218.
Muller, H. G. 1977. “Introducción a la Reología de los Alimentos”. Traducido por Burgos González, J.
Zaragoza, España. Editorial Acribia. 174 p.
Oner, M. D.; Erickson, L. E. and Yang, S. S. 1986. Mathematical modeling and analysis of yoghurt fermentations.
In: “Food Engineering and Process Applications”. V.1. Le Maguer, M. and Jelen, P. (Eds.). Essex, England.
Elsevier Applied Science Pub. Ltd. p:367-376.
Osorio, F. A. y Steffe, J. F. 1984. Kinetic energy calculations for non-Newtonian fluids in circular tubes. J.
Food Sci., 49: 1295-1296, 1315.
Parnell-Clunies, E. M.; Kakuda, Y. and Deman, J. M. 1986. Influence of heat treatment of milk on the flow
properties of yoghurt. J. Food Sci., 51:1459-1462.
Pauletti, M. S.; Venier, A. Stecchina, D. y Sabbag, N. 1986. Cuantificación de la tixotropía del dulce de leche.
I Jornadas Latinoamericanas y Argentinas de Dulce de Leche. Santa Fé, Argentina. 5 p.
Prentice, J. H. 1984. “Measurements in the Rheology of Foodstuffs”. Essex, England. Elsevier Applied
Science Pub. Ltda. 191 p.
Rao, M. A. 1977. Rheology of liquid foods. A review. J. Texture Studies, 8: 135-168.
Steffe, J. F. 1992. “Rheological Methods in Food Process Engineering”. East Lansing, Michigan. Freeman
Press. 228p.
Steffe, J. F.; Mohamed, I. O. and Ford, E. W. 1986. Rheological properties of fluid foods: data compilation. In:
“Physical and Chemical Properties of Foods”. Okos, M. R. (Ed.). St. Joseph, Michigan. ASAE. p:1-13.
Juan de Dios Alvarado
Toledo, R. T. 1981. “Fundamentals of Food Process Engineering”. Westport, Conn. AVI Pub. Co. Inc. p:
152-196.
Capítulo 5
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
210
TEMA 5.3. APLICACIÓN DEL MODELO DE LA LEY DE LA POTENCIA
PARA CARACTERIZAR EL FLUJO DE PULPAS DE FRUTAS
INTRODUCCIÓN
El estudio de la reología de alimentos está actualmente intensificado por las razones siguientes: los datos de las
propiedades reológicas son indispensables para el cálculo y diseño de equipos como bombas, intercambiadores
de calor, evaporadores, deshidratadores y todos los equipos en los que existe flujo o cambios en la consistencia.
Son índices actuales de control de calidad. Permiten explorar la estructura de la materia que constituye a los
alimentos. Conducen a relacionar la consistencia con la aceptabilidad de los alimentos por medidas físicas.
Prentice (1984) señaló que un fluido se distingue de un sólido por el hecho de poseer una estructura no rígida.
Las fuerzas netas entre sus elementos están en un estado continuo de agitación térmica o movimiento browniano.
Un líquido se distingue de un gas por su cohesividad. Las fuerzas netas entre sus elementos son de atracción,
sin que sean suficientes para interferir la agitación térmica. Por virtud de esta agitación, la distribución de los
elementos a través del conjunto es de naturaleza al azar, y el equilibrio es estadístico y termodinámico.
Si se aplica una fuerza externa que no altere el equilibrio estático, los elementos se mueven a nuevas posiciones y
por virtud del movimiento browniano permanecen distribuidos al azar. Este cambio de posición sin modificación
de la estructura, el equilibrio termodinámico, podrá continuar mientras la fuerza externa sea aplicada. La
propiedad característica en este caso es que la razón a la cual el material se deforma es proporcional a la fuerza
aplicada, y la constante de proporcionalidad es el coeficiente de viscosidad, o simplemente la viscosidad.
Sin embargo, muchos líquidos no cumplen con el concepto de viscosidad; presentan deformación, y la razón a
la cual el material se deforma no es proporcional a la fuerza aplicada. Lo anterior es particularmente cierto en
alimentos o productos pastosos como purés y pulpas de frutas.
Rao (1986) indicó que un elevado número de los fluidos alimenticios no-newtonianos presentan un
comportamiento seudoplástico. Entre ellos: jugos concentrados de frutas, chocolate fundido, mostaza, crema
Propiedades Reológicas
211
de leche, huevo entero descongelado, clara de huevo, soluciones de goma a concentraciones altas, concentrados
proteicos. En este grupo están incluidos los purés y las pulpas de frutas y vegetales. Steffe (1992), para
varios productos elaborados con diferentes frutas, reportó los datos del índice de consistencia y del índice de
comportamiento al flujo, que los caracterizan como fluidos seudoplásticos.
Son numerosas las publicaciones de trabajos relacionados con la reología de productos derivados de frutas.
Entre las que directamente se refieren a pulpas, purés o concentrados naturales de frutas, se compendian las
siguientes. Bottiglieri y colaboradores (1991), y Vélez y colaboradores (1991), realizaron estudios en pastas
de tomate provenientes de industrias. Rao (1987) presentó ecuaciones para calcular la viscosidad aparente
de suspensiones concentradas de manzana, naranja y tomate, como función de la viscosidad del suero y del
contenido de sólidos aludidos como pulpa. Rodríguez-Luna y colaboradores (1987) presentaron datos de los
parámetros reológicos determinados en néctar de papaya con comportamiento seudoplástico.
Rao y colaboradores (1986) analizaron el efecto de variedad, firmeza y condiciones de elaboración, sobre la
reología de salsa de manzana. En jugos concentrados de naranja con bajo contenido de pulpa se comprobó
el comportamiento seudoplástico a diferentes temperaturas y concentraciones, según los trabajos de Vitali y
colaboradores (1986), Vitali y Rao (1984). Resultados similares fueron obtenidos por Rao y colaboradores
(1984), en jugos concentrados de manzana, uva y naranja. Datos de los parámetros reológicos y el efecto de las
enzimas pécticas en puré de papaya fueron obtenidos por Gutiérrez López y colaboradores (1983).
El efecto del tratamiento térmico para inactivación de enzimas, sobre los parámetros reológicos de concentrado
de tomate, fue estudiado por Fito y colaboradores (1983). El puré de guayaba presentó un comportamiento
seudoplástico a diferentes temperaturas y entre 9,8 a 16,0Brix, según lo establecido por Vitali y Rao (1982).
Irazábal de Guariguata (1981) determinó las características reológicas de tres alimentos procesados para niños
y cuatro purés, preparados con guanábana, papaya, melón, sandía, banano, guayaba y mango; en todos los
casos estableció un comportamiento seudoplástico.
Durán y Jiménez (1980), en puré de albaricoque, determinaron que durante la concentración ocurren cambios
en los parámetros reológicos, inclusive en el esfuerzo de fluencia. Rao y Palomino (1974), con viscosímetros de
tubo, demostraron el comportamiento seudoplástico de purés de banano, guayaba, mango y papaya. Saravacos
(1970, 1968) fue uno de los primeros investigadores que caracterizaron el comportamiento seudoplástico de
jugos de naranja con sólidos en suspensión, salsa de manzana, puré de durazno y puré de pera; además señaló
la presencia de tixotropía en puré de manzana. Como información adicional, se citan a los trabajos de Charm
(1981,1962) y Harper (1960), a quienes se les puede atribuir el mérito de cimentar el estudio de la reología de
dispersiones alimentarias.
Zuritz (1995), explicó un método para determinar a los parámetros reológicos de productos seudoplásticos,
cuando se trabaja con viscosímetros rotacionales de cilindro simple, considerando los datos de la viscosidad
aparente.
Para fluidos newtonianos la ecuación básica es:

τ = - μ ()
(5.3.1)
El esfuerzo de cizalla a una distancia radial r es definido por:
τ = Ω/2πLr2
(5.3.2)
Y la velocidad de deformación en cizalla por:

 = r (dV/dr)
(5.3.3)
Juan de Dios Alvarado

Donde τ es el esfuerzo de cizalla,  es la velocidad de deformación en cizalla y μ es la viscosidad.
Capítulo 5
212
Ω es el torque, L es la longitud del cilindro y V es la velocidad angular. Por reemplazo se obtiene:
(dV/dr) = - (Ω/2πLμ) r-3
(5.3.4)
La integración realizada en la forma siguiente:
Rw
vw
∫ 0 dV = - (Ω/2πLμ) ∫ 
r-3 (dr)
(5.3.5)
Conduce a:
Vw = (Ω/4πLμ) ((1/Rw2) - (1/))
(5.3.6)
Como (1/) = 0, la ecuación anterior se simplifica a:
Vw = (1/2μ) (Ω/2πLRw2)
(5.3.7)
Que puede ser ordenada, y por reemplazo de τ definido por la ecuación (5.3.2) se obtiene:
μ (2Vw) = (Ω/2πLRw2) = τw
(5.3.8)
Al comparar esta última ecuación con la ecuación (5.3.1), en la pared del cilindro (Rw), la velocidad de cizalla
corresponde a:
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS

 = 2V
w
w
(5.3.9)
Un procedimiento análogo hecho en la siguiente forma, para el caso de un fluido no-newtoniano, en forma
específica seudoplástico, lleva a:

τ = - K (  )n
(dV/dR) = - (Ω/2πLK)1/n r-((2/n)+1)
Rw
vw
1/n
-((2+n)/n)
dr
0 dV = - (Ω/2πLK)  r
∫
∫
Vw = (Ω/2πLK)1/n (n/2) (1/Rw2/n)
Vw = (n/2) (1/K)1/n (Ω/2πLRw2)1/n
K (2Vw/n)n = (Ω/2πLRw2) = τw
 = 2V /n
ws
w
(5.3.10)
(5.3.11)
(5.3.12)
(5.3.13)
(5.3.14)
(5.3.15)
(5.3.16)
La comparación de las ecuaciones (5.3.9) y (5.3.16) indica que, en un mismo instrumento, la velocidad de
deformación será diferente en un fluido seudoplástico con relación a un fluido newtoniano, por la inclusión del
factor n.
Para un valor de esfuerzo de cizalla determinado, al igualar las ecuaciones (5.3.1) y (5.3.10), se obtiene:


μ (  1n) = K (  1s)n
(5.3.17)


Si (  1n) = (  1s), en términos de la velocidad angular V = 2πN, para el caso de cilindro simple y considerando
las ecuaciones (5.3.9) y (5.3.16).
4πNn = 4πNs/n
(5.3.18)
La ecuación (5.3.17) puede ser escrita en la forma siguiente:
μF (4πNn) = K (4πNs/n)n = K (4πNn)n
(5.3.19)
Propiedades Reológicas
213
En consecuencia:
μF = K (4πNn)n-1
(5.3.20)
Utilizando logaritmos:
log μF = (n-1) log (4πN) + log K
(5.3.21)
Un gráfico de log(4πN/60) contra log(μF), conduce a calcular n de la pendiente y del punto de corte en ordenadas
K.
Sin embargo, las pulpas de frutas, en especial con alto contenido de sólidos, presentan un comportamiento
reológico más complejo, pues requieren de un esfuerzo inicial para el flujo. Al respecto, García y Burón Arias
(1980) señalaron que la presencia de pectinas incide en la aparición del comportamiento no-newtoniano de
jugos. Además que la presencia de partículas suspendidas de pulpa ocasiona la aparición de una tensión mínima
para deformación o esfuerzo de fluencia, que puede ser explicada por enlaces entre las partículas sólidas que
contienen protopectina y el gel de pectina del suero, contribuyendo estos enlaces y los del gel al valor global
de este parámetro.
Prentice (1984) explicó las causas de la desviación del comportamiento newtoniano, observado en productos
de frutas. Señaló que los jugos de frutas pueden ser aproximados a un sistema de dos fases. El sustrato que es
una solución acuosa de sales minerales, azúcares naturales, pectinas y radicales ácidos orgánicos que le dan el
sabor característico; flotando en este suero, se encuentran partículas de materia provenientes de la pared celular.
En trabajos realizados en jugo de naranja estableció que las propiedades del suero son consecuencia de la
concentración de azúcares y pectinas. Las pectinas se polimerizan y provocan un gradual debilitamiento al
corte. La presencia de los azúcares sirve para reducir el volumen libre en el cual las fibritas de pectina pueden
rotar. En consecuencia, una solución de pectinas y azúcar es más viscosa y se desvía más del comportamiento
newtoniano que una solución sola de pectinas.
Además de las consideraciones hidrodinámicas, los polímeros de pectinas en presencia de azúcares y ácidos,
tienden a juntarse y a formar una malla tridimensional. Esto provoca, en adición al comportamiento nonewtoniano, una tensión o esfuerzo mínimo para iniciar la deformación, denominado esfuerzo de fluencia.
Con relación a las partículas que flotan, señaló que se han observado cuatro tipos con tamaños diferentes;
cuando están presentes en cantidad suficiente refuerzan la malla de pectinas, pero a concentraciones bajas el
efecto es opuesto, las partículas suspendidas tienden a interferirse con la formación de la malla.
En adición, un efecto tixotrópico pequeño fue determinado en pulpas de ciruela y melocotón por Ibarz y Lozano
(1992), atribuido en especial a la rotura del gel de moléculas de pectinas y de otras moléculas largas. Este efecto
también fue observado por diferentes autores en zumos concentrados de tomate, naranja y en puré de manzana
(Jiménez y Durán, 1979). Sin embargo, Harper y El Sahrigi (1965) señalaron que toda presunción de tixotropía
debe ser hecha con cautela, pues otras causas pueden intervenir en los cambios. Entre ellas mencionan a la
elevación de la temperatura del producto durante el cizallamiento, a un mayor orden de las moléculas en el
sistema o a imprecisiones en las medidas. Prentice (1984) indicó que no existe un efecto tixotrópico real. La
disminución observada en la viscosidad de jugos, conforme transcurre el tiempo de cizallamiento, se explica en
parte por el hecho de que las partículas gruesas son frágiles y algunas se rompen. Los fragmentos resultantes
tienen formas más simétricas y disminuyen la consistencia del fluido.
Juan de Dios Alvarado
Lo anterior explica lo indicado por Rao y colaboradores (1984), quienes establecieron que los jugos
concentrados de naranja de bajo y alto contenido de pulpa son seudoplásticos; sin embargo, los concentrados
altos en pulpa también presentaron un valor detectable del esfuerzo de fluencia, que no fue detectado en los de
baja concentración.
Capítulo 5
214
Por otro lado, en muchos casos se ha establecido que el efecto de la temperatura sobre el índice de consistencia,
es descrito por la ecuación de Arrhenius.
K = K0 exp((EA)/(RG)(TA))
(5.3.22)
Donde, (EA) es la energía de activación, (RG) es la constante de los gases 8,314 [J/g.mol.K], (TA) corresponde
a la temperatura absoluta y K0 es una constante.
Ibarz y Pagán (1987), en jugos de una variedad de frambuesa parecida a la mora, llegaron a establecer que,
además del comportamiento seudoplástico, el valor de la energía de activación fue 37,9 [kJ/g.mol], considerando
los valores del índice de consistencia. Valores menores fueron reportados por Rao (1986), en salsa de manzana,
puré de durazno, puré de pera, concentrados de maracuyá y de tomate.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Prins y Bloksma (1983) advirtieron que las medidas reológicas en alimentos son complicadas por las razones
siguientes. Los alimentos en general son heterogéneos y constituyen sistemas de varias fases; consisten en
componentes discretos como fibras, células, cristales, gotas de grasa, burbujas de aire y partículas de proteína,
dispersas en una fase continua que en muchos casos es acuosa, pero también puede ser aceite. Por lo anterior,
la muestra que se utiliza en las determinaciones debe ser relativamente grande para superar el problema de
heterogeneidad. El comportamiento reológico de los alimentos en general no es lineal, y como consecuencia las
determinaciones se deben realizar en las mismas condiciones de tensión, velocidad de deformación y duración
para que sean reproducibles y comparables. Las propiedades reológicas de alimentos, en general, dependen de
la historia de preparación de la muestra y de las condiciones de deformación a las que son sometidos.
OBJETIVOS
Revisar y comprender conocimientos de viscometría, cuando se utilizan viscosímetros rotacionales.
Comprobar el comportamiento no-newtoniano de pulpas de frutas, y realizar una aproximación a los valores de
los parámetros reológicos mediante el modelo de la ley de la potencia.
Calcular los valores de la energía de activación para flujo en pulpas de frutas.
MATERIALES Y MÉTODOS
Extraer la pulpa de una fruta, licuarla por cinco minutos a una velocidad media del orden de 10.000 [rpm].
Enfriar la muestra hasta 10C y hacer las medidas en un viscosímetro rotacional en la forma indicada por la
casa fabricante del equipo, calentar y termostatizar a 25, 40 y 55C para repetir las medidas. Trabajar con
otras muestras adicionales.
En todos los casos determinar la humedad por duplicado en un equipo Brabender o en una balanza para
humedad, y el contenido de sólidos solubles como Brix en un refractómetro Abbe estabilizado a 20C.
Por análisis de regresión y con la ecuación (5.3.21) determinar los valores del índice de comportamiento al
flujo n y del índice de consistencia K.
Considerar los datos del índice de consistencia a las cuatro temperaturas, y con la ecuación (5.3.22) determinar
el valor de la energía de activación.
CUESTIONARIO
Con los factores suministrados por la casa Brookfield calcular los valores de la viscosidad aparente μF, hacer un
gráfico de la velocidad de rotación [rps] contra la viscosidad aparente; establecer si existe un comportamiento
no-newtoniano y el tipo de flujo.
Propiedades Reológicas
215
Comparar los datos promedios de K y de n de la muestra con los reportados en la literatura técnica. Explicar
las causas de las posibles diferencias.
Mediante un gráfico comprobar la aplicación de la ecuación de Arrhenius y determinar el valor de la energía
de activación para el flujo.
Comentar con respecto a los datos reológicos y sus posibles aplicaciones.
RESULTADOS EXPERIMENTALES
A continuación se presentan los resultados pertinentes obtenidos por Alvarado (1994), en pulpas obtenidas de
frutas sanas, maduras, aptas para consumo humano. Las frutas fueron adquiridas en los lugares de producción y
en los mercados o sitios de venta, en fechas diferentes: luego de transcurrir varios meses y hasta un año o más.
Según las características, las frutas fueron lavadas, peladas en el caso de poseer corteza gruesa; separadas las
semillas grandes, básicamente la porción comestible o pulpa fue sometida a licuado a velocidad intermedia en
una licuadora Oster por cinco minutos. Inmediatamente, la muestra se enfrió hasta 10C en un baño termostático
para iniciar las medidas reológicas, las cuales se repitieron cuando la muestra se termostatizaba a 25, 40 y
55C.
Se trabajó con: Aguacate (Persea gratissima). Babaco (Carica pentagona). Capulí (Prunus capuli). Claudia
(Prunus domestica). Durazno (Prunus persica). Fresa (Fragaria vesca). Guanábana (Annona muricata).
Guayaba (Psydium guajava). Mango (Mangifera indica). Manzana (Malus communis). Maracuyá (Passiflora
edulis). Mora (Rubus gigantus). Naranjilla (Solanum quitoense). Papaya (Carica papaya). Pera (Pyrus
communis). Taxo (Passiflora mollissima). Tomate (Lycopersicon esculentum). Tomate de árbol (Cyphomandra
betacea).
Las determinaciones de los parámetros reológicos se realizaron con un viscosímetro rotacional Brookfield
LVTD, acoplado con uno de los rotores cilíndricos LV, según la consistencia de la pulpa y el brazo protector.
Las lecturas en el equipo se hicieron incrementando la velocidad de rotación desde 0,3 hasta 60 revoluciones por
minuto, o alcanzando la lectura tope. A continuación se utilizó el método de lectura descendente, disminuyendo
la velocidad de rotación. Luego de cada cambio de velocidad, se mantuvo la agitación por cinco minutos antes
del registro de cada dato, para permitir la estabilización del sistema de medida.
De acuerdo con las instrucciones de la casa fabricante del equipo, se colocaron 500 ml. de muestra en un
vaso alto de cristal de 600 ml., sumergida en el agua de un baño termostático para la estabilización de las
temperaturas seleccionadas con una precisión de ± 1C.
Luego de comprobar el comportamiento no-newtoniano de las pulpas por la disminución de la viscosidad
aparente, registrada conforme se incrementaba la velocidad de deformación, se estableció que el flujo respondía
a un comportamiento seudoplástico.
log μF = (n-1) log (4πN/60) + log K
Para establecer el valor de la energía de activación con los datos del índice de consistencia, se aplicó el modelo
linealizado de Arrhenius que corresponde a:
ln K = ln K0 + ((EA)/(RG)(TA))
La humedad se determinó por duplicado en un equipo Brabender.
Juan de Dios Alvarado
Los dos parámetros reológicos se determinaron con la aplicación de la ecuación (5.3.21).
Capítulo 5
216
Los datos reológicos se procesaron estadísticamente con el programa MSTATC en un computador
MAGITRONIC. Las variables dependientes consideradas fueron el índice de consistencia y el índice de
comportamiento al flujo.
Con el propósito de analizar la hipótesis de igualdad de valores entre frutas, se consideró un arreglo factorial
con seis réplicas y tres variantes independientes: método con dos niveles, temperatura con cuatro niveles y fruta
con dieciocho niveles. El análisis de varianza definió las variables e interacciones con efectos significativos.
En estos casos se calculó la diferencia mínima significativa (0,05), para definir intervalos.
Para analizar la hipótesis de igualdad de valores en cada una de las frutas se consideró un arreglo factorial con
tres factores: muestra con seis niveles, método con dos niveles y temperatura con cuatro niveles. Las tablas de
análisis de varianza sirvieron para la discusión individual; para comprobar si el tiempo de cizallamiento al que
está sometida la muestra tiene un efecto significativo sobre las características o consistencia y para analizar el
efecto de la temperatura sobre las propiedades reológicas.
En todas las pruebas estadísticas se siguieron los criterios señalados por Romo Saltos (1973).
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Los datos del índice de consistencia y del índice de comportamiento al flujo, obtenidos en todas las frutas
consideradas y a las cuatro temperaturas, se presentan en la Tabla 5.3.1. Se incluyen los valores registrados en
las medidas con incremento de la velocidad de rotación, y con disminución de la velocidad de rotación, en los
casos que existieron diferencias de significado estadístico; en los casos que no se pudo comprobar diferencias
de significado estadístico entre los dos métodos de medida, se reporta el valor promedio.
En todas las frutas se estableció un excelente ajuste de los datos experimentales con la ecuación (5.3.21), con
coeficientes de correlación superiores a 0,9. Lo anterior indica que el modelo de la ley de la potencia para
fluidos seudoplásticos es adecuado para describir el flujo de las pulpas licuadas de frutas.
En la mitad del conjunto de frutas consideradas no se establecieron diferencias de significado estadístico entre
los valores del índice de consistencia, obtenidos con incremento de la velocidad de rotación, y con disminución
de la velocidad de rotación. Como las medidas se realizaron en forma continua, a diferentes tiempos, es un
indicativo que no existe tixotropía o que es muy limitada.
Al contrario, en las pulpas de aguacate, babaco, claudia, fresa, manzana, mora, naranjilla, pera y tomate, sí
se establecieron diferencias de significado estadístico en los valores del índice de consistencia, obtenidos por
los dos métodos indicados. Se puede entonces conjeturar la existencia de tixotropía en estos productos; sin
embargo, y de acuerdo con lo indicado por Prentice (1984), el fenómeno está más asociado con reomalaxia.
Es decir, ocurre una pérdida irreversible de la consistencia producida por la deformación de un material que
se cizalla. La tixotropía es una disminución de la viscosidad aparente, por la acción de esfuerzos de cizalla,
seguida de una recuperación gradual cuando se retira el esfuerzo; este efecto es función del tiempo. Al no
observarse recuperación del material, en las pulpas analizadas se debe sospechar en primer lugar un efecto
reomaláctico.
Con el propósito principal de discutir la hipótesis de igualdad de medias entre los valores del índice de
consistencia de las pulpas de las diferentes frutas, al realizar el análisis de varianza se establecieron diferencias
de alto significado estadístico, debidas a los métodos de medida, a las temperaturas y, en especial, a las distintas
frutas. Según lo anterior, se rechaza la hipótesis de igualdad entre medias de las frutas. Los valores del índice
de consistencia son diferentes cuando se los determina en las pulpas de diversas frutas.
Lo anterior motivó el cálculo del valor de la diferencia mínima significativa, para establecer grupos según
la consistencia del producto, expresada por el índice de consistencia [Pa.sn]. La guayaba con el aguacate
presentaron los valores más altos. Un segundo grupo lo conformaron el aguacate y la fresa. Un tercer grupo
lo conformaron la fresa y la manzana. El cuarto grupo con valores todavía altos, lo conformaron la manzana,
la mora y el tomate de árbol. En el quinto grupo con valores intermedios se encontraron la mora, el tomate de
árbol, el capulí y el durazno. El sexto grupo se diferenció claramente de los anteriores por los valores menores,
y se incluyeron las pulpas de guanábana, papaya, mango, naranjilla y babaco. El séptimo grupo fue el más
numeroso con valores del índice de consistencia bajos, conformado por papaya, mango, naranjilla, babaco,
Propiedades Reológicas
217
pera, claudia, tomate y taxo. Al final está un octavo grupo con los valores menores: lo constituyeron las pulpas
de babaco, pera, claudia, tomate, taxo y maracuyá.
Tabla 5.3.1. Parámetros Reológicos Determinados en Pulpas de Frutas
10C
25C
40C
55C
Producto (Humedad g/100 g)
(Nombre botánico)
K*
A**
D
AyD
A
D
AyD
A
D
AyD
A
D
AyD
A
D
AyD
A
D
AyD
A
D
AyD
A
D
AyD
A
D
AyD
A
D
AyD
A
D
AyD
A
D
AyD
A
D
AyD
A
D
AyD
A
D
AyD
A
D
AyD
A
D
AyD
A
D
AyD
Aguacate (75,0 ± 1,0)
(Persea gratissima)
Babaco (93,4 ± 0,2)
(Carica pentagona)
Capulí (77,8 ± 3,7)
(Prunus capuli)
Claudia (83,2 ± 4,4)
(Prunus domestica)
Durazno (85,5 ± 1,8)
(Prunus persica)
Fresa (89,6 ± 5,6)
(Fragaria vesca)
Guanábana (81,8 ± 1,1)
(Annona muricata)
Guayaba (82,6 ± 5,4)
(Psydium guajava)
Mango (82,2 ± 1,1)
(Mangifera indica)
Manzana (83,7 ± 1,3)
(Malus communis)
Maracuyá (84,5 ± 1,2)
(Passiflora edulis)
Mora (86,4 ± 1,0)
(Rubus gigantus)
Naranjilla (91,7 ± 0,4)
(Solanum quitoense)
Papaya (87,8 ± 0,6)
(Carica papaya)
Pera ( 80,8 ± 5,2)
(Pyrus communis)
Taxo (80,5 ± 6,7)
(Passiflora mollissima)
Tomate (93,6 ± 0,8)
(Lycopersicon esculentum)
Tomate de árbol (86,8 ± 0,7)
(Cyphomandra betacea)
n*
K
n
K
n
K
n
46,2
36,0
0,25
0,38
39,9
35,0
0,25
0,38
33,1
23,7
0,25
0,38
24,2
19,2
0,25
0,38
5,4
4,3
0,24
0,31
4,9
3,7
0,24
0,31
4,1
3,5
0,24
0,31
3,4
2,7
0,24
0,31
31,9
3,9
1,9
0,31
0,39
0,47
21,9
1,9
1,1
0,31
0,39
0,47
15,0
1,6
1,0
0,31
0,39
0,47
10,4
1,4
0,9
0,31
0,39
0,47
26,2
40,0
34,8
0,33
0,26
0,27
20,3
33,3
30,1
0,33
0,27
0,30
16,0
28,8
25,5
0,33
0,29
0,32
12,8
23,6
20,2
0,33
0,29
0,36
13,6
0,34
9,2
0,36
7,4
0,39
5,7
0,45
53,7
0,29
40,6
0,28
28,9
0,35
18,5
0,40
8,7
35,6
30,0
0,35
0,22
0,28
7,5
28,0
24,7
0,35
0,25
0,31
5,2
23,1
19,5
0,40
0,27
0,33
4,5
18,9
16,2
0,42
0,29
0,34
0,4
35,0
31,1
0,31
0,32
0,36
0,3
28,1
24,6
0,33
0,32
0,36
0,3
22,3
18,3
0,38
0,32
0,36
0,2
17,4
14,0
0,38
0,32
0,36
9,0
7,7
0,30
0,37
7,3
5,8
0,30
0,37
5,2
4,2
0,30
0,37
4,0
3,2
0,30
0,37
7,1
4,9
4,2
0,33
0,37
0,37
6,8
3,6
3,2
0,33
0,37
0,37
6,5
3,3
2,9
0,40
0,37
0,37
4,9
2,9
2,3
0,41
0,37
0,37
3,0
5,2
4,2
0,32
0,22
0,29
2,5
3,8
3,0
0,36
0,22
0,29
1,7
2,9
2,3
0,43
0,22
0,29
1,3
2,4
1,6
0,48
0,22
0,29
28,0
0,38
23,7
0,38
19,5
0,38
14,4
0,38
* K = índice de consistencia (Pa.s ). n = índice de comportamiento al flujo (adimensional).
** A = Datos obtenido con aumento de la velocidad de rotación en el viscosímetro. D = con disminución de la velocidad
de rotación. AyD = no existen diferencias de significado estadístico entre los datos obtenidos por los dos métodos.
Valores promedios de seis determinaciones o más.
Es interesante señalar que al analizar los valores promedios generales de las seis réplicas, se establecieron ligeras
diferencias, que es un indicio de la heterogeneidad existente. Pues por el elevado número de observaciones
por réplica (144), todos estos valores deberían ser muy próximos al valor promedio general. Al considerar
los valores promedios generales de la variable métodos, los valores del método descendente son inferiores
a los del método ascendente. Esto confirma la presencia de reopexia o tixotropía en varios de los productos
considerados.
Juan de Dios Alvarado
n
Capítulo 5
218
Con relación a los datos del índice de comportamiento al flujo, el análisis de varianza señaló que esta propiedad
es influenciada de manera significativa por las tres variables consideradas, método de medida, temperatura y
tipo de fruta. En consecuencia, también en este caso, la hipótesis de igualdad de medias debe ser rechazada.
Los valores del índice de comportamiento al flujo serán diferentes cuando se los determine en pulpas de
distintas frutas. Los valores mayores se establecieron en claudia 0,43, y los menores en babaco 0,28. Lo cual
confirma la seudoplasticidad de estos productos. Se aprecia que existe un intervalo estrecho de variación entre
las dieciocho frutas.
Tabla 5.3.2. Términos de la Ecuación de Arrhenius y Valores de la Energía de Activación para Datos del Índice
de Consistencia Determinado en Pulpas de Frutas*
Ko
Producto (Nombre botánico)
(EA)/(RG)
ln(Pa.s )
(K)
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
n
r
(EA)
(kJ/g.mol)
Aguacate (Persea gratissima)
A**
D
- 0,730
- 1,264
1304
1395
0,976
0,950
10,84
11,60
Babaco (Carica pentagona)
A
D
- 1,682
- 1,671
962
891
0,984
0,959
8,00
7,40
Capulí (Prunus capuli)
AyD
- 4,692
2312
0,999
19,22
Claudia (Prunus domestica)
A
D
- 6,000
- 4,673
2041
1471
0,933
0,923
16,97
12,23
Durazno (Prunus persica)
AyD
- 1,949
1477
0,999
12,28
Fresa (Fragaria vesca)
A
D
- 0,074
- 0,330
1067
1105
0,997
0,988
8,87
9,19
Guanábana (Annona muricata)
AyD
- 3,618
1755
0,996
14,59
Guayaba (Psydium guajava)
AyD
- 3,650
2175
0,989
18,09
Mango (Mangifera indica)
AyD
- 2,922
1448
0,982
12,04
Manzana (Malus communis)
A
D
- 1,006
- 1,141
1295
1289
0,999
0,998
10,77
10,72
Maracuyá (Passiflora edulis)
AyD
- 5,431
1278
0,936
10,63
Mora (Rubus gigantus)
A
D
- 1,504
- 2,405
1437
1660
0,997
0,997
11,94
13,80
Naranjilla (Solanum quitoense)
A
D
- 3,808
- 4,402
1709
1828
0,993
0,999
14,21
15,20
Papaya (Carica papaya)
AyD
- 0,467
701
0,874
5,83
Pera (Pyrus communis)
A
D
- 2,123
- 2,750
1037
1180
0,970
0,988
8,62
9,81
Taxo (Passiflora mollissima)
AyD
- 5,152
1783
0,988
14,82
Tomate (Lycopersicon esculentum)
A
D
- 4,048
- 5,449
1608
1952
0,998
0,997
13,37
16,23
Tomate de árbol (Cyphomandra betacea)
AyD
- 1,382
1345
0,983
11,18
*
**
ln K = ln Ko + (EA)/(RG)(TA). Aplicada entre 283 y 328K.
(EA) = energía de activación (kJ/g.mol), (RG) = constante de los gases (8,314 J/g.mol K).
(TA) = temperatura absoluta (K). r = coeficiente de correlación. K = índice de consistencia (Pa.s^n).
A = dato obtenido con aumento de la velocidad de rotación en el viscosímetro. D = con disminución de la velocidad de rotación.
A y D = no existen diferencias de significado estadístico entre los datos obtenidos por los dos métodos indicados.
Si bien existieron diferencias de significado estadístico, atribuibles a la variable temperatura, al realizar la
prueba de significación de Tukey no se estableció un ordenamiento acorde con las cuatro temperaturas. Se
obtuvieron dos grupos, y existió una tendencia hacia valores más altos del índice de comportamiento al flujo
con el incremento de la temperatura. Esto significaría una ligera pérdida de la seudoplasticidad con el aumento
de la temperatura.
Según la ecuación de Arrhenius, al correlacionar el inverso de la temperatura absoluta contra el logaritmo del
índice de consistencia, se cumple la linealidad prevista por el modelo. Según se presenta en la Tabla 5.3.2., los
Propiedades Reológicas
219
valores del coeficiente de correlación, en todos los casos son muy altos del orden de 0,9.
Estos datos indican que la ecuación de Arrhenius es adecuada para describir el efecto de la temperatura sobre
el índice de consistencia de las pulpas de frutas. Por la consistencia semisólida de varias de ellas, el efecto de
la temperatura es bajo. Lo cual se manifiesta en los valores de la energía de activación, que en la mayoría de
casos son inferiores a los del agua y de otros fluidos newtonianos.
Como comentario general se menciona que la mayor dificultad para realizar las medidas fue la heterogeneidad
que presentaron las muestras. Aparentemente el licuado por cinco minutos es suficiente para obtener un
producto homogéneo, sin embargo existen diferencias de origen debido a factores como madurez de las frutas,
sitio de cosecha, tiempo y condiciones de transporte y almacenamiento previo a la venta, que influyen en las
características reológicas y se manifiestan en sus parámetros. Las recomendaciones de Prins y Bloksma (1983)
son válidas y explican la decisión adoptada en este trabajo de aumentar el número de réplicas a seis como
mínimo.
BIBLIOGRAFÍA Y REFERENCIAS
Alvarado, J. de D. 1994. “Determinación de Parámetros Reológicos en Pulpas de Frutas”. Informe final del
proyecto de investigación PR. Universidad Técnica de Ambato (UTA)-Consejo Nacional de Universidades y
Escuelas Politécnicas del Ecuador (CONUEP). 44p. y anexos.
Bottiglieri, P.; De Sio, F. Fasanaro, G. Mojoli, G. Impembo, M. and Castaldo, D. 1991. Rheological
characterization of ketchup. J. Food Quality, 14:497-512.
Charm, S. E. 1981. “Fundamentals of Food Engineering”. 3rd. ed. Westport, Connecticut. AVI Pub. Co. Inc.
p: 54-69.
Charm, S. E. 1962. The nature and role of fluid consistency in foood engineering applications. Adv. Food
Res., 11: 355-435.
Durán, L. y Jiménez, G. 1980. Evolución de las propiedades reológicas del puré de albaricoque durante la
operación de concentración. Rev. Agroquím. Tecnol. Aliment., 20(2):209-219.
Fito, P. J.; Clemente, G. and Sanz, F. J. 1983. Rheological behaviour of tomate concentrate (Hot break and Cold
break). J. Food Engin., 2:51-62.
García Teresa, R. y Burón Arias, I. 1980. Relación entre la estructura y las propiedades reológicas de los
zumos y purés de frutas y hortalizas. Revista de Agroquímica y Tecnología de Alimentos, 20(1): 70-78.
Gutiérrez López, G.; Gutiérrez López, E. y Jiménez Aparicio, A. 1983. Enzimas pécticas. II. Influencia de la
poligalacturonasa en las propiedades reológicas de la pulpa de la papaya. Tecnol. Aliment. México, 18(2):5-9.
Harper, J. C. 1960. Viscometric behavior in relation to evaporation of fruit purees. Food Technology, 14:557561.
Ibarz, A. y Lozano, J. E. 1992. Nota. Caracterización reológica de pulpas concentradas de ciruela y melocotón.
Rev. Esp. Cienc. Tecnol. Aliment., 32(1):85-94.
Ibarz, A. and Pagán, J. 1987. Rheology of raspberry juices. J. Food Eng., 6: 269-289.
Irazábal de Guariguata, Carmen. 1981. Características reológicas de productos de frutas tropicales. Arch.
Latinoamer. Nutric., 31(4):666-679.
Jiménez, G. y Durán, L. 1979. Propiedades reológicas de productos derivados de frutas y de tomate. Revisión
bibliográfica. Revista de Agroquímica y Tecnología de Alimentos, 19(2):203-216.
Juan de Dios Alvarado
Harper, J. C. and El Sahrigi, A. F. 1965. Viscometric behavior of tomato concentrates. J. Food Sci., 30:470-476.
Capítulo 5
220
Prentice, J. H. 1984. “Measurements in the Rheology of Foodstuffs”. Essex, England. Elsevier Applied
Science Pub. Ltd. 191 p.
Prins, A. and Bloksma, A. H. 1983. Guidelines for the measumerent of the rheological properties and the use
of existing data. In: “Physical Properties of Foods”. Jowitt, R.; Escher, F. Hallström, B. Meffert, H. F. Spiess,
W. E. L. and Vos, G. (Eds.). Essex, England. Applied Science Pub. Ltd. p: 185-191.
Rao, M. A. 1987. Predicting the flow properties of food suspensions of plant origin. Food Technol., 41(3):8588.
Rao, M. A. 1986. Rheological properties of fluid foods. In: “Engineering Properties of Foods”. Rao, M. A.
and Rizvi, S. S. H. (Eds.). New York. Marcel Dekker, Inc. p: 1-48.
Rao, M. A.; Cooley, H. J. Nogueira, J. N. and McLellan, M. R. 1986. Rheology of apple sauce: effect of apple
cultivar, firmness and processing parameters. J. Food Sci., 51: 176-179.
Rao, M. A.; Cooley, H. J. and Vitali, A. A. 1984. Flow properties of concentrated juices at low temperatures.
Food Technol., 38(2): 113-119.
Rao, M. A. and Palomino, N. O. 1974. Flow properties of tropical fruit purees. J. Food Sci.,39:160-161.
Rodríguez-Luna, G.; Segura, J. S. Torres, J. and Brito, E. 1987. Heat transfer to non-Newtonianon fluid foods
under laminar flow conditions in horizontal tubes. J. Food Sci., 52: 975-979.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Romo Saltos, L. 1973. “Métodos de Experimentación Científica”. Quito, Ecuador. Editorial Universitaria UC.
p:221-229.
Saravacos, G. D. 1970. Effect of temperature on viscosity of fruit and purees. J. Food Sci., 35:122-125.
Saravacos, G. D. 1968. Tube viscometry of fruit purees and juices. Food Technology, 22:1585-1588.
Steffe, J. F. 1992. “Rheological Methods in Food Process Engineering”. East Lansing, Michigan. Freeman
Press. p:207-209.
Vélez, J. F.; Zechinelli, V. H. y Chilaca, J. C. 1991. Evaluación de propiedades reológicas de puré de tomate
por medio de viscosímetros de tubo y rotacional. Congreso Nacional de Ciencia y Tecnología de Alimentos.
México. 10p.
Vitali, A. A.; Soler, M. P. and Rao, M. A. 1986. Rheological behavior of coconut milk. In: “Food Engineering
and Proces Applications”. V.1. Le Maguer, M. and Jelen, P. (Eds.). Essex, England. Elsevier Applied Science
Pub. Ltd. p: 33-38.
Vitali, A. A. and Rao, M. A. 1984. Flow properties of low-pulp concentrated orange juice. Effect of temperature
and concentration. J. Food Sci., 49: 882-888.
Vitali, A. A. and Rao, M. A. 1982. Flow behaviour of guava puree as a function of temperature and concentration.
J. Texture Studies, 13:275-289.
Zuritz, C. A. 1995. Comunicación personal.
Propiedades Reológicas
221
TEMA 5.4. APLICACIÓN DE LOS PARÁMETROS REOLÓGICOS
PARA CARACTERIZAR A PULPAS DE BANANOS
INTRODUCCIÓN
Cuando se agita para homogeneizar o licuar a pulpas de frutas, como la de bananos, se forma una pasta que es
una suspensión con alta concentración de la fase sólida dispersa y que se caracteriza por no fluir libremente.
Rao (1987) consideró a estos productos como dispersiones de sólidos en un medio fluido, los sólidos están
en suspensión y son relativamente inmóviles sin que se produzca una sedimentación importante. En estos
alimentos, una forma de obtener información útil para diversas aplicaciones, en ingeniería y tecnología de
alimentos, se logran con el conocimiento de sus propiedades reológicas.
Charm (1960, 1981) utilizó el modelo de la ley de la potencia para fluidos seudoplásticos, con el propósito de
caracterizar el comportamiento reológico de puré de banano, y presentó datos de los parámetros reológicos. En
el intervalo de 20 a 24C, el índice de consistencia varió entre 10,7 a 6,5 [Pa.sn], y el índice de comportamiento
al flujo entre 0,333 a 0,458, a temperaturas superiores, entre 42 a 49C, los valores correspondientes estuvieron
entre 5,3 a 4,2 [Pa.sn] y 0,486 a 0,478.
Rao y Otoya Palomino (1974) determinaron, mediante viscometría de tubo capilar, valores de 12,33 [Pa.sn] y
0,283 para los parámetros reológicos de puré de banano, con 17,7Brix a 22C.
En compotas de banano, Irazábal de Guariguata (1981) señaló que el modelo de la ley de la potencia fue
adecuado para describir las curvas de flujo a 20, 40 y 60C. Los valores del índice de consistencia para
puré de cambur o banano con 18,8 g de sólidos totales/100 g, disminuyeron desde 5,369 hasta 4,030 [Pa.sn],
Juan de Dios Alvarado
En este campo son pocos los trabajos realizados en banano. Khalil y colaboradores (1989), en jugos clarificados,
filtrados y concentrados, establecieron un comportamiento newtoniano entre 20 a 57Brix y 30 a 70C;
presentaron una ecuación que define el efecto conjunto de la temperatura y de la concentración de sólidos
solubles sobre la viscosidad dinámica. Sin embargo, los productos concentrados de banano, como pulpas, purés
y compotas, presentan un comportamiento no-newtoniano marcado, señalado por varios autores.
Capítulo 5
222
conforme se incrementó la temperatura; los valores del índice de comportamiento al flujo variarion entre 0,46
y 0,54.
Heldman y Singh (1981) presentaron los resultados experimentales de medidas reológicas, obtenidas con un
viscosímetro de cilindros coaxiales en puré de banano a 67C. Indicaron que los valores establecidos se pueden
utilizar para calcular la potencia requerida para el transporte. El valor del índice de consistencia fue 0,001514
[Pa.sn], y del índice de comportamiento al flujo 0,385.
Sin embargo, Kalentuc-Gencer y colaboradores (1986) establecieron, en el caso de alimentos elaborados con
banano para niños, ecuaciones con tres parámetros reológicos, con la inclusión de una tensión mínima para
deformación o esfuerzo de fluencia. Existieron diferencias en los valores determinados según los modelos
Herschel-Bulkley, Casson y un modelo modificado de la ecuación de Casson. Sin embargo, concluyeron que
en todos los casos se obtuvieron ajustes aceptables con los datos experimentales.
Alvarado (1994), en pulpas licuadas de veinte y dos frutas, comprobó que el modelo de la ley de la potencia
para fluidos seudoplásticos fue adecuado para describir el flujo; sin embargo, en diecisiete de las pulpas
también fue posible utilizar el modelo para comportamiento del tipo mixto, que corresponde al modelo (H-B).
Lo anterior es importante, pues, además de obtener más información por la inclusión del esfuerzo de fluencia,
es útil en trabajos de ingeniería para mejorar el cálculo de los factores de fricción en tuberías, de acuerdo con
lo establecido por García y Steffe (1987).
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Según Steffe (1992), una relación general para describir el comportamiento de fluidos no-newtonianos es el
modelo Herschel-Bulkley (H-B).

τ = K (  )n + c
(5.4.1)

Donde τ es el esfuerzo de cizalla [Pa], K es el índice de consistencia [Pa.sn],  es la velocidad de deformación
en cizalla [1/s] y c es el esfuerzo requerido para iniciar el flujo o esfuerzo de fluencia [Pa]. Señaló que este
modelo es apropiado para muchos fluidos alimenticios, pues en el caso de ser independientes del tiempo los
comportamientos newtoniano, seudoplástico, dilatante y bingham plástico, pueden ser considerados como
casos especiales.
Charm (1960, 1963, 1981) presentó ejemplos de cálculo de los parámetros reológicos c, K y n, con el uso de una
forma de esta ecuación, mediante integración gráfica entre los límites R2 y R1. Sin embargo, el procedimiento
es largo y menos exacto conforme la velocidad de rotación disminuye.
El valor del umbral de fluencia c puede ser calculado por el método de Casson (1959) o por extrapolación
de los datos en la parte del comportamiento bingham, según lo indicado por Qiu y Rao (1988). La ecuación
presentada por Casson es:

(τ)0,5 = (τ0)0,5 + K’ (  )0,5
(5.4.2)
En general se acepta que los productos de frutas y de otros vegetales como pulpas, salsas, purés y concentrados,
durante el flujo presentan un comportamiento seudoplástico. Numerosos datos fueron recopilados por Steffe
y colaboradores (1986). En este caso particular aplica el modelo (H-B), estableciiendo que el esfuerzo para
iniciar el flujo, que corresponde al esfuerzo de fluencia (c), es igual a cero, y la ecuación (5.4.1), se simplifica a:

τ = K (  )n
(5.4.3)
En el caso de utilizar un viscosímetro rotacional de cilindro simple, los parámetros reológicos pueden ser
determinados con la ecuación siguiente, (Zuritz, 1995).
log μF = log K + (n - 1) log (4πN/60)
(5.4.4)
Propiedades Reológicas
223
El modelo más utilizado para describir el efecto de la temperatura sobre el índice de consistencia es el de
Arrhenius, cuya ecuación puede ser escrita en la forma siguiente:
ln K = ln K0 + ((EA)/(RG)(TA))
(5.4.5)
Su aplicación permite el cálculo de la energía de activación (EA), pues (RG) es la constante de los gases y (TA)
es la temperatura absoluta.
Rao (1977) señaló que el valor de la energía de activación, calculado con esta ecuación en suspensiones
alimentarias, se incrementa con el contenido de azúcares, y disminuye si aumenta el contenido de sólidos de
la pulpa. Los datos publicados por Irazábal de Guariguata (1981) permiten calcular un valor de 5654 J/g mol
para compota de cambur o banano.
En adición, en jugos concentrados de varias frutas como manzana, naranja y maracuyá, se ha reportado un
efecto tixotrópico que se caracteriza por una disminución de la consistencia conforme transcurre el tiempo
durante el cual la muestra se somete a una velocidad de deformación constante y sin cambio de la temperatura.
Se debe mencionar que, según Rao (1977), son pocas las relaciones matemáticas desarrolladas para describir
este comportamiento.
OBJETIVOS
Comprobar el comportamiento no-newtoniano de pulpas de bananos.
Determinar los valores de los parámetros reológicos en pulpas obtenidas de diferentes variedades de bananos.
Calcular los valores de la energía de activación para el flujo de pulpas de bananos.
Destacar la importancia de los parámetros reológicos para caracterizar las distintas variedades de banano.
MATERIALES Y MÉTODO
Preparar muestras de 600 [cm3] de pulpa con cuatro variedades de banano, mediante licuado por cinco minutos
de la fruta sin cáscara. En todos los casos medir los Brix en el jugo por refractometría y el contenido de sólidos
totales por desecación en estufa.
Armar el viscosímetro rotacional con el rotor LV-4; asegurarse que el equipo esté fijo al soporte, nivelado y
con el brazo protector. De acuerdo con la consistencia de la pulpa, en ocasiones será necesario ensayar con el
rotor LV-3 u otros.
Repetir las operaciones con las otras muestras.
CUESTIONARIO
Con los datos registrados en las distintas muestras, hacer un gráfico del número de revoluciones por segundo
contra el torque calculado según la lectura registrada en el viscosímetro; decidir con respecto al tipo de
comportamiento reológico y, si procede, calcular el valor del esfuerzo de fluencia.
Juan de Dios Alvarado
Colocar 500 [cm3] de una muestra en un vaso alto de 600 [ml] y mantenerlo en un baño de agua a 20C.
Introducir en la pulpa el sistema rotacional de medida del viscosímetro hasta la marca indicada en el rotor; fijar
la velocidad en 0,3 y prender el equipo. A los cinco minutos, o cuando la lectura no cambie en ± 0,2, hacer
la lectura correspondiente; apagar el motor; fijar la velocidad en 0,6, prenderlo y hacer la lectura; continuar la
operación a otras velocidades que permitan obtener lecturas en el equipo. Comprobar los valores disminuyendo
las velocidades desde 60 [rpm]. Realizar las medidas a tres temperaturas adicionales.
Capítulo 5
224
Calcular los valores de la viscosidad aparente μF con los factores suministrados por la casa fabricante del
equipo; graficar los datos en forma que sea satisfecha la ecuación (5.4.4); establecer por técnicas de regresión
los valores de los parámetros reológicos K y n. Comparar los valores con los reportados en la literatura.
Para el caso de considerar un comportamiento tipo mixto, determinar el esfuerzo de fluencia por gráficos o con
la ecuación de Casson (5.4.2).
Discutir las diferencias y la validez de la aplicación de estos modelos cuando se trabaja con viscosímetros
rotacionales de abertura ancha o de cilindro simple.
Utilizar la ecuación de Arrhenius, y calcular el valor de la energía de activación para el flujo de pulpas de
bananos. Discutir los resultados.
Hacer una crítica con respecto a los datos obtenidos y posibles aplicaciones.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
RESULTADOS EXPERIMENTALES
Se trabajó con muestras elaboradas con pulpas de cuatro variedades de bananos: guineo o banano Variedad
(Musa cavendishii), guineo Seda o Gross Michel (Musa sapientum), Orito (Musa auriens) y Maqueño (Musa
rosasea). En todos los casos se utilizó el rotor LV4 de un viscosímetro digital Brookfield LVTD, con las
dimensiones siguientes: radio 0,001588 [m], longitud efectiva 0,03396 [m]. La distancia desde el rotor al
vaso 0,0362 [m], es superior en más de diez veces al radio y conduce a considerar al sistema como de cilindro
simple. Mediante un baño termostático con una precisión de 0,1C se establilizó cada muestra a 10C, y se
realizaron las medidas; inmediatamente se elevó la temperatura a 20C para una segunda corrida, y luego a
30C y 40C. Los valores leídos en el equipo con las cuatro variedades se presentan en la Tabla 5.4.1.
Tabla 5.4.1. Datos Registrados con un Viscosímetro Rotacional en Muestras de Pulpas de Bananos a Diferentes Temperaturas.
Lecturas en el viscosímetro (%FS)
Banano Variedad
Guineo Seda
[rpm]
[rps]
10C
20C
30C
40C
10C
20C
30C
40C
1,5
3
6
12
30
60
0,025
0,050
0,100
0,200
0,500
1,000
15,9
19,7
23,9
27,5
36,3
46,2
14,8
18,7
23,4
27,0
36,0
45,8
13,4
16,9
20,5
24,8
31,4
39,5
12,6
15,0
18,4
22,3
28,1
35,3
30,5
35,1
36,3
38,2
44,2
51,5
24,2
28,0
32,6
36,7
42,8
49,2
21,4
23,5
27,8
32,5
39,3
46,3
19,5
21,7
25,3
29,3
36,0
42,5
Orito
1,5
3
6
12
30
60
0,025
0,050
0,100
0,200
0,500
1,000
21,1
25,7
29,9
36,7
48,5
60,5
18,5
23,3
27,6
32,8
42,0
51,1
Maqueño
16,4
19,3
22,8
27,6
35,6
44,5
14,6
18,4
21,0
25,6
33,1
41,5
22,2
28,2
37,3
44,2
58,4
64,1
20,1
26,2
35,2
42,2
56,3
62,2
19,6
25,7
34,9
40,9
54,4
60,2
17,2
24,5
30,6
37,9
44,8
58,7
Cuando se trabaja con viscosímetros de cilindro simple es difícil determinar en forma exacta la velocidad de
cizalla a la que está sujeta la masa del fluido. En consecuencia, es inconveniente construir curvas de flujo. Sin
embargo, con el propósito de analizar el comportamiento de las pulpas de bananos, se calculó para las cuatro
variedades consideradas el valor de la viscosidad aparente o ficticia (μF), que corresponde al producto de la
lectura registrada en el viscosímetro por un factor suministrado por la casa fabricante, para cada velocidad de
rotación expresada en revoluciones por minuto. Al trabajar con el rotor LV4: a 1,5*4,0; 3*2,0; 6*1,0; 12*0,5;
30*0,2 y 60*0,1.
Propiedades Reológicas
225
En todos los casos, el valor de la viscosidad aparente disminuye en forma apreciable, conforme se incrementa
la velocidad de rotación. Este comportamiento es característico de los fluidos no-newtonianos, y en forma
particular de los seudoplásticos.
En la Figura 5.4.1. están representados los datos de la velocidad de rotación contra la viscosidad ficticia o
aparente, registrados en las muestras de banano Variedad a cuatro temperaturas. Se estableció una asociación
muy alta entre estas dos variables, con coeficientes de correlación próximos a -1.
Con el propósito de determinar a los parámetros reológicos, al considerar un comportamiento seudoplástico,
según la ecuación (5.4.4), se requiere relacionar al logaritmo de (4πN/60) contra el logaritmo de la viscosidad
aparente o ficticia (μF).
Figura 5.4.1. Gráfico para evaluar los parámetros reológicos de pulpa de banano
Variedad a cuatro temperaturas.
log (μF) = log K + (n-1) log (4πN)
μF
[Pa.s]
(4πN/60)
[1/s]
63,6
39,4
23,9
13,8
7,3
4,6
0,314
0,628
1,257
2,513
6,283
12,566
Igual procedimiento se aplicó a los datos de las tres temperaturas restantes y con las demás variedades. Los
resultados se presentan en la Tabla 5.4.2.
Juan de Dios Alvarado
Para los datos registrados a 10C en pulpa de banano Variedad, se obtiene:
Capítulo 5
226
Tabla 5.4.2. Parámetros Reológicos Determinados en Pulpas de Bananos a Diferentes Temperaturas
10C
Variedad
20C
K
n
[Pa.sn]
Banano
Guineo Seda
Orito
Maqueño
27,7
44,8
36,3
41,1
K
30C
n
[Pa.sn]
0,281
0,131
0,285
0,293
26,5
38,5
32,3
38,4
40C
K
n
K
[Pa.sn]
0,299
0,189
0,269
0,311
n
[Pa.sn]
23,9
33,5
27,5
37,5
0,289
0,213
0,272
0,307
21,7
30,6
24,7
33,9
0,275
0,216
0,273
0,313
Estos valores determinados en las pulpas de las cuatro variedades de banano son superiores a los reportados
en la literatura especializada, y esto ratifica la necesidad de disponer de valores específicos que permitan
caracterizar a los productos. Se destaca que el guineo Seda presenta valores del índice de consistencia superiores
a los de las otras variedades. Es decir, se esperaría obtener purés de mayor consistencia con la pulpa natural de
este banano que con las otras variedades.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Por otro lado, si se considera un comportamiento tipo mixto, para determinar los valores de la tensión mínima
para deformación o esfuerzo de fluencia, según la ecuación de Casson (5.4.2), se requiere correlacionar la
raíz cuadrada de la velocidad angular (V = 2πN), que es proporcional a la velocidad de cizalla, contra la
raíz cuadrada del esfuerzo de cizalla, calculado con la información de la constante del viscosímetro y de las
dimensiones del rotor.
Se estableció una asociación alta entre estas variables con coeficientes de correlación superiores a 0,95. Los
valores del intercepto elevados al cuadrado corresponden al esfuerzo de fluencia (c). Para el banano Variedad
se obtuvieron los datos siguientes: 17,286 [Pa] a 10C; 16,148 [Pa] a 20C; 14,923 [Pa] a 30C y 13,673 [Pa]
a 40C. Se aprecia una ligera disminución de los valores conforme la temperatura se incrementa. Los datos
establecidos en las cuatro variedades consideradas se presentan en la Tabla 5.4.3.
Tabla 5.4.3. Valores del Esfuerzo de Fluencia Determinados en Pulpas de Bananos a Diferentes Temperaturas Según el
Modelo de Casson
10C
Variedad
Banano
Guineo Seda
Orito
Maqueño
20C
(τ0)
(c)
K’
[Pa]0,5
[Pa]
[Pa.s]0,5
4,158
6,037
4,734
5,137
17,286
36,451
22,407
26,390
1,422
0,799
1,651
1,703
0,5
(τ0)
(c)
K’
[Pa]0,5
[Pa]
[Pa.s]0,5
4,018
5,373
4,576
4,890
16,148
28,870
20,937
23,915
1,475
1,052
1,440
1,753
0,5
30C
Banano
Guineo Seda
Orito
Maqueño
3,863
4,884
4,179
4,861
14,923
23,858
17,463
23,626
40C
1,323
1,147
1,362
1,701
3,698
4,659
3,998
4,550
13,673
21,706
15,983
20,705
1,228
1,104
1,332
1,681
En muchos casos el efecto de la temperatura sobre el índice de consistencia es descrito en forma satisfactoria
por el modelo de Arrhenius. Lo anterior se cumplió en las pulpas de los bananos. Los valores de la energía de
activación [kJ/mol] calculados de las pendientes fueron: 6,12, para el banano Variedad; 9,47, para el guineo
Seda; 9,69, para el banano Orito; y 4,41, para el banano Maqueño.
Rao (1986) presentó una recopilación de valores de la energía de activación, según la cual existen diferencias
notables entre jugos y productos con un mayor contenido de sólidos solubles como concentrados, salsas y
purés. En jugos de manzana y uva, con comportamiento newtoniano, los valores están entre 21,4 a 59,5 [kJ/
mol]. Por el contrario, en productos no-newtonianos, como salsa de manzana, el valor es 5,0; puré de durazno
7,1; puré de pera 8,0; concentrado de tomate 9,2 [kJ/mol]. Se aprecia que los valores establecidos en las pulpas
Propiedades Reológicas
227
de los bananos son comparables con los valores reportados para productos similares.
Es interesante señalar que también el esfuerzo de fluencia está influenciado, entre otros factores, por la
temperatura. Sin embargo, se requiere considerar la composición, la distribución y las características de las
partículas suspendidas, que según lo indicado por Prentice (1984) afecta en forma notoria a los valores del
esfuerzo de fluencia, según lo observado en otros productos.
BIBLIOGRAFÍA Y REFERENCIAS
Alvarado, J. de D. 1994. “Determinación de Parámetros Reológicos en Pulpas de Frutas”. Informe final, Proyecto de
Investigación. CONUEP-UTA-FCIAL. Ambato, Ecuador.
Casson, N. 1959. A flow equation for pigment-oil suspensions of printing ink type. In: “Rheology of Disperse Systems”. C.
C. Mill (Ed). New York. Pergamon Press.
Charm, S. E. 1981. “Fundamentals of Food Engineering”. 3rd. ed. Westport, Connecticut. AVI Pub. Co. Inc. p:54-69.
Charm, S. E. 1963. The direct determination of shear stress-shear rate behaviour of foods in the presence of a yield stress.
J. Food Sci., 28:107-113.
Charm, S. E. 1960. Viscometry of non-Newtonian food materials. Food Research, 25:351-362.
García, E. J. and Steffe, J. F. 1987. Comparison of friction factor equations for non-Newtonian fluids in pipe flow. J. Food
Process Eng.,9:93-120.
Heldman, D. R. and Singh, R. P. 1981. “Food Process Engineering”. 2nd. ed. Westport, Connecticut. AVI Pub. Co. Inc.
p:28-30.
Irazábal de Guariguata, C. 1981. Características reológicas de productos de frutas tropicales. Arch. Latinoamer. Nutric.,
31:666-678.
Kalentuc-Gencer, G.; Barbosa Canovas, G. V. Normand, M. D. Rosenau, J. R. and Peleg, M. 1986. Determination of the
flow parameters of fluid foods using a digitizer and a personal computer. In: “Food Engineering and Process Applications”.
V1. Le Maguer, M. and Jelen, P. (Eds.). Essex, England. Elsevier Applied Science Publishers Ltd. p:15-21.
Khalil, K. E.; Ramakrishna, P. Najundaswamy, A. M. and Patwardhan, M. V. 1989. Research note. Rheological behaviour
of clarified banana juice: Effect of temperature and concentration. J. Food Eng., 10:231-240.
Prentice, J. H. 1984. “Measurement in the Rheology of Foodstuffs”. Essex, England. Elsevier Applied Science Publishers
Ltd.
Qiu, C-G. and Rao, M.A. 1988. Role of pulp content and particle size in yield stress of apple sauce. J. Food Sci., 53(4):11651170.
Rao, M. A. 1987. Predicting the flow properties of food suspensions of plant origin. Food Technol., 41(3):85-88.
Rao, M. A. 1986. Rheological properties of fluid foods. In:
“Engineering Properties of Foods”. Rao, M. A. and Rizvi, S. S. H. (Eds.). New York. Marcel Dekker Inc. p:1-48.
Rao, M. A. 1977. Rheology of liquid foods. A review. J. Texture Studies, 8:135-168.
Steffe, J. F. 1992. “Rheological Methods in Food Process Engineering”. East Lansing, Michigan. Freeman Press. 228p.
Steffe, J. F.; Mohamed, I. O. and Ford, E. W. 1986. Rheological properties of fluid foods: Data compilation. In: “Physical
and Chemical Properties of Foods”. Okos, M. R. (Ed.). St. Joseph, Michigan. ASAE. p:1-13.
Zuritz, C. A. 1995. Comunicación personal.
Juan de Dios Alvarado
Rao, M. A. and Otoya Palomino, L. N. 1974. Flow properties of tropical fruit purees. J. Food Sci., 39:160-161.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
228
Capítulo 6
6. Propiedades
Térmicas
Propiedades Térmicas
229
6. PROPIEDADES TÉRMICAS
Las principales propiedades térmicas de los alimentos son: el calor específico, la conductividad térmica y la
difusividad térmica. Estrechamente relacionados están la entalpía y los coeficientes de penetración de calor.
Existen otras propiedades de interés, que también son consideradas dentro de este grupo, como son: el punto de
congelación inicial, el intervalo de congelación, la cantidad de agua sin congelar, entre otras.
En épocas anteriores fue práctica común utilizar valores generales de las propiedades térmicas de los alimentos
para su aplicación en cálculos de ingeniería; sin embargo, el avance del conocimiento y de métodos matemáticos
y numéricos, como el desarrollo de las diferencias finitas, planteó la necesidad de disponer de datos exactos y
específicos. Se conoce que las propiedades térmicas cambian con la composición y en menor extensión según
la temperatura y la presión.
Son múltiples los usos de los datos térmicos en Ingeniería de Alimentos. Pueden ser clasificados en tres
grandes grupos. Para el cálculo de cargas de calor, basado en información sobre la entalpía. Para calcular
flujos de calor, que son de gran importancia en el procesamiento de alimentos. Para fijar criterios de calidad y
puntos o zonas en los que ocurre cambios de fase.
También son útiles en Tecnología de Alimentos, para el diseño y control de equipos o comparación de máquinas
provenientes de diversas casas comerciales. Para el control de la operación de plantas industriales, en donde
las predicciones por cálculos pueden evitar pruebas experimentales costosas y prolongadas. Como índices de
control de calidad; propiedades como el punto de fusión o de inicio de congelación son extensamente utilizadas
para establecer la pureza de alimentos, de manera particular en grasas y leches.
Es probable que la falta de datos sea una de las más importantes limitaciones en el diseño de procesos para
productos alimenticios. Es importante considerar los cambios que ocurren por variación en la composición,
cuando son sometidos a procesos como congelación, evaporación o deshidratación.
Son numerosos los modelos publicados para el cálculo de las propiedades térmicas. Muchos de ellos consideran
a la composición como el factor principal. Otros añaden la temperatura; en lo posible es recomendable utilizar
el modelo específico del alimento analizado. Cuando no existe, o no está disponible, un modelo particular, los
modelos generales que incluyen el efecto de los componentes principales y de la temperatura son realmente
útiles, en especial cuando se requieren datos sobre y bajo el punto de congelación del alimento. En este último
caso la cantidad de agua congelada es un factor determinante.
Además de utilizar ecuaciones para el cálculo de las propiedades térmicas, en especial el calor específico,
la difusividad térmica y la conductividad térmica; es obvio que se requiere conocer los métodos para su
Juan de Dios Alvarado
En muchos casos la falta de estandarización de métodos limita la validez de los valores reportados, a lo que
se añade la gran cantidad de productos y la aparición de nuevos, por la constante innovación y mejora de la
tecnología. Por esta razón el cálculo a partir de los componentes es una alternativa válida para superar esta
situación.
Capítulo 6
230
determinación en el laboratorio. Pues, en adición a la inmensa variedad de productos existentes y que requieren
ser caracterizados, su aplicación como índices de control de calidad hace indispensable su cuantificación
experimental.
Con relación a los equipos y métodos para determinar las propiedades térmicas, un grupo de expertos de varios
países de Europa consideraron que los medidores de penetración tipo aguja o sensores pueden ser desarrollados
en el futuro. Por la facilidad para su determinación, el punto de congelación puede ser considerado como una
base para calcular la entalpía, el calor específico y la conductividad térmica. Señalaron que es conveniente
disponer de una base de datos con un programa de computación que permita imprimir o graficar los datos e
información generada.
En el capítulo se desarrollan seis temas relacionados con la aplicación del calor específico para determinar
la concentración de azúcar en jarabes, se indican métodos simples para determinar la difusividad térmica y
la conductividad térmica de alimentos sólidos; se detalla un método para establecer la energía requerida para
la evaporación del agua de alimentos líquidos con el uso de la calorimetría, y por aplicación del principio de
Othmer se determina el calor latente de vaporización en alimentos sólidos provenientes de trigo.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
NOMENCLATURA DEL CAPITULO 6
a
A
A*
b
B
(BR)
c
C
d
D
(DA)
(DC)
(DF)
(DL)
(DM)
(DP)
(DW)
e
(EE)
(EP)
f
f’
F
g
G
G’
h
H
Ĥ
H’
(HR)
I
j
J
= actividad [sin dimensiones]
= contenido de agua [kg/100 kg de materia seca]
= área superficial [m]
= mitad de la altura de un cilindro [m]
= capacidad calórica del calorímetro y del agua contenida [J/C]
= grados Brix
= constante de integración
= calor específico [J/kg.K] o [J/kg.C]
= diferencia
= diámetro [m]
= densidad aparente de carnes [kg/m3]
= densidad de un componente [kg/m3]
= densidad de carnes frescas [kg/m3]
= densidad del aceite en el manómetro [kg/m3]
= densidad del mercurio (13595 [kg/m3])
= densidad del producto alimenticio [kg/m3]
= densidad del agua [kg/m3]
= base de los logaritmos naturales [2,71728]
= energía eléctrica [J]
= energía disipada [J]
= constante de velocidad de calentamiento [s]
= función
= energía libre [J/mol]
= nivel en el manómetro [mm]
= potencial químico [J/mol]
= potencial químico para un estado estándar [J/mol]
= coeficiente de transferencia de calor [W/m2.K] o [W/m2.C]
= entalpía [J/kg]
= entalpía molal [J/mol]
= capacidad calórica [J/C]
= humedad relativa de equilibrio [%]
= intensidad de la corriente eléctrica [A]
= factor relacionado con el período de atemperamiento [sin dimensiones]
= constante de la ecuación (6.6.18)
Propiedades Térmicas
k
l
l’
M
n
N
N’
N2
(NNu)
(NPr)
(NRe)
P
P’
(PM)
Q
Q’
r
r2
R
R’
Ŝ
t
T
(TA)
Û
v
V
W
Ŵ
Û
x
x’
X
Y
Y’
z
Z
231
= conductividad térmica [W/m.K] o [W/m.C]
= fugacidad [Pa]
= fugacidad para un estado estándar [Pa]
= fracción en volumen de sólidos formando capas
= número de observaciones o términos
= número de moles
= raíz cuadrada de la fracción en volumen de sólidos
= fracción en volumen de sólidos formando fibras
= número de Nusselt [sin dimensiones]
= número de Prandtl [sin dimensiones]
= número de Reynolds [sin dimensiones]
= presión [Pa]
= presión de referencia [Pa]
= peso molecular [kg/mol]
= cantidad de calor [J]
= cantidad definida en la ecuación (6.3.7)
= distancia radial [m]
= coeficiente de determinación
= radio [m]
= constante de los gases [J/mol.K]
= entropía molal parcial [J/K.mol]
= tiempo [s]
= temperatura [C]
= temperatura absoluta [K]
= energía libre molal parcial [J/mol]
= velocidad [m/s]
= voltaje [V]
= masa [kg]
= volumen molal parcial [m3/mol]
= energia libre molal parcial [J/mol]
= fracción unitaria másica [kg/kg]
= fracción unitaria másica en base seca [kg/kg sólido]
= porcentaje del componente [kg/100 kg]
= calor latente de vaporización [J/kg]
= calor latente de vaporización de referencia [J/kg]
= longitud característica [m]
= término de la ecuación (6.1.13)
α
ß
Δ
μ
Σ
= difusividad térmica [m2/s]
= raíces de una ecuación
= diferencia o cambio
= viscosidad [Pa.s]
= sumatorio
Subíndices
a
A
b
B
= azúcares
= ambiente o del medio
= fibra
= ebullición
Juan de Dios Alvarado
Letras griegas
Capítulo 6
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
232
c
C
d
e
f
g
h
i
j
k
l
L
m
n
o
p
r
R
s
S
t
T
u
v
V
w
x
y
= carbohidratos
= alimento
= disolución
= estado cuando el agua alcanza la temperatura de equilibrio con el calorímetro
= estado final
= grasa
= manómetro
= componente
= jugo
= calorímetro
= fluido
= fase líquida
= producto seco
= sólidos en el jugo
= inicial
= presión constante
= cenizas
= término de corrección para el calor ganado o perdido durante el período experimental
= sacarosa
= sólidos o fase discontinua
= proteína
= temperatura constante
= superficie
= volumétrico o fracción en volumen
= vapor
= agua o humedad
= dirección perpendicular
= dirección paralela
0
1
2
= condición inicial
= posición o condición 1
= posición o condición 2
Propiedades Térmicas
233
TEMA 6.1. APLICACIÓN DEL CALOR ESPECÍFICO PARA
DETERMINAR LA CONCENTRACIÓN DE SACAROSA EN JARABES
INTRODUCCIÓN
Los jarabes son bebidas líquidas compuestas de azúcar cocido en agua y zumos de frutas. Se utilizan ampliamente
en las industrias que elaboran jaleas, néctares y mermeladas, por cuya razón es de interés el conocimiento de
sus propiedades termofísicas, como el calor específico. En especial, con relación a los cambios que ocurren
por efecto del contenido de sacarosa.
Se puede desarrollar un modelo para el cálculo del calor específico, que considere a la sacarosa como el
componente principal disuelto en la fase líquida de los jarabes.
Según Singh y Heldman (1984), cuando no existe cambio de fase o reacciones involucradas, el calor específico
es la cantidad de calor que gana o pierde un kilogramo de masa de material alimenticio, para producir un
cambio de temperatura requerido. Escrito en forma de ecuación:
(6.1.1)
Por otro lado, a presión constante la diferencia de entalpías puede ser relacionada por:
Q = W (ΔH)
(6.1.2)
Por reemplazo en la ecuación anterior, se obtiene:
Cp = (ΔH) / (ΔT)
(6.1.3)
Para el caso de los jarabes se considera que están constituidos por dos fases, una solución verdadera formada
Juan de Dios Alvarado
Cp = Q / W(ΔT)
Capítulo 6
234
por el jugo con el azúcar disuelto y una fase sólida. La diferencia total de entalpías corresponderá a la suma de
las diferencias de las entalpías del jugo o solución y de los sólidos de la pulpa de la fruta.
Como se conoce el calor específico de la sacarosa, para el caso de azúcar comercial Perry (1963), reportó un
valor de 1,26 [kJ/kg.K]. La ecuación siguiente puede ser escrita:
(ΔH) = ((1,26 xs (ΔT) + (ΔH)d) xj) + ((ΔH)n xn)
(6.1.4)
Por reemplazo en la ecuación (6.1.3):
Cp = ((1,26xs(ΔT)/(ΔT))+((ΔH)d/(ΔT)))xj+((ΔH)nxn/(ΔT))
(6.1.5)
Como (ΔH)/(ΔT) corresponde al calor específico de la fase acuosa del jugo en la que está disuelto el azúcar, y
de los sólidos característicos de la pulpa, la ecuación se simplifica a:
Cp = (1,26 xs + Cpd) xj + Cpnxn
(6.1.6)
Dickerson (1968), presentó una ecuación adecuada para jugos de frutas, relaciona el calor específico con la
humedad, cuando ésta es superior al 50%. Si el calor específico se expresa en [kJ/kg.K]:
Cpd = 1,68 + 2,51 xw
(6.1.7)
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
En pulpas de frutas, Alvarado y Moreno (1987) establecieron que el calor específico es definido como función
de la humedad por la ecuación:
Cpn = 1,19 + 2,66 xw
(6.1.8)
Por reemplazo en la ecuación (6.1.6), se establece la siguiente ecuación para el cálculo del calor específico de
jarabes, considerando las fracciones en peso de la solución o jugo y de los materiales que componen la pulpa:
Cp = (1,26 xs + 1,68 + 2,51 xw) xj + (1,19 + 2,66 xw) xn
(6.1.9)
La cual es válida para el cálculo del calor específico de jarabes sobre el punto de congelación y bajo el punto
de ebullición, pues xs corresponde a [Brix/100] y:
xw = (1 - xs - xn)
(6.1.10)
En adición, si se conoce el calor específico, los grados Brix (BR) que expresan la concentración de azúcar,
pueden ser determinados.
Se han propuesto varias ecuaciones empíricas, para calcular el calor específico de alimentos como función de
la fracción másica de los componentes.
El modelo presentado por Heldman y Singh (1981), puede ser simplificado para el caso de jarabes y obtener
la ecuación siguiente:
Cp = 1,424 xa + 4,187 xw
(6.1.11)
Miles y colaboradores (1983) recopilaron cinco ecuaciones. Señalaron que, según Riedel (1978), para valores
de humedad superiores al 40%, en varios alimentos, el calor específico puede ser calculado por una ecuación
lineal simple:
Cp = Cpwxw + Cpm (1-xw)
Donde Cpm es el calor específico aparente del producto seco, definido por:
(6.1.12)
Propiedades Térmicas
Cpm = (Z + 0,001 T) 4,19
235
(6.1.13)
Expresión que incluye el efecto de la temperatura expresada en [C]. Un valor promedio de Z=0,37 puede ser
utilizado como representativo de alimentos con alta concentración de sólidos.
Choi y Okos (1986) propusieron modelos para el cálculo de las propiedades térmicas como función de la
temperatura y composición de los alimentos. El modelo general para calcular el calor específico puede ser
simplificado para jarabes, considerando que en los jugos el contenido de grasa, proteínas, fibra y cenizas es
bajo, del orden de 2%; en cuyo caso los componentes mayores de los jarabes son agua y carbohidratos.
Cp = ΣCpixi = Cpwxw + Cpcxc
(6.1.14)
Para un intervalo de temperaturas entre 0 y 150C, el calor específico del agua y de los carbohidratos se
calcula con:
Cpw = 4,1762 - 9,0864*10-5 T + 5,4731*10-6 T2
Cpc = 1,5488 + 1,9625*10-3 T - 5,9399*10-6 T2
(6.1.15)
(6.1.16)
OBJETIVOS
Determinar el calor específico de jugos de frutas y jarabes.
Establecer una ecuación que relacione el calor específico con la concentración de azúcar del jarabe expresado
en grados Brix.
Comparar valores experimentales con valores calculados del calor específico, mediante modelos desarrollados
o reportados.
MATERIALES Y MÉTODOS
Obtener aproximadamente dos litros de jugo por expresión manual de una fruta, seguido de tamizado en
tela. Además de la muestra original, preparar tres muestras adicionales de jarabes por dilución de cantidades
conocidas de sacarosa comercial. En todas las muestras determinar el contenido de sólidos solubles como
grados Brix, por lectura directa en refractómetro Abbe a 20C, por duplicado.
Realizar por duplicado las determinaciones del calor específico en calorímetros construidos para uso del método
de mezcla indirecto, explicado en el Tema 1.2., según lo descrito y desarrollado por Hwang y Hayakawa (1979).
Periódicamente hacer un control de los calorímetros trabajando con agua destilada. Las diferencias entre los
valores obtenidos y el reportado para agua a 35C por Heldman y Singh (1981) de 4,175 [kJ/kg.K], conducen
a establecer factores de corrección.
Señalar casos de uso práctico del calor específico en el sector alimentario.
Para el jugo y los jarabes determinar los valores del calor específico en [kJ/kg.C]. Hacer un gráfico
representando los valores de los grados Brix contra el calor específico, y por técnicas de regresión establecer
la ecuación correspondiente.
Construir una tabla con los valores del calor específico experimentales y calculados según las ecuaciones
(6.1.9), (6.1.11), (6.1.12) y (6.1.14). Discutir los resultados.
Juan de Dios Alvarado
CUESTIONARIO
Capítulo 6
236
RESULTADOS EXPERIMENTALES
En la Figura 6.1.1. se presenta la graficación de los datos de la historia de temperaturas, registrada en pruebas
para la determinación del calor específico de agua y jarabes preparados con jugo de pera. Los valores
corresponden al promedio de dos determinaciones realizadas por duplicado.
Según el método de mezcla, se necesita determinar la capacidad calórica del calorímetro H’k, que corresponde
al calor requerido para elevar la temperatura del calorímetro en 1C o 1 Kelvin. Según los datos de la curva
graficada con asteriscos, se establece:
H’k = Cpw.Ww(Te-Tow-((dT)/(dt))te)/(Tok-te+((dT)/(dt))te)
(6.1.17)
H’k = (4175[J]*0,218[kg]*(54,1-71,2-(-0,00160)3600)[C])/
([kgC](21,0-54,1+(-0,00160)*3600[C])
H’k = 265,6 [J/C calorímetro]
Las pruebas realizadas con agua destilada son para controlar y estandarizar el método, según la curva
correspondiente, y los valores iniciales de temperatura y peso que se registran en cada prueba, se establecen:
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
TR = (T2w - Tfw) t1 / (t2 - t1)
TR = (33,7-37,3)3600/(9000-3600)
TR = -2,4 [C]
B = Cpw Ww + Hk
B = (4175*0,250)+265,6
B = 1309,35 [J/C]
(6.1.18)
(6.1.19)
Cpw = B(Tfw - Tow - TR) / WC (Toc - Tfw + TR) (6.1.20)
Cpw = (1309,35[J](37,3-19,0+2,4)[C])/[C]0,159[kg](82,0-37,3-2,4)[C]
Cpw = 4030 [J/kg.C] o [J/kg.K]
Figura 6.1.1. Curvas temperatura-tiempo reguistradas en calorímetros durante pruebas para determinar el
calor específico de jarabes de pera.
Propiedades Térmicas
237
Tabla 6.1.1. Valores del Calor Específico [J/kg.K] Determinados a Diferentes Concentraciones de Sólidos Solubles en
Jarabes de Jugos de Frutas*.
*
F R U TA
NOMBRE BOTÁNICO
Cp
(BR)
Cp
(BR)
Cp
(BR)
Cp
(BR)
Aguacate
Babaco
Banano Orito
Banano Variedad
Capulí
Claudia
Fresa
Guayaba
Lima
Mandarina Costa
Mandarina Sierra
Mango
Manzana
Maracuyá
Melón
Mortiño
Naranja
Naranjilla
Papaya
Pepino
Pera
Piña
Plátano Limeño
Plátano Maqueño
Sandía
Taxo
Tomate de árbol
Tomate
Tuna
Uva
Persea americana
Carica pentagona
Musa auriens
Musa cavendishii
Prunus capuli
Prunus salicina
Fragari vesca
Psidium guajava
Citrus aurantifolia
Citrus reticulata
Citrus reticulata
Mangifera indica
Malus communis
Passiflora edulis
Cucumimis melo
Vaccini floribundum
Citrus sinensis
Solanum quitoense
Carica papaya
Solanum muricatun
Pyrus communis
Ananas comosus
Musa sapientum
Musa paradisiaca
Citrullus vulgaris
Passiflora mollissima
Cyphomandra betacea
Lycopersicon esculentum
Opuntia tuna
Vitis vinifera
4110
4050
3860
3990
3560
3860
4030
3970
3780
3940
3860
3880
3550
3810
3940
3830
3930
3900
3920
3980
3600
3830
3940
3850
4010
3900
3980
4020
3640
3840
1,6
7,3
4,4
3,7
30,8
14,1
8,2
2,8
18,3
14,2
14,6
19,0
24,1
16,5
6,6
16,7
13,8
8,7
11,8
9,2
23,8
19,0
9,2
9,2
8,0
13,0
4,0
4,6
24,0
15,6
3650
3740
3650
3920
3230
3670
3940
3940
3590
3760
3810
3750
3330
3540
3840
3740
3610
3600
3800
3750
3430
3740
3830
3600
3880
3750
3850
3890
3420
3790
12,6
17,8
15,2
14,3
38,8
23,6
18,9
13,7
28,8
24,6
27,8
29,0
34,7
26,0
17,1
25,9
24,0
19,5
21,7
19,8
33,1
25,4
18,3
18,8
19,4
22,7
15,0
15,9
33,1
22,9
3590
3630
3450
3490
3190
3470
3630
3820
3290
3440
3450
3580
3230
3440
3720
3460
3320
3470
3630
3600
3390
3500
3560
3520
3600
3530
3390
3600
3310
3560
24,5
27,9
26,3
25,7
45,9
33,2
28,6
25,6
38,6
33,5
33,5
39,0
42,8
35,2
28,1
36,1
34,1
29,9
32,2
29,6
42,9
36,1
29,1
30,4
30,4
32,9
25,0
26,2
44,2
34,5
3340
3220
3200
3350
2890
3240
3220
3420
3130
3100
3130
3010
3110
3100
3330
3270
3210
3180
3260
3270
3110
3120
3400
3230
3210
3210
3150
3270
2980
3160
45,8
49,2
47,9
47,4
53,8
51,0
49,3
46,3
48,7
53,3
52,8
49,0
53,7
54,8
48,4
51,8
54,3
50,4
51,9
49,2
52,5
56,8
49,1
49,9
50,4
51,5
45,6
46,5
53,1
53,3
Valores promedios de dos determinaciones por duplicado.
Cp = calor específico. (BR) = grados Brix.
La relación entre los valores del calor específico reportado para agua a 35C, que puede ser considerada
como una temperatura promedio representativa según el método aplicado, y el valor establecido en forma
experimental, que es 1,036, se utilizó como un factor de corrección para los datos obtenidos en este calorímetro.
Las historias de temperaturas registradas en los jarabes de pera con concentración de sacarosa de 23,8, 33,1,
42,9 y 52,5Brix, permitieron establecer los respectivos valores del calor específico; los cuales están reportados
en la Tabla 6.1.1. conjuntamente con los correspondientes a los jarabes de otras frutas.
En la Figura 6.1.2. están representados los datos del calor específico en ordenadas, contra el contenido de
sólidos solubles expresado como Brix. Se incluyen las rectas definidas por todos los modelos indicados. Se
observa que, en todos los casos, el punto de corte en ordenadas se aproxima al valor del calor específico del
agua, y conforme se incrementa el contenido de sólidos los valores del calor específico decrecen. Lo anterior
es un comportamiento característico de muchos productos alimenticios.
En varios casos los sólidos están presentes en cantidades mayores. En frambuesas Dickerson (1968) reportó
un contenido de sólidos que no son parte del jugo de 5,8%. En este caso la ecuación 6.1.9. calcula un valor de
3,36 [kJ/kg.K] para 50Brix. La diferencia con relación a los datos experimentales se reduce y es consistente
con los datos de jarabes de aguacate, guayaba, banano, y plátano limeño.
Lo anterior conduce a señalar que, cuando se dispone de datos del contenido de sólidos suspendidos en los
jarabes, el modelo calcula en forma adecuada el calor específico. Esto es de importancia particular en la
elaboración de conservas que utilizan frutas enteras.
Juan de Dios Alvarado
El modelo desarrollado para jarabes (ecuación 6.1.9), considerando un 2% de sólidos, se ajusta bien con los
datos experimentales, en especial hasta los 25Brix; a concentraciones mayores existen diferencias: a 50Brix
son del orden de 9% con valores superiores a los experimentales. Sin embargo, se destaca la situación que el
modelo incluye las fracciones correspondientes a la fase líquida y a una pequeña cantidad de sólidos, que deben
ser considerados en adición a los componentes principales de los alimentos.
Capítulo 6
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
238
Figura 6.1.2. Calor específico de jarabes de frutas como función del contenido de sólidos solubles (ºBrix)
Valores promedios de 2 determinaciones por duplicado.
Los modelos de Riedel (1978), Heldman y Singh (1981) y Choi y Okos (1986) predicen en forma muy similar
el valor de la propiedad térmica. Son bastante consistentes con los datos experimentales hasta los 30Brix. A
concentraciones mayores los valores calculados son menores. A 50Brix se establece una diferencia del 9%.
Spencer y Meade (1967) reportaron datos del calor específico en [kJ/kg.K] para soluciones de sacarosa a
20C de 3,94, a una concentración del 10%; 3,47 a 30% y 3,02 a 50%; estos valores son coincidentes con los
calculados según los tres modelos reportados.
En general, para calcular propiedades físicas, es conveniente considerar la mayor cantidad posible de
componentes y el estado en que se encuentran en los alimentos o productos alimenticios. El modelo de Choi
y Okos (1986) establece mayor concordancia con los datos experimentales, cuando se considera el contenido
de proteína, grasa y fibra con calores específicos más altos que los carbohidratos. Su efecto aditivo provoca un
incremento en los valores de la propiedad térmica.
La dispersión que se observa en los datos experimentales, en parte se explica por las diferencias existentes
entre las frutas; sin embargo, la función lineal establecida con 120 observaciones en treinta frutas diferentes, es
adecuada para calcular el calor específico de jarabes, pues requiere un dato de fácil registro muy común en las
industrias conserveras, como es la lectura refractométrica o grados Brix; la ecuación es:
Cp = 4,10 - 0,018 (BR)
(6.1.21)
Adecuada en un intervalo de 0 a 60Brix y temperaturas que son consideradas normales en procesos térmicos,
utilizados en la fabricación de conservas.
La ecuación puede ser aplicada para determinar la concentración de un jarabe si se conoce el valor del calor
específico, reemplazando Cp y calculando los grados Brix (BR). El coeficiente de determinación 0,89 establece
el alto grado a asociación entre las variables.
Propiedades Térmicas
239
BIBLIOGRAFÍA Y REFERENCIAS
Alvarado, J. de D. y Moreno, C. 1987. Propiedades físicas de frutas. III. Calor específico de frutas como
función de su humedad. Archivos Latinoamericanos de Transferencia de Calor y Materia (Lat. Am. J. Heat
Mass Transf.), 11: 131-139.
Choi, Y. and Okos, M. R. 1986. Effects of temperature and composition on the thermal properties of foods.
In: “Food Engineering and Process Applications. Transport Phenomena”. V. 1. Le Maguer, M. and Jelen, P.
(Eds.). Essex, England. Elsevier Applied Science Publisher Ltd. p: 93-101.
Dickerson, R. W. 1968. Thermal properties of foods. In: “The Freezing Preservation of Foods”. 4th. ed., V.
2. Tressler, D. K.; van Arsdel, W. B. and Copley, M. J. (Eds.). Westport, Conn., AVI Pub. Co. Inc., p: 26-51.
Heldman, D. R. and Singh, R. P. 1981. “Food Process Engineering”. 2nd. ed. Westport, Conn., AVI Pub. Co.
Inc. p: 100-101.
Hwang, M. P. and Hayakawa, K. I. 1979. A specific heat calorimeter for foods. J. Food Sci., 44: 435-438.
Miles, C. A.; van Beek, G. and Veerkamp, C. H. 1983. Calculation of thermophysical properties of foods.
In: “Physical Properties of Foods”. Jowitt, R.; Escher, F. Hallstrom, B. Meffert, H. F. Spiess, W. E. L. Vos, G.
(Eds.). Essex, England. Applied Science Pub. Pub. Ltd. p: 269-312.
Perry, J. H. 1963. “Chemical Engineers’ Handbook”. 4th. ed. Tokyo, Japan. Mc Graw Hill Inc. p: 3, 130.
Riedel, L. 1978. Chemie Mikrobiologie Technologie der Lebensmittel., 5: 129-133. Citado por Miles y
colaboradores.
Singh, R. P. and Heldman, D. R. 1984. “Introduction to Food Engineering”. Orlando, Florida. Academic
Press, Inc. p: 100-101.
Juan de Dios Alvarado
Spencer, G. L. y Meade, G. P. 1967. “Manual del Azúcar de Caña”. Traducido por: Menocal, M. G. Barcelona,
España. Montaner y Simon, S. A., p: 234.
Capítulo 6
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
240
TEMA6.2.APLICACIÓN DE LOS FUNDAMENTOS DE PENETRACIÓN
DE CALOR EN ESTADO VARIABLE PARA CALCULAR LA
DIFUSIVIDAD TÉRMICA DE PULPAS DE FRUTAS
INTRODUCCIÓN
La difusividad térmica de un alimento es un parámetro termofísico, definido como la división entre la
conductividad térmica y la capacidad calórica volumétrica. Es una propiedad requerida para numerosos
cálculos relacionados, en especial, con procesos en los que ocurre transferencia de calor variable con el tiempo.
Físicamente se refiere a la capacidad de un material para conducir calor o almacenar calor.
Existen diversas publicaciones que reportan datos de difusividad térmica de frutas. Entre ellas se recordarán
que Rha (1975) presentó una recopilación en la que se incluyen datos de manzana, fresa, toronja, uva, naranja.
Touloukian y colaboradores (1977) se refirieron en especial al trabajo de Riedel con salsa de manzana, pulpas
de banano, fresa y tomate. Bhowmik y Hayakawa (1979), para pulpas de tomate y manzana. Hayes (1984),
Kasahara y colaboradores (1986), para pulpa de papaya. Sin embargo, según Meffert (1983), por la ausencia
de una estandarización en los procedimientos experimentales y de evaluación, la variación de los datos hace
difícil su comparación y explica la atracción a predecirlos por cálculo desde datos básicos.
Miles y colaboradores (1983) recopilaron las ecuaciones de Riedel y de Hermans para el cálculo de la
difusividad térmica de alimentos sobre el punto de congelación: la primera considera el contenido de agua; la
segunda considera, en adición, el contenido de grasa y la temperatura.
α = 0,088*10-6 + (αw-0,088*10-6)xw
α = (0,0572 xw + 0,0138 xg + 0,0003(TA))10-6
(6.2.1)
(6.2.2)
Propiedades Térmicas
241
Alvarado (1994) analizó el efecto de la humedad sobre la difusividad térmica, considerando las pulpas de
treinta frutas. Determinó que las ecuaciones lineales son apropiadas para describir la relación entre estas
dos variables en el caso de una fruta particular; sin embargo, esta relación es menos satisfactoria cuando se
consideran diferentes frutas. Presentó datos de las propiedades físicas para cada producto.
Choi y Okos (1986) desarrollaron modelos generales para predecir las propiedades térmicas de productos
alimenticios según las fracciones en peso o volumen, y las propiedades térmicas de los componentes mayores
puros. Indicaron que el modelo correspondiente a la difusividad térmica, que puede ser usado en un intervalo
de -40 a 150C es:
(6.2.3)
α = Σ αi xiv
α = αwxwv + αcxcv + αbxbv + αgxgv + αtxtv + αrxrv
(6.2.4)
La fracción en volumen correspondiente a cada componente xiv, se calcula con su fracción másica xi y densidad
(DC) por:
xiv = (xi/(DC)i) / Σ(xi/(DC)i)
(6.2.5)
Los valores de las difusividades térmicas de los componentes mayores: agua, carbohidratos, fibra, grasa,
proteína y cenizas, para productos no congelados pueden ser calculados por:
αw = 1,3168*10-1 + 6,2427*10-4 T - 2,4022*10-6 T2
αc = 8,0842*10-2 + 5,3052*10-4 T - 2,3218*10-6 T2
αb = 7,3976*10-2 + 5,1902*10-4 T - 2,2202*10-6 T2
αg = 9,8777*10-2 - 1,2569*10-4 T - 3,8286*10-8 T2
αt = 6,8714*10-2 + 4,7578*10-4 T - 1,4646*10-6 T2
αr = 1,2461*10-1 + 3,7321*10-4 T - 1,2244*10-6 T2
(6.2.6)
(6.2.7)
(6.2.8)
(6.2.9)
(6.2.10)
(6.2.11)
Estos valores deben ser divididos por 106 con el propósito de expresarlos en [m2/s].
Según del Valle y Yeannes (1982), el método de régimen transitorio de transferencia de calor para la
determinación de la difusividad térmica fue desarrollado por Olson y Jackson y es una derivación analítica de
la ecuación general de conducción de calor en sólidos. Con posterioridad, el método fue aplicado por diversos
autores, entre ellos Charm (1981), quien señaló que a pesar de no ser totalmente satisfactorio, en especial
cuando existe un efecto convectivo, es uno de los pocos métodos prácticos disponible.
Ball y Olson (1957) presentaron la ecuación siguiente para calcular los cambios de temperatura en el caso de
transferencia de calor por conducción en estado variable:
t = f log (j(TA-To)/(TA-T))
(6.2.12)
Si la transferencia de calor es por conducción, la representación debe aproximarse a una línea recta luego del
período de calentamiento inicial o atemperamiento, en cuyo caso el valor de f es el tiempo requerido para que
la sección recta atraviese un ciclo logarítmico.
Cuando se utilizan cilindros de geometría finita y con un alto coeficiente superficial de transferencia de calor,
la difusividad térmica está relacionada con el término f por la ecuación siguiente (Charm, 1981):
α = 0,398/((1/R2)+(0,427/b2))f
(6.2.13)
Juan de Dios Alvarado
El término f se determina de un gráfico semilogarítmico de la relación tiempo contra temperatura, invertido
180, y con el inicio de la escala de temperaturas en un grado menos de la temperatura del medio cuando la
prueba es por calentamiento.
Capítulo 6
242
Siendo R el radio y b la mitad de la altura del cilindro.
En el caso de trabajar con cilindros largos, cuya geometría puede ser considerada como infinita, el término b es
muy grande y su inverso tiende a cero; en consecuencia, la ecuación se simplifica a:
α = 0,398 R2 / f
(6.2.14)
Las dos últimas ecuaciones se utilizan para determinar la difusividad térmica de alimentos, en especial sólidos,
cuando se conoce la variación de la temperatura con el tiempo en sistemas definidos.
OBJETIVOS
Revisar aspectos relacionados con el calentamiento y enfriamiento de sólidos en régimen transitorio o estado
variable con el tiempo.
Calcular los valores de la difusividad térmica en pulpas de frutas.
MATERIALES Y MÉTODOS
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Obtener en forma manual o mecánica, la pulpa de una fruta y tamizarla para separar el material extraño,
determinar la humedad por secado en estufa hasta peso constante.
En dos cilindros largos de cobre de dimensiones conocidas, para trabajar por duplicado, introducir la pulpa con
la precaución de no dejar espacios con aire; cerrar los extremos e introducir un termopar tipo aguja por el eje
central y en forma exacta hasta el centro del cilindro; registrar la temperatura que debe ser estable. Introducir al
sistema en el agua de un baño termostático con agitación, previamente estabilizado a una temperatura superior
en 40C a la registrada en la muestra. A intervalos de un minuto realizar las lecturas de temperatura durante
una hora.
Repetir el procedimiento trabajando con cilindros anchos que correspondan a una geometría finita.
CUESTIONARIO
A partir de la ecuación general de conducción de calor, en estado variable, derivar la ecuación presentada por
Ball y Olson (6.1.12).
Demostrar la validez de la determinación de la constante de velocidad de calentamiento f, mediante el gráfico
semilogarítmico invertido.
Graficar los datos experimentales y establecer los valores de f para cada prueba; aplicar las ecuaciones (6.1.13)
y (6.1.14) y determinar los valores de la difusividad térmica. Comentar los resultados cuando se trabaja con
cilindros de geometría diferente.
Elaborar una tabla con los valores experimentales, reportados y calculados con las ecuaciones (6.2.1), (6.2.2)
y (6.2.3). Discutir con relación a la aplicación del método en pulpas de frutas.
RESULTADOS EXPERIMENTALES
Se trabajó con treinta frutas, en el caso del bananos con cuatro variedades, adquiridas en dos fechas diferentes,
libres de daños físicos, maduras, aptas para consumo humano o uso industrial. Las frutas fueron lavadas,
cortadas, peladas, descorazonadas, según el caso; la obtención de la pulpa se realizó previa trituración en
molino manual de discos y tamizado en cedazo de cerda tejida con 25 hilos por pulgada.
Inmediatamente se determinó la humedad por cuadruplicado, en estufa a 105C, por dos horas o más hasta
Propiedades Térmicas
243
registro de peso constante.
Las determinaciones de la difusividad térmica efectiva o aparente se realizaron en las dos muestras por
octuplicado, utilizando baños termostáticos Jubalo-EM con agitación del agua y precisión de 0,3C. Los
cambios de temperatura se registraron con un equipo Ellab tipo ctd y una termocupla de cobre-constantán,
localizada sobre el eje y en el centro de cilindros de cobre.
Los cilindros de altura finita se construyeron con tapas de cobre con las dimensiones siguientes: radio 0,027
[m] y altura 0,240 [m]. Para confirmación de los datos se trabajó con cilindros de geometría infinita aislados en
los extremos con tapas de caucho y corcho con las dimensiones siguientes: radio interior 0,027 [m] y espesor
0,0015 [m].
En los dos casos se aplicaron las ecuaciones desarrolladas por Ball y Olson (1957), y las presentadas por Charm
(1981) para cilindros finito e infinito.
Figura 6.2.1. Representación de los cambios de temperatura registrados en pulpa de banano
para determinar los valores de la constante de velocidad de calentamiento (f).
Juan de Dios Alvarado
En la Figura 6.2.1 se observa que la representación de la historia de temperaturas correspondiente a la pulpa de
banano (Musa cavendishii), en escala semilogarítmica invertida, define una línea recta durante la mayor parte
del período experimental. Lo anterior indica que el principal mecanismo de transferencia de calor en pulpa de
frutas es conducción y cumple con una de las condiciones básicas para la aplicación del método. En todas las
frutas consideradas se estableció una recta al graficar los datos en la forma indicada.
Capítulo 6
244
Los valores de f, que corresponden al tiempo requerido para que la sección recta de la línea atraviese un
ciclo logarítmico, fueron determinados después de varias pruebas sucesivas de regresión y correlación para
seleccionar la recta que presentó el mejor ajuste con los datos experimentales.
Estos valores son diferentes cuando se trabaja con cilindros finitos e infinitos; sin embargo, la aplicación de las
ecuaciones para el cálculo de la difusividad térmica efectiva estableció la concordancia de datos. Diferencias
pequeñas se registraron en la mayoría de frutas consideradas, con excepción de manzana, pera, naranja, claudia
y tuna, con diferencias de hasta un 6%; que pueden ser explicadas por el comportamiento que tienen las frutas
durante la extracción y la falta de homogeneidad de la pulpa resultante.
El valor de 1,38*10-7 [m2/s] de pulpa de banano se compara con los valores de difusividad térmica determinados
por Riedel y reportados por Touloukian y colaboradores (1977); a 45C, 1,34*10-7 [m2/s] y a 25C, 1,27*10-7
[m2/s], para banano con 76% de humedad. En adición, los valores establecidos en las otras variedades: banano
Limeño, banano Maqueño, banano Orito, son similares, y están entre 1,30*10-7 a 1,33*10-7 [m2/s].
En la Tabla 6.2.1. se presentan los valores de la difusividad térmica efectiva correspondientes a las treinta
frutas consideradas. Bhowmik y Hayakawa (1979) reportaron datos para una variedad de tomate próximos a
1,46*10-7 [m2/s]; el valor establecido en pulpa de tomate es 1,50*10-7 [m2/s].
Tabla 6.2.1. Valores de la Difusividad Térmica Efectiva (), Humedad y de la Constante de Velocidad de Calentamiento
(f) Determinados en Pulpas de Frutas
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
PRODUCTO (Nombre botánico)
Humedad
(g/100 g pulpa)
Abridor (Prunus spp)
86,6
Aguacate (Persea americana)
75,9
Babaco (Carica pentagona)
92,8
Banano limeño (Musa sapientum)
73,3
Banano maqueño (Musa paradisiaca)
71,0
Banano orito (Musa auriens)
68,1
Banano (Musa cavendishii)
75,2
Capulí (Prunus capuli)
74,9
Claudia (Prunus salicina)
88,7
Durazno (Prunus persica)
87,4
Fresa (Fragaria vesca)
91,8
Frutilla (Fragaria chiloensis)
90,8
Guayaba (Psidium guajaba)
86,4
Lima (Citrus aurantifolia)
90,1
Mandarina (Citrus reticulata)
87,3
Manzana (Malus communis)
86,8
Melón (Cucumis melo)
93,7
Mora (Rubus glaucus)
86,7
Naranja (Citrus sinensis)
85,3
Naranjilla (Solanum quitoense)
92,0
Papaya (Carica papaya)
89,5
Pepino (Solanum muricatum)
83,4
Pera (Pyrus communis)
82,1
Piña (Ananas comosus)
85,3
Sandía (Citrullus vulgaris)
92,6
Tomate (Lycopersicon esculentum)
94,9
Tomate de árbol (Cyphomandra betacea)
87,6
Toronja (Citrus paradisii)
88,3
Tuna (Opuntia tuna)
83,6
Uva (Vitis vinifera)
81,6
* Temperatura inicial de la muestra 20C, del baño de agua 65C.
ffinito
[s]
finfinito
[s]
α*
[m2/s]107
1986
2415
2170
2163
2185
2124
2061
1826
1871
1821
1930
2172
2007
2158
2185
2116
1776
1769
1776
2163
2142
2169
1721
1565
2036
1912
2043
2188
1929
2237
2057
2550
2243
2157
2237
2205
2109
1881
1986
1843
1978
2272
2105
2208
2209
2296
1834
1828
1916
2240
2202
2202
1861
1603
2163
1937
2130
2252
2102
2353
1,42
1,16
1,30
1,33
1,30
1,33
1,38
1,55
1,49
1,57
1,47
1,30
1,40
1,32
1,31
1,30
1,59
1,60
1,56
1,31
1,33
1,32
1,61
1,81
1,37
1,50
1,38
1,30
1,43
1,25
En pulpa de manzana existen diferencias, al respecto Sweat (1986), señaló la dificultad en la determinación de
esta propiedad en alimentos porosos, como manzana por el aire atrapado en la estructura de la fruta; sin embargo,
el valor de 1,30*10-7 [m2/s], establecido en manzana Emilia, es próximo a los reportados por Ramaswamy y
Tung (1981), para manzanas Golden Delicius 1,37*10-7 [m2/s] y Granny Smith 1,34*10-7 [m2/s].
Propiedades Térmicas
245
Hayes (1984), en un cuidadoso estudio realizado en pulpa de papaya con 87,6% de humedad, determinó un
valor de 1,52*10-7 [m2/s]. No estableció diferencias significativas con el valor de 1,542*10-7 [m2/s] reportado,
y 1,45*10-7 [m2/s] calculado. El valor experimental de 1,33*10-7 [m2/s], es inferior a los indicados y bastante
inferior al presentado por Kasahara y colaboradores (1986) de 1,79*10-7 [m2/s], pero permite observar la
diferencia de datos que se presenta en el mismo producto.
Es difícil encontrar datos reportados de difusividad térmica para pulpa de la mayoría de frutas consideradas.
Singh (1982) presentó información para varias frutas. Los valores están en el mismo intervalo de variación
establecido en las pruebas experimentales. Se destaca el efecto de la temperatura, en pulpa de banano a 5C
el valor es 1,18*10-7 [m2/s], que se incrementa a 1,42*10-7 [m2/s] a 65C. Al considerar que el método de
estado variable aplicado, no permite precisar la temperatura, los valores de la difusividad térmica efectiva
presentados, en general son comparables con otros reportados para temperatura entre 20 y 65C.
Las ecuaciones recopiladas por Miles y colaboradores (1983) y el modelo de Choi y Okos (1986), predicen un
cambio lineal de la difusividad térmica con la humedad. En el caso de pulpas de diferentes frutas la relación
lineal no fue satisfactoria. Lo anterior se explica en gran parte por las características físicas de las frutas y la
compactación de las muestras. Al ser tamizadas las pulpas se presentan como masas pastosas con aire atrapado,
influyendo en las determinaciones experimentales; sin embargo, el método que utiliza los datos experimentales
de penetración de calor es una alternativa aceptable para la determinación de la difusividad térmica efectiva en
pulpas de frutas, para obtenerse resultados confiables y por la facilidad de implementación y ejecución.
BIBLIOGRAFÍA Y REFERENCIAS
Alvarado, J. de D. 1994. Propiedades físicas de frutas. IV. Difusividad y conductividad térmica efectiva de pulpas. Latin
American Applied Research (LAAR), 24:41-47.
Ball, O. and Olson, F. C. W. 1957. “Sterilization in Food Technology”. New York. Mc Graw Hill.
Bhowmik, S. R. and Hayakawa, K. I. 1979. A new method for determining the apparent thermal diffusivity of thermally
conductive food. J. Food Sci., 44: 469-474.
Charm, S. E. 1981. “The Fundamentals of Food Engineering”. Westport, Connecticut. AVI Publishing Company Inc. p:
163-165.
Choi, Y. and Okos, M. R. 1986. Effects of temperature and composition on the thermal properties of foods. In: “Food
Engineering and Process Applications”. Le Maguer, M. and Jelen, P. (Eds.). V.1. London, England. Elsevier Applied
Science Publishers. p: 93-101.
Hayes, C. F. 1984. Thermal diffusivity of papaya fruit (Carica papaya L., Var. Solo). J. Food Sci., 49: 1219-1221.
Kasahara, I.; Garrido, F. Simpson, R. Aldunate, M. I. y Cornejo, F. 1986. “Tópicos en Transferencia de Calor y Propiedades
Termofísicas en Refrigeración y Congelación de Alimentos”. Kasahara, I. (Ed.), Ch. 4. Universidad Católica de Valparaiso,
Chile. p: 81-109.
Meffert, H. F. Th. 1983. History, aims, results and future of thermophysical properties work within COST 90. In:
“Physical Properties of Foods”. Jowitt, R. Escher, F. Hallstrom, B. Meffert, H. Spiess, W. and Vos, G. (Eds.). London,
England. Applied Science Publishers Ltd. p: 229-267.
Miles, C. A.; van Beek, G. and Veerkamp, C. H. 1983. Calculation of thermophysical properties of foods. In: “Physical
Properties of Foods”. Jowitt, R. Escher, F. Hallstrom, B. Meffert, H. Spiess, W. and Vos, G. (Eds.). London, England.
Applied Science Publishers Ltd. p: 269-312.
Singh, R. P. 1982. Thermal diffusivity in food processing. Food Technol., 36(2): 87-91
Sweat, V. E. 1986. Thermal properties of foods. In: “Engineering Properties of Foods”. Rao, M. A. and Rizvi, S. S. M.
(Eds). New York. Marcel Dekker Inc. p: 49-88.
Touloukian, Y. S.; Kirby, R. K. Taylor, R. E. and Lee T. Y. R. 1977. “Thermophysical Properties of Matter”. V. 16. New
York. Plenum Press. p: 1a-22a (622-648).
Valle del, C. y Yeannes, M. I. 1982. Difusividad térmica efectiva de bonito (Sarda sarda) en aceite. Rev. Latinoam. Transf.
Cal. Mat. 6: 31-39.
Juan de Dios Alvarado
Rha, C. K. 1975. “Theory, Determination and Control of Physical Properties of Food Materials”. Holland. D. Reidel
Publishing Company. p: 311-355.
Capítulo 6
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
246
TEMA 6.3. APLICACIÓN DE LA DIFUSIVIDAD PARA CALCULAR LA
CONDUCTIVIDAD TÉRMICA DE CARNES
INTRODUCCIÓN
La conductividad térmica está directamente relacionada con la difusividad térmica y puede ser calculada si se
conocen los valores de la densidad y del calor específico, según la ecuación:
k = α (DC) Cp
(6.3.1)
Existen varias publicaciones que reportan datos de la conductividad térmica de alimentos y que incluyen
carnes. Entre las más utilizadas están: Woodams y Nowrey (1968), ASHRAE (1977), Polley y colaboradores
(1980), Sanz y colaboradores (1987).
Dickerson (1968) indicó que la conductividad térmica de carnes congeladas depende de la temperatura y
que es menor que la del hielo. Señaló que en congelación la orientación de las fibras en la carne es un
factor importante, y la conducción de calor es del 15 al 30%, superior a lo largo de las fibras que al través de
ellas. En carnes frescas los valores de la conductividad térmica son menores que en carnes congeladas y son
independientes de la orientación de las fibras.
Según Lentz (1961), cuando no hay datos suficientes, un valor promedio de la conductividad térmica de carnes
frescas puede ser estimado en un 10% menos que el determinado en agua.
Miles y colaboradores (1983) indicaron que, según varios autores, existe una relación lineal entre la
conductividad térmica de productos alimenticios acuosos no congelados y su contenido de agua expresado
como fracción másica (xw). Recopilan y reportan varias ecuaciones empíricas establecidas para carnes, sobre
su punto inicial de congelación, entre ellas.
Propiedades Térmicas
247
Para carne cocida con más de 50% de agua:
k = 0,081 + 0,568 xw
(6.3.2)
Para carne picada:
k = 0,096 + 0,34 xw
(6.3.3)
Para carnes y pescado:
k = 0,080 + 0,52 xw
(6.3.4)
Sanz y colaboradores (1989) presentaron una amplia recopilación de ecuaciones para calcular las propiedades
físicas de productos cárnicos. Para el caso de carne vacuna y sobre el punto de congelación, recomiendan
utilizar las ecuaciones siguientes, desarrolladas por ellos:
Dirección paralela a las fibras.
k = 0,1075 + 0,501 xw + 0,0005052 xw T
(6.3.5)
Dirección perpendicular a las fibras.
k = 0,0866 + 0,501 xw + 0,0005052 xw T
(6.3.6)
Para carne de cordero, sobre el punto de congelación, dirección perpendicular a las fibras y humedad 75 g/100
g, la ecuación presentada por Flores y colaboradores (1987).
k = 0,487 + 0,0008156 T
(6.3.7)
Para carne de cerdo, a temperaturas sobre el punto de congelación (-0,6C), recomiendan utilizar el valor de
0,454 [W/m.C], determinado por Levy (1977).
Heldman y Singh (1981) reportaron varios modelos propuestos por Kopelman (1966), que son mas adecuados
para realizar investigaciones en sistemas alimenticios. Señalaron que pueden ser de considerable valor en
sistemas conteniendo fibras o capas.
Para sistemas de dos componentes que no son isotrópicos y tienen sus conductividades térmicas dependientes
de la dirección del flujo de calor, como en el caso de materiales fibrosos, reportaron ecuaciones para dos casos.
Conductividad térmica en dirección paralela a las fibras:
ky = kL (1-N2(1-(kS/kL)))
(6.3.8)
Donde N2 es la fracción en volumen de sólidos o fase discontinua en el producto fibroso; kS y kL son las
conductividades térmicas de los sólidos y de la fase líquida o continua, respectivamente.
kx = kL ((1-Q’)/(1-Q’(1-N’)))
(6.3.9)
Donde:
Q’ = N’/(1-(kS/kL))
(6.3.10)
Otras expresiones fueron propuestas para productos de dos componentes, en los cuales el componente que
forma la fase discontinua está en forma de capas.
Juan de Dios Alvarado
Conductividad térmica en dirección perpendicular a las fibras.
Capítulo 6
248
Conductividad térmica en dirección paralela a las capas.
ky = kL (1-M(1-(kS/kL)))
(6.3.11)
M es la fracción en volumen de sólidos o fase discontinua.
Conductividad térmica en dirección perpendicular a las capas:
kx = kL (kS/(MkL+kS(1-M)))
(6.3.12)
Para el caso de carnes durante la cocción, Pérez y Calvelo (1984) consideraron el fenómeno de deshidratación
con el consecuente encogimiento del producto, y desarrollaron modelos para el cálculo de la densidad y de la
conductividad térmica, que corresponden a:
(DA) = 1/((xw/(DF))+((1-xw)/(1-xwo))((1/(DF))-(xwo/(DW)))
k = 0,207 + 0,059 tanh(-4,00+20xw)
(6.3.13)
(6.3.14)
La última ecuación se obtuvo a base de datos experimentales.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Con el propósito de determinar la conductividad térmica de sólidos se han desarrollado numerosas técnicas
experimentales. Se emplean métodos basados en pruebas de transferencia de calor en estado de régimen
estacionario o estable, y otros en régimen transitorio o variable.
De acuerdo con Guzmán y colaboradores (1982), los métodos basados en transferencia de calor en régimen
transitorio tratan el problema como de conducción pura, lo cual no se cumple pues los alimentos son
generalmente heterogéneos; contienen partes sólidas en medios líquidos o semilíquidos. En consecuencia, la
difusividad térmica evaluada no es la propia del alimento. Es una difusividad térmica equivalente, denominada
también difusividad térmica efectiva o aparente.
Charm (1981) indicó que un método para calcular los cambios de temperatura en régimen transitorio es el de
la ecuación siguiente.
t = f log (j(TA-To)/(TA-T))
(6.3.15)
De las variaciones temperatura-tiempo registradas en un cilindro finito, con un coeficiente de transferencia de
calor alto, se puede determinar la difusividad térmica, aplicando:
α = k/(DC)Cp = 0,398/((1/R2)+(0,427/b2))f
(6.3.16)
En cilindros infinitos la ecuación se simplifica a:
α = k/(DC)Cp = 0,398 R2/f
(6.3.17)
Para utilizar este método se requiere aproximarse en la forma más cercana posible al cumplimiento de las
condiciones siguientes: El envase debe ser perfectamente cilíndrico, con una capacidad calórica y resistencia
térmica despreciables. Que la temperatura inicial en el interior del envase sea uniforme. Que la transferencia
de calor en el interior del envase se realice en forma predominante por conducción. Que el contenido del
envase o alimento pueda ser considerado como homogéneo e isotrópico, y sus propiedades constantes con el
tiempo y la temperatura. Que la temperatura sobre la superficie del cilindro sea constante (sin variar con el
tiempo), y equivalente a la temperatura del medio. Que el coeficiente de transferencia de calor entre el medio
y la superficie del cilindro pueda ser considerado como infinito.
Además, según la ecuación (6.3.1), si se conocen los valores de la difusividad térmica, la densidad y el calor
específico el valor de la conductividad térmica puede ser calculado.
Propiedades Térmicas
249
OBJETIVOS
Determinar la conductividad térmica en carnes frescas a partir de los valores de la difusividad, establecidos por
un método de régimen transitorio.
Comparar valores de la conductividad térmica experimentales y calculados o reportados para carnes frescas.
MATERIALES Y MÉTODO
Trabajar con carne de res, cerdo, borrego o pollo, en todos los casos por duplicado. Llenar una lata cilíndrica
pequeña con un pedazo de muestra, evacuar y sellar. Acoplar el extremo de una termocupla para registrar la
temperatura del centro del envase en condiciones ambiente. Consultar o determinar los valores respectivos de
contenido de humedad, densidad y calor específico.
Preparar un baño con agua en ebullición y medir su temperatura; introducir la muestra y registrar la historia de
temperaturas.
CUESTIONARIO
En papel semilogarítmico invertido graficar la historia de temperaturas; representar en ordenadas temperatura
y en abscisas tiempo. La parte superior de la escala de ordenadas se iniciará con un valor menor en un grado
a la temperatura del baño de agua, entonces f es numéricamente igual al tiempo necesario para que la sección
recta de la línea. Atraviese una escala logarítmica. Utilizar la ecuación (6.3.16) para calcular los valores de la
difusividad térmica, y la ecuación (6.3.1) para cuantificar la conductividad térmica.
Calcular con las ecuaciones de la Introducción los valores de la conductividad térmica para cada muestra.
Considerar un valor de 0,26 [W/m.K] para la conductividad térmica de los sólidos de la carne, y consultar los
valores de la densidad y conductividad térmica del agua o fase líquida.
Tabular los valores experimentales, calculados y reportados de la conductividad térmica. Discutir los resultados.
RESULTADOS EXPERIMENTALES
Los datos registrados en pruebas con carne vacuna, cerdo, cordero y pollo, colocadas en latas pequeñas para
enlatados y selladas se presentan en la Tabla 6.3.1.
Tabla 6.3.1. Variación de la Temperatura con el Tiempo en Muestras de Carnes Colocadas en Latas Cilíndricas de Hojalata
0
300
600
900
1200
1500
1800
2100
2400
2700
3000
3300
3600
Humedad [g/100 g]
Densidad [kg/m3]
Radio [m]
Altura [m]
Mitad de la altura [m]
Temperatura del medio [C]
Temperatura [C]
Vacuno
Cerdo
Cordero
Pollo
25,4
29,9
33,3
35,6
38,8
42,8
46,0
49,9
54,2
58,1
61,5
64,6
67,0
18,5
19,2
19,5
19,8
23,4
33,7
42,7
48,2
54,3
58,9
62,7
65,8
68,7
21,3
24,0
36,3
47,9
56,0
61,9
66,6
70,4
73,1
75,3
76,5
77,5
18,7
25,7
36,7
48,6
56,3
61,6
65,4
68,0
70,0
71,3
71,5
1040
0,042
0,112
0,056
81,0
70,0
1000
0,042
0,108
0,054
80,0
76,5
1010
0,026
0,086
0,043
79,0
75,9
1020
0,026
0,084
0,042
74,0
Juan de Dios Alvarado
Tiempo
[s]
Capítulo 6
250
Se incluyen los valores de la humedad, densidad y las dimensiones del recipiente. El llenado de las latas se
realizó tratando de colocar las fibras de la carne en sentido perpendicular al flujo de calor, y evitando en lo
posible la presencia de aire, mediante un evacuado previo al sellado.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Según se observa en la Figura 6.3.1., la graficación de los datos experimentales en escala semilogarítmica
invertida, luego de un período de atemperamiento próximo a la media hora, define una sección lineal con la
cual se determina la constante de velocidad de calentamiento, pues en forma directa corresponde al tiempo
requerido para que la sección recta atraviese un ciclo logarítmico.
Figura 6.3.1. Graficación de datos de penetración de calor para determinar la constante de velocidad
de calentamiento (f) en muestras de carne.
Al considerar las dimensiones de los envases, su geometría corresponde a cilindros finitos y aplica la ecuación
(6.3.16).
α = 0,398/((1/R2)+(0,427/b2))f
Vacuno
α = 0,398/((1/(0,042)2)+(0,427/(0,056)2))*4300
α = 1,317*10-7 [m2/s]
Cerdo
α = 0,398/((1/(0,042)2)+(0,427/(0,054)2))*3500
α = 1,594*10-7 [m2/s]
Cordero
α = 0,398/((1/(0,026)2)+(0,427/(0,043)2))*1550
α = 1,501*10-7 [m2/s]
Propiedades Térmicas
251
Pollo
α = 0,398/((1/(0,026)2)+(0,427/(0,042)2))*1760
α = 1,314*10-7 [m2/s]
Al conocer los valores de la difusividad térmica equivalente o efectiva se puede cuantificar la conductividad
térmica, pues los valores del calor específico se determinan en forma experimental, o con la ecuación de
Dickerson (1968) válida para productos cárnicos.
Cp = 1,675 + 0,025 Xw
(6.3.18)
Vacuno
Cp = 1,675 + 0,025 (71,5)
Cp = 3,463 [kJ/kg.K]
Cerdo
Cp = 1,675 + 0,025 (70,0)
Cp = 3,425 [kJ/kg.K]
Cordero
Cp = 1,675 + 0,025 (76,5)
Cp = 3,588 [kJ/kg.K]
Pollo
Cp = 1,675 + 0,025 (75,9)
Cp = 3,573 [kJ/kg.K]
Según la ecuación (6.3.1), la conductividad térmica efectiva es definida por:
k = α (DC) Cp
Vacuno
k = 1,317*10-7[m2/s]*1040[kg/m3]*3463[J/kg.K]
k = 0,47 [W/m.K] o [W/m.C]
Cerdo
k = 1,594*10-7*1000*3425
k = 0,55 [W/m.K] o [W/m.C]
Cordero
k = 1,501*10-7*1010*3588
k = 0,54 [W/m.K] o [W/m.C]
k = 1,314*10-7*1020*3573
k = 0,48 [W/m.K] o [W/m.C]
Según Lentz (1961), la conductividad térmica de las carnes puede ser calculada para una temperatura media
de 45C por:
k = 0,9 kw
k = 0,9 * 0,640
k = 0,58 [W/m.K]
(6.3.19)
Juan de Dios Alvarado
Pollo
Capítulo 6
252
Woodams y Nowrey (1968) reportaron los valores siguientes. Carne magra de res con 70% de humedad entre
25 a 35C, 0,47 [W/m.K]. Carne de cerdo con 72% de humedad y 6,1% de grasa a 4C, 0,48 [W/m.K]. Pollo
entre 5 a 27C, 0,41 [W/m.K].
Polley y colaboradores (1980) publicaron los valores siguientes. Cerdo con 71% de humedad a 59,3C, 0,5400
[W/m.K]. Cordero con 71,8% de humedad a 61,1C, 0,4777 [W/m.K]. Músculo de pollo, 0,4119 [W/m.K].
Es difícil realizar una comparación estricta entre los valores de conductividad térmica efectiva experimentales
y los reportados o calculados con ecuaciones. Se conoce que los músculos difieren en sus características y
composición según el sitio del cuerpo del animal del cual son extraídos, las diferencias son más notorias al
considerar los órganos; la temperatura es otro factor que afecta a la conductividad térmica.
Los valores cuantificados en muestras de carne de res, cerdo, cordero y pollo están en un intervalo comparable
con el reportado en la literatura técnica. Lo anterior también puede ser observado al utilizar las ecuaciones, en
especial las correspondientes a flujo de calor perpendicular a las fibras.
En carne de res con 74% de humedad, la fracción en volumen de los sólidos es 0,0528; en consecuencia:
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Q’ = N’/(1-(kS/kL))
Q’ = (0,0528)0,5/(1-(0,26/0,64))
Q’ = 0,387
kx = kL((1-Q’)/(1-Q’(1-N’))
kx = 0,64((1-0,387)/(1-0,387(1-0,230))
kx = 0,559 [W/m.K]
Se espera que el modelo de Kopelman conduzca a mejores estimaciones de la conductividad térmica en carnes,
cuando se conoce la densidad del producto y de los sólidos. Una situación similar se establece para músculos de
carne proveniente de otros animales, pues la influencia de la composición en productos con mayor contenido de
materia grasa se refleja en una menor densidad de los sólidos, que afecta a la fracción en volumen de sólidos.
En general, por las dificultades para conseguir las condiciones requeridas para aplicar el método, las inexactitudes
que provienen de la determinación de la densidad y el cálculo del calor específico, para propósitos de cálculo
un valor de 0,5 [W/m.K], es un dato representativo de la conductividad térmica de carnes a temperaturas
próximas a las del ambiente.
BIBLIOGRAFÍA Y REFERENCIAS
ASHRAE. 1977. “Handbook Fundamentals”. New York. American Society Heatg. Refrig. Air Cond. Engrs.,
Ch: 27-29.
Charm, S. E. 1981. “The Fundamentals of Food Engineering”. Westport, Connecticut. AVI Pub. Co. Inc. p:
163-165.
Dickerson, R. W. Jr. 1968. Thermal properties of foods. In: “The Freezing Preservation of Foods”. Tressler,
D. K.; van Arsdel, W. B. and Copley, M. J. (Eds). V.2. Westport, Connecticut. AVI Pub. Co. Inc. p: 26-51.
Flores, E. S.; Bazán, H. C. y Mascheroni, R. H. 1987. Actas de las XIV Jornadas sobre Investigaciones en
Ciencias de la Ingeniería Química y Química Aplicada. Vol.II. p:433.
Guzmán, J. A.; Olivares, M. Solar, I. y Yánez, C. 1982. Modelo general de transmisión general en conservas.
Actas del I Congreso Latinoamericano de Transferencia de Calor y Materia. V.1. La Plata, Argentina. p: 521535.
Propiedades Térmicas
253
Heldman, D. R. and Singh, R. P. 1981. “Food Process Engineering”. 2nd. ed. Westport, Connecticut. AVI
Pub. Co. Inc. p: 102-108.
Kopelman, I. J. 1966. “Transient Heat Transfer and Thermal Properties in Food Systems”. Ph.D. Thesis.
Michigan State University. East Lansing.
Lentz, C. P. 1961. Thermal conductivity of meats, fats, gelatin gels and ice. Food Technol., 15: 243-247.
Levy, F. 1977. “Freezing, Frozen, Storage and Freeze-drying”. Karlsruhe. IIR. p:325.
Miles, C. A.; van Beek, G. and Veerkamp, C. H. 1983. Calculation of thermophysical properties of foods. In:
“Physical Properties of Foods”. Jowitt, R.; Escher, F. Hallström, B. Meffert, H. F. Th. Spiess, W. E. L. and Vos,
G. (Eds.). London, England. Applied Science Pub., p: 269-312.
Pérez, M. G. R. and Calvelo, A. 1984. Modeling the thermal conductivity of cooked meat. J. Food Sci., 49:
152-156.
Polley, S. L.; Snyder, O. P. and Kotnour, P. 1980. A compilation of thermal properties of foods. Food Technol.,
34(11): 76-94.
Sanz, P. D.; Dominguez Alonso, M. and Mascheroni, R. H. 1989. Equations for the prediction of thermophysical
properties of meat products. Latin American Applied Research (LAAR), 19:155-163.
Sanz, P. D.; Alonso, M. D. and Mascheroni, R. H. 1987. Thermophysical properties of meat products: general
bibliography and experimental values. Trans. ASAE, 38:283-291.
Juan de Dios Alvarado
Woodams, E. E. and Nowrey, J. E. 1968. Literature values of thermal conductivities of foods. Food
Technol.,22(4): 494-502.
Capítulo 6
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
254
TEMA 6.4. APLICACIÓN DE LA LEY DE FOURIER EN ESTADO
DE RÉGIMEN TRANSITORIO PARA DETERMINAR LA
CONDUCTIVIDAD TÉRMICA DE FRUTAS Y VEGETALES
ESFÉRICOS
INTRODUCCIÓN
Las propiedades térmicas de frutas y vegetales son necesarias para calcular la rapidez de calentamiento o
enfriamiento en procesos, o para estimar las cantidades de calor requeridas. Los datos de conductividad
térmica son una de las primeras propiedades de transporte requeridas en procesos en los cuales hay intercambio
de energía y masa. Ejemplos típicos en alimentos son los procesos de blanqueo, evacuado, pasteurización,
esterilización, refrigeración, congelación, secado y rehidratación.
Según Crosby (1968), si se mantiene a un cuerpo con temperatura constante al inicio y luego se lo saca del
baño, el tiempo que debe transcurrir para que uno de sus puntos alcance otro valor de temperatura depende
de la forma geométrica, dimensiones del objeto y de las propiedades físicas del material. Cuando a muestras
geométricas y dimensionalmente idénticas se las somete a condiciones térmicas similares, el tiempo necesario
para que ocurran cambios térmicos similares depende de sus respectivas propiedades físicas: densidad,
capacidad calórica y conductividad térmica.
Es conveniente que las muestras a ensayar tengan forma de: placa con espesor finito, cilindro de diámetro finito
o esfera de diámetro finito. En frutas y vegetales frescos se encuentran formas muy irregulares; sin embargo,
en varios casos se puede reconocer una forma esférica.
Al aplicar la ley de Fourier sobre la conducción térmica, al flujo de calor a través de esferas en condiciones de
régimen transitorio y propiedades físicas constantes, el siguiente balance energético diferencial fue establecido:
Propiedades Térmicas
255
(T)/(t) = α (((2T)/((r)2))+((2/r)((T)/(r))))
(6.4.1)
En la ecuación T es la temperatura, t es el tiempo, y α es la difusividad térmica definida por:
(6.4.2)
α = k / (DP) Cp
Además, k es la conductividad térmica, (DP) es la densidad del alimento, Cp es el calor específico y r es la
distancia radial.
Considerando las condiciones de contorno siguientes:
Cuando t  0, T = T0 para 0  r  R
Cuando r = 0, (T/r) = 0 para todo valor de t
Cuando r = R, -k(T/r) = h(T-TA) para t > 0
(6.4.3)
(6.4.4)
(6.4.5)
Siendo h el coeficiente de transferencia de calor por convección, R el radio de la esfera, T0 la temperatura
inicial uniforme y TA la temperatura del baño o del medio de calentamiento.
Se llegó a la siguiente solución exacta:

((TA-T)/(TA-T0)) = 2 ∑ {exp[-ßn2(αt/R2)](Rh/k)sen[ßn(r/R)] /
n=1
(r/R)[ßn2 + (Rh/k)(Rh/(k-1))sen(ßn)]}
(6.4.6)
Siendo: ±ßn = raíces de ß cot(ß) + (Rh/k) - 1 = 0
La ecuación consta de cuatro grupos adimensionales y puede ser expresada en la forma de solución funcional:
((TA-T)/(TA-To)) = f’((αt/R2), (k/hR), (r/R))
(6.4.7)
Figura 6.4.1. Solución gráfica de distribución de temperatura en estado transitorio para el
centro de una esfera. Fuente: Crosby (1968).
Juan de Dios Alvarado
Las soluciones numéricas de la ecuación (6.4.6) fueron presentadas en forma gráfica en función de los grupos
adimensionales de la ecuación (6.4.7). En la Figura 6.4.1. se transcribe la solución para el centro de la esfera
donde (r/R)=0.
Capítulo 6
256
Kreith (1970) indicó que en el caso de convección forzada sobre superficies exteriores en esferas, para
transferencia de calor en un líquido, en el intervalo del número de Reynolds entre 1 y 2000, la ecuación
siguiente es adecuada para calcular el coeficiente de transferencia de calor convectivo.
(hD/kl)(NPr)l-0,3 = 0,97 + 0,68 (NRe)l0,5
(6.4.8)
(NPr)l = Cp μ / k (6.4.9)
(NRe)l = D v (DC) / μ
(6.4.10)
Siendo:
Para números de Reynolds hasta 200000, Pitts y Sisson (1979) recomendaron la ecuación siguiente, para el
caso de una esfera simple sumergida en un líquido con flujo turbulento:
(hD/kl) = (1,2+0,53(NRe)l0,54)(NPr)l0,3(μl/μu)0,25
(6.4.11)
El valor de μu, es la viscosidad a la temperatura de superficie.
Welty y colaboradores (1993) señalaron que para el caso de esferas en contacto con un líquido que está entre
los valores: 1 < (NRe) < 70.000, la ecuación que deberá usarse es:
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
(NNu) = (hc D/kl) = 2,0 + 0,60 (NRe)1/2 (NPr)1/3
(6.4.12)
Cuando el número de Reynolds se acerca a cero, el número de Nusselt se acerca al valor de 2. Esta ecuación
fue acogida por Hallström y colaboradores (1988), quienes indicaron la posibilidad de utilizar una longitud
característica (z) para alimentos sólidos con cualquier configuración o geometría.
z = (A*)/2πR
(6.4.13)
Con relación a frutas, vegetales y otros alimentos, Sweat (1986) se refirió a la conductividad térmica del
producto como una medida de su habilidad para conducir el calor. Señaló que depende principalmente de la
composición, pero también de cualquier otro factor que afecte al paso del flujo de calor a través del material,
como el porcentaje de espacios vacíos. A temperaturas sobre el punto de congelación, presentó un gráfico
para determinar los valores de la conductividad térmica para frutas y vegetales, los cuales están entre 0,4 a 0,6
[W/m.C]. Valores inferiores fueron establecidos en materiales porosos, como manzanas o productos apilados
con presencia de espacios con aire.
Alvarado (1994) presentó datos de la conductividad térmica obtenidos en pulpas de treinta frutas. El valor
inferior de 0,38 [W/m.K] se registró en la pulpa de banano Maqueño, con 71,0% de humedad. El valor superior
de 0,57 [W/m.K] en pulpas de melón y naranja, con 93,7% y 85,3% de humedad, respectivamente.
Existen otras publicaciones que recopilan datos de las propiedades térmicas de alimentos, obtenidos por
diversos autores. Entre ellas se encuentran: Sweat (1974) y Rha (1975).
El modelo desarrollado por Choi y Okos (1986), para el cálculo de la conductividad térmica, es adecuado para
frutas y vegetales a temperaturas sobre el punto de congelación del agua:
k = Σ ki xiv
(6.4.14)
Donde el subíndice i se refiere al componente del alimento, y xiv es la fracción en volumen, que se calcula con:
xiv = (xi/(DC)i)/(Σ(xi/(DC)i))
(6.4.15)
Propiedades Térmicas
257
Las conductividades térmicas de los componentes mayores, se calculan con las ecuaciones siguientes:
kw = 0,57109 + 1,7625*10-3 T - 6,7036*10-6 T2
(6.4.16)
kt = 0,17881 + 1,1958*10-3 T - 2,7178*10-6 T2
(6.4.17)
kg = 0,18071 - 2,7604*10-3 T - 1,7749*10-7 T2
(6.4.18)
(6.4.19)
kc = 0,20141 + 1,3874*10-3 T - 4,3312*10-6 T2
kb = 0,18331 + 1,2497*10-3 T - 3,1683*10-6 T2
(6.4.20)
kr = 0,32962 + 1,4011*10-3 T - 2,9069*10-6 T2
(6.4.21)
Entre los trabajos específicos realizados en frutas y vegetales, Sweat (1974) utilizó sus datos y los publicados
por otros autores, para establecer por regresión una ecuación que calcula la conductividad térmica de alimentos
con más de 60% de humedad, con una variación de ±15% con relación a los datos analizados.
k = 0,148 + 0,00493 Xw
(6.4.22)
En la ecuación Xw es la humedad expresada como porcentaje en base húmeda.
Lozano y colaboradores (1979) trabajaron con manzanas, y determinaron valores de la conductividad térmica
como función de la humedad. En base a datos experimentales obtuvieron la ecuación siguiente:
k = 0,490 - 0,443 exp(-0,206 xw’)
En esta ecuación xw’ es el contenido de agua expresado en [g/g sólido].
(6.4.23)
Mattea y colaboradores (1986) presentaron ecuaciones específicas para papas y peras. Respectivamente, son:
k = 0,5963 - (0,1931/xw’) + (0,0301/(xw’)2)
k = 0,4875 - (0,0566/xw’) + 0,0227 ln(xw’)
(6.4.24)
(6.4.25)
OBJETIVOS
Revisar aspectos relacionados con transferencia de calor por conducción en régimen transitorio o estado
variable.
Determinar la conductividad térmica de frutas y vegetales de forma esférica, y comparar los valores con otros
calculados o reportados.
Establecer el efecto de la corteza sobre la capacidad de conducir calor en frutas y otros vegetales esféricos.
MATERIALES Y MÉTODO
Con ayuda de baños termostáticos armar el equipo indicado en la Figura 6.4.2. Conectar los controles del
baño de temperatura constante y de la bomba para circulación del agua; permitir que el sistema se estabilice
en aproximadamente 60C, y determinar la velocidad de la corriente de agua y la temperatura en la cámara de
recirculación.
Colocar la muestra en la cámara de circulación y determinar la historia de temperaturas en el centro a intervalos
de cinco minutos, hasta que la variación sea mínima.
Introducir el extremo de una termocupla hasta el centro de la muestra. Registrar la temperatura.
Juan de Dios Alvarado
Trabajar por duplicado, utilizando muestras frescas con y sin cáscara de una fruta, como naranjas o manzanas, y
una raíz, como papas o remolachas; escogidas buscando la mejor aproximación a la forma esférica. Determinar
su diámetro, humedad, densidad y calor específico.
Capítulo 6
258
Figura 6.4.2. Esquema del equipo para medir conductividades térmicas según Crosby (1968)
CUESTIONARIO
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Utilizar la fórmula indicada por Kreith (6.4.8) o por Pitts y Sisson (6.4.11), para calcular el coeficiente de
transferencia de calor por convección entre el agua y el producto.
Graficar en escala semilogarítmica la variación de temperatura determinada experimentalmente en la forma (TAT)/(TA-To), en función del factor de tiempo (t/R2). Con ayuda de la Figura 6.4.1. y las propiedades conocidas
del producto, determinar el valor de la conductividad térmica del alimento por el método de ensayo y error.
Con las ecuaciones indicadas en la Introducción calcular los valores de la conductividad térmica, según la
composición de las muestras. Comparar estos valores con los determinados en forma experimental.
RESULTADOS EXPERIMENTALES
Tabla 6.4.1. Historias de Temperaturas Registradas en Papas y Naranjas Sumergidas en Baños Termostáticos con
Circulación de Agua
Tiempo
[s]
0
300
600
900
1200
1500
1800
2100
2400
Diámetro [m]
Radio [m]
Densidad [kg/m3]
Humedad [g/100 g]
Temperatura del baño [C]
Velocidad de circulación [m/s]
Temperatura [C]
Papas
Naranjas
Enteras
Peladas
Enteras
Peladas
19,9
29,8
37,7
42,3
48,3
51,5
54,1
55,6
56,4
20,1
23,1
31,8
40,3
46,7
51,0
53,9
55,8
57,0
19,0
21,1
28,1
33,6
41,4
45,8
49,0
51,3
19,5
23,8
33,9
42,2
48,0
51,4
53,5
54,8
0,072
0,036
1080
76,2
60,0
0,11
0,062
0,031
1075
78,4
60,0
0,11
0,062
0,031
1010
83,1
56,0
0,07
0,050
0,025
940
86,7
56,0
0,07
Según el método indicado en detalle por Crosby (1968), se registraron los cambios de temperatura a diferentes
tiempos en el centro de productos que se aproximan a la forma esférica. En la Tabla 6.4.1. se presentan los
datos correspondientes a muestras de papas (Solanum tuberosum) de la variedad Chola, y de naranjas (Citrus
sinensis) procedentes de la zona de Caluma. En los dos casos se trabajó con muestras enteras y sin cáscara.
Propiedades Térmicas
259
Cada conjunto de datos requiere un tratamiento particular, como se indica a continuación. La consulta o el
cálculo de las propiedades y de los números adimensionales facilita las operaciones.
Papas con cáscara o enteras
Propiedades del agua (Tabla 2.2.2) a 60C.
(DW) = 983,2 [kg/m3]
Cp = 4,181 [kJ/kg.K]
k = 0,658 [W/m.K]
μ = 471,650*10-6 [Pa.s]
Propiedades del producto.
(DP) = 1080 [kg/m3]
El calor específico, según la ecuación (6.1.8):
Cp = 1,19 + 2,66 xw
Cp = 1,19 + 2,66*0,762 = 3,22 [kJ/kg.K]
Los números adimensionales.
(NRe)l = Dv(DC)/μ
(NRe)l = 0,072[m]*0,11[m/s]*983,2[kg/m3]/471,650*10-6[Pa.s]
(NRe)l = 1,65*104
(NPr)l = Cp μ / k
(NPr)l = 4181[J/kg.K]*471,65*10-6[Pa.s]/0,658[W/m.K]
(NPr)l = 3,00
Según el número de Reynolds, se utiliza la ecuación indicada por Pitts y Sissom (1979), para calcular el
coeficiente de transferencia de calor, considerando que durante la mayor parte del período experimental la
temperatura de la superficie puede ser considerada como próxima o igual a la temperatura del agua en el baño.
(hD/kl) = (1,2+0,53(NRe)l0,54)(NPr)l0,3(μl/μu)0,25
(h*0,072[m]/0,658[W/m.K]) = (1,2+0,53(1,65*104)0,54)(3,00)0,3(1)0,25
h * 0,1094[m2.K/W] = (101,6)(1,39)(1)
h = 1291 [W/m2.K]
Para utilizar la Figura 6.4.1. y el método de ensayo y error se requiere fijar un valor para la conductividad
térmica, y calcular un valor de k/hR que permite ubicar una línea recta en el interior de la Figura. Por el
relativamente alto coeficiente de transferencia de calor, el valor que se calcula será próximo a cero.
Se localiza el valor calculado en la Figura 6.4.1. y, con ayuda de la línea definida previamente, se lee un
valor en la abscisa que corresponde al término αt/R2. Como la difusividad térmica α es igual a k/(DP)Cp, por
reemplazo la conductividad térmica k, puede ser calculada. La comparación de este valor con el determinado,
permitirá encontrar el valor correcto cuando se establezca la igualdad.
Se necesita realizar varios intentos o ensayos para establecer la igualdad; sin embargo, un gráfico entre los
valores calculados y reconocidos facilita la operación, en los casos que existe dificultad para llegar a la
convergencia.
Primer intento, se asume k = 0,3 [W/m.K]
k/hR = 0,3[W/m.K]/1291[W/m2.K]*0,036[m] = 0,00645
Juan de Dios Alvarado
Inmediatamente se calcula el término (TA-T)/(TA-To), considerando una de las lecturas registradas. Se debe
tener cuidado en escoger un valor que esté en la sección lineal al graficar, en escala semilogarítmica, la relación
t/R2 contra (TA-T)/(TA-To).
Capítulo 6
260
Según lo indicado, este valor se aproxima a cero.
En la Figura 6.4.3. se observa que al graficar los valores t/R2 contra la razón de temperaturas en escala
semilogarítmica, los valores experimentales cumplen una relación lineal en forma adecuada. La última lectura
registrada luego de 2400 segundos será considerada para los cálculos.
(TA-T)/(TA-To) = (60,0-56,4)/(60,0-19,9) = 0,09
Utilizando la Figura 6.4.1. con los valores anteriores, se establece:
αt/R2 = 0,34
α = k/(DP)Cp
k = 0,34(DP)CpR2/t
k = 0,34*1080[kg/m3]*3220[J/kg.K]*(0,036)2[m2]/2400[s]
k = 0,64 [W/m.K]
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
El valor calculado es diferente de 0,3 [W/m.K] establecido. En consecuencia se requiere efectuar otro intento.
Se anota que Pitts y Sissom (1979) presentan un gráfico para esferas similar al indicado por Crosby (1968), con
la ventaja de permitir lecturas más exactas.
Segundo intento, se asume k = 0,65 [W/m.K]
k/hR = 0,65/1291*0,036 = 0,0140
(TA-T)/(TA-To) = 0,09
αt/R2 = 0,34
k = 0,34*1080*3220*(0,036)2/2400
k = 0,64 [W/m.K]
Se establece una aproximación aceptable; en consecuencia, el valor de la conductividad térmica, determinado
según este procedimiento, es 0,6 [W/m.K].
Figura 6.4.3. Historias de temperaturas registradas en el centro de alimentos esféricos en contacto con
agua.
Propiedades Térmicas
261
Papas sin cáscara o peladas
Los valores correspondientes al agua no cambian, pues la temperatura y agitación del agua en el baño
termostático son las mismas.
Propiedades del producto.
(DP) = 1075 [kg/m3]
Cp = 1,19 + 2,66 xw
Cp = 1,19 + 2,66 * 0,784 = 3,28 [kJ/kg.K]
Los números adimensionales.
(NRe)l = Dv(DW)/μ
(NRe)l = 0,062*0,11*983,2/471,650*10-6
(NRe)l = 1,42*104
(NPr)l = 3,00
El coeficiente de transferencia de calor.
(hD/kl) = (1,2+0,53(NRe)l0,54)(NPr)l0,3(μl/μu)0,25
(h*0,062/0,658) = (1,2+0,53(1,42*104)0,54)(3,00)0,3(1)0,25
h * 0,0942 = 93,8 * 1,39 * 1
h = 1384 [W/m2.K]
Primer intento, se fija k = 0,3 [W/m.K]
k/hR = 0,3/1384*0,031 = 0,007
(TA-T)/(TA-To) = (60,0-57,0)/(60,0-20,1) = 0,075
Según la Figura 6.4.3. el dato utilizado corresponde a un tiempo de 2400 segundos, y está en la sección lineal.
En la Figura 6.4.1. se establece:
αt/R2 = 0,375
k = 0,375*1075*3280*(0,031)2/2400
k = 0,53 [W/m.K] diferente de 0,3 [W/m.K] asumido.
Segundo intento, se fija k = 0,5 [W/m.K]
El valor de 0,5 [W/m.K] se considera como dato experimental. Según este método, y las condiciones de
trabajo, las lecturas en la Figura 6.4.1. no permiten lograr mayor precisión; además de no ser esferas perfectas.
Con respecto a papas, Mattea y colaboradores (1986) presentaron resultados experimentales obtenidos
mediante un probador tipo sonda y calculados según un modelo basado en la teoría del medio efectivo. Para
valores de humedad del orden de 40% y superiores, la conductividad térmica varió muy poco, desde 0,50 a 0,55
[W/m.C]. Lo anterior concuerda con el valor experimental de papas peladas, 0,5 [W/m.C], pues también
en el trabajo señalado se utilizó tejido de papas; sin embargo, el valor establecido en papas enteras escapa al
intervalo de variación esperado y debe ser considerado con reservas.
Juan de Dios Alvarado
k/hR = 0,5/1384*0,031 = 0,012
αt/R2 = 0,376
k = 0,376*1075*3280*(0,031)2/2400
k = 0,53 [W/m.K]
Capítulo 6
262
Alvarado (1984) reportó valores de la composición proximal para papas variedad Chola. Expresada como
porcentaje en base húmeda los valores fueron: humedad 75,6; proteína 2,00; grasa 0,1; hidratos de carbono
21,2; fibra 0,5 y cenizas 0,6. Esta información se requiere para utilizar el modelo de Choi y Okos (1986) y
calcular la conductividad térmica a 40C, que es una temperatura promedio según las pruebas realizadas. El
modelo está definido por la ecuación (6.4.14).
k = Σ ki xiv
La conductividad térmica de los componentes mayores se calcula con las ecuaciones correspondientes.
kw = 0,57109 + 1,7625*10-3 T - 6,7036*10-6 T2
kw = 0,57109 + 1,7625*10-3(40) - 6,7036*10-6(40)2
kw = 0,63086 [W/m.K]
kt = 0,17881 + 1,1958*10-3 T - 2,7178*10-6 T2
Kt = 0,17881 + 1,1958*10-3(40) - 2,7178*10-6(40)2
kt = 0,22229 [W/m.K]
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
kg = 0,18071 - 2,7604*10-3 T - 1,7749*10-7 T2
kg = 0,18071 - 2,7604*10-3(40) - 1,7749*10-7(40)2
kg = 0,07001 [W/m.K]
kc = 0,20141 + 1,3874*10-3 T - 4,3312*10-6 T2
kc = 0,20141 + 1,3874*10-3(40)-4,3312*10-6(40)2
kc = 0,24998 [W/m.K]
kb = 0,18331 + 1,2497*10-3 T - 3,1683*10-6 T2
kb = 0,18331 + 1,2497*10-3(40) - 3,1683*10-6(40)2
kb = 0,22823 [W/m.K]
Kr = 0,32962 + 1,4011*10-3 T - 2,9069*10-6 T2
kr = 0,32962 + 1,4011*10-3(40) - 2,9069*10-6(40)2
kr = 0,38101 [W/m.K]
Para calcular los valores de las fracciones en volumen de los componentes principales se requiere conocer sus
densidades. Las ecuaciones siguientes, presentadas por Choi y Okos (1986), son adecuadas para el cálculo.
(DC)w = 997,18 + 3,1439*10-3 T - 3,7574*10-3 T2
(DC)w = 997,18+3,1439*10-3(40)-3,7574*10-3(40)2 = 991,29 [kg/m3]
(6.4.28)
(DC)t = 1329,9 - 0,51840 T
(DC)t = 1329,9 - 0,51840(40) = 1309,16 [kg/m3]
(6.4.29)
(DC)g = 925,59 - 0,41757 T
(DC)g = 925,59 - 0,41757(40) = 908,89 [kg/m3]
(6.4.30)
(DC)c = 1599,1 - 0,31046 T
(DC)c = 1599,1 - 0,31046(40) = 1586,68 [kg/m3]
(6.4.31)
(DC)b = 1311,5 - 0,36589 T
(DC)b = 1311,5 - 0,36589(40) = 1296,86 [kg/m3]
(6.4.32)
(DC)r = 2423,8 - 0,28063 T
(DC)r = 2423,8 - 0,28063(40) = 2412,57 [kg/m3]
(6.4.33)
Propiedades Térmicas
263
El denominador de la ecuación (6.4.15) es:
Σ(xi/(DC)i) = (0,756/991,29)+(0,020/1309,16)+(0,001/908,89)+(0,212/1586,68)
+(0,005/1296,86)+(0,006/2412,57)
Σ(xi/(DC)i) = 9,18974*10-4
xwv = (0,756/991,29)/9,18974*10-4 = 0,830
xtv = (0,020/1309,16)/9,18974*10-4 = 0,017
xgv = (0,001/908,89)/9,18974*10-4 = 0,001
xcv = (0,212/1586,68)/9,18974*10-4 = 0,145
xbv = (0,005/1296,86)/9,18974*10-4 = 0,004
xrv = (0,006/2412,57)/9,18974*10-4 = 0,003
Por reemplazo en la ecuación (6.4.14), la conductividad térmica de las papas, según su composición,
corresponde a:
k = (0,63086*0,830)+(0,22229*0,017)+(0,07001*0,001)*(0,24998*0,145)
+(0,22823*0,004)+(0,38101*0,003)
k = 0,566 [W/m.K] o [W/m.C]
El valor está en el intervalo esperado y es próximo al determinado en papas sin cáscara.
La ecuación (6.4.24) presentada por Mattea y colaboradores (1986), por ser específica para papas, calcula los
valores siguientes.
Papas con cáscara, humedad 76,2 [g/100 g]
k = 0,5963-(0,1931/xw’)+(0,0301/(xw’)2)
xw’ = 0,762/(1,000-0,762) = 3,2
k = 0,5963-(0,1931/3,20)+(0,0301/(3,20)2)
k = 0,539 [W/m.K]
Papas sin cáscara, humedad 78,4 [g/100 g]
xw’ = 0,784/(1,000-0,784) = 3,63
k = 0,5963-(0,1931/3,63)+(0,0301/(3,63)2)
k = 0,545 [W/m.K]
Se aprecia la concordancia de los valores calculados y que los valores de la conductividad térmica de las papas
son próximos a 0,5 [W/m.K]
Naranjas con cáscara o enteras
(DW) = 985,2 [kg/m3]
Cp = 4,179 [kJ/kg.K]
k = 0,653 [W/m.K]
μ = 505,012*10-6 [Pa.s]
Propiedades del producto.
(DP) = 1010 [kg/m3]
Cp = 1,19+2,66*0,831 = 3,40 [kJ/kg.K]
Juan de Dios Alvarado
Propiedades del agua, por interpolación de la Tabla 2.2.2. a 56C
Capítulo 6
264
Números adimensionales.
(NRe)l = Dv(DW)/μ
(NRe)l = 0,062*0,07*985,2/505,012*10-6 = 8467
(NPr)l = Cp μ / k
(NPr)l = 4179*505,012*10-6/0,653 = 3,23
El coeficiente de transferencia de calor.
(hD/kl) = (1,2+0,53(NRe)l0,54)(NPr)l0,3(μl/μu)0,25
(h*0,062/0,653) = (1,2+0,53(8467)0,54)(3,23)0,3(1)0,25
(h*0,0949) = (71,2)(1,42)(1)
h = 1065 [W/m2.K]
Primer intento, se asume k = 0,5 [W/m.K]
k/hR = 0,5/1065*0,031 = 0,015
Se utiliza el dato de temperatura registrado a los 1800 segundos, que según la Figura 6.4.3. cumple la relación
lineal.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
(TA-T)/(TA-To) = (56,0-49,0)/(56,0-19,0) = 0,19
De la Figura 6.4.1. se establece:
αt/R2 = 0,25
α = k/(DP)Cp
k = 0,25 (DP) Cp R2 / t
k = 0,25*1010*3400*(0,031)2/1800
k = 0,46 [W/m.K]
El valor es próximo a 0,4 [W/m.K]; sin embargo por la mínima variación de k/hR al asumir otros valores para
la conductividad térmica, notar que el término se aproxima a cero a pesar de duplicar el valor asumido, se
acepta como respuesta 0,5 [W/m.K].
Naranjas sin cáscara o peladas
Los valores correspondientes al fluido, en el presente caso agua, se mantienen por no existir cambio en la
temperatura del baño.
Propiedades del producto.
(DP) = 940 [kg/m3]
Cp = 1,19+2,66 xw = 1,19+2,66*0,867= 3,50 [kJ/kg.K]
Números adimensionales.
(NRe)l = Dv(DW)/μ
(NRe)l = 0,050*0,07*940/505,012*10-6 = 6515
(NPr)l = Cp μ / k
(NPr)l = 4179*505,012*10-6/0,653 = 3,23
Propiedades Térmicas
265
El coeficiente de transferencia de calor.
(hD/kl) = (1,2+0,53(NRe)l0,54)(NPr)l0,3(μl/μu)0,25
(h*0,050/0,653) = (1,2+0,53(6515)0,54)(3,23)0,3(1)0,25
(h*0,07657) = (61,98)(1,42)(1)
h = 1149 [W/m2.K]
Primer intento, se asume k = 0,4 [W/m.K]
k/hR = 0,4/1149*0,025 = 0,014
Considerando el dato de temperatura registrado a los 1800 segundos.
(TA-T)/(TA-To) = (56,0-53,5)/(56,0-19,5) = 0,07
De la Figura 6.4.1.
αt/R2 = 0,375
k = 0,375 (DP) Cp R2 / t
k = 0,375*940*3500*(0,025)2/1800
k = 0,43 [W/m.K]
Como en el caso anterior, el valor de 0,4 [W/m.K] puede ser considerado como el resultado experimental de la
conductividad térmica, según este método.
Sweat (1974), reportó un valor de 0,580 [W/m.C] para la conductividad térmica de naranja pelada con 85,9%
de humedad a 28C y una densidad de 1030 [kg/m3]; este valor es similar al obtenido por Alvarado (1994), que
fue 0,57 [W/m.C] para pulpa de naranja con 85,3% de humedad y de densidad 1020 [kg/m3]. Sin embargo, Rha
(1975) reportó un valor de 0,415 [W/m.C] para naranjas a 15,6C. Lo anterior indica que existe dispersión de
valores a pesar de ser la misma fruta.
Varias ecuaciones pueden ser útiles para calcular la conductividad térmica de frutas, en el presente caso naranjas
con 83,1% de humedad y 40C.
Sweat (1974), ecuación (6.4.22)
k = 0,148 + 0,00493 Xw
k = 0,148 + 0,00493*83,1
k = 0,558 [W/m.K] o [W/m.C]
Por último, se señala que la presencia de la corteza influye en la transferencia de calor y en la conductividad
térmica. En los dos casos presentados, los valores son superiores en los alimentos enteros con relación a los
alimentos pelados. Para el caso de las papas la observación se explica en forma parcial, por el fenómeno de
suberización que ocurre cuando se rompe la corteza, lo que aparentemente provoca una mayor resistencia al
paso de calor.
BIBLIOGRAFÍA Y REFERENCIAS
Alvarado, J. de D. 1994. Propiedades físicas de frutas. IV. Difusividad y conductividad térmica efectiva de
pulpas. Revista Latinoamericana de Investigación Aplicada (LAAR), 24:41-47.
Juan de Dios Alvarado
En frutas y vegetales se espera que esta ecuación lleve a obtener resultados consistentes, por el hecho de ser
obtenida con datos de estos alimentos. Las ecuaciones que consideran a los componentes principales son más
versátiles.
Capítulo 6
266
Alvarado, J. 1984. Efecto de la temperatura y lavado durante el almacenamiento de tres variedades de papa.
En: “La Refrigeración como Medio para Disminuir las Pérdidas Post-cosecha”. T.II. SECYT-OEA, CIDCA.
Buenos Aires, Argentina. p: 111-130.
Crosby, E. J. 1968. “Experimentos sobre Fenómenos de Transporte en las Operaciones Unitarias de la Industria
Química”. Buenos Aires, Argentina. CRAT. Ed. Hispano-Americana S. A. p: 65-81.
Choi, Y. and Okos, M. R. 1986. Effects of temperature and composition on the thermal properties of foods. In:
“Food Engineering and Process Applications. Transport Phenomena”. V.1. Le Maguer, M. and Jelen, P. (Eds.).
London, England. Elsevier Applied Science Publishers Ltd. p: 93-101.
Hallström, B.; Skjöldebrand, Ch. and Trägårdh, Ch. 1988. “Heat Transfer and Food Products”. England.
Elsevier Applied Science Publishers Ltd. p:85.
Kreith, F. 1970. “Principios de Transferencia de Calor”. México, México. CRAT. Herrero Hermanos,
Sucesores S. A. p:449.
Lozano, J. E.; Urbicain, M. J. and Rotstein, E. 1979. Thermal conductivity of apples as a function of moisture
content. J. Food Sci., 44: 198-199.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Mattea, M.; Urbicain, M. J. and Rotstein, E. 1986. Prediction of thermal conductivity of vegetable foods by the
Effective Medium Theory. J. Food Sci., 51: 113-115, 134.
Pitts, D. R. y Sissom, L. E. 1979. “Transferencia de Calor”. Traducido por: Gamboa, S. Serie de Compendios
Schaum. Bogotá, Colombia. Editorial McGraw-Hill Latinoamericana,S.A. p:83-172.
Rha, Ch. 1975. Thermal properties of food materials. In: “Theory, Determination and Control of Physical
Properties of Food Materials”. Rha Chokyun (Ed.). Dordrecht, Holland. Reidel Publishing Company. p: 311355.
Sweat, V. E. 1986. Thermal properties of foods. In: “Engineering Properties of Foods”. Rao, M. A. and Rizvi,
S. S. H. (Eds.). New York. Marcel Dekker, Inc. p: 49-88.
Sweat, V. E. 1974. Experimental values of thermal conductivity of selected fruits and vegetables. J. Food
Sci., 39:1080-1083.
Welty, J. R.; Wicks, Ch. E. y Wilson, R. E. 1993. “Fundamentos de Transferencia de Momento, Calor y Masa”.
México. Editorial Limusa, S.A. p:434.
Propiedades Térmicas
267
TEMA 6.5. APLICACIÓN DE LA CALORIMETRÍA PARA
DETERMINAR EL CALOR DE VAPORIZACIÓN EN ALIMENTOS
CON HUMEDAD ALTA
INTRODUCCIÓN
Señaló que los valores de la capacidad calórica, cambios de energía interna y cambios de entalpía, se determinan
mediante métodos calorimétricos. Estos cambios, ya sea para los elementos o compuestos químicos en función
de la temperatura, o debidos a las variaciones físicas o químicas, se miden en un calorímetro que detecta el
efecto térmico mediante el registro de un cambio de temperatura.
Merkel (1983) conceptualizó al calor latente, como la cantidad de calor añadido o que debe ser removido
desde una sustancia, que involucre un cambio de estado del producto sin un cambio en la temperatura. El calor
requerido para producir el cambio de líquido a gas se llama calor latente de vaporización. Este concepto es
muy antiguo; fue descubierto hace más de 200 años por James Watt y Joseph Black.
Juan de Dios Alvarado
Se define a la calorimetría como la parte de la Física que se ocupa de la medición del calor que los cuerpos
almacenan. Romo (1986) explicó el concepto de calor. Indicó que las moléculas de un gas colisionan
incesantemente entre sí y con las paredes del recipiente, impulsadas por la energía cinética que aumenta
proporcionalmente con la temperatura. Justamente, el valor medio de la energía intercambiada entre un sistema
y el medio externo, originada por los cambios individuales de energía de las moléculas en movimiento, se
denomina calor, que es la forma de energía que no se puede expresar con el producto de la fuerza por el
desplazamiento.
Capítulo 6
268
El calor de vaporización depende de la temperatura y existe una tendencia de estos valores a ir aproximándose
al valor cero en el punto crítico, donde convergen las propiedades del líquido y del vapor en equilibrio.
La relación termodinámica deducida para las reacciones químicas:
d(ΔH)/d(TA) = Δ(Cp)
(6.5.1)
Se puede aplicar igualmente a una transformación física si:
(ΔH) = (ΔHV) = HV - HL
Δ(Cp) = (Cp)V - (Cp)L
(6.5.2)
(6.5.3)
El valor diferente de cero, de la razón entre la diferencia de entalpías de vaporización y la diferencia de
temperaturas absolutas, implica que el calor molar del líquido es diferente del de su vapor.
Se conoce una interesante regla general, completamente empírica, referida a los calores de vaporización en el
punto normal de ebullición, presentada por F. Trouton en 1884. La regla de Trouton establece que el cociente
del calor de vaporización por la temperatura absoluta normal de ebullición es aproximadamente 21 para la
mayor parte de los líquidos. Esto es:
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
(ΔYV)/(TA)B = 21
(6.5.4)
La ecuación es válida en las unidades [cal/mol.K].
Sin embargo, existen compuestos que se desvían de esta regla. Entre ellos el agua que presenta un valor de 26,0
[cal/mol.K]. Explicado por el hecho de que los enlaces de hidrógeno conducen a una considerable restricción
de la libertad de las moléculas del líquido, con una disminución de su entropía en comparación a la de los
líquidos normales. Esta asociación de las moléculas es menos intensa en el vapor. Lo cual explica el valor más
alto de su entropía de vaporización.
En muchos procesos aplicados en alimentos ocurre el cambio de estado desde líquido a gas. Para efectuar los
cálculos relacionados con este fenómeno se necesita conocer el calor latente de vaporización. En ciertos casos
es suficiente considerar el valor correspondiente al agua pura. Merkel (1983) reportó los datos siguientes,
expresados en [kJ/kg], a diferentes temperaturas, expresadas en C: 2497 a 0; 2472 a 10; 2440 a 20; 2425 a
30; 2402 a 40 y 2251 a 100C.
Sin embargo, en alimentos líquidos constituidos por agua en una gran extensión, se espera que la energía
requerida para la evaporación sea, en mucho, la correspondiente al calor latente de vaporización del agua, más
ligeros incrementos asociados con calores de solución, calor sensible, cambios de entalpía debidos a cambios
isotérmicos por volumen, y a los calores latentes de otros compuestos volátiles presentes en el alimento.
OBJETIVOS
Comprobar el uso de la calorimetría para determinar el calor latente de vaporización del agua.
En alimentos líquidos, con alto contenido de agua, cuantificar la energía requerida para la vaporización.
Explorar el cumplimiento de la regla de Trouton en alimentos líquidos.
Propiedades Térmicas
269
MATERIALES Y MÉTODO
Utilizar agua destilada y muestras de leche o de un jugo natural previamente filtrado.
Según las especificaciones señaladas por Anda (1971), se requiere llenar un frasco de Dewar en los dos
tercios de su capacidad, con el líquido cuyo calor latente de vaporización será determinado. Armar el equipo
introduciendo en el líquido una resistencia eléctrica, conectada a una fuente de corriente continua; preveer la
conexión en paralelo de un voltímetro y en serie de un amperímetro y de un reóstato. Acoplar un refrigerante
que permita conducir el vapor y condensarlo para su recolección.
Conectar el calentador eléctrico y ajustar la corriente de tal manera que la destilación se realice de manera
uniforme, a razón de una gota por segundo. Cuando el sistema alcance el equilibrio térmico, que ocurre
generalmente luego de colectarse alrededor de 50 [cm3], el receptor se reemplaza por un frasco previamente
pesado y se inicia el registro del tiempo con un cronómetro.
Las lecturas de amperaje y voltaje deben mantenerse en un valor constante, hasta colectar 50 [cm3] de destilado
en el frasco. Se retira el frasco y al mismo tiempo se para el cronómetro. Se pesa el frasco y su contenido en
balanza analítica y por diferencia con el peso inicial se determina el peso del líquido evaporado.
Si la corriente es I [A], el voltaje V [V] y la duración del experimento t [s], la energía eléctrica consumida
expresada en calorías corresponde a:
(EE) = V I t / 4,1868
(6.5.5)
Esta cantidad de calor se utiliza en parte para vaporizar el líquido, y en parte es consumida y disipada desde
el sistema.
El calor específico puede ser expresado por:
Δ(Cp) = (EE) / (W) d(TA)
(6.5.6)
Por reemplazo en la ecuación (6.5.1):
(ΔH) / d(TA) = (EE) / (W) d(TA)
(6.5.7)
Según la ecuación (6.5.2) como (ΔH) = (ΔHV) = (YV):
(YV) = (EE) / W
(6.5.8)
Para expresar el calor latente de vaporización (YV) en términos molares, se divide el peso por el peso molecular
(PM); en consecuencia:
(6.5.9)
Además, en el segundo miembro de la ecuación se necesita introducir un término que considere la energía
consumida y disipada por el sistema (EP), durante el tiempo de recolección del destilado t, y:
(EE) = ((YV)(W)/(PM))+(EP)t
(6.5.10)
Como no se conoce el valor de (EP), se requiere efectuar una segunda prueba con una intensidad de corriente
del orden de 90%, con respecto a la anterior, y obtener una segunda ecuación. Al aceptar que la energía
consumida y disipada por el sistema es prácticamente igual en las dos pruebas, se elimina el término por
igualación de ecuaciones, calculándose (YV).
Juan de Dios Alvarado
(EE) = (YV) (W) / (PM)
Capítulo 6
270
Es recomendable trabajar durante tiempos iguales en las dos pruebas, con el propósito de facilitar las operaciones.
CUESTIONARIO
Consultar con respecto a la entropía y su relación con la regla de Trouton.
Señalar y explicar dos usos del calor latente de vaporización en el procesamiento de alimentos.
Comparar el valor del calor latente de vaporización del agua determinado por calorimetría con los valores
reportados. ¿Qué criterio puede emitir con relación al método?.
Comparar el valor de la energía de vaporización determinado en el alimento y el calor latente de vaporización
del agua, explicar las causas de la diferencia.
Utilizar la regla de Trouton y discutir los resultados.
RESULTADOS EXPERIMENTALES
En la Tabla 6.5.1. se presentan los resultados de pruebas representativas, cuando se trabajó con agua, leche
cruda de vaca y jugo de zanahoria amarilla (Daucus carota).
Tabla 6.5.1. Valores Registrados en Pruebas para Cuantificar el Calor Latente de Vaporización
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Producto
Amperaje
[A]
Voltaje
[V]
Peso de condensado
[g]
Tiempo
[s]
5,23
4,28
12,87
10,60
5,6852
2,8059
300
300
3,58
2,94
9,73
8,08
2,0989
0,3797
420
420
3,68
3,04
10,18
8,55
2,3627
0,4195
300
300
Agua
Primera prueba
Segunda prueba
Leche de vaca
Primera prueba
Segunda prueba
Jugo de zanahoria
Primera prueba
Segunda prueba
Agua
Según la ecuación (6.5.10) y en las dos pruebas:
(EE) = ((YV)(W)/(PM))+(EP)t
(12,87*5,23*300/4,1868) = ((YV)*5,6852/18,02)+(EP)*300
(10,60*4,28*300/4,1868) = ((YV)*2,8059/18,02)+(EP)*300
Operando, luego de igualar las ecuaciones con respecto a (EP)*300:
4823-3,1549*10-1((YV)) = 3251-1,5571*10-1((YV))
-0,31549((YV))+0,15571((YV)) = 3251-4823
-0,15978 ((YV)) = -1572
(YV) = 9839 [cal/mol]
(YV) = 9839 [cal/mol] * 4,1868 [J/cal] * (1000/18,02) [mol/kg]
(YV) = 2288551 [J/kg]
(YV) = 2289 [kJ/kg]
La temperatura de ebullición del agua en la ciudad de Ambato, ubicada a 2540 [m] sobre el nivel del mar,
corresponde a 91,8C, según la regla de Trouton:
Propiedades Térmicas
271
9839/(273,2+91,8) = 27,0
Leche
(YV) = ((9,73*3,58*420)-(8,08*2,94*420))*18,02/(2,0989-0,3797)*4,1868
(YV) = 11648 [cal/mol]
(YV) = 2706 [kJ/kg]
11648/365 = 31,9
Jugo de zanahoria amarilla con 9,0Brix
(YV) = ((10,18*3,68*420)-(8,55*3,04*420))*18,02/(2,3627-0,4195)*4,1868
(YV) = 10670 [cal/mol]
(YV) = 2479 [kJ/kg]
10670/365 = 29,2
El valor experimental establecido en el agua confirma la validez del método, con el uso de la calorimetría
para determinar el calor latente de vaporización. El dato de 2289 [kJ/kg] puede ser utilizado para calcular
operaciones que se realicen en la localidad.
Como se espera, los datos de la energía de vaporización, llamada así para diferenciarlos del calor latente de
vaporización del agua pura, son mayores en el jugo y en la leche. La diferencia llega a ser del 18% en la leche
cruda de vaca.
BIBLIOGRAFÍA
Anda, L. A. 1971. “Prácticas de Físico Química”. Ambato, Ecuador. Universidad Técnica de Ambato.
Experimento 10.
Barrow, G. M. 1964. “Química Física”. Traducido por: Senent, S. Barcelona, España. Editorial Reverté, S.
A. p: 434-464.
Merkel, J. A. 1983. “Basic Engineering Principles”. 2nd. ed. Westport, Connecticut. AVI Pub. Co. Inc. p:
169-188.
Juan de Dios Alvarado
Romo, L. A. 1986. “Termometría y Calorimetría”. Quito, Ecuador. Editorial Universitaria U.C. p: 115-181.
Capítulo 6
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
272
TEMA 6.6. APLICACIÓN DEL PRINCIPIO DE OTHMER PARA
DETERMINAR LA ENTALPÍA DE EVAPORACIÓN DEL AGUA EN
ALIMENTOS SÓLIDOS
INTRODUCCIÓN
Toledo (1973) explicó la importancia de la Termodinámica para entender varios fenómenos que ocurren en
alimentos: así, la manera como el agua contenida en los alimentos interviene en las reacciones o crecimiento
de microorganismos.
Una cantidad termodinámica, F, la energía libre, es una medida de la energía en un sistema que está disponible
para conducir reacciones químicas entre los componentes. En mezclas, cada componente tiene una energía
libre molal parcial, y esta cantidad es el potencial químico, G, de cada componente individual. El potencial
químico es el cambio en la energía libre de un sistema con la adición o remoción de un mol de un componente
a temperatura y presión constantes. En forma de ecuación:
G = (F/N)T,p
(6.6.1)
Si un sistema está en equilibrio, hay un intercambio continuo de moléculas de una fase hacia otra, que debe ser
igual entre las que salen y retornan, y no habrá cambio en la energía libre del sistema; además, el equilibrio se
mantendrá únicamente si la energía libre es igual en las dos fases y en consecuencia los potenciales químicos.
El potencial químico no puede ser medido directamente, pero puede ser expresado como una función de otras
cantidades cuantificables. Por definición:
G = Ĥ - (TA) Ŝ
(6.6.2)
Propiedades Térmicas
273
Como:
Ĥ = Û + PŴ
(6.6.3)
Por reemplazo en (6.6.2):
G = (Û + PŴ) - (TA) Ŝ
(6.6.4)
Donde: Ĥ es la entalpía, Û la energía libre molal parcial del sistema, Ŵ el volumen molal parcial, P la presión,
(TA) la temperatura absoluta y Ŝ la entropía molal parcial.
El diferencial parcial a temperatura constante corresponde a:
((G)/(P))T = Ŵ
(dG) = Ŵ (dP)
(6.6.5)
(6.6.6)
Considerando la fase gaseosa para evaluar el potencial químico y que se comporta como gas ideal:
PŴ = R’(TA)
Ŵ = R’(TA)/P
(6.6.7)
(6.6.8)
Por reemplazo en (6.6.6):
(dG) = (dP)R’(TA)/P
(6.6.9)
(dG) = R’(TA)ln(dP)
(6.6.10)
Y:
P corresponde a la presión parcial del componente considerado. Para líquidos en equilibrio puede ser la
presión de vapor a la temperatura T. Como muchos gases no son ideales, la expresión del potencial químico
es escrita en la forma siguiente:
(dG) = R’(TA)(d(ln l))
(6.6.11)
La ecuación incluye a la fugacidad (l), que fue definida originalmente como una medida de las tendencias al
escape; a presiones muy bajas es igual a la presión de vapor.
La integración de la ecuación conduce a:
(6.6.12)
Como el valor absoluto del potencial químico no es conocido, la constante de integración c no puede ser
evaluada. Sin embargo, un valor relativo del potencial químico en relación con un estado estándar, que puede
ser el del solvente puro, puede ser establecido. Para un estado estándar:
G’ = R’(TA)(ln l’) + c
(6.6.13)
Restando la ecuación (6.6.13) de la (6.6.12):
G - G’ = R’(TA) ln(l/l’)
(6.6.14)
Juan de Dios Alvarado
G = R’(TA)(ln l) + c
Capítulo 6
274
Si:
l/l’ = a
(6.6.15)
Por reemplazo:
G - G’ = R’(TA)(ln a)
(6.6.16)
La ecuación define la actividad que corresponde a la razón entre las fugacidades de la solución y del solvente
puro a la misma presión y temperatura. Se aprecia, además, que la actividad de un solvente en una solución es
una medida de la diferencia de sus potenciales químicos.
A presiones bajas, como es el caso de la presión atmosférica, el vapor del agua se comporta casi como gas ideal;
en adición, los valores de fugacidad son iguales a los de presión de vapor, entonces:
aw = P/P’ = (HR)/100
(6.6.17)
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
aw es la actividad del agua y (HR) es la humedad relativa de equilibrio.
Las bases termodinámicas para establecer la actividad del agua corresponden a la teoría de solución. En
alimentos existe una mezcla de sólidos insolubles y soluciones. Sin embargo, como los potenciales químicos
de las sustancias son iguales en varias fases cuando están en equilibrio, la actividad del agua en la fase líquida
deberá ser igual a la actividad del agua en la solución existente sobre las superficies sólidas. Entonces, señaló
Toledo (1985), el concepto de utilizar presiones de vapor como una medida de actividad es completamente
válido, siempre a humedades bajas donde no exista una fase líquida grande, que permita considerar un equilibrio
sólido-vapor, pues toda el agua está adsorbida por el sólido.
Por otro lado, Othmer (1940) estableció el principio según el cual las presiones de vapor de líquidos, soluciones
con un constituyente no volátil, soluciones con dos o más constituyentes volátiles, hidratos perdiendo agua
por eflorescencia, y otros materiales bajo descomposición dan líneas rectas cuando se grafican sobre papel
logarítmico, contra las presiones de vapor de una sustancia de referencia a temperaturas correspondientes. Su
ecuación general presenta la forma siguiente:
log P = (Y/Y’) log P’ + J
(6.6.18)
Donde P y P’ son las presiones, Y y Y’ son los calores latentes en el sólido (alimento) y de la sustancia de
referencia (agua) a la misma temperatura, respectivamente. J es una constante.
La presión de vapor se mide con manómetros Taylor (1961) mejoró el equipo utilizado por Makower, y detalló
un método que permite medir la presión de vapor en alimentos deshidratados en tiempos relativamente cortos,
con el uso de un manómetro. Señaló que resulta ventajoso triturar la muestra hasta un tamaño que resulte
compatible con el procedimiento. Se debe mantener el menor volumen posible en el lado de la muestra. El
grado de vacío en el sistema no es crítico, pero debe mantenerse constante en un valor del orden de 10-2 [mm
Hg].
Lewichi y colaboradores (1978) hicieron énfasis en la influencia de la temperatura para la determinación de la
presión de vapor y presentaron una ecuación que considera este efecto, para el cálculo de la actividad del agua
(aw).
aw = P((273,16+(TC))/(273,16+(Th)))/P’
(6.6.19)
Donde P es la presión de vapor del agua en el alimento y P’ es la presión del agua pura, (TC) es la temperatura
de la muestra (C), (Th) es la temperatura en el manómetro (C).
Propiedades Térmicas
275
Nunes y colaboradores (1985) indicaron que se puede mejorar la técnica manométrica en precisión y exactitud,
al considerar el cambio en volumen que ocurre cuando el agua es eliminada de la mezcla vapor de agua-aire.
En muestras de soluciones saturadas de cloruro de sodio a 25C, los valores de actividad del agua corregidos
fueron 0,012 unidades menos, con relación a los no corregidos.
Toledo (1985) explicó el manejo de un diseño nuevo del manómetro para determinar presiones de vapor del
agua. Señaló que es necesario hacer el vacío hasta una presión absoluta de 100 [mm Hg] para obtener buenos
resultados, y, reconoció la importancia de determinar la temperatura en la muestra.
Rizvi (1986) indicó que con pocas excepciones, los modelos desarrollados para calcular procesos como el
secado, consideran al calor de vaporización o sublimación como constante e invariable con la humedad, lo cual
es real en muchas situaciones de secado. Sin embargo, cuando el valor de la humedad es inferior a 0,1 [kg/kg],
la entalpía de evaporación es diferente del calor latente de vaporización del agua pura.
Los requerimientos mayores de energía, registrados para la evaporación en alimentos de humedad baja que se
presentan como sólidos, se explican por la energía que se emplea en: remover el agua libre para la evaporación;
en remover el agua ligada con la matriz alimenticia; en el sobrecalentamiento del vapor de agua evaporada
para su paso a través del alimento, y por cambios de la energía interna. Los dos primeros componentes, cuyos
valores combinados constituyen el calor de sorción, son las causas principales de la diferencia.
Sin embargo, en muchos casos la entalpía de evaporación es considerada como una energía acumulada similar
al calor latente de vaporización, y su cuantificación se realiza aplicando los mismos principios, con resultados
satisfactorios. Alvarado y colaboradores (1990) establecieron la ecuación siguiente, que calcula el calor latente
de vaporización en harina de amaranto (Amaranthus hybridus) como función del contenido de agua, expresado
en [kg/100 kg de materia seca] (A):
(Y/Y’) = 1 + 0,84 e-0,09(A)
(6.6.20)
OBJETIVOS
Determinar los valores de la actividad del agua en alimentos de baja humedad por la técnica manométrica.
Calcular la entalpía de evaporación o calor latente de vaporización en productos de trigo.
MATERIALES Y MÉTODO
Trabajar con muestras trituradas de galletas, fideos o pan. Determinar la humedad.
Armar el equipo indicado en la Figura 6.6.1. Colocar aproximadamente 50 [g] de producto finamente dividido
en el frasco de la muestra, y acoplar el equipo. Conectar la bomba.
Evacuar la sección manométrica. Abrir con precaución la válvula 1, en forma que la bomba de vacío esté
conectada conjuntamente con la válvula 4 y el reservorio del fluido manométrico; al inicio desprenderá
burbujas de aire disuelto. Continuar la evacuación hasta que no se formen más burbujas de aire en el aceite y
se consiga el mismo nivel del fluido manométrico en el reservorio y en el tubo debajo de la válvula 4. Cerrar
las válvulas 1 y 4.
Evacuar el frasco de la muestra. Abrir lentamente la válvula 2 que conecta el frasco de la muestra. Es
importante que el aceite del reservorio no salte repentinamente hacia la válvula 4, cuando aquella está abierta.
Juan de Dios Alvarado
Evacuar las válvulas. Comenzar con la válvula 3 alineando la pequeña salida para la válvula, permitir que la
abertura coincida con aquella orientada a la bomba de vacío. Girar la válvula hasta que las aberturas de los
tapones estén orientadas en forma que la válvula 2 pueda ser evacuada. Evacuar la válvula 2, girar la válvula 2
en forma que la válvula 1 pueda ser evacuada. Evacuar la válvula 1, girar la válvula 1 en forma que la válvula
4 pueda ser evacuada.
Capítulo 6
276
Continuar evacuando el frasco de la muestra y lentamente aumentar la abertura de la válvula 2 hasta que esté
completamente abierta. Cuando el descenso del aceite en el tubo debajo de la válvula 4 sea mínimo, cerrar
momentáneamente la válvula 3.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Lectura de la presión de vapor. Observar como el fluido manométrico varía en respuesta a la presión del vapor
generada por la muestra. Cuando se detenga el movimiento del aceite en el manómetro cerrar la válvula 2.
Leer la diferencia de altura entre los niveles del reservorio y del tubo y la temperatura de la muestra. Registrar
la diferencia de altura de la columna como presión del vapor y expresarla en [mm Hg].
En todos los casos deberá determinarse la presión del vapor para cada alimento a tres temperaturas, en el orden
de 10, 20 y 30C registrada en la muestra; además la temperatura del ambiente en la sección manométrica. A
las mismas temperaturas consultar la presión de vapor del agua y sus respectivos calores latentes.
Figura 6.6.1. Manómetro para medir la presión de vapor del agua en alimentos.
CUESTIONARIO
En qué consiste la actividad del agua, cuál es su importancia en el campo de los alimentos.
Obtener la ecuación de Othmer (6.6.18), a partir de la ecuación de Clapeyron:
Propiedades Térmicas
277
(dP)/(d(TA)) = Y/(TA)Ŵ
(6.6.21)
Para cada temperatura calcular los valores de la actividad del agua con aplicación de las ecuaciones (6.6.17) y
(6.6.19). Discutir las diferencias y comentar con relación a la estabilidad frente a microorganismos.
En papel logarítmico graficar P’ contra P a las tres temperaturas para cada producto. Establecer si se obtienen
líneas rectas y calcular el valor del calor latente a partir de la pendiente. Discutir los resultados.
RESULTADOS EXPERIMENTALES
En la Tabla 6.6.1. se presentan las lecturas manométricas de la presión de vapor, registradas a diferentes
temperaturas en muestras de galletas dulces con 7,4% de humedad, fideo comercial denominado glutenado con
11,0% de humedad, pan tipo francés con 16,0% de humedad. Se incluye el valor de la presión expresado en
Pascales, calculado con la expresión siguiente:
P = ((Δg)(DL)/(DM))133,33
(6.6.22)
Expresión que calcula la presión (P), considerando la diferencia de nivel del líquido manométrico (Δg), la
densidad del líquido manométrico (DL) que para el aceite de baja presión de vapor es 879,9 [kg/m3], la densidad
del mercurio (DM) que es 13595 [kg/m3]. El término numérico transforma las unidades de [mm Hg] a [Pa].
Tabla 6.6.1. Lecturas Manométricas de la Presión de Vapor Registradas en Productos de Trigo a Diferentes Temperaturas
GALLETA
Temperatura
FIDEO
Presión
Temperatura
[ºC]
Diferencia
de nivel
[mm]
[Pa]
13
20
29
22
38
64
190
328
552
PAN
Presión
Temperatura
[ºC]
Diferencia
de nivel
[mm]
Presión
[ºC]
Diferencia
de nivel
[mm]
[Pa]
10
20
26
35
78
120
302
673
1036
10
20
26
50
92
138
431
794
1191
[Pa]
Al calcular el valor de la actividad del agua, con la fórmula de Lewichi y colaboradores (6.6.19), se obtienen
resultados más exactos; en especial cuando es notoria la diferencia de temperaturas entre la muestra y el
manómetro. En caso contrario, la ecuación (6.6.17) puede ser utilizada.
aw = P / P’
Los valores de P’ corresponden a la presión absoluta del vapor del agua y están incluidos en la Tabla 2.2.2.
La aplicación de la ecuación conduce a obtener los datos indicados en la Tabla 6.6.2., en la que se incluyen los
valores utilizados para el cálculo.
GALLETA
FIDEO
PAN
T
[ºC]
P
[Pa]
P’
[Pa]
aw
T
[ºC]
P
[Pa]
P’
[Pa]
aw
T
[ºC]
P
[Pa]
P’
[Pa]
aw
13
20
29
190
328
552
1497
2337
4005
0,13
0,14
0,14
10
20
26
302
673
1036
1227
2337
3361
0,25
0,29
0,31
10
20
26
431
794
1191
1227
2337
3361
0,35
0,34
0,35
Las muestras de galleta presentan los valores más bajos de la actividad del agua, atribuible a su bajo contenido
Juan de Dios Alvarado
Tabla 6.6.2. Valores de la Actividad del Agua Determinados en Productos de Trigo por Medida de la Presión de Vapor
Capítulo 6
278
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
de humedad, y explican su estabilidad prolongada si existe un adecuado almacenamiento. Valores intermedios
se establecen en fideo, y algo mayores en el pan. Sin embargo, en los tres productos no se espera crecimiento de
microorganismos. Otro tipo de deterioro, como endurecimiento del pan, oxidación de lípidos o empardeamiento
no enzimático, serán los que definan el tiempo de conservación.
Figura 6.6.2. Gráfico de Othmer para productos de trigo.
En la Figura 6.6.2. se grafican en escalas logarítmicas, los datos de la presión de vapor del agua contra los datos
de la presión de vapor registrados en los tres productos. Se observa que se cumple la linealidad de acuerdo con
la ecuación de Othmer (6.6.18).
log P = (Y/Y’) log P’ + J
Por técnicas de regresión y correlación, se establecieron las ecuaciones siguientes, que están representadas con
línea continua:
Galleta:
log P = (1,0797) log P’ - 1,1396
(r2 = 0,996)
(6.6.23)
log P = (1,2257) log P’ - 1,3046
(r2 = 1,000)
(6.6.24)
log P = (1,0017) log P’ - 0,4636
(r2 = 0,998)
(6.6.25)
Fideo:
Pan:
El calor latente de vaporización del agua (Y’) varía con la temperatura; en consecuencia, se requiere consultar
Propiedades Térmicas
279
el dato en manuales o libros a una temperatura determinada. Según el valor de la pendiente, la entalpía de
evaporación del agua y otros componentes en el producto puede ser determinada. En el caso del pan la entalpía
de evaporación será prácticamente igual al calor latente de vaporización del agua pura, en fideos un 23%
mayor. El dato correspondiente a la muestra de galleta debe ser analizado con mayor detalle.
BIBLIOGRAFÍA Y REFERENCIAS
Alvarado, J. de D.; Toaza, E. y Coloma, G. 1990. Calor latente de vaporización en harinas de amaranto
(Amaranthus hybridus). Arch. Latinoamer. Nutric., 40(3): 369-378.
Lewichi, P. P.; Busk, G. C. Peterson, P. L. and Labuza, T. P. 1978. Determination of factors controlling accurate
measurement of aw by the vapor pressure manometric technique. J. Food Sci., 43 (7): 244-246.
Nunes, R. V.; Urbicain, M. J. y Rotstein, E. 1985. Improving accuracy and precision of water activity
measurements with a water vapor pressure manometer. J. Food Sci., 50: 148-149.
Othmer, D. F. 1940. Correlating vapor pressure and latent heat data. A new plot. Ind. Eng. Chem. 32: 841-856.
Rizvi, S. S. H. 1986. Thermodynamic properties of foods in dehydration. In: “Engineering Properties of
Foods”. Rao, M. A. and Rizvi, S. S. H. (Eds.). New York. Marcel Dekker, Inc. p: 133-214.
Taylor, A. A. 1961. Determination of moisture equilibria in dehydrated foods. Food Technol., 15: 536-540.
Toledo, R. T. 1973. Determination of water activity in foods. Proc. of the Meat Ind. Res. Conf. American
Meat Institute Foundation. Chicago, Illinois. p: 85-106.
Juan de Dios Alvarado
Toledo, R. T. 1985. Deshidratación de Alimentos. IV Curso Avanzado de Tecnología de Alimentos. Ambato,
Ecuador. Universidad Técnica de Ambato, Facultad de Ciencia e Ingeniería en Alimentos. Ejercicio de
Laboratorio No. 1.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
280
Capítulo 7
7. Transferencia de Calor
Transferencia de Calor
281
7. TRANSFERENCIA DE CALOR
Durante la elaboración o procesamiento de alimentos ocurren cambios marcados de la temperatura. Así, cuando
se busca esterilizarlos; por el contrario, en ocasiones se requiere evitar fluctuaciones grandes de temperatura,
como en el caso de almacenar productos. En consecuencia, la transferencia de calor merece una atención
especial.
Entre los investigadores contemporáneos se destacan los Profesores Dennis R. Heldman y R. Paul Singh. Sus
libros de texto constituyen valiosos pilares que contribuyen a la comprensión y avance de la Ingeniería de
Alimentos, por su claridad y didáctica. Los capítulos Procesos de Calentamiento y Enfriamiento, Transferencia
de Calor en el Procesamiento de Alimentos consideran con detalle y en forma complementaria este fenómeno,
orientado hacia su efecto sobre el alimento y para el diseño o evaluación de equipos utilizados en la industria.
Se debe señalar que las variaciones de la temperatura provocan numerosos cambios y reacciones enzimáticas
y/o químicas entre los compuestos que constituyen a los alimentos o que están en contacto con ellos. En especial
las reacciones deben ser evitadas o controladas. Por ello se requiere conocer las bases de la transferencia de
calor con el detalle suficiente para posibilitar el uso de esta clase de energía en una forma que cause un daño
mínimo, en especial al valor nutritivo.
El extenso campo de aplicación y el enorme esfuerzo investigativo hacen que en el momento actual la
Transferencia de Calor sea considerada como una disciplina propia. Sin embargo, en el sector alimentario
los aspectos siguientes pueden ser mencionados como fundamentales: Modos de transferencia de calor.
Conducción, convección, radiación y transferencia conjunta. Propiedades físicas y térmicas de los alimentos.
Calentamiento y enfriamiento en estado estacionario y en estado variable, en sus múltiples formas y casos.
Por otro lado, una de las aplicaciones más obvias de la transferencia de calor es el diseño de intercambiadores.
Existen diferentes tipos. Entre ellos: tubulares, de placas, de superficie barrida, de inyección de vapor, de
infusión de vapor.
El capítulo consta de cinco temas. Los tres primeros se relacionan con equipos que son utilizados para el
procesamiento de alimentos: carcaza y tubos, placas y ollas de cocción; se resalta el uso de los coeficientes de
transferencia, como herramientas de control para mantener un funcionamiento adecuado. El cuarto se refiere
a la determinación de coeficientes de transferencia en alimentos en contacto con aire y en estado variable. Es
de especial interés para su aplicación en trabajos de almacenamiento. El quinto utiliza el método de diferencias
finitas numéricas, para calcular la distribución de temperaturas en alimentos enlatados. Se busca obtener las
mejores estimaciones con relación a las condiciones reales, y se incluye el cálculo de la temperatura másica
promedio.
Juan de Dios Alvarado
Para el diseño de equipos, la evaluación apropiada de los coeficientes individuales y global de transferencia de
calor define el éxito o fracaso del cálculo y aplicación posterior. Por esta razón se hace énfasis en las formas
de calcular y estimar estos coeficientes.
Capítulo 7
282
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
NOMENCLATURA DEL CAPÍTULO 7
a
a’
A
A’
(AS)
b
b’
B
c’
C
C’
d
D
(DA)
(DF)
(DL)
(DV)
e
f
f’
F
g
G’
h
h’
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
ĥ
H
i
I
j
J
J’
k
K
K’
l
l’
L
L’
(LA)
m
M
n
n’
N
(NBi)
(NFo)
(NNu)
(NPe)
(NPr)
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
término definido en la ecuación (7.1.19)
mitad del ancho en el centro de un elipsoide [m]
área [m2]
cociente entre las dimensiones de un elipsoide [sin dimensiones]
área seccional [m2]
término definido en la ecuación (7.1.20)
distancia entre las placas de un intercambiador [m]
término de la ecuación (7.3.10)
mitad del largo en el centro de un elipsoide [m]
calor específico [J/kg.K o J/kg.C]
cociente entre las dimensiones de un elipsoide [sin dimensiones]
diferencia
diámetro [m]
densidad del agua o de un alimento [kg/m3]
densidad de un fluido [kg/m3]
densidad de un líquido [kg/m3]
densidad del vapor saturado [kg/m3]
punto de coordenadas
factor de tiempo de calentamiento o enfriamiento [s]
factor de fricción
factor de corrección
aceleración debida a la gravedad [m/s2]
índice geométrico
coeficiente de transferencia de calor por convección [W/m2.K o W/m2.C]
coeficiente de transferencia de calor por convección a presión atmosférica normal [W/m2.K o W/
m2.C]
coeficiente de transferencia de calor promedio [W/m2.K, W/m2.C o BTU/h.pie2.F]
cociente entre capacidades calóricas [sin dimensiones]
punto de coordenadas
factor de conversión de unidades en la ecuación (7.3.10)
factor de corrección por temperaturas [sin dimensiones]
caudal volumétrico [m3/s]
caudal másico por unidad de área [kg/m2.s]
conductividad térmica [W/m.K o W/m.C]
término de la ecuación (7.1.10)
cociente entre conductividades térmicas [sin dimensiones]
dimensión característica [m]
mitad del alto en el centro de un elipsoide [m]
longitud, altura [m]
diámetro hidráulico medio [m]
longitud de las paletas de un agitador [m]
coeficiente de la ecuación (7.2.9)
masa [kg]
índice numérico
coeficiente de la ecuación (7.2.10)
número promedio de tubos
número de Biot [sin dimensiones]
número de Fourier [sin dimensiones]
número de Nusselt [sin dimensiones]
número de Peclet [sin dimensiones]
número de Prandtl [sin dimensiones]
Transferencia de Calor
(NRe) =
(NUT) =
P
=
P’
=
(PC) =
(PM) =
q
=
r
=
R
=
(RE) =
t
=
T
=
u
=
U
=
Ū
=
v
=
V
=
w
=
w’
=
W
=
x
=
y
=
Y
=
z
=
Z
=
Z’
=
283
número de Reynolds [sin dimensiones]
número de unidades de transferencia de calor
presión [Pa]
presión atmosférica normal [Pa]
pérdidas de calor [W]
perímetro mojado [m]
flujo de calor [W]
distancia radial [m]
radio [m]
resistencia por ensuciamiento y/o incrustaciones [m2.K/W o m2.C/W]
tiempo [s]
temperatura [C]
velocidad promedio [m/s]
coeficiente global de transferencia de calor [W/m2.K o W/m2.C]
coeficiente promedio global de transferencia de calor [W/m2.K o W/m2.C]
velocidad [m/s]
volumen [m3]
caudal o flujo másico [kg/s]
velocidad de flujo másico por unidad de perímetro [kg/s.m]
caudal volumétrico [m3/s]
distancia en sentido horizontal [m]
distancia en sentido vertical [m]
calor latente de condensación o vaporización [J/kg]
espesor [m]
relación de temperaturas [sin dimensiones]
relación de temperaturas [sin dimensiones]
Letras griegas
α
Γ
δ
ε
μ
π
Ω
=
=
=
=
=
=
=
difusividad térmica [m2/s]
tensión superficial [N/m]
razón entre espesores de película [sin dimensiones]
eficiencia como porcentaje
viscosidad [Pa.s]
3,1416
velocidad de rotación [revoluciones/h]
a
A
b
c
d
e
f
g
G
h
i
j
L
=
=
=
=
=
=
=
=
=
=
=
=
=
agua
aire
bulto, promedio
frío
total
exterior, carcaza
película o film
global
geometría
caliente
interior
después de un período de funcionamiento
logarítmica
Juan de Dios Alvarado
Subíndices
Capítulo 7
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
284
m
M
n
N
o
p
P
r
R
s
S
t
T
v
w
x
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
medio, mitad
másica promedio
índice numérico
número final
propiedades constantes
presión constante
placas
radiación
real
superficie, saturación
servicio
teórico
limpio
vapor condensado
pared
experimental
0
1
2
3
4
=
=
=
=
=
inicial, superficie
posición o condición uno, entrada
posición o condición dos, salida
condición tres
condición cuatro
Supraíndices
p

=
=
incremento de tiempo
infinito
Transferencia de Calor
285
TEMA 7.1. APLICACIÓN DEL COEFICIENTE GLOBAL
DE TRANSFERENCIA DE CALOR PARA CONTROL DE
INTERCAMBIADORES DE CARCAZA CON HAZ DE TUBOS
INTRODUCCIÓN
Estos sistemas son muy eficaces, en especial si se mantienen grandes velocidades de circulación del producto.
Los intercambiadores de tubos presentan la gran ventaja de resistir presiones de trabajo muy altas. A tal
punto que las válvulas de homogenización pueden ser colocadas en el circuito del producto. La presión de
homogenización se transmite desde una bomba reguladora del caudal. Esta distribución permite realizar la
homogenización en la parte estéril del procesamiento, reduciendo los problemas mecánicos y el costo, pues se
evita la utilización de un homogenizador aséptico.
Cuando la capacidad de producción del sistema aumenta, el diámetro de los tubos de intercambio también
aumenta y resistirán presiones de trabajo menores; en consecuencia, los sistemas asépticos de gran capacidad
que utilizan intercambiadores tubulares necesitan incluir un homogenizador aséptico en lugar de la válvula
de homogenización a distancia. Por otra parte, el problema es todavía más difícil pues cuando el caudal del
producto aumenta: el diámetro de los tubos es mayor y la velocidad de circulación se debe incrementar con
Juan de Dios Alvarado
Con relación a los sistemas de intercambiadores de calor tubulares utilizados en la industria de alimentos,
Belloin (1974) indicó que los sistemas indirectos con intercambiadores tubulares son los más ampliamente
utilizados por su sencillez y flexibilidad. Existen intercambiadores que utilizan agua caliente, vapor, agua
potable, agua refrigerada o salmuera, con el propósito de realizar el calentamiento y el enfriamiento del
producto. Por razones de hermeticidad, generalmente, no se utilizan gases, como amoníaco o freón, para
realizar el enfriamiento.
Capítulo 7
286
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
el fin de mantener el mismo grado de turbulencia. Al aumento de la velocidad, corresponde un incremento de
las pérdidas de presión en los intercambiadores, y la presión a la entrada de la válvula de homogenización se
vuelve insuficiente para efectuar una homogenización correcta.
Figura 7.1.1. Esquema de un sistema aséptico con intercambiadores tubulares, que incluye la
regeneración y opcionalmente la desaireación y homogenización
Básicamente el principio de funcionamiento de un sistema, como el indicado en la Figura 7.1.1., es el siguiente:
El producto se transfiere desde un tanque de balanceo hasta la bomba reguladora del caudal, generalmente del
tipo de tres pistones, por intermedio de una bomba centrífuga. La bomba de tres pistones envía el producto a
través de todo el sistema que incluye las secciones siguientes: precalentamiento, calentamiento, mantenimiento
y enfriamiento. Si se requiere homogenizar el producto, esta operación se realiza generalmente después de un
preenfriador.
En la sección de precalentamiento se puede utilizar agua caliente o vapor; el vapor será siempre utilizado en
la sección de calentamiento final. Para el preenfriamiento se utiliza generalmente agua de la ciudad o agua
de pozo, y agua refrigerada para el enfriamiento final. La esterilización se realiza a temperaturas entre 140 y
150C.
Habitualmente se coloca un dispositivo de control automático de nivel sobre los tanques de alimentación del
producto y agua, con el fin de asegurar una alimentación correcta del sistema. La temperatura de esterilización
se controla y registra automáticamente. El sistema de control está previsto de tal manera que cuando desciende
la temperatura bajo el límite inferior permitido, una alarma sonora lo indica y el producto es recirculado.
El sistema se puede modificar para introducir desaireación antes del calentamiento final. Conviene realizar el
precalentamiento con agua caliente con el fin de reducir al máximo los efectos nocivos, en el caso que el caudal
del producto sea interrumpido. En efecto si se utiliza vapor para realizar el precalentamiento, la diferencia de
temperaturas entre el vapor y la temperatura final del precalentamiento será mucho más alta, y si se produce
una interrupción en la alimentación del producto, este puede sufrir daños importantes.
Transferencia de Calor
287
Si el sistema está previsto para incluir la desaireación, el vacío y el nivel del producto en el desaireador deberán
ser controlados automáticamente. La desaireación puede ser deseable en el caso de una materia prima que tiene
un exceso de sustancias volátiles indeseables, pues pueden tener un efecto nocivo sobre el alimento durante las
fases siguientes del proceso o también durante el almacenamiento. Si cantidades demasiado grandes de gas
están presentes, se pueden producir variaciones en el caudal durante el calentamiento y el mantenimiento de
la temperatura en la parte de retención, lo que se traduce en variaciones del tiempo de mantenimiento y en la
calidad del producto.
Se puede también colocar el desaireador después de la esterilización. Esto presenta una ventaja cuando
sustancias volátiles con mal olor o compuestos odoríficos se desarrollan durante la esterilización; pero en este
caso el desaireador deberá ser aséptico.
El sistema puede ser calculado de tal manera que se consiga un porcentaje de regeneración del orden del 80%.
Cuando se realiza la regeneración, el tiempo total del tratamiento aumenta, lo que puede afectar la calidad del
producto. Si el producto a procesar no es seriamente afectado por el aumento de los tiempos de calentamiento
y de enfriamiento, es práctica común considerar la regeneración.
Con este sistema se procesan zumos de frutas, mezclas para helados, crema de leche, productos dietéticos,
leche concentrada, bebidas refrescantes, leche con chocolate. En general se pueden procesar productos de
consistencia baja, en el caso de fluidos newtonianos con una viscosidad inferior a 0,5 [Pa.s].
Existen sistemas de transferencia de calor que utilizan intercambiadores constituidos por un conjunto de tubos
en el interior de una carcaza. Para obtener los coeficientes de transferencia de calor más ventajosos se requiere
arreglar los pasos de flujo, en tal forma que uno o los dos fluidos se encuentren en dirección contraria, una o
varias veces, cuando pasan por el intercambiador; resultando así una combinación de flujos en paralelo y en
contracorriente.
Con relación a estos intercambiadores de calor, Charm (1977) indicó que el flujo de calor en los intercambiadores
de haz de tubos, multipaso o carcaza y tubos se expresa por la ecuación:
q = U A (FG) (dT)L
(7.1.1)
En esta expresión: q es la tasa de transferencia de calor o flujo de calor, U es el coeficiente global de transferencia
de calor, A es el área de transferencia de calor, (FG) es el factor de corrección de temperatura por la geometría
del sistema y (dT)L es la diferencia de temperaturas media logarítmica.
Existen figuras que permiten la selección de un apropiado (FG) para varios casos, en las cuales se relacionan las
diferencias de temperatura siguientes:
Z = (Th1-Th2)/(Tc2-Tc1)
Z’ = (Tc2-Tc1)/(Th1-Tc2)
(7.1.2)
(7.1.3)
La diferencia de temperaturas media logarítmica general está definida por:
(dT)L = ((Th1-Tc2)-(Th2-Tc1))/ln((Th1-Tc2)/(Th2-Tc1))
(7.1.4)
El flujo de calor se establece considerando el agua que circula por el interior de los tubos o el vapor que se
condensa en la parte de la carcaza. Por calorimetría, un valor promedio es:
q = (w Cp (dT) + (wv Yv + wv Cpv (dT)g)) / 2
(7.1.5)
Juan de Dios Alvarado
Con relación a los subíndices, h se refiere al fluido caliente y c al fluido frío, 1 corresponde a la entrada del
intercambiador y 2 a la salida.
Capítulo 7
288
En esta ecuación: w es el caudal másico del agua, Cp es el calor específico del agua, (dT) es la diferencia global
de temperaturas entre la salida y entrada del agua, wv es el caudal másico del vapor condensado, Yv es el calor
latente de condensación, Cpv es el calor específico del condensado, (dT)g es la diferencia de temperaturas entre
el vapor y el condensado.
Si se conocen las temperaturas y el caudal másico del agua y del vapor en una condición estacionaria, se puede
establecer el valor del coeficiente global de transferencia de calor, el cual se denominará coeficiente global de
transferencia de servicio Us; presumiendo que no hay pérdidas.
Según Toledo (1981), el coeficiente global de transferencia de calor basado en el área interior de los tubos y sin
considerar a las incrustaciones, es definido por:
(1/UT)i = (1/hi) + ((Ri ln(Re/Ri))/k) + (Ri/Re he)
(7.1.6)
Donde: (UT)i es el coeficiente global de transferencia de calor limpio, hi es el coeficiente de película en el
interior de los tubos, R es el radio de los tubos, k es la conductividad térmica del material de los tubos y he es
el coeficiente de película en el lado de la carcaza.
El cambio de temperatura (dT) es descrito por la expresión:
q = w Cp(dT)
(7.1.7)
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
El coeficiente de transferencia de calor convectivo es definido por la ecuación de transferencia de calor por
convección.
hi = q / Ai(Tw-Tb)L
(7.1.8)
En cuyo caso:
(Tw-Tb)L = ((Tw-Tc1)-(Tw-Tc2))/ln((Tw-Tc1)/(Tw-Tc2))
(7.1.9)
En la última expresión: Tw es la temperatura de la pared interior y Tb es la temperatura promedio del fluido.
Izurieta (1985) reportó ecuaciones para calcular el coeficiente de película en el interior de tubos, en forma más
precisa que con ecuaciones consideradas tradicionales, así:
- Petukhov (1970).
(NNu)o = ((f’/8)(NRe)(NPr))/(K1+K2(f’/8)0,5((NPr)2/3-1))
f’ = (1,82 log(NRe)-1,64)-2
K1 = 1,07-(900/(NRe))-(0,63/(1+10(NPr)))
K2 = 11,7+(1,8/(NPr)2/3)
(NNu)m = (NNu)o((NPr)m/(NPr)w)0,11
(NNu)m = hiDi/ka
(7.1.10)
(7.1.11)
(7.1.12)
(7.1.13)
(7.1.14)
(7.1.15)
Donde: (NNu)o es el número de Nusselt a propiedades constantes, f’ es el factor de fricción y (NRe) es el número
de Reynolds calculado con los datos del agua por:
(NRe) = Di v (DA) / μ
Di es el diámetro interior del tubo, v la velocidad, (DA) la densidad y μ la viscosidad.
En adición, (NPr) es el número de Prandtl para el agua, definido por:
(7.1.16)
Transferencia de Calor
(NPr) = Cp μ / ka
289
(7.1.17)
ka es la conductividad térmica del agua, K1, K2 son parámetros de la ecuación (7.1.10), (NNu)m es el número de
Nusselt a la temperatura media del agua, (NPr)m es el número de Prandtl a la temperatura media del agua, (NPr)
es el número de Prandtl a la temperatura de la pared
w
- Sleicher-Rouse (1975).
(NNu)m = 5+(0,015(NRe)fa(NPr)wb)
a = 0,88-(0,24/(4+(NPr)w)
b = 0,333+0,5exp(-0,6(NPr)w)
(7.1.18)
(7.1.19)
(7.1.20)
(NRe)f corresponde al número de Reynolds a la temperatura de película Tf, definida por:
Tf = (Tw+((Tc2+Tc1)/2))/2
(7.1.21)
- Churchill (1977).
(NNu)m = 5,55+(0,0357(NRe)f(NPr)w/((1+(NPr)w4/5)5/6ln((NRe)w/7)))
(7.1.22)
Heldman (1977) reportó varias expresiones empíricas, basadas en una diferencia de temperaturas media
logarítmica, y que permiten la evaluación del coeficiente de transferencia de calor por convección en el interior
de tubos. Entre las expresiones tradicionales se encuentran:
- Sieder y Tate (1936).
(NNu)L = 1,86((NRe)b(NPr)b(Di/L))1/3(μb/μw)0,14
(7.1.23)
Se espera que esta ecuación permita realizar buenas estimaciones hasta valores del número de Reynolds
inferiores a 2100. (NNu)L es el número de Nusselt a temperatura media logarítmica y L es la longitud del tubo
Las propiedades físicas deberán ser evaluadas a una temperatura promedio de bulto, calculada por:
Tb = (Tc2+Tc1)/2
(7.1.24)
- Kays y London (1954).
(NNu)L = 0,026(NRe)b0,8(NPr)b1/3(μb/μw)0,36
(7.1.25)
- Dittus y Boelter (1930).
(NNu)L = 0,023(NRe)b0,8(NPr)b0,4
(7.1.26)
Por otra parte, el coeficiente de película en la pared exterior de los tubos que mira hacia la carcaza, puede ser
calculado a partir de las expresiones establecidas para condensación de vapores, según lo indicado por Charm
(1977).
Para tubos horizontales:
he = 4,117(kv3(DA)v2gY/NDeμv(Tsv-Ts))0,25
(7.1.27)
Las propiedades del condensado deberán ser evaluadas a una temperatura de condensación promedio, Tv.
Juan de Dios Alvarado
Las dos expresiones últimas son adecuadas cuando el flujo es turbulento.
Capítulo 7
290
En muchos intercambiadores de carcaza y tubos existe un número mayor de tubos en la hilera vertical del
centro que en los lados, por lo que es necesario calcular un valor promedio de N.
N1/4 = (N1+N2+...NN)/(N13/4+N23/4+...NN3/4)
(7.1.28)
En las dos últimas ecuaciones: kv es la conductividad térmica del condensado, (DA)v es la densidad del
condensado, g es la aceleración debida a la gravedad, Y es el calor latente de condensación, N es el número
de tubos promedio calculado a base del número de tubos en hilera vertical indicado por el subíndice, De es el
diámetro exterior de los tubos, μv es la viscosidad del condensado, Tsv es la temperatura del vapor saturado y Ts
es la temperatura de superficie del tubo.
Además:
Tv = Tsv - 0,75(Tsv-Ts)
(7.1.29)
En el caso que no sea vapor el fluido que circula por el exterior de los tubos, pues también se trabaja con agua
caliente, el valor de he debe ser calculado con el uso de otras expresiones específicas.
Las ecuaciones presentadas permiten calcular un valor de UT; sin embargo, se necesita establecer previamente
las temperaturas de la pared interior y superficie exterior de los tubos. Una alternativa es el procedimiento de
ensayo y error.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Cuando se requiere considerar a los factores debidos a las incrustaciones y por ensuciamiento, la expresión para
el coeficiente global de transferencia deberá ser modificada, así:
(1/UR)i = (1/hi) + ((Ri ln(Re/Ri))/k) + (Ri/Re he) + (RE)
(7.1.30)
En esta ecuación, UR es el coeficiente global de transferencia de calor real y (RE) es la resistencia por
ensuciamiento, los otros términos fueron definidos previamente.
Camacho e Izurieta (1982), indicaron que el empleo de valores constantes como factores de ensuciamiento
(0,00009 a 0,00036 [C.m2/W]), se interpreta en el sentido de que se busca asignar un valor tope, que será
alcanzado en un lapso razonable de tiempo, luego del cual deberá limpiarse al equipo. En la práctica y en
muchos casos, se ha observado que (RE) es la mayor resistencia a la transferencia. Además, al asignar valores
constantes a (RE), el error que se introduce puede llegar fácilmente a un 50%.
La resistencia por ensuciamiento puede ser calculada por:
(RE) = (UT-US)/UTUS
(7.1.31)
Cuando (RE) supera valores prefijados, según los equipos y condiciones de trabajo, el equipo deberá ser
sometido a limpieza. Se debe recordar que Us es el coeficiente global de transferencia de calor de servicio,
establecido por calorimetría con datos experimentales.
OBJETIVOS
Identificar y analizar el funcionamiento de los accesorios y partes de un intercambiador de calor de carcaza y
tubos.
Aplicar varias ecuaciones reportadas para el cálculo del coeficiente de transferencia de calor por convección en
el interior de tubos y comparar los valores con resultados experimentales.
Establecer el valor de la resistencia por ensuciamiento en intercambiadores de carcaza y tubos, demostrar su
uso como control para el mantenimiento de equipos.
Transferencia de Calor
291
MATERIALES Y EQUIPOS
INTERCAMBIADOR
DE CALOR DE CARCAZA
Trabajar con un intercambiador de carcaza y tubos como el esquematizado en la Figura 7.1.2. Medir o calcular
el área de transferencia de calor; el número, arreglo y dimensiones de los tubos y de la carcaza.
Abrir las llaves de la línea de agua, excepto la llave para recirculación; regular el flujo para que permanezca
constante y medir el caudal volumétrico al menos en dos ocasiones.
Abrir la purga de aire y la tapa inferior de la trampa de vapor, permitir el ingreso de vapor en forma controlada,
cuando se elimine el condensado y los gases no condensables, colocar la tapa de la trampa y regular la entrada
Juan de Dios Alvarado
Figura 7.1.2. Fiagrama de un intercambiador de calor de carcasa con el ordenamiento de los tubos y
accesorios.
Capítulo 7
292
de vapor a una presión constante del orden de una libra/pulgada cuadrada [psig].
Permitir que se estabilicen las temperaturas de entrada y salida del agua y registrarlas; remover la tapa inferior
de la trampa de vapor para determinar el caudal volumétrico y la temperatura del condensado durante dos o más
minutos; repetir la determinación por dos ocasiones adicionales, para comprobar que se mantuvo la condición
estacionaria durante el período de prueba.
Hacer nuevamente la operación para otras dos condiciones, regulando el ingreso del agua para trabajar con
caudales volumétricos diferentes, con el cuidado de que se mantengan constantes durante el período de prueba.
CUESTIONARIO
Consultar con relación a los accesorios del equipo, tipos y usos de cada uno de ellos.
Por el método de ensayo y error, en cada una de las tres pruebas, estimar las temperaturas interior y exterior de
la pared de los tubos en base a la ecuación (7.1.6), y utilizando los nomogramas para coeficientes de película
reportados por Perry (1963), en el lado del agua y en el lado del vapor.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Para calcular la velocidad de transferencia global de calor, utilizar la ecuación (7.1.1), previa consulta de la
temperatura de condensación del vapor según su presión en la entrada y la temperatura del condensado en la
salida, y el uso de las ecuaciones (7.1.2), (7.1.3) y (7.1.4).
En cada una de las pruebas, con los datos experimentales del agua, utilizar las ecuaciones (7.1.9), (7.1.7) y
(7.1.8) para establecer el valor del coeficiente de transferencia de calor experimental en el interior de los tubos.
Calcular aparte este coeficiente de transferencia, utilizando las ecuaciones indicadas en la Introducción desde
la (7.1.10) a la (7.1.26). Hacer un cuadro general de resultados; discutirlos y seleccionar la ecuación cuyos
resultados sean más confiables.
Con los datos experimentales de cada una de las pruebas, establecer el flujo de calor mediante la ecuación
(7.1.5) y con la ecuación (7.1.1) el valor del coeficiente global de transferencia de calor de servicio US.
Para el cálculo del coeficiente global de transferencia de calor limpio UT, definido en la ecuación (7.1.6), utilizar
los nomogramas o la ecuación seleccionada en el punto anterior para el cálculo del coeficiente de película en
el interior de los tubos, y las ecuaciones (7.1.29), (7.1.28), (7.1.27), para el lado del vapor. Comparar los
resultados con los de Us y discutirlos.
Calcular el valor de la resistencia por ensuciamiento (RE) definido en la ecuación (7.1.31), para las tres pruebas,
discutir los resultados.
RESULTADOS EXPERIMENTALES
El intercambiador de carcaza y tubos, que sirvió para las pruebas experimentales, es un aparato cilíndrico
de tipo horizontal, de acero; en el interior existe un haz de tubos de cobre convenientemente distribuidos y
doblados en 180 grados. Según lo indicado por Ramos (1984), el área de transferencia de calor es 4 [m2], que
corresponde a 28 tubos de 16 [mm] de diámetro interior, con dos pasos de los tubos por la carcaza en arreglo
triangular. Los tubos son de cobre con un espesor de la pared de 1,5 [mm], la longitud total es 2,68 [m]. El agua
circula por el interior de los tubos y el vapor fluye en la carcaza entre los tubos.
La línea del vapor dispone de los siguientes elementos y accesorios principales: reductora de presión, válvula
de seguridad, válvulas manuales, filtros, manómetro y trampa de vapor. Varios de estos accesorios están
representados en la Figura 7.1.3.
Las válvulas reductoras de presión se utilizan para obtener en una parte del sistema presiones más bajas que
en otra. Las válvulas de regulación se emplean, como su nombre lo indica, para regular el flujo a través de la
válvula con el propósito de mantener constantes algunas variables. Tales como: temperatura, concentración,
Transferencia de Calor
293
nivel. Una válvula de reducción es simplemente una válvula de regulación.
7.1.3. Diversos accesorios requeridos para la instalación de intercambiadores de calor.
En la válvula, el cuerpo (1) tiene dos asientos (2) y dos válvulas de disco (3). La razón de dos discos y de
dos asientos es equilibrar las relaciones de la corriente del líquido y disminuir la potencia requerida para
abrir y cerrar la válvula. Los discos (3) están diseñados para suministrar un flujo que sea aproximadamente
proporcional a la abertura de la válvula. Las aletas (4) llevan un buje (5) que guía al vástago de la válvula.
Al cuerpo de la válvula (1) está unido un pequeño sombrerete (6), y a este un anillo (7) que lleva dos brazos (8),
para soportar la parte superior del mecanismo de la válvula. En la parte superior existe un diafragma flexible
(9) entre bridas, unido por intermedio de un acoplamiento (10) al vástago de la válvula. La parte superior
del diafragma está unido a una varilla (11), en forma que el muelle (12) apoyado sobre la parte superior de la
estructura en (13), sirve normalmente para elevar el diafragma y por lo tanto abrir la válvula principal.
Juan de Dios Alvarado
La válvula que se indica es de un tipo corriente. La válvula está proyectada para mantener en el lado de salida
una presión constante, menor que la existente en el lado de la entrada.
Capítulo 7
294
Las válvulas o llaves son de diferente tipo de acuerdo al servicio requerido.
Una de las más comunes es la válvula de asiento, llamada así a causa de la disposición del cuerpo. Esta válvula
conduce el fluido hacia arriba o abajo a través de un orificio circular en el tabique central, el cual puede
obturarse por presión de un disco remplazable, de fibra, contra un asiento plano; o intercalando una pieza
cónica de cierre, que se oprime contra un asiento de forma también cónica. Son este y aquella de conicidad
diferente para asegurar una línea de contacto sobre la que se hace el cierre. La válvula con cierre cónico resulta
excelente para una regulación parcial del gasto.
Esta válvula también se construye con un cierre en forma de punzón afilado, ubicado sobre un pequeño orificio
perforado en el tabique central del cuerpo de la válvula. En este caso se le denomina válvula de aguja o de
punzón.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
En las válvulas de compuerta, la barrera opuesta al flujo consiste en un disco o compuerta en forma de cuña,
que se desliza en ángulo recto a la dirección del flujo y que está montada sólidamente en el cuerpo de la válvula.
Este tipo de válvula ofrece, cuando está parcialmente abierta, un orificio para el flujo, cuya sección o superficie
varía de modo extremadamente rápido para ligeras variaciones de la rueda de mano o volante. Por tal motivo,
resulta poco recomendable para una regulación cuidadosa de flujo. Por otro lado es muy adecuada para el caso
ordinario de abrir y cerrar una conducción. Para grandes caudales la válvula lleva un disco oscilante en lugar
del deslizante, que representa una válvula de mariposa.
Las válvulas de retención, llamadas en el comercio “check”, se utilizan cuando se quiere obtener un flujo
unidireccional. Son automáticas en su funcionamiento y permiten que el flujo vaya en una dirección, pero no
en la otra. Presentan dos tipos normales de retención, según se observa y explica por sí mismo en la figura
correspondiente.
La salida del condensado requiere de una trampa de vapor y un filtro. En el equipo utilizado, está instalada una
trampa de vapor de balde invertido, número 140 de 1/2 pulgada para 30-75 libras, con la finalidad de obtener
un drenaje controlado del condensado, desde el intercambiador tubular.
El condensado se produce por dos causas principales. Por pérdida hacia la atmósfera del calor latente del vapor
desde el equipo, su revestimiento, tubería o accesorios; y por el uso del intercambiador diseñado para extraer
el calor latente del vapor como medio de calentamiento. Si se permite que el condensado se acumule en el
fondo, cubriendo parte de la superficie calefactora, se reduce el área a través de la cual puede producirse la
transferencia de calor.
En el caso de que se acumulen impurezas en la válvula, la trampa se mantiene abierta y permite escapes de
vapor que pueden llegar a dañar definitivamente al accesorio. Se produce un corte en la válvula o su asiento,
debido al vapor cuando se fuerza su salida a gran velocidad por la válvula parcialmente abierta. Aunque
se limpien las impurezas, la válvula no volverá a cerrarse bien, ya que una vez iniciado el corte continuará
perdiendo vapor, acentuándose el corte hasta que se reajuste o se cambie la válvula y el asiento.
Lo anterior explica la necesidad de instalar un filtro antes de la trampa de vapor para protegerla de la suciedad
que pueda contener el condensado. Debe ser de características similares al filtro incluido en la entrada de la
trampa. Estas consideraciones son válidas. especialmente cuando se utiliza las llamadas trampas de vapor
termodinámicas.
Según la metodología indicada, se procedió a cuantificar el caudal de agua por recolección de un volumen
determinado del líquido en un tiempo medido con un cronómetro. Luego de desalojar al aire y regular el
ingreso de vapor, hasta conseguir que se estabilice el funcionamiento del equipo, que ocurre luego de media
hora o más, se registró la temperatura de entrada y salida del agua con termómetros de mercurio. En forma
paralela se midió la presión de ingreso del vapor para establecer su temperatura y el caudal del condensado por
triplicado. Por ser mínima la variación del flujo de agua, en la Tabla 7.1.1. se presentan los datos promedios
de las tres pruebas con diferente velocidad, registrados a cuatro presiones próximas a una libra fuerza sobre
pulgada cuadrada.
Transferencia de Calor
295
Tabla 7.1.1. Datos Registrados en un Intercambiador de Carcaza y Tubos para la Determinación de Coeficientes de
Transferencia de Calor.
AGUA
VAPOR
V*103
t
Caudal
Tc1
Tc2
[m3]
[s]
*104
[m3/s]
[C]
[C]
Manomét.
[psi]
12
12
12
12
75,0
104,6
99,7
76,0
1,600
1,147
1,204
1,579
20
19
20
20
60
68
74
68
0,50
0,75
1,00
1,15
Presión
V*103
t
Caudal
Th1
Th2
Absoluta
[kPa]
[m3]
[s]
*105
[m3/s]
[C]
[C]
75,4
77,2
78,9
79,9
1,069
1,293
1,557
1,675
75,0
120,0
120,0
120,0
1,425
1,078
1,298
1,396
92
92
93
93
80
80
80
80
Se requiere establecer las temperaturas de superficie, en la cara interior mediante contacto con el agua, y
en la cara exterior por contacto con el vapor, de los tubos de cobre ubicados en el intercambiador. Por la
imposibilidad física de hacer la determinación en forma experimental, se utilizó el método denominado por
ensayo y error, que consiste en establecer un valor para la temperatura superficial y comprobar el cumplimiento
de alguna ecuación básica en la que intervenga. En ocasiones se requiere de varios intentos para establecer el
valor correcto.
A continuación se desarrolla un ejemplo de cálculo, con los datos obtenidos cuando el vapor fue regulado para
su ingreso al intercambiador a una presión absoluta de 75,4 [kPa].
La ecuación básica utilizada para aplicar el método es la del coeficiente global de transferencia de calor (7.1.6).
(1/UT)i = (1/hi) + ((Ri ln(Re/Ri))/k) + (Ri/Re he)
Se conoce que los tubos son de una aleación de cobre con un espesor de 0,0015 [m]. Su conductividad térmica,
según Perry (1963), es 121 [W/m.K], radio interior 0,008 [m], radio exterior 0,0095 [m].
Para estimar el coeficiente de transferencia de calor interior (hi), Perry (1963) presentó el nomograma 10-11.
Se requiere conocer la velocidad del fluido y el diámetro de los tubos.
La velocidad está definida por el caudal dividido para el área de sección transversal total de los tubos por los
que circula.
Número de tubos = 28
Diámetro interior del tubo = 0,016 [m] = 0,63 [pulg]
Area interior = Ai=(πD2/4)28
Ai = 28*3,1416(0,016)2[m2]/4 = 5,63*10-3 [m3]
Velocidad = v=J/Ai
v = 0,00016 [m3/s]/0,00563[m2] = 0,0284 [m/s] = 0,0932 [pie/s]
hi = 322[BTU/h.pie2.F]*0,17 = 55 [BTU/h.pie2.F]
hi = 312 [W/m2.K]
El coeficiente de transferencia de calor en la pared exterior puede ser estimado con el nomograma 10-14.
La superficie exterior de los tubos es 4 [m2], el caudal másico del vapor corresponde a:
J’ = 1,425*10-5[m3/s]*964[kg/m3]/4[m2] = 0,00343[kg/m2.s]
J’ = 2,53 [lb/pie2.h]
Juan de Dios Alvarado
Del nomograma extendido, el factor de corrección estimado es 0,17. La temperatura promedio del agua es
40C (104F), con un factor base de 322 [BTU/h.pie2.F]; en consecuencia:
Capítulo 7
296
El número promedio de tubos en hilera vertical, según la ecuación (7.1.28)
N1/4 = (N1+N2...+NN)/(N13/4+N23/4+...NN3/4)
N1/4 = (2+2+4+2+(9*4)+2+4+2+2)/(6(23/4)+11(43/4)) = 1,36
N = 3,42
ND’ = 3,42*0,019 = 0,065 [m] = 2,56 [pulg]
Del nomograma, el factor de corrección estimado es 1,2. Para una temperatura del condensado de 90C (194F),
con un factor base de 3590 [BTU/h.pie2.F], se obtiene:
he = 3590[BTU/h.pie2.F]*1,2 = 4308[BTU/h.pie2.F]
he = 24462 [W/m2.K]
Por reemplazo de los valores calculados en la ecuación del coeficiente global de transferencia de calor.
(1/UT) = (1/312) + (0,008 ln(0,0095/0,008)/121) + (0,008/0,0095*24462) = 3,251*10-3
UT = 307 [W/m2.K]
Notar que este cálculo se realiza presumiendo que la temperatura del condensado es 90C, que sería la
temperatura de la superficie exterior de los tubos en contacto con el vapor. La comprobación de la validez del
valor supuesto, se realiza mediante la ecuación (7.1.1).
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
q = UT A FG (dT)L
Para determinar el valor del factor de corrección de la temperatura por la geometría del sistema (FG), en forma
previa se calcula los valores Z y Z’, con las ecuaciones (7.1.2) y (7.1.3).
Z = (Th1-Th2)/(Tc2-Tc1)
Z = (92-80)/(60-20) = 0,3
Z’ = (Tc2-Tc1)/(Th1-Tc1)
Z’ = (60-20)/(92-20) = 0,56
Con estos valores se ubican las coordenadas de gráficos desarrollados para diferentes arreglos de los tubos en el
interior de la carcaza. Según lo reportado por Charm (1977), para el caso de dos pasos de los tubos con número
par de pasos, FG = 0,98.
La diferencia de temperaturas media logarítmica se calcula con la ecuación (7.1.4):
(dT)L = ((Th1-Tc2)-(Th2-Tc1))/ln((Th1-Tc2)/(Th2-Tc1))
(dT)L = ((92-60)-(80-20))/ln((92-60)/(80-20))
(dT)L = 44,5C
Con la ecuación (7.1.1) se obtiene:
q = 307[W/m2.C]*4[m2]*0,98*44,5[C]
q = 53553 [W]
En estado estacionario, el flujo de calor deberá ser igual a través de todas las secciones consideradas, en forma
de ecuación:
q = UTAFG(dT)L = heA(Tsv-Twe) = kA(Twe-Twi)/z = hiA(Twi-Tb)
q = heA(Tsv-Twe)
53553 = 24462*4(92-Twe)
Transferencia de Calor
297
Twe = 91,5C
Este valor es ligeramente superior a 90C, que fue el valor establecido. Se pueden realizar otros ensayos hasta
fijar la igualdad. Sin embargo, cuando se trabaja con nomogramas la exactitud es limitada, por cuya razón
cual se considera que la temperatura en la superficie exterior de los tubos en contacto con el vapor es 91,5C.
La temperatura en la pared interior de los tubos, en contacto con el agua, se calcula con la ecuación de estado
estacionario.
q = hiA(Twi-Tb)
53553 = 312*4(Twi-40)
Twi = 82,9C
Los resultados de cálculos similares, realizados con los datos obtenidos a otras presiones, se presentan en la
Tabla 7.1.2.
Tabla 7.1.2. Temperaturas Superficiales en la Pared de Tubos de un Intercambiador de Carcaza Calculadas por Ensayo y
Error con Datos Registrados a Diferentes Presiones de Ingreso del Vapor*.
P
[kPa]
v
[m/s]
z/k
[m2.K/W]
hi
[W/m2.K]
75,4
0,0284
1,24*10-5
312
77,2
0,0204
1,24*10-5
246
78,9
0,0214
1,24*10-5
264
79,9
0,0280
1,24*10-5
351
*
Datos promedios de tres determinaciones o pruebas.
he
[W/m2.K]
UT
[W/m2.K]
FG
(dT)L
[C o K]
Twe
[C]
Twi
[C]
24462
25372
23762
22702
307
243
260
344
0,98
0,98
0,99
0,93
44,5
39,7
35,7
40,0
91,5
91,6
92,6
92,4
82,9
81,9
81,8
80,5
De los cálculos realizados, se establece que la principal resistencia a la transferencia de calor está en el paso
desde la pared interior de los tubos hacia el agua. Este coeficiente de transferencia de calor prácticamente
define al coeficiente global. En consecuencia, conviene hacer un análisis más detenido del paso de calor por
convección en el lado del agua.
Nuevamente, con los datos de la prueba a 75,4 [kPa] se desarrolla un ejemplo de cálculo. El valor del
coeficiente de transferencia de calor interior (hi) se determina con la ecuación (7.1.8). Para ello se requiere
previamente calcular la cantidad de calor transferido con la ecuación (7.1.7), y la diferencia de temperaturas
media logarítmica con la ecuación (7.1.9).
q = w Cp (dT)
q = 1,600*10-4[m3/s]*992,2[kg/m3]*4175[J/kg.C]*40[C]
q = 26512 [W]
hi = q/A(Tw-Tb)L
hi = 26512[W]/4[m2]*39,6[C]
hi = 167 [W/m2.C] o [W/m2.K]
Según se observa en la Tabla 7.1.3. los valores calculados más próximos a los datos experimentales se establecen
con la ecuación propuesta por Sieder y Tate. Los valores del número de Reynolds son bajos, en ningún caso
alcanzan 2100. En consecuencia, el régimen es laminar y explica la aplicabilidad de la ecuación.
Juan de Dios Alvarado
(Tw-Tb)L = ((Tw-Tc1)-(Tw-Tc2))/ln((Tw-Tc1)/(Tw-Tc2))
(Tw-Tb)L = ((82,9-20)-(82,9-60))/ln((82,9-20)/(82,9-60))
(Tw-Tb)L = (62,9-22,9)/ln(62,9/22,9) = 39,6C
Capítulo 7
298
Tabla 7.1.3. Valores del Coeficiente de Transferencia de Calor por Convección Establecidos yCalculados Mediante Ecuaciones
para la Pared Interior de Tubos de un Intercambiador de Carcaza.
(NRe)
Dato o ecuación
(*)v1
v2
(NNu)
v3
v4
v1
Experimental
Petukhov
589
735
692
17,6
529
Sleicher-Rouse
756
965
967
10,3
705
Churchill
980
1255
1332
10,1
936
Sieder y Tate
589
735
692
4,7
529
Kays y London
589
735
692
7,7
529
Dittus y Boelter
589
735
692
6,1
529
*
Velocidad de paso del agua por el interior de los tubos en [m/s].
Subíndices: 1=0,0204. 2=0,0214. 3=0,0280. 4=0,0284.
hi[W/m2.K]
v2
v3
v4
v1
v2
v3
v4
17,6
10,6
10,4
4,7
8,0
6,4
17,0
12,0
11,6
5,2
9,9
7,8
16,6
11,9
11,4
5,3
10,1
7,7
179
747
409
403
187
306
240
258
748
425
417
189
320
256
258
719
477
460
207
392
312
168
710
468
448
210
398
305
Con los datos experimentales se llega a establecer un valor del coeficiente global de transferencia de calor, al
que se le denomina de servicio o experimental. Con el propósito de incluir los datos registrados en el vapor,
se calcula una cantidad de calor transferido promedio. Según la ecuación (7.1.5) y con los datos registrados a
75,4 [kPa] como presión de ingreso del vapor, se obtiene:
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
q = (wCp(dT)+(wvYv+wvCpv(dT)g))/2
q = ((0,00016[m3/s]*992,2[kg/m3]*4175[J/kg.C]*40[C])
+(1,425*10-5[m3/s]*965,3[kg/m3]*2,278*106[J/kg]
+(1,425*10-5[m3/s]*968,7[kg/m3]*4198[J/kg.C]*12[C])/2
q = (26512+(31335+695))/2
q = 29271 [W]
Por reemplazo en la ecuación (7.1.1):
q = US A FG (dT)L
US = 29271[w]/4[m2]*0,98*44,5[C]
US = 168 [W/m2.C o W/m2.K]
El coeficiente global de transferencia de calor denominado limpio, se calcula con la ecuación (7.1.6):
(1/UT)i = (1/hi) + ((Ri ln(Re/Ri))/k) + (Ri/Re he)
Según los nomogramas hi = 312 [W/m2.C]. En la pared exterior de los tubos en contacto con el vapor, el
coeficiente de transferencia de calor se calcula con la ecuación (7.1.27) de la manera siguiente:
Tv = (TSV - 0,75 (TSV-TS))
Tv = (92-(3(92-91,5)/4)) = 91,6 [C]
he = 4,117 (kv3 (DA)v2 g Y / N De μv (TSV-TS))0,25
k = 0,679 [W/m.C]
(DA) = 964,2 [kg/m3]
g = 9,81 [m/s2]
Y = 2,279*106 [J/kg]
N = 3,42
De = 0,019 [m]
μv = 303,7*10-6 [Pa.s]
(TSV-TS) = 92-91,5 = 0,5 [C]
he = ((0,679)3(964,2)2(9,81)(2,279*106)/(3,42)(0,019)(303,7*10-6)(0,5))0,25
he = 28496 [W/m2.C o W/m2.K]
Transferencia de Calor
299
Reemplazando valores.
(1/UT) = (1/312) + (0,008 ln(0,0095/0,008)/121)+(0,008/0,0095*28496) = 3,250*10-3
UT = 308 [W/m2.C o W/m2.K]
El coeficiente de ensuciamiento se calcula con la ecuación (7.1.31):
(RE) = (UT -US) / UT US
(RE) = (308-168)/308*168 = 0,0027 [m2.C/W]
Según la ecuación (7.1.30) el coeficiente global de transferencia de calor real, es:
(1/UR)i = (1/hi) + (Ri ln(Re/Ri)/k) + (Ri/Re he) + (RE)
(1/UR) = (3,21*10-3)+(1*10-5)+(3*10-5)+(2,7*10-3) = 6,5*10-3
UR = 154 [W/m2.C o W/m2.K]
Los valores correspondientes a las cuatro condiciones de trabajo están en la Tabla 7.1.4.
Tabla 7.1.4. Valores del Coeficiente Global de Transferencia de Calor y de la Resistencia por Ensuciamiento Establecidos
en un Intercambiador de Calor de Carcaza y Tubos.
Presión de entrada
del vapor
[kPa]
UT
[W/m2.K]
(RE)
[m2.K/W]
U S o UR
[W/m2.K]
75,4
77,2
78,9
79,9
308
243
260
344
0,0027
0,0016
0,0012
0,0019
154
174
197
210
Al analizar los valores, se establece que la resistencia por ensuciamiento supera los límites reportados por
Camacho e Izurieta (1982); sin embargo, como el término depende del cálculo del coeficiente global limpio,
este debe ser totalmente definido para cada equipo y condiciones de trabajo. La importancia del cálculo radica
en el hecho de que, al formarse incrustaciones, el valor de la resistencia por ensuciamento aumentará. En
consecuencia, se puede fijar un límite que indique la necesidad de una limpieza o labores de mantenimiento.
Los datos del coeficiente global de transferencia de calor de servicio o reales, son bajos para un intercambiador
de carcaza y tubos del tipo utilizado en el trabajo. Lo anterior requiere buscar alternativas para mejorar la
eficiencia del equipo. Entre ellas se mencionarán: instalar una bomba para incrementar el caudal de agua hasta
lograr un régimen turbulento y mejorar el coeficiente de transferencia de calor interior; trabajar con presiones
más altas de ingreso de vapor.
Como comentario general, se destaca a la importancia que tiene la comprensión de los cambios en los coeficientes
de transferencia de calor, para controlar el correcto funcionamiento de equipos, o como herramientas para el
diseño, modificación y construcción de intercambiadores de calor.
Belloin, J. C. 1974. Apuntes de Ingeniería en Alimentos. Conferencias sustentadas en la Facultad de Ingeniería
Industrial. Universidad Técnica de Ambato, Ecuador. 52 p.
Camacho, L. e Izurieta, H. 1982. Evaluación del funcionamiento del tren de intercambio calórico de
precalentamiento de crudo en la Refinería Estatal de Esmeraldas. Politécnica, 7(2): 1-25.
Charm, S. E. 1977. “Fundamentals of Food Engineering”. 3th ed. Westport, Connecticut. AVI Pub. Co. Inc.
629 p.
Juan de Dios Alvarado
BIBLIOGRAFÍA Y REFERENCIAS
Capítulo 7
300
Churchill, S. W. 1977. Comprehensive correlating equations for heat, mass and momentun transfer in fully
developed flow in smooth tubes. Ind. Eng. Chem. Fundam., 16: 109-116.
Dittus, F. W. and Boelter, L. M. 1930. University California Eng. Pub. Nº 2: 23-28.
Heldman, D. R. 1977. “Food Process Engineering”. Westport, Connecticut. AVI Pub. Co. Inc. 401 p.
Izurieta, H. 1985. Avances en la determinación de coeficientes de transferencia de calor en intercambiadores.
En: “Memorias del III Simposio Ecuatoriano de Operaciones Unitarias”. Facultad de Ciencia e Ingeniería en
Alimentos, Universidad Técnica de Ambato, Ecuador. p: 106-118.
Kays, W. M. and London, A. L. 1954. Compact heat exchangers. A summary of basic heat transfer and flow
friction design data. Stanford University. Technical Report 23.
Perry, J. H. 1963. “Chemical Engineers’ Handbook”. 4th ed. Tokyo. McGraw-Hill Book Co. p: 10-27, 1031, 10-32.
Petukhov, B. S. 1970. Heat transfer and friction in turbulent pipe flow with variable physical properties. Adv.
Heat. Transfer, 6: 503-564.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Ramos, M. 1984. “Montaje y Puesta en Marcha de un Pasteurizador de Placas”. Tesis de Ingeniero en
Alimentos. Universidad Técnica de Ambato, Ecuador. 113 p.
Sieder, E. N. and Tate, G. E. 1936. Heat transfer and pressure drop in liquids in tubes. Ind. Eng. Chem., 28:
1429.
Sleicher, C. A. and Rouse, M. W. 1975. A convenient correlation for heat transfer to constant and variable
property fluids in turbulent pipe flow. Int. J. Heat Mass Transfer, 18: 677-683.
Toledo, R. T. 1981. “Fundamentals of Food Process Engineering”. Westport, Connecticut. AVI Pub. Co. Inc.
p:213-215.
Transferencia de Calor
TEMA 7.2. APLICACIÓN DE LOS COEFICIENTES
TRANSFERENCIA
DE
CALOR
PARA
CONTROL
INTERCAMBIADORES DE PLACAS
301
DE
DE
INTRODUCCIÓN
El uso de los intercambiadores de calor de placas es muy amplio. En la industria alimenticia se utilizan en
diversos sectores. Entre ellos, en las industrias lácteas durante la pasteurización, recuperación de calor y
precalentamiento de la leche y de la crema; en los tratamientos térmicos de todos los subproductos líquidos,
como el suero de leche, el suero de mantequilla, las salmueras para salar los quesos; en el tratamiento de las
aguas residuales, para la recuperación de calor y calentamiento de las soluciones detergentes.
Además, se usan en las fábricas procesadoras de huevos, para pasteurización y enfriamiento de claras y yemas.
En las fábricas de zumos de frutas, durante el calentamiento y enfriamiento para la pasteurización. En las
fábricas que elaboran vinos, para el calentamiento, enfriamiento y pasteurización. En los ingenios, para el
calentamiento de las soluciones de azúcar.
Aunque el intercambiador de placas nació por necesidades de higiene para ciertos procesos, también se utiliza
en otros campos. Es por la industria química en general que el intercambiador de placas ha experimentado los
avances más significativos. El intercambiador de placas industrial moderno incorpora diferentes características
nuevas. Por ejemplo, los bastidores de acero inoxidable preferidos en la industria alimenticia, fueron sustituidos
Juan de Dios Alvarado
En las cervecerías, para el enfriamiento del mosto, pasteurización de la cerveza, recuperación de calor,
enfriamiento y carbonatación antes del embotellado. En las fábricas de levadura, para enfriamiento del mosto
en la fermentación y en el enfriamiento de la levadura concentrada.
Capítulo 7
302
por bastidores más simplificados de acero al carbono recubiertos de pinturas resistentes al ataque químico. La
mayor diferencia, sin embargo, es del material del que están construidas las placas. Los intercambiadores
para alimentos están equipados normalmente con placas de acero inoxidable. Los tipos industriales pueden
equiparse con placas construidas de diferentes materiales, en función del líquido a procesar.
Sin embargo, según lo indicado por Alvarado (1983), en conjunto existe poca información publicada sobre
intercambiadores de placas, en relación con la existente para otros tipos de intercambiadores como tubulares
y de carcaza y tubos. De los datos técnicos recopilados, se encuentra que las limitaciones en el uso de un
intercambiador de placas son: Los intercambiadores de placas se usan generalmente para procesar líquidos con
menos de 5% de sólidos, no abrasivos y generalmente de un tamaño de partícula muy pequeño. La viscosidad
del producto debe ser inferior a 20 [Pa.s]. La temperatura máxima de trabajo es de 150C, con juntas de caucho
sintético; pero con ciertas juntas especiales se puede alcanzar 250C. La máxima superficie de calentamiento
es de 1000 [m2]. La máxima capacidad de flujo es de 1000 [m3/h]. La máxima presión de trabajo es de 20
atmósferas.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Harper (1976) señaló algunas ventajas y desventajas de los intercambiadores de placas. Ventajas: Son
compactos, pues una gran área es contenida en un volumen pequeño. Tienen una eficiencia alta debido a que
los canales para flujo son angostos. Pueden ser limpiados con facilidad. La capacidad se aumenta o disminuye
simplemente por adición o remoción de placas. También se puede cambiar el número de pasos de flujo. El
mantenimiento es simple, aunque no necesariamente barato. Desventajas: El costo es alto comparado con los
intercambiadores tubulares. Son eficientes únicamente sobre un valor determinado de flujo, pues a velocidades
de flujo inferiores a su capacidad, se desarrollan áreas muertas en los canales de flujo. No pueden ser usados
en operaciones a presión muy alta, lo cual no es un problema grave en servicio de alimentos. No pueden ser
usados para fluidos de alta viscosidad o consistencia.
Según se observa en la Figura 7.2.1., el intercambiador de placas se compone de un bastidor en el que se alojan
las placas, soportadas por rieles y prensadas entre un cabezal fijo y una tapa móvil.
Figura 7.2.1. Diagrama de un intercambiador de placas.
Transferencia de Calor
303
Las placas están equipadas en su periferia y alrededor de las toberas con juntas que garantizan la hermeticidad,
y dispuestas de tal forma que el producto y el medio de calefacción o enfriamiento son conducidos
alternativamente, a través de las vías obtenidas por cada dos placas. Las juntas confieren un doble cierre entre
las dos corrientes del líquido, anulando toda posibilidad de mezcla entre ambos.
El doble cierre forma una bolsa hacia la atmósfera, para que en el caso poco probable de falla de una junta,
permita la observación visual de la fuga de líquido y asegura una vía de escape cuando se trabaja con fluidos
a presión.
La rugosidad especial de las placas produce turbulencia con números de Reynolds muy bajos. En algunos tipos
tan bajos como 10, mientras que en intercambiadores tubulares las velocidades de circulación deben ser muy
altas para alcanzar números de Reynolds de 2500, con el propósito de evitar el flujo laminar.
La rápida transferencia de calor que ocurre, aumenta en la mayoría de las aplicaciones, cuando se dispone el
flujo de los líquidos en contracorriente. Las placas están agrupadas en pasos, y cada uno de los líquidos está
uniformemente distribuido entre las vías en paralelo de un mismo paso. Los pasos, en un número suficiente
para la aplicación requerida, están dispuestos en serie, situando debidamente una placa con las toberas sin
taladrar al final de cada paso. En algunos tipos de placas se emplea el flujo diagonal; mientras que otras
están diseñadas para flujo vertical. Las rejillas separadoras permiten la división del intercambiador en varias
secciones.
Belloin (1974) indicó que, para el diseño de un intercambiador de placas, se necesita considerar los criterios y
datos siguientes:
Se obtienen altos coeficientes de transferencia de calor, que varían desde 2300 a 5800 [W/m2.K], 2000 a 5000
[kcal/h.m2.C] o 410 a 1025 [BTU/h.pie2.F]. Pequeñas diferencias de temperaturas de 2 a 5C entre los fluidos
caliente y frío.
La turbulencia producida entre las finas corrientes del líquido, por medio de las corrugaciones estampadas en
las placas, aumenta la transferencia del calor si los caudales son débiles. Esta turbulencia ayuda a mantener los
sólidos en suspensión, minimizando el ensuciamiento con suspensiones y soluciones cristalinas.
Para obtener un buen control de la temperatura de calentamiento y también cuando el producto es muy sensible
al calor, la temperatura de entrada del medio de calefacción no debe superar a la temperatura de calentamiento
final del producto en más de 3C.
Cuando el calentamiento se realiza mediante el uso de vapor, este último deberá entrar por la parte alta del
cabezal fijo. Así los condensados serán evacuados por un colector situado en la parte baja.
En las pequeñas unidades de calentamiento con un solo paso de agua caliente, las conexiones de entrada y
salida estarán sobre el cabezal fijo. Así la tubería de agua será permanente.
Cuando existen varias secciones en el mismo intercambiador, a la salida de cada sección el paso del producto
y el paso del medio deben estar en contracorriente.
El último paso del producto debe estar rodeado por dos pasos de medio, en consecuencia el número de pasos
del producto será inferior o igual al número de pasos del medio, pero nunca superior.
Juan de Dios Alvarado
En la sección de calentamiento, la salida del producto pasteurizado está generalmente ubicada en la parte baja
del cabezal fijo. Se puede así posicionar fácilmente el tubo de mantenimiento, el cual tiene una extremidad fija,
y la otra se unirá con la válvula de división también fija.
Capítulo 7
304
Figura 7.2.2. Secciones y partes de una central para trabajo de un intercambiador de placas
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
El líquido en el extremo de una sección puede transmitir calor útil solamente a una corriente adyacente, pues
del otro lado está el bastidor o la placa intermedia. Por esta pérdida de media placa en cada extremidad, el
número total de corrientes necesarias es igual al número de corrientes activas más uno.
Siempre la presión en el lado del producto debe ser superior a la presión en el lado del medio; así, si hay un
agujero en una placa, la fuga se produce desde el lado del producto hacia el lado del medio. De esta manera no
hay contaminación del producto por el medio y es más fácil detectar la fuga. De la misma manera, y por las
mismas razones, en la sección de regeneración la presión del lado del producto pasteurizado debe ser superior
a la presión del lado del producto crudo.
Las secciones y partes de un sistema de transferencia de calor con intercambiadores de placas, según lo indicado
en la Figura 7.2.2. son:
Sección de regeneración. En esta parte del intercambiador, el producto crudo es calentado por el producto
pasteurizado que se enfría. El intercambio de calor se hace sin gastar energía adicional. Hay en esta sección
más placas y es importante considerar el porcentaje de regeneración. Se puede obtener hasta el 90% de
regeneración. Existe un número de placas adecuado, porque, al aumentar el número de placas en esta sección,
se aumenta el precio del intercambiador y el costo de mantenimiento. Con la regeneración se disminuye el
consumo de energía.
Sección de calentamiento. El calentamiento se puede realizar por medio de agua caliente o de vapor.
Generalmente en un pasteurizador se usa agua caliente, pues la regulación de temperaturas es más precisa que
en el caso de usar vapor. El vapor se usa para el precalentamiento cuando se tiene, por ejemplo, vapor bajo
vacío extraído de una cámara de vacío; el intercambiador de placas permite en este caso un aprovechamiento
del calor latente y de una parte del calor sensible del vapor.
Sección de agua fría. El enfriamiento se realiza con agua potable o agua de pozo. Al existir esta sección se
disminuye el consumo de agua refrigerada y se puede utilizar un compresor más pequeño para la refrigeración.
Si el precio del agua es elevado, se incorpora una torre de evaporación y el agua se recircula.
Bomba centrífuga. Esta bomba debe ser calculada para vencer las pérdidas de presión en el lado de la
leche cruda en la sección de regeneración, y debe asegurar una presión de alimentación adecuada para el
homogenizador.
Transferencia de Calor
305
Homogenizador. El homogenizador generalmente es una bomba con tres pistones que asegura un caudal
constante. Este equipo es muy importante, pues proporciona una condición indispensable para obtener una
temperatura de pasteurización constante.
Tanque regulador. Se justifica este recipiente por varias razones: El caudal de la máquina que está más
arriba del pasteurizador puede ser diferente del caudal del pasteurizador; entonces el recipiente amortigua las
variaciones del caudal. Si el producto, a la salida de la sección de calentamiento, no alcanza la temperatura
requerida, es recirculado hasta el tanque regulador. Si el producto, a la salida de la sección de enfriamiento,
no tiene una temperatura suficientemente baja, se puede recircular hasta el tanque regulador. El recipiente se
utiliza para añadir los detergentes durante la limpieza del equipo de pasteurización.
Tubo de retención. Su longitud es función del producto y de la temperatura de pasteurización. El mantenimiento
también se puede realizar en el mismo intercambiador de placas, en una sección llamada de retención.
Sección de enfriamiento final. En algunos equipos, y dependiendo del producto, se encuentra una sección de
enfriamiento final.
Equipo para control de temperaturas de trabajo. Existen actualmente sistemas que garantizan un control
adecuado de las condiciones requeridas para un buen procesamiento térmico.
Con relación a los aspectos matemáticos, Heldman y Singh (1981) se refirieron a los trabajos de Nunge y
colaboradores (1967), quienes por resolución de ecuaciones para las dos corrientes de fluido, en cada lado de
la superficie de transferencia de calor, calcularon el número de Nusselt local y completamente desarrollado, en
términos del número de Peclet, definidos en la forma siguiente:
(NNu) = ĥP b’ / k
(NPe) = 2b’ u Cp (DF) / k
(7.2.1)
(7.2.2)
Resultados obtenidos para flujo concurrente se presentan en figuras, en las cuales un conjunto de razones
de capacidades calóricas másicas (H), razones de conductividades térmicas (K’) y razones de espesores de
películas (δ), son comparadas.
H = Wc Cpc / Wh Cph
K’ = kc / kh
δ = b’c / b’h
(7.2.3)
(7.2.4)
(7.2.5)
En las ecuaciones, ĥP es el coeficiente promedio de transferencia de calor convectivo, b’ es la distancia entre
las placas, u es la velocidad promedio del fluido que se calienta, (DF) es la densidad del fluido, Cp es el calor
específico, k es la conductividad térmica, y W es la razón de flujo volumétrico. El subíndice c se refiere al
fluido que se calienta y el h al medio de calentamiento.
(NNu) = 0,036 (NRe)0,8 (NPr)0,33
(7.2.6)
Válida para valores del número de Reynolds mayores a 2*104.
Donde:
(NRe) = número de Reynolds
(NRe) = L u (DF) / μ
(7.2.7)
Juan de Dios Alvarado
Earle (1968) indicó que, para calefacción o enfriamiento sobre superficies planas, se puede utilizar en el cálculo
del número de Reynolds la longitud de la lámina, medida en la dirección del flujo, en cuyo caso:
Capítulo 7
306
(NPr) = número de Prandtl
(NPr) = Cp μ / k
(7.2.8)
μ corresponde a la viscosidad.
Sin embargo, para el caso específico de intercambiadores de placas, Auth y Loiano (1978) reportaron la
correlación siguiente:
(NNu) = m (NRe)b (NPr)c (μ/μs)d
(7.2.9)
Los valores de m varían entre 0,15 y 0,40, b entre 0,65 y 0,85, c entre 0,30 y 0,45, d entre 0,05 y 0,2; para el
caso de flujo turbulento.
La dimensión característica que se debe utilizar en el cálculo del número de Reynolds y del número de Nusselt,
es el diámetro hidráulico medio que corresponde a cuatro veces el área de la sección transversal dividida por
el perímetro mojado.
Si el flujo es laminar se usa:
(NNu) = n’ ((NRe)(NPr)(De/L))0,33 (μ/μs)0,14
(7.2.10)
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
El coeficiente n’ varía entre 1,86 y 4,5 y depende de las características de las placas.
Jackson y Lamb (1971) desarrollaron ejemplos de aplicación; consideraron una temperatura general promedio
como la temperatura superficial de la pared de la placa, y la ecuación siguiente para calcular el número de
Nusselt:
(NNu) = 0,20 (NRe)0,67 (NPr)0,33 (μ/μs)0,2
(7.2.11)
Para flujo en contracorriente, Nunge y colaboradores (1967) señalaron que el número de Nusselt, y
consecuentemente el coeficiente de transferencia, aumenta significativamente cuando el número de Peclet se
incrementa desde 10 hasta 1000.
En el sistema agua-agua la razón de conductividades será próxima a la unidad, al igual que la razón de las
capacidades calóricas si los flujos son iguales; en adición, en muchos intercambiadores de placas de laboratorio,
las juntas entre placas son iguales y la razón de espesores de películas será 1.
Los coeficientes de transferencia de calor por convección, en los dos lados de las placas, pueden ser determinados
a base de datos experimentales, por la ecuación básica:
q = ĥP A (dT)b
(7.2.12)
El término (dT)b corresponde a la diferencia de temperaturas entre la superficie de la placa y la temperatura
promedio del fluido en contacto.
Otro aspecto que debe ser considerado durante el funcionamiento de estos intercambiadores es el de las
resistencias por ensuciamiento debidas al material sólido depositado en las caras de las placas. Lalande y
Corrieu (1980) señalaron que al pasteurizar leches, por la inestabilidad del producto, conforme transcurre el
tiempo el equipo disminuye su eficiencia. Cuantificar este fenómeno, atribuido al ensuciamiento, es difícil;
sin embargo, señalaron que el uso de ecuaciones polinómicas permitiría acercarse al problema para su mejor
comprensión. Presentaron datos de resistencia por ensuciamiento, los cuales se incrementan desde 0 hasta
8*10-4 [m2.C/W] a los 14400 [s] de funcionamiento de un pasteurizador de leches.
Según Vian y Ocón (1976), en un intercambiador de calor, la temperatura de cada fluido varía desde el extremo
Transferencia de Calor
307
de entrada al de salida. En consecuencia, la diferencia de temperaturas es también variable.
En un intercambiador de placas si T1 y T2 son las temperaturas de los fluidos en cualquier sección transversal
del intercambiador, despreciando las pérdidas de calor al exterior, el balance calórico señala que el flujo de
calor es:
q = w1 Cp1 (dT)1 = ± w2 Cp2 (dT)2
(7.2.13)
El signo ± permite tratar en la misma ecuación la circulación en paralelo o en contracorriente. De esta ecuación
se deduce que T1 y T2 varían linealmente con el calor intercambiado, lo mismo sucederá con la diferencia de
temperaturas entre los dos fluidos (dT)’ = T1 - T2; entonces, al graficar (dT)’ en ordenadas contra q en abscisas,
deberán obtenerse líneas rectas, cuya pendiente es:
d(dT)’/(dq) = ((dT)’1 - (dT)’2)/q
(7.2.14)
El subíndice 1 se refiere a la sección de entrada en el equipo y 2 a la salida.
Como:
(dq) = U (dA) (dT)m
(7.2.15)
Siendo A el área, sustituyendo (dq) se obtiene:
d(dT)’/U(dT)’ = ((dT)’1 - (dT)’2)(dA)/q
(7.2.16)
Cuando U, el coeficiente global de transferencia de calor, es constante para toda la superficie, la integración de
la ecuación conduce a:
(1/U) ln((dT)’1/(dT)’2) = ((dT)’1 - (dT)’2) A/q
(7.2.17)
De donde:
q/UA = ((dT)’1 - (dT)’2)/ln((dT)’1/(dT)’2)
(7.2.18)
Según lo anterior, la diferencia media de temperaturas es la media logarítmica de la diferencia de los extremos,
a la entrada y salida del intercambiador, (dT)m.
Kreith (1970) definió a la eficiencia de un intercambiador de calor como la proporción entre la velocidad
de transferencia de calor real y la máxima velocidad de transferencia de calor posible de alcanzar en el
intercambiador, que conseguiría obtenerse en contraflujo y con área infinita.
Mediante derivación, ilustró cómo la efectividad para una determinada modalidad de flujo puede expresarse
en función de dos parámetros adimensionales: la razón de las capacidades calóricas por hora (H) relacionando
el valor mínimo sobre el máximo, y la proporción entre la conductancia total y la menor capacidad calórica
por hora. El segundo de los parámetros se llama número de unidades de transferencia de calor (NUT). Es una
medida de la magnitud de la transferencia calórica del intercambiador, y corresponde a:
(NUT) = U A / (w Cp)mínima
(7.2.19)
Reportó el gráfico de Kays y London para cuantificar la efectividad o eficiencia como porcentaje (ε), para el
caso de flujo transversal de dos fluidos sin mezclar, posible de ser aplicado a intercambiadores de placas.
Juan de Dios Alvarado
Sin embargo, la ecuación es adecuada para el caso de un paso único. En los intercambiadores de calor de pasos
múltiples se necesita considerar un factor de corrección o la eficiencia del equipo.
Capítulo 7
308
Con esta consideración, el flujo de calor puede ser calculado por:
q = ε (w Cp)mínimo (Th1 - Tc1)
(7.2.20)
Si se pasa por alto la resistencia de la pared del metal, la conductancia total puede ser calculada por:
UA = 1/Σ (1/P A)
(7.2.21)
Cuando existen resistencias adicionales a la transferencia de calor, debidas a incrustaciones o ensuciamiento,
estas resistencias pueden determinarse a partir de la relación:
(RE) = (1/Uj) - (1/U)
(7.2.22)
Donde (RE) es la unidad de resistencia térmica por ensuciamiento, U es el coeficiente global de transferencia
de calor del intercambiador limpio o al inicio de la operación, y Uj es el coeficiente global después de formarse
la capa por ensuciamiento durante el funcionamiento del equipo.
OBJETIVOS
Conocer las partes principales de un intercambiador de placas, su montaje y desmontaje.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Establecer la relación entre el número de Nusselt y el número de Peclet en el intercambiador de placas, en flujo
en paralelo y en contracorriente.
Determinar los valores del coeficiente promedio de transferencia de calor convectivo en base a datos
experimentales y compararlo con valores calculados o reportados.
Señalar un método para evaluar los depósitos de sólidos en las placas, durante la operación del equipo con
alimentos como la leche, cuantificando la resistencia a la transferencia de calor por ensuciamiento.
EQUIPO Y SUMINISTROS
Utilizar un intercambiador de placas como el indicado en la Figura 7.2.1. Según Ramos (1984), la operación
del equipo requiere de los pasos siguientes, a los que se añade los necesarios para el trabajo.
1. Suministros.
Identificar las líneas de energía eléctrica, agua fría, agua caliente y vapor.
Suministro
Energía eléctrica
Agua fría
Agua caliente
Vapor
Color
Negro
Celeste
Verde
Rojo
Asegurar el abastecimiento adecuado y normal de agua, vapor y energía eléctrica.
2. Conexiones eléctricas.
Verificar que los botones de color negro de los arrancadores de las bombas no se encuentren presionados; si lo
estuvieran, presionar los botones de color rojo para desconectarlos.
Enchufar los cables que salen de los arrancadores a los tomacorrientes trifásicos (220 V).
Transferencia de Calor
309
3. Válvulas en la línea del fluido a calentarse.
Ubicar las válvulas siguientes y controlar su funcionamiento:
Válvulas de paso, se encuentran ubicadas a la salida del tanque de alimentación y de la bomba, que está abierta
cuando el mango se halla en paralelo a la tubería, y está cerrada cuando el mango está perpendicular con la
tubería.
Válvula de tres vías, se encuentra ubicada en la parte superior izquierda del intercambiador de placas. Si el
mango de la válvula está en posición vertical hacia abajo, el fluido calentado sale del intercambiador y puede
ser conducido hacia el tanque de alimentación.
4. Montaje del intercambiador de placas para pruebas en flujo concurrente.
Ordenar las placas según lo indicado en la Figura 7.2.3.; determinar el área de transferencia de calor, la distancia
entre las placas y la altura; colocarlas en el bastidor y analizar la dirección de los fluidos. Las placas y las tapas
móviles tienen que ser alineadas antes de apretar los pernos.
Apretar las tuercas de los seis pernos, primeramente con la fuerza de la mano a fin de que entren ligeramente en
contacto las juntas de las placas. Apretar las tuercas empleando dos llaves apropiadas: una sirve para mantener
fijo el perno y la otra para girar la tuerca respectiva. Seguir apretando las tuercas hasta que todos los pernos se
encuentren apretados en forma igual y suficiente. Paralelamente, chequear con un calibrador la separación de
las caras interiores de los soportes, cuidando que sea igual en toda la periferia.
Figura 7.2.3. Arreglo de las placas en el intercambiador de calor para trabajo en flujo concurrente.
5. Conexiones con el intercambiador de placas.
Juan de Dios Alvarado
Para el ajuste final utilizar piezas alargadoras en las llaves.
Capítulo 7
310
Conectar la bomba de alimentación del fluido a calentarse hacia el intercambiador. Conectar a la bomba el
tanque de alimentación con el fluido a calentarse. Conectar la válvula de tres vías del intercambiador al tanque
de alimentación con la manguera sanitaria.
6. Operaciones en las líneas.
Línea de agua:
La válvula de entrada del agua fría debe estar abierta, para llenar con agua el intercambiador tubular y regular el
caudal del medio de calentamiento. La válvula entre los intercambiadores tubular y de placas debe estar abierta,
lo que permite llenar con agua el intercambiador de placas.
Arrancar la bomba de agua, presionar el botón negro, permitir la recirculación del agua entre los intercambiadores
de calor tubular y de placas.
Línea de vapor:
Para operar las válvulas de esta línea se deben usar guantes protectores.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
La purga de aire del intercambiador tubular debe estar abierta para eliminar el aire y mantenerse abierta a la
atmósfera. La válvula de drenaje de la línea debe estar abierta, mientras se eliminan el condensado y gases no
condensables; cerrar esta válvula una vez que salga únicamente vapor. Abrir lentamente la válvula de entrada
del vapor a la línea, para evitar averías por golpe de ariete si hubiere condensado retenido en la tubería.
Recordar que este efecto es causado por la velocidad del vapor y no por su presión.
La válvula reguladora se mantiene abierta hasta alcanzar la temperatura requerida en el agua caliente que sale
del intercambiador. Para mantener constante la temperatura del agua caliente, el operador debe observar el
termómetro ubicado a la salida del intercambiador. Si la temperatura se aparta del valor especificado girar la
válvula en forma apropiada, abriendo o cerrando el paso del vapor, para subir o bajar la temperatura del agua
caliente.
Línea del fluido a calentarse:
Cargar con agua fría el tanque de alimentación. Abrir la válvula ubicada a la salida del tanque de alimentación.
Abrir la válvula ubicada a la salida de la bomba, lo que permite regular la cantidad de fluido que circula hacia
el intercambiador de placas. Cualquier giro de esta válvula ocasiona variación de flujo, durante la operación de
la bomba. La válvula debe permanecer abierta, a fin de evitar una presión excesiva en el empaque de la bomba.
La válvula de tres vías debe estar en una posición que permita que el fluido calentado, pase al tanque de
alimentación, para medir el caudal volumétrico.
Arrancar la bomba presionando el botón negro. Entonces el agua fría es impulsada desde el tanque de
alimentación hacia el intercambiador de placas para su calentamiento.
7. Período de pruebas.
Con el equipo en funcionamiento, mediante la válvula a la salida del intercambiador tubular registrar el caudal
volumétrico de agua caliente que recircula entre el intercambiador tubular y de placas. Cerrar la válvula luego
del registro.
Mediante la válvula a la salida de la bomba, regular el caudal del fluido a calentarse y que ingresa al
intercambiador de placas, hasta que sea muy próximo al del agua de recirculación. Medir el caudal.
Permitir que se alcance un estado estacionario y registrar las temperaturas de entrada y salida del agua que
recircula y del agua que se calienta. Controlar que no existan cambios apreciables en los caudales por un lapso
Transferencia de Calor
311
aproximado de cinco minutos. Hacer cuatro medidas para obtener valores promedios.
Para una segunda determinación cambiar los caudales y repetir la operación. Hacer una tercera determinación.
8. Desconexión de suministros.
Cerrar la válvula de la línea de vapor. Desconectar el arrancador de la bomba del fluido a calentarse, presionar
el botón rojo. Abrir la válvula de globo a la salida del intercambiador tubular para eliminar el agua caliente.
Desconectar el arrancador de la bomba del agua, presionar el botón rojo. Cerrar la válvula de entrada de agua
fría. Desconectar los enchufes de los arrancadores de los tomacorrientes trifásicos. Desmontar las placas del
bastidor.
9. Montaje del intercambiador de placas para pruebas de flujo en contracorriente.
Ordenar las placas según lo indicado en la Figura 7.2.4.; determinar el área de transferencia de calor; colocar
las placas en el bastidor y analizar la dirección de los fluidos.
Figura 7.2.4. Arreglo de las placas en el intercambiador de calor para trabajo en flujo
contracorriente.
Juan de Dios Alvarado
Repetir los pasos y pruebas indicadas en los puntos 4,5,6,7 y 8.
Capítulo 7
312
CUESTIONARIO
Con los datos en flujo paralelo y en contracorriente utilizar las ecuaciones (7.2.2), (7.2.11), y hacer un gráfico
semilogarítmico del número de Peclet contra el número de Nusselt; considerar todas las condiciones de prueba.
Compararlo con el reportado por Nunge y colaboradores (1967) y discutir los resultados.
Para todos los casos, a partir del número de Nusselt, calcular el coeficiente teórico de transferencia de calor
convectivo. Tabular los resultados y discutirlos.
En todas las pruebas utilizar los datos del fluido que se calienta y del que se enfría; calcular por calorimetría
el flujo de calor. Según la ecuación (7.2.12), establecer el valor de los coeficientes promedios de transferencia
de calor convectivo, considerando flujo paralelo y en contracorriente. Compararlos con los valores teóricos y
discutir los resultados.
Con los datos obtenidos desarrollar un ejemplo, para utilizar los coeficientes de transferencia de calor en el
control del funcionamiento de intercambiadores de placas en las industrias de alimentos.
RESULTADOS EXPERIMENTALES
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Las pruebas se realizaron en un intercambiador de placas tipo laboratorio. Como fluido caliente se utilizó agua
proveniente de un intercambiador de carcaza y tubos. Por razones de costo el líquido a calentarse fue agua
potable. En consecuencia, el sistema considerado corresponde a agua-agua.
Como referencia se indican los datos siguientes, que permitieron preveer agua para reposición en el tanque de
alimentación.
Presión de bombeo
Caudal
[l/h]
[kg/cm2]
0,15
174
0,25
294
0,35
497
0,45
679
0,60
928
Las placas corrugadas fueron de acero inoxidable con las dimensiones siguientes: alto 0,48 [m], ancho 0,16
[m], distancia entre placas 0,0029 [m]. Por las características de las placas indicadas por la casa fabricante, el
área de intercambio de calor es 0,156 [m2].
En la Tabla 7.2.1. se presentan los datos obtenidos en varias pruebas, con el arreglo de las placas en forma que
permitan un flujo paralelo y flujo en contracorriente, entre los fluidos frío y caliente.
Tabla 7.2.1. Datos Registrados para el Sistema Agua-Agua en Pruebas Realizadas en un Intercambiador de Placas.
Flujo en paralelo
Fluido frío
Flujo en contracorriente
Fluido caliente
Fluido frío
Fluido caliente
W
[m3/s]105
Tc1
[C]
Tc2
[C]
W
[m3/s]105
Tc1
[C]
Tc2
[C]
W
[m3/s]105
Tc1
[C]
Tc2
[C]
W
[m3/s]105
Tc1
[C]
Tc2
[C]
4,70
8,35
13,05
16,5
16,5
16,5
28,1
24,9
26,6
5,40
5,60
5,95
58,5
59,0
60,3
47,2
48,3
45,8
8,25
12,70
20,95
18,0
18,0
18,0
28,0
25,2
24,6
5,60
5,65
6,55
51,8
46,3
46,0
37,8
32,0
30,7
Transferencia de Calor
313
Tabla 7.2.2. Números Adimensionales Calculados para el Sistema Agua-agua en un Intercambiador de Placas
u
[m/s]
Tb
[C]
Ts
[C]
μs
[Pa.s]106
(NRe)
(NPr)
(NPe)
(NNu)
37,6
37,2
37,3
687,681
692,623
691,388
610
1047
1669
6,55
6,90
6,70
3996
7224
11182
29,10
42,77
57,67
33,9
30,4
29,9
735,773
786,571
794,142
1093
1628
2667
6,43
6,70
6,77
7028
10908
18056
42,03
55,27
77,16
37,6
37,2
37,3
687,681
692,623
691,388
1232
1304
1366
3,40
3,34
3,28
4189
4355
4617
33,45
34,39
35,71
735,773
786,571
794,142
1122
1033
1177
3,96
4,38
4,46
4443
4525
5249
33,50
32,96
36,22
Fluido frío. Flujo en paralelo.
0,101
0,180
0,281
22,3
20,7
21,6
Fluido frío. Flujo en contracorriente.
0,178
0,274
0,452
23,0
21,6
21,3
Fluido caliente. Flujo en paralelo.
0,116
0,121
0,128
52,9
53,7
53,1
Fluido caliente. Flujo en contracorriente.
0,121
0,122
0,141
44,8
39,2
38,4
33,9
30,4
29,9
Los cálculos se realizan con los datos de las primeras pruebas en flujo en paralelo y en flujo en contracorriente.
Los valores de las propiedades del agua corresponden a los reportados en la Tabla 2.2.2., considerando la
temperatura promedio previa interpolación.
A) Flujo en paralelo.
-Fluido frío
La velocidad promedio se calcula por la relación entre el caudal y el área transversal.
u = W / (AS)
u = 4,70*10-5[m3/s]/0,16[m]*0,0029[m] = 0,101 [m/s]
El diámetro hidráulico medio corresponde a:
L’ = 4(AS) / (PM)
L’ = 4*4,64*10-4[m2]/(2*0,16+2*0,0029)[m] = 0,0057 [m]
Los números adimensionales:
(NRe) = L’ u (DF) / μ
(NRe)= 0,0057[m]*0,101[m/s]*997,9[kg/m3]/941,537*10-6[Pa.s]=610
(NPr) = Cp μ / k
(NPr) = 4180[J/kg.K]*941,537*10-6[Pa.s]/0,601[W/m.K] = 6,55
(NNu) = 0,20(NRe)0,67 (NPr)0,33 (μ/μs)0,2
Ts = (((16,5+28,1)/2)+((58,5+47,2)/2))/2 = 37,6C
μs = 687,681*10-6 [Pa.s]
(NNu) = 0,20(610)0,67(6,55)0,33(941,537*10-6/687,681*10-6)0,2 = 29,10
-Fluido caliente.
u = 5,40*10-5/0,16*0,0029 = 0,116 [m/s]
(NRe) = 0,0057*0,116*986,7/529,343*10-6 = 1232
(NPr) = 4179*529,343*10-6/0,650 = 3,40
Juan de Dios Alvarado
(NPe) = L’ u Cp (DF) / k
(NPe) = 0,0057[m]*0,101[m/s]*4180[J/kg.K]*997,9[kg/m3]/0,601[W/m.K] = 3996
Capítulo 7
314
(NPe) = (NRe) (NPr)
(NPe) = 1232*3,40 = 4189
(NNu) = 0,20(1232)0,67(3,40)0,33(529,343*10-6/687,681*10-6)0,2 = 33,45
B) Flujo en contracorriente.
-Fluido frío.
u = 8,28*10-5/4,64*10-4 = 0,178 [m/s]
(NRe) = 0,0057*0,178*997,5/925,748*10-6 = 1093
(NPr) = 4180*925,748*10-6/0,602 = 6,43
(NPe) = 1093*6,43 = 7028
Ts = (23,0+44,8)/2 = 33,9C
μs = 735,773*10-6 [Pa.s]
(NNu) = 0,20(1093)0,67(6,43)0,33(925,748*10-6/735,773*10-6)0,2 = 42,03
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
-Fluido caliente.
u = 5,60*10-5/4,64*10-4 = 0,121 [m/s]
(NRe) = 0,0057*0,121*988,2/607,188*10-6 = 1122
(NPr) = 4176*607,188*10-6/0,640 = 3,96
(NPe) = 1122*3,96 = 4443
(NNu) = 0,20(1122)0,67(3,96)0,33(607,188*10-6/735,773*10-6)0,2 = 33,50
Los cálculos se realizaron según lo indicado por Auth y Loiano (1978), por referirse en forma específica a
intercambiadores de placas; sin embargo, el valor utilizado del diámetro hidráulico medio es prácticamente
igual al término (2b’) de la ecuación (7.2.2.). Los valores calculados con los datos de todas las pruebas están
en la Tabla 7.2.2.
Al hacer un gráfico semilogarítmico con los valores del número de Peclet contra los valores del número de
Nusselt, según se observa en la Figura 7.2.5., existe una relación directa aproximadamente lineal.
Figura 7.2.5. Relación entre el número de Peclet y el nímero de Nusselt
Transferencia de Calor
315
No se realizan comparaciones con los gráficos de Nunge y colaboradores (1967), pues estos fueron obtenidos
considerando como longitud característica la distancia entre placas y con números de Peclet menores, hasta 100
en flujo en paralelo o concurrente, y hasta 1000 en flujo en contracorriente; sin embargo, los valores del número
de Nusselt calculados son más altos que los reportados.
Además según el procedimiento de cálculo utilizado, el número de Nusselt se incrementa a números de Peclet
mayores. Situación diferente a lo observado con números de Peclet bajos. Cuando los valores del número
de Peclet con bajos, el número de Nusselt se incrementa al inicio en forma notoria, y luego ligeramente, o se
mantiene constante en valores de orden de 5 en flujo paralelo, y 7 en flujo en contracorriente.
El cálculo del coeficiente teórico de transferencia de calor convectivo en el lado del fluido frío y caliente, se
realizó considerando el número de Nusselt y el diámetro hidráulico medio, en la forma siguiente:
(NNu) = ĥP L’/ k
A) Flujo en paralelo.
ĥPc=(NNu) k / L’ = 29,10*0,601[W/m.K]/0,0057[m] = 3068 [W/m2.K]
ĥPh = 33,45*0,650/0,0057 = 3814 [W/m2.K]
B) Flujo en contracorriente.
ĥPc = 42,03*0,602/0,0057 = 4439 [W/m2.K]
ĥPh = 33,50*0,640/0,0057 = 3761 [W/m2.K]
Los cálculos corresponden a los datos de las primeras pruebas. Los resultados de todas las pruebas se incluyen
en la Tabla 7.2.3.
Por otro lado, utilizando los datos experimentales de las primeras pruebas y las ecuaciones (7.2.13) y (7.2.12),
se determinaron los coeficientes reales de transferencia de calor por convección, con las áreas calculadas según
el arreglo de placas indicado en las figuras 7.2.3. y 7.2.4.
Tabla 7.2.3. Valores del Coeficiente Real y Teórico de Transferencia de Calor por Convección [W/m2.C] en un Intercambiador
de Placas para el Sistema Agua- Agua
Flujo en paralelo
Fluido frío
Flujo en contracorriente
Fluido caliente
Fluido frío
Fluido caliente
PR
Pt
PR
Pt
PR
Pt
PR
Pt
95
114
225
3068
4489
6069
105
96
144
3814
3926
4073
184
253
391
4439
5816
8113
173
222
285
3761
3652
4004
qc = w Cp (dT)
qc = 4,70*10-5[m3/s]*997,9[kg/m3]*4180[J/kg.C]*(28,1-16,5)[C] = 2274 [W]
qc = ĥPR A (dT)b
ĥPR = qc/A(dT)b = 2274[W]/10*0,156[m3]*(37,6-22,3)[C] = 95 [W/m2.C]
qh = 5,40*10-5*986,7*4179*(58,5-47,2) = 2516 [W]
ĥPR = 2516/10*0,156(52,9-37,6) = 105 [W/m2.C]
Juan de Dios Alvarado
A) Flujo en paralelo.
Capítulo 7
316
B) Flujo en contracorriente.
qc = 8,25*10-5*997,5*4180*(28,0-18,0) = 3440 [W]
ĥPR = 3440/11*0,156*(33,9-23,0) = 184 [W/m2.C]
qh = 5,60*10-5*988,2*4176*(51,8-37,8) = 3235 [W]
ĥPR = 3235/11*0,156(44,8-33,9) = 173 [W/m2.C]
Los valores correspondientes a todas las pruebas están en la Tabla 7.2.3., para establecer comparaciones con
los valores teóricos.
Existen diferencias notorias entre los valores reales y los calculados. En otras palabras, según las condiciones
de las pruebas, el equipo es subutilizado. Se requiere cambiar el flujo y las condiciones de temperatura para
mejorar los coeficientes de transferencia de calor. Lo anterior es un ejemplo de aplicación de estos coeficientes
para controlar el funcionamiento de estos equipos, en especial cuando el flujo está en contracorriente. El
incremento del flujo aumenta la transferencia de calor.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Sin embargo, las diferencias ameritan un análisis más detenido. El método utilizado para establecer los
coeficientes teóricos de transferencia de calor parece no ser adecuado para describir el fenómeno en las
condiciones de trabajo indicadas. El incremento del número de Nusselt ocasiona una sobre estimación de los
coeficientes.
Otra alternativa de cálculo es considerar los gráficos de Nunge y colaboradores (1967), mediante prolongación
de las líneas que definen la relación entre el número de Peclet y el número de Nusselt por la forma asintótica
de la función. Las características del intercambiador de placas utilizado, y los datos registrados, llevan a los
resultados siguientes, calculados con los datos de las primeras pruebas
A) Flujo en paralelo.
H = w2 Cp2 / w1 Cp1
H = 4,70*10-5[m3/s]*997,9[kg/m3]*4180[J/kg.K]/
5,40*10-5[m3/s]*986,7[kg/m3]*4179[J/kg.K]
= 0,88
K’ = k2 / k1
K’ = 0,601[W/m.K]/0,650[W/m.K] = 0,92
δ = b’2 / b’1
δ = 0,0029[m]/0,0029[m] = 1
Según Nunge y colaboradores (1967), (NNu) = 5,1 cuando el (NPe) es mayor que 100.
ĥPc = 5,1*0,601[W/m.K]/0,0029[m] = 1057 [W/m2.K]
ĥPh = 5,1*0,650[W/m.K]/0,0029[m] = 1143 [W/m2.K]
B) Flujo en contracorriente.
Por no existir una función equivalente a las condiciones experimentales, se utilizó el valor más alto del número
de Nusselt 7,5.
ĥPc = 7,5*0,602/0,0029 = 1557 [W/m2.K]
ĥPh = 7,5*0,640/0,0029 = 1655 [W/m2.K]
Se espera que estos valores describan de mejor manera el comportamiento teórico del equipo utilizado; razón
por la cual se los usa para analizar la eficiencia del intercambiador de placas.
Transferencia de Calor
317
Según las ecuaciones (7.2.21), (7.2.19) y (7.2.20):
UA = 1/((1/ĥPc*A)+(1/ĥP h*A))
A) Flujo en paralelo.
UA = 1/((1/1057[W/m2.K]*1,56[m2])+(1/1143[W/m2.K]*1,56[m2])) = 857 [W/K]
(NUT) = UA / (w Cp)mínima
(w Cp)mínima = w2 Cp2 = 196 [W/K]
(NUT) = 857[W/K]/196[W/K] = 4,37
Según la Figura de Kays y London para flujo transversal en los fluidos sin mezclar, presentada por Kreith
(1970):
ε = 75% = 0,75
q = ε (w Cp)mínima (Th1-Tc1)
q = 0,75*196[W/K]*((273,2+58,5)-(273,2+16,5))[K] = 6048 [W]
B) Flujo en contracorriente.
UA = 1/((1/1557*1,716)+(1/1655*1,716)) = 1377 [W/K]
(wCp)mínima = 5,60*10-5*988,2*4176 = 231 [W/K]
H = 231/344 = 0,67
(NUT) = 1337/231 = 5,79
ε = 84% = 0,84
q = 0,84*231(51,8-18,0) = 6559 [W]
En la Tabla 7.2.4. se presentan los valores reales y teóricos del flujo de calor, con el propósito de comparar el
valor esperado en el intercambiador de placas y el determinado con los datos experimentales, para todas las
pruebas.
Tabla 7.2.4. Flujo de Calor [W] Real y Teórico Determinado en el Sistema Agua-agua en Pruebas Realizadas
en un Intercambiador de Placas
Flujo en contracorriente
qRc
qRh
qt
qRc
qRh
qt
2274
2934
5511
2516
2471
3549
6048
7850
8918
3440
3821
5703
3235
3352
4157
6559
5933
7030
En todos los casos, los valores reales son inferiores a los teóricos; en consecuencia, se pueden cambiar las
condiciones de trabajo en este intercambiador incrementando el flujo con la consiguiente disminución de
la diferencia de temperaturas, para conseguir que la temperatura de salida del fluido frío sea pocos grados
centígrados inferior a la temperatura del fluido caliente. Esto conseguiría un mejor rendimiento del equipo que
permita acercarse a los valores teóricos de flujo de calor. Iguales criterios aplican para controlar el normal
funcionamiento de intercambiadores de placas en industrias.
El coeficiente global de transferencia de calor real, puede ser calculado por:
(1/U) = (1/ ĥP Rc) + (1/ ĥP Rh)
(1/U) = (1/95[W/m2.K])+(1/105[W/m2.K]) = 0,020 [m2.K/W]
U = 50 [W/m2.K]
Juan de Dios Alvarado
Flujo en paralelo
Capítulo 7
318
Lalande y Corrieu (1980) señalaron que la resistencia por ensuciamiento, durante la pasteurización de leches, es
del orden de 8*10-4 [m2.K/W] luego de 14400 [s]; en consecuencia se puede calcular con la ecuación (7.2.22),
el cambio en el coeficiente global que se esperaría en el caso de utilizar leche.
(RE) = (1/Uj) - (1/U)
(1/Uj) = (RE) + (1/U) = 8*10-4+0,020 = 0,0208 [m2.K/W]
Uj = 48 [W/m2.K]
BIBLIOGRAFÍA Y REFERENCIAS
Alvarado, J. de D. 1983. Intercambiadores de Calor Utilizados en Alimentos. Universidad Técnica de Ambato,
Ecuador. Escuela de Ingeniería en Alimentos. Serie de Cuadernos Técnicos de Tecnología de Alimentos, 2(1):
12-21.
Auth, W. J. and Loiano, J. 1978. Practical aspects of heat transfer A.I.Ch.E., 24.
Belloin, J. C. 1974. Apuntes de Ingeniería en Alimentos. Conferencias sustentadas en la Facultad de Ingeniería.
Universidad Técnica de Ambato. Ecuador. 52 p.
Earle, R. E. 1968. “Ingeniería de los Alimentos”. Traducido por Alemán, D. J. Zaragoza, España. Editorial
Acribia. p: 97.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Harper, J. 1976. “Elements of Food Engineering”. Westport, Connecticut. AVI Pub. Co. Inc. p: 154-156.
Heldman, D. R. and Singh, P. 1981. “Food Process Engineering”. 2nd. ed. Westport, Connecticut. AVI Pub.
Co. Inc. p: 118-120.
Jackson, A. T. and Lamb, J. 1981. “Calculations in Foods and Chemical Engineering”. London.The MacMillan
Press Ltd. p:45-50.
Kreith, F. 1970. “Principios de Transferencia de Calor”. México. Herrero Hermanos Sucesores S.A. CRAT
p:539-549, 544.
Lalande, M. and Corrieu, G. 1980. Investigations of fouling during heat treatment of milk in a plate heat
exchanger. In: “Food Process Engineering”. V.1. Linko, P.; Malkki, Y. Olkku, J. and Larinkari, J. (Eds). London
Applied Science Publishers Ltd. p: 419-423.
Nunge, R. J.; Porta E. W. and Gill, W. N. 1967. Axial conduction in the fluid stream of multistream heat
exchanger. Chem. Engr. Progr. Symp. Ser. 77-66: 80-91.
Ramos, M. 1984. “Montaje y Puesta en Marcha de un Pasteurizador de Placas”. Tesis de Ingeniero en Alimentos.
Universidad Técnica de Ambato, Facultad de Ciencia e Ingeniería en Alimentos. Ambato, Ecuador. 113 p.
Vian, A. y Ocón, J. 1976. “Elementos de Ingeniería Química”. 5ta. ed. Madrid, España. Ediciones Aguilar.
p: 216-217.
Transferencia de Calor
319
TEMA 7.3. APLICACIÓN DEL COEFICIENTE GLOBAL
DE TRANSFERENCIA DE CALOR PARA CONTROL DEL
FUNCIONAMIENTO DE OLLAS DE COCCIÓN
INTRODUCCIÓN
Los recipientes de ebullición con camisa de vapor, llamados también ollas de cocción, son muy comunes en
la industria de alimentos. Earle (1968) indicó varias consideraciones prácticas para usar estos equipos: En la
camisa debe existir un mínimo de aire con el vapor de agua y que el vapor no sea recalentado, que sea adecuada
la purga del vapor condensado y del aire; que el fluido se mantenga en movimiento sobre la superficie de
transferencia de calor, como ocurre en el caso de agua en ebullición.
La transferencia de calor ocurre por radiación, convección y conducción, o por una combinación de estos tres
modos. En las ollas de cocción con agitación del líquido la transferencia de calor ocurre principalmente por
conducción y convección. Clasificaron a las vasijas con agitación, usadas en operaciones de transferencia de
calor en dos categorías: Vasijas con serpentines internos y vasijas con camisa externa.
Para muchas situaciones prácticas de trabajo con estos recipientes la velocidad promedio de transferencia de
calor en estado estacionario, está definida por la ecuación general siguiente:
Juan de Dios Alvarado
Chapman y Holland (1965) señalaron que la velocidad de transferencia de calor en estos equipos es función
de las propiedades físicas del líquido o producto, de las propiedades físicas del medio de calentamiento o
enfriamiento, de la geometría del recipiente y del grado de agitación en el caso de disponerse de un sistema
para mover el producto.
Capítulo 7
320
q = U A (dT)g + (PC)
(7.3.1)
En esta ecuación, q es la velocidad de transferencia de calor, U es el coeficiente global de transferencia de
calor, A es el área, (dT)g es la diferencia global de temperaturas y (PC) son las pérdidas de calor desde la pared
exterior y desde la superficie o tapa al aire.
Las pérdidas de calor al aire se calculan considerando el área exterior de la olla de cocción y el área de
evaporación, la diferencia de temperaturas y los coeficientes de transferencia de calor por convección y
radiación. En varios casos se usa un coeficiente de transferencia de calor conjunto de 14 [W/m2.K], para las
pérdidas de calor hacia el aire.
En la parte interna de la olla de cocción, si se considera que el calor pasa a través de una superficie en el lado
del vapor, luego a través de la pared de la camisa y finalmente a través de una película superficial en el lado del
agua en ebullición el coeficiente global de transferencia de calor corresponde a:
(1/UA) = (1/hvAv) + (z/kmAm) + (1/haAa)
(7.3.2)
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Expresión en la que h son los coeficientes superficiales de transferencia de calor, z es el espesor de la pared y k
es la conductividad térmica del material del cual está construida la camisa. Los subíndices v, a, y m se refieren
al lado del vapor, del agua y en la mitad del espesor de la pared, respectivamente.
Saravacos y Moyer (1967) trabajaron con pulpas de frutas en una olla de cocción con agitación; indicaron que
la velocidad de calentamiento está influenciada principalmente por las propiedades reológicas. Establecieron
que los coeficientes globales de transferencia de calor variaron desde 767 [W/m2.K] en puré de albaricoque;
hasta 1420 [W/m2.K] en puré de ciruela.
Figura 7.3.1. Resistencia a la transferencia de calor a través de la pared interior de una olla de
cocción hacia un líquido calentándose
Transferencia de Calor
321
Por otro lado, se necesita considerar a las impurezas e incrustaciones que se forman o acumulan con el tiempo
de operación. Constituyen otras resistencias a la transferencia de calor y pueden ser calculadas en base a
los resultados teóricos y experimentales. En la Figura 7.3.1. se presenta un esquema de las resistencias a la
transferencia de calor que se esperaría encontrar en la parte interior de una olla de cocción; sin embargo, la
resistencia por ensuciamiento e incrustaciones, en la pared en contacto con el líquido procesado, puede ser
despreciada por la limpieza constante a la que está sujeta, y la principal resistencia por incrustaciones será en
el lado del vapor por problemas de oxidación.
En las vasijas con camisa exterior se utiliza vapor como medio de calentamiento, el cual circula por el interior
de la cámara que forma la camisa. La condensación de vapor se ha reportado que puede ocurrir por dos formas
diferentes y en ocasiones simultáneamente: condensación en forma de película que, es la más común, y
condensación en forma de gotas.
Charm (1981) reportó la ecuación propuesta por Brown para el cálculo del coeficiente de transferencia de calor
en la condensación de vapor saturado en forma de película sobre superficies verticales.
hv = 1,13(kf3(DF)f2gY/Lμf(Tsv-Ts))0,25
(7.3.3)
Donde, kf es la conductividad térmica, (DF)f es la densidad del fluido, g es la aceleración debida a la gravedad,
Y es el calor latente de condensación, L es la longitud de la superficie vertical, μf es la viscosidad cuando se
trabaja con fluidos Newtonianos, Tsv es la temperatura del vapor saturado y Ts es la temperatura en la superficie.
El subíndice f se refiere a las propiedades del agua condensada consideradas a la temperatura media de película
del condensado, definida por:
Tf = Tsv - 0,75(Tsv-Ts)
(7.3.4)
Señaló que una ecuación equivalente a la propuesta por Brown es la siguiente:
hv = 1,18(kf3(DF)f2gπD/μfwv)1/3
(7.3.5)
Además de los términos definidos, D es el diámetro y wv es la masa de agua condensada por unidad de tiempo.
Para el caso de evaporadores, Bourgois y Le Maguer (1987) indicaron que el coeficiente de transferencia de
calor para el lado del vapor, puede ser estimado con la ecuación propuesta por Perry y Green.
hv = (0,925 k/L)(L3(DF)2g/μw’)0,33
(7.3.6)
Donde w’ es la velocidad de flujo másico de condensado por unidad de perímetro, definida por:
w’ = w / π D
(7.3.7)
Las ollas de cocción utilizadas para alimentos se construyen generalmente con acero inoxidable. Se encuentran
tabulados valores de la conductividad térmica de metales y otros materiales; para el caso de acero inoxidable,
un valor de 15 [W/m.K] puede ser utilizado, si no se dispone de información más específica.
Pitts y Sissom (1979) indicaron que el comportamiento de un fluido durante la ebullición depende en gran
medida del “exceso de temperatura”, dT = Ts-Ta, medido a partir de la temperatura de ebullición del fluido.
Se han establecido seis regímenes diferentes para la ebullición en recipientes. Régimen 1, el calor se transfiere
por convección libre. Régimen 2, empiezan a aparecer burbujas en la superficie de calefacción y suben en
Juan de Dios Alvarado
Las propiedades físicas del líquido deberán ser registradas a la temperatura de saturación.
Capítulo 7
322
forma individual hasta la superficie libre. Régimen 3, la acción de la ebullición se hace tan fuerte que las
burbujas individuales se unen para formar una columna de burbujas de vapor que llega hasta la superficie
libre. Hasta este punto hay un incremento en la velocidad de transferencia de calor; luego, en los regímenes
siguientes, a mayor exceso de temperatura la ebullición no ocurre en núcleos, pues se forma una película y se
reduce el flujo de calor, para, por último nuevamente incrementarse a temperaturas muy altas. La ebullición en
forma de núcleos, regímenes 2 y 3, es la más importante en el caso de las ollas de cocción.
Charm (1981) presentó un gráfico para evaluar los coeficientes de transferencia de calor para líquidos en
ebullición como función del exceso de temperaturas. La información corresponde a tubos horizontales; sin
embargo, constan datos para el agua a diferentes temperaturas que pueden ser considerados para el caso de
ollas de cocción. Por técnicas de regresión se estableció la función siguiente, que se aplica entre 4 y 35F.
log ha’ = 1,6536 + 1,5301 log (dT)
(7.3.8)
En esta ecuación el valor de ha’ está en [BTU/h.pie2.F] y el exceso de temperatura o diferencia de temperaturas
en [F].
Este coeficiente de transferencia de calor se corrige para una presión P, mediante la relación indicada por Pitts
y Sisson (1979):
ha = ha’ (P/P’)0,4
(7.3.9)
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Donde P’ es la presión atmosférica normal.
Kreith (1970), señaló que los fenómenos de transferencia de calor en la ebullición son considerablemente más
complejos que aquellos de convección sin cambio de fase. Además de todas las variables asociadas con la
convección, también son apropiadas aquellas asociadas con el cambio de fase. Para el caso de ebullición en
núcleos en un recipiente, reportó la ecuación siguiente como la más conveniente para la reducción y correlación
de datos experimentales:
(Cp(dT)/Y(NPr)1,7) = B((q/AμY)(I Γ/g((DL)-(DV)))0,5)0,33
(7.3.10)
Donde, Cp es el calor específico del líquido saturado, (dT) es la diferencia o exceso de temperaturas, Y es
el calor latente de vaporización, (NPr) es el número de Prandtl del líquido saturado, q es el flujo de calor, A
es el área, μ es la viscosidad del líquido, I es un factor de conversión de unidades para la gravedad, g es la
aceleración de la gravedad, (DL) es la densidad del líquido saturado, (DV) es la densidad del vapor saturado,
Γ es la tensión superficial en la superficie intermedia líquido-vapor según la temperatura, y B es una constante
empírica que depende de la naturaleza de la combinación superficie calefactora-fluido, su valor varía de un
sistema a otro según el material.
Las variables más importantes que afectan a B son: La rugosidad de la superficie caliente, que determina el
número de lugares donde se forman los núcleos a una temperatura dada; el ángulo de contacto entre la burbuja
y la superficie caliente, que es una medida de cómo un fluido particular moja una superficie. En ausencia de
información cuantitativa sobre el efecto de la mojabilidad y condiciones de la superficie, sobre la constante B,
su valor debe determinarse en forma empírica para cada combinación fluido-superficie.
Chilton y colaboradores (1974) trabajaron en una vasija con agitación, utilizaron cuatro líquidos: agua, dos
aceites y glicerina. Para el caso de recipientes con camisa de vapor presentaron la correlación siguiente, que
incluye el coeficiente de transferencia de calor en el lado del líquido en un amplio intervalo de velocidades de
agitación:
(ha’D/k)(μs/μ)0,14/(Cpμ/k)1/3 = 0,36((LA)2Ω(DF)/μ)2/3
(7.3.11)
Además de los términos definidos, (LA) es la longitud de las paletas del agitador y Ω es la velocidad de
Transferencia de Calor
323
rotación en revoluciones por hora.
Una ecuación similar fue establecida por Cummings y West (1950), para estos equipos con agitación:
(ha’D/k)(μs/μ)0,14/(Cpμ/k)1/3 = 0,40((LA)2Ω(DF)/μ)2/3
(7.3.12)
OBJETIVOS
En un recipiente con camisa de vapor calcular el coeficiente global de transferencia de calor, durante la
evaporación de agua y compararlo con el determinado en base a datos experimentales.
Calcular el valor de la resistencia a la transferencia de calor por ensuciamiento e incrustaciones.
Analizar la conveniencia de usar la ecuación modificada propuesta por Charm (7.3.5) para condensación de
vapor, y establecer la posible utilización de la ecuación de Perry y Green (7.3.6).
Comprobar el valor del exponente 0,33 de la ecuación (7.3.10) y determinar los valores de la constante B.
Comparar los valores experimentales y calculados del coeficiente de transferencia de calor por convección en
el interior del recipiente, para la superficie en contacto con el líquido.
Utilizar a los coeficientes de transferencia de calor, para control de las condiciones de funcionamiento de estos
equipos.
MATERIALES Y MÉTODO
Preparar una olla de cocción de forma que se pueda regular el ingreso del vapor, registrar la presión y la
temperatura. En la salida del condensado, adaptar una manguera para recogerlo en un recipiente con agua, por
diferencia de peso establecer la cantidad de vapor utilizada. Consultar el material de construcción y el espesor
de la pared interior. Medir el diámetro y la altura del recipiente, para el cálculo del área de transferencia de
calor.
Llenar con agua el recipiente hasta la altura medida, calentar con vapor hasta ebullición, registrar la temperatura
del agua y de las paredes. Regular el ingreso de vapor a una presión de 0,50 atmósferas manométricas y
empezar a recoger condensado; continuar el trabajo por 1,5 horas o más, con el cuidado de añadir cantidades
conocidas de agua en ebullición en el recipiente, para compensar el agua evaporada.
Repetir el procedimiento, regulando la presión de entrada del vapor a 1,5 y a 2,5 atmósferas manométricas.
En el caso que la ebullición no permita observar el nivel del líquido para compensar el agua evaporada; calcular
el volumen eliminado, según la diferencia de nivel al inicio y al final de la experiencia.
Para cada prueba, calcular por el método de ensayo y error el coeficiente global de transferencia de calor,
utilizar las ecuaciones indicadas y la Tabla 2.2.2., para evaluar las propiedades físicas y térmicas del agua.
Con el dato de la cantidad de vapor condensado utilizar la ecuación (7.3.1), para calcular el coeficiente global
de transferencia de calor experimental.
En base a la cantidad de agua evaporada calcular el coeficiente global de transferencia de calor experimental,
U.
Tabular los valores de U calculados y experimentales. Compararlos y discutir los resultados.
Juan de Dios Alvarado
CUESTIONARIO
Capítulo 7
324
Utilizar el dato promedio de los valores de U experimentales, relacionarlo con el valor teórico para calcular la
resistencia por ensuciamiento (RE). Discutir los resultados.
(RE) = (1/Ux) - (1/U)
(7.3.13)
Con los datos experimentales del vapor condensado, calcular hv para cada presión de trabajo con la ecuación
(7.3.5); compararlos con los calculados, según la ecuación (7.3.6), para establecer si la ecuación de Perry y
Green es adecuada para el caso de ollas de cocción.
Para cada prueba, considerar los datos experimentales de evaporación del agua y representar en escalas
logarítmicas la ecuación (7.3.10); determinar el valor de la pendiente y compararlo con el indicado en la
ecuación. Calcular el valor de B, según el punto de corte en ordenadas para el sistema considerado. Discutir
los resultados.
Analizar la conveniencia de utilizar agitación, según las ecuaciones (7.3.11) y (7.3.12), para mejorar el coeficiente
de transferencia de calor por convección en el lado del agua o del producto, y destacar su importancia práctica.
RESULTADOS EXPERIMENTALES
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Primer caso
Se utilizó una olla de cocción de acero inoxidable con una capacidad aproximada de 50 litros. Según la casa
fabricante, el espesor de la pared interna en contacto con el líquido es 0,0016 [m]. El recipiente interno tiene
la forma de una media esfera con las dimensiones siguientes: altura 0,405 [m], diámetro interior 0,577 [m].
Cuando se trabajó con agua en ebullición hasta una altura del orden de 0,25 [m], con la adición de agua caliente
durante la fase experimental para mantener el volumen constante, en distintas pruebas realizadas en años
diferentes, se obtuvieron los datos indicados en la Tabla 7.3.1.
Tabla 7.3.1. Datos Registrados en una Olla de Cocción Durante Pruebas de Transferencia de Calor en Estado Estacionario
con Agua en Ebullición.
Tiempo
[h]
[s]
Altura
del
agua
Vapor
Presión
absoluta*
Temperatura
[m]
[kPa]
[C]
Agua
Condensado
[cm3]
[kg]
Temperatura
[C]
96
3650
3,51
91
0,208
112,0
0,50
1800
12100
11,62
92
1,00
3600
0,279
142,9
98
163,2
99
14150
13,57
92
1,00
3600
0,279
12,85
91
206,8
101
13425
1,00
3600
0,279
91
5400
0,254
219,1
101
17000
16,27
1,50
109
18600
17,71
91
0,250
244,2
1,50
5400
91
16800
15,49
1,50
5400
0,254
268,1
110
0,250
284,8
112
19700
18,70
91
1,50
5400
19450
19,10
91
317,2
115
1,50
5400
0,254
20,70
91
1,50
5400
0,254
355,7
122
22000
*
Corresponde a la presión manométrica más la presión atmosférica medida en Ambato, 71,994 [kPa].
Añadida
[cm3]
[kg]
2750
7575
7950
8674
10370
14850
14250
12650
15780
18350
2,65
7,31
7,67
8,37
10,01
14,33
13,75
12,21
15,05
17,71
La temperatura registrada en el vapor no es igual a la del vapor saturado, según el dato de la presión. Con el
primer conjunto de datos, para una presión de 112,0 [kPa] corresponde una temperatura de 103C, superior
a 96C registrado. Singh y Heldman (1984) indicaron que existe una condición entre el líquido saturado y
el vapor saturado, en la que se presenta una mezcla de líquido y vapor que representa la transición debida al
Transferencia de Calor
325
cambio de fase. La extensión del progreso del cambio de fase se conoce como “calidad del vapor”; se expresa
como porcentaje e indica el calor contenido en la mezcla vapor-líquido. La baja calidad del vapor, por la
presencia de agua líquida, explicaría la observación de la diferencia de temperaturas.
El cálculo del coeficiente global de transferencia de calor se realiza por el método de ensayo y error. Se requiere
estalecer una temperatura de superficie en la pared en contacto con el líquido, calcular los coeficientes de
película, el coeficiente global de transferencia de calor y el flujo de calor. La ecuación general de transferencia
de calor en estado estacionario permite comprobar la validez del valor establecido cuando se igualan las
temperaturas.
Se fija una temperatura en la superficie de 93C y se calcula el coeficiente de transferencia de calor por
convección. En el lado del agua en ebullición se obtiene.
log ha’ = 1,6536 + 1,5301 log (dT)
log ha’ = 1,6536+1,5301 log((93-91)*1,8)
log ha’ = 2,5048
ha’ = 320 [BTU/h.pie2.F] = 1817 [W/m2.K]
ha = ha’(P/P’)0,4
ha = 1817(71,994/101,35)0,4 = 1585[W/m2.K]
Para el cálculo del coeficiente de transferencia de calor por convección en el lado del vapor, se considera como
primera aproximación que la temperatura de superficie corresponde al valor asumido.
Tf = Tsv - 0,75(Tsv-Ts)
Tf = 96 - 0,75(96-93) = 93,8C
Las propiedades del condensado a la temperatura de película se obtienen por interpolación de los valores
indicados en la Tabla 2.2.2. (DF)f = 962,7 [kg/m3], kf = 0,680 [W/m.K] y μf = 296,984 *10-6 [Pa.s]
El calor latente de vaporización se calcula con la ecuación:
Y = (2513,013-2,623Tf)1000
Y = (2513,013-2,623(93,8))*1000 = 2266976 [J/kg]
(7.3.14)
La altura del agua en el recipiente (L) para esta prueba es 0,208 [m]; en consecuencia:
hv = 1,13 (kf3(DF)f2 g Y / L μf (Tsv-Ts))0,25
hv = 1,13 ((0,680)3(962,7)2(9,81)(2,267*106)/(0,208)(296,984*10-6)(96-93))0,25
hv = 15453 [W/m2.K]
(1/UA) = (1/hvAv) + (z/kmAm) + (1/haAa)
Por las dimensiones y considerando que el recipiente tiene la forma de un casquete esférico, las áreas son:
A = 2π R L
Av = 2*3,1416*0,2901*0,208 = 0,3791 [m2]
Am = 2*3,1416*0,2893*0,208 = 0,3781 [m2]
Aa = 2*3,1416*0,2885*0,208 = 0,3770 [m2]
(7.3.15)
Juan de Dios Alvarado
El coeficiente global de transferencia de calor es definido por:
Capítulo 7
326
Por reemplazo:
(1/UA) = (1/15453*0,3791)+(0,0016/15*0,3781)+(1/1585*0,3770)
(1/UA) = 1,707*10-4+2,821*10-4+1,674*10-3 = 2,1268*10-3 [K/W]
UA = 470 [W/K]
El flujo de calor es:
q = UA(dT)g
q = 470 [W/K](96-91)C = 2350 [W]
En estado estacionario debe cumplirse:
q = UA(dT)g = hvAv(Tsv-Ti) = kmAm(Ti-Ts)/z = haAa(Ts-Ta)
2350[W] = haAa(Ts-Ta) = 1585[W/m2.C]*0,3770[m2]*(Ts-91)[C]
Ts = 94,9C
(7.3.16)
Este valor es diferente del fijado para la temperatura de superficie, 93,0C. Se necesita considerar otros valores
y repetir los cálculos hasta la igualdad.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Con el propósito de utilizar la ecuación (7.3.1), para cuantificar el coeficiente global de transferencia de calor
experimental considerando el vapor utilizado, se requiere calcular las pérdidas hacia el ambiente desde la pared
metálica exterior y desde la superficie de agua.
(PC) = (h+hr)Ae(Te-TA) + hsAs(Ta-TA)
(PC) = 14[W/m2.C]*2*3,1416*0,3053[m]*0,3053[m]*(93-25)C +
2,4493(66)0,25[W/m2.C]*3,1416*(0,2885)2[m2]*(91-25)C
(PC) = 558 + 120 = 678 [W]
(7.3.17)
Al usar el dato de la cantidad de vapor condensado, se obtiene:
q = UA (dT)g + (PC)
q = Mv Y / t
(7.3.18)
q = 3,51[kg]*2267534[J/kg]/1800[s] = 4422[W]
(UA)xv = (q-(PC))/(dT)g
(UA)xv=(4422-678)[W]/(96-91)[C] = 749[W/C o W/K]
Con el dato de la cantidad de agua evaporada se obtiene:
q = Ma Y / t
q = 2,65[kg]*2280596[J/kg]/1800[s] = 3358[W]
(UA)xa = q / (dT)g
(UA)xa=3358[W]/(96-91)[C] = 672[W/C o W/K]
Un valor promedio del coeficiente global es:
(ŪA)x = (749+672)/2 = 711[W/C o W/K]
(7.3.19)
Transferencia de Calor
327
Según los datos de esta prueba, la resistencia por incrustaciones en el lado de la chaqueta que contiene el vapor
con una área de 0,3791 [m2], se calcula con:
(RE) = (1/Ūx)) - (1/(U))
(RE) = (1/1872) - (1/2161) = 7,14*10-5 [m2.K/W]
Los resultados de los cálculos realizados con los datos de las diferentes pruebas, constan en la Tabla 7.3.2.
Tabla 7.3.2. Valores Calculados y Experimentales del Coeficiente Global de Transferencia de Calor en una Olla de Cocción.
CALCULADOS
Ts
ha
[C]
94,23
95,60
95,93
95,78
95,79
97,43
97,60
97,93
98,37
99,34
hv
EXPERIMENTALES
U
[W/m .K]
2
3296
3886
4456
6000
6026
9453
9828
10583
11650
14057
18767
16452
15581
13710
14046
12172
12002
11857
11621
11601
2161
2358
2534
2894
2914
3403
3437
3512
3599
3799
q
Agua evaporada
Condensado
x
(RE)
[W]
Ux
[W/
m2.K]
q
[W]
Ux
[W/
m2.K]
q
[W]
[W/
m2.K]
[m2.K/W]
4074
7154
8972
14635
13419
27759
30064
33423
39780
54223
1776
1520
1367
1046
916
740
662
540
574
522
3348
4612
4840
5288
4216
6035
5791
5142
6339
7459
1968
2161
2190
1440
1311
801
642
726
639
532
3731
6593
7797
7322
6071
6569
5646
6944
7077
7641
1872
1840
1779
1243
1113
770
652
633
605
527
7,1358*10-5
1,1918*10-4
1,6761*10-4
4,5916*10-4
5,5498*10-4
1,0042*10-3
1,2430*10-3
1,2951*10-3
1,3744*10-3
1,6325*10-3
En todos los casos, los valores calculados del coeficiente global de transferencia de calor son superiores a los
obtenidos en base a los datos experimentales del agua evaporada y del vapor condensado. Lo anterior se explica
en parte, pues en el cálculo no se considera la resistencia por ensuciamiento o incrustaciones, que se forma en
un equipo que trabaja por varios años.
Como aspecto interesante, los cálculos teóricos establecen un incremento en la transferencia de calor conforme
aumenta la presión de ingreso del vapor; sin embargo, la tendencia no se mantiene en los datos experimentales
con variaciones pequeñas e irregulares en el flujo de calor.
Hall y colaboradores (1978), para el caso de ollas de cocción en evaporación, presentaron un valor aproximado
del coeficiente global de transferencia de calor de 2840 [W/m2.K]. Este valor es similar a los valores calculados.
Los valores establecidos con los datos experimentales son menores: se aproximan a los valores reportados por
Saravacos y Moyer (1967) en pruebas con purés de frutas. Se puede manifestar que en el equipo utilizado existe
una resistencia adicional al paso de calor.
Perry (1963) señaló que el uso de factores por ensuciamiento debe ser considerado arbitrario. Presentó datos
referenciales, para el caso de vapores que se condensan; están en un intervalo de 1,763*10-4 a 3,526*10-4
[m2.K/W]. Al comparar estos valores con los indicados en la Tabla 7.3.2., se establece que son del mismo orden
a presiones bajas. El valor de esta resistencia es mayor cuando se trabaja con presiones de vapor mayores. Se
confirma la disminución de la eficiencia del equipo, hasta llegar a ser uno de los obstáculos principales para la
transferencia de calor.
Según Charm (1981), la ecuación (7.3.5) calcula el coeficiente de película en el lado del vapor, considerando
la cantidad de condensado en un determinado tiempo. La ecuación:
Juan de Dios Alvarado
La disminución del coeficiente global de transferencia de calor, observada en las diferentes pruebas, conforme
se incrementa la presión de entrada de vapor, es útil para controlar y mejorar el funcionamiento del equipo. Se
aprecia que trabajar a presiones manométricas superiores a una atmósfera, no es conveniente en este equipo, ya
que conduce a una pérdida y desperdicio de vapor.
Capítulo 7
328
hv = 1,18(kf3(DF)f2gπD/μfwv)1/3
Requiere el conocimiento de las propiedades térmicas a la temperatura de película. Considerando el primer
conjunto de datos, la temperatura de superficie en el lado del vapor (Ts’) se calcula de la manera siguiente:
q = UA(dT)g = hvAv(Tsv-Ts’)
4074[W] = 18767[W/m2.C]*0,3791[m2]*(96-Ts’)[C]
Ts’ = 95,43 C
En consecuencia:
Tf = Tsv - 0,75(Tsv-Ts’)
Tf = 96-0,75(96-95,43) = 95,57C
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Las propiedades térmicas se calculan con las ecuaciones de regresión siguientes.
kf = 0,558+2,1*10-3Tf-8,535*10-6Tf2
kf = 0,558+2,1*10-3*95,57-8,535*10-6(95,57)2 = 0,681[W/m.K]
(7.3.20)
(DF)f = 1001,187-0,137Tf-0,003Tf2
(DF)f = 1001,187-0,137*95,57-0,003(95,57)2 = 960,7[kg/m3]
(7.3.21)
μf = 1,8877*10-6exp(1838,6/(Tf+273,2))
μf = 1,8877*10-6exp(1838,6/(95,57+273,2)) = 2,762*10-4[Pa.s]
(7.3.22)
La ecuación para el cálculo de la viscosidad corresponde al modelo de Arrhenius, según los datos experimentales
del agua.
Por reemplazo en la ecuación (7.3.5):
hv = 1,18((0,681)3(960,7)2*9,81*3,1416*0,577/2,762*10-4(3,51/1800))0,33
hv = 24851[W/m2.K]
Por otro lado, la ecuación propuesta por Perry y Green (7.3.6), es:
hv = (0,955 k/L)(L3(DF)2 g/μw’)0,333
w’ = w/πD
w’ = 3,51[kg]/1800[s]*3,1416*0,577[m] = 1,076*10-3[kg/m.s]
kv = 0,558+2,1*10-3*96-8,535*10-6(96)2 = 0,681[W/m.K]
(DF)v = 1001,187-0,137*96-0,003(96)2 = 960,4[kg/m3]
μv = 1,8877*10-6exp(1838,6/(96+273,2)) = 2,746*10-4[Pa.s]
hv = (0,955*0,681/0,208)((0,208)3(960,4)2*9,81/2,746*10-4*1,076*10-3)0,333
hv = 3,127[W/m2.K]*6451
hv = 20173[W/m2.K]
Los valores del coeficiente de transferencia de calor por convección en el lado del vapor, calculados con las
distintas ecuaciones para todas las pruebas son:
Se conoce que los coeficientes de transferencia de calor en el caso de vapor de agua que se condensa, son altos.
Perry (1963) presentó como factor base un valor de 20385 [W/m2.K], para la condensación de vapor de agua
sobre tubos horizontales a 93,3C. En tubos verticales los valores son más bajos, para las condiciones indicadas
de trabajo. Según la Carta 10-12 los valores del coeficiente de transferencia de calor para condensación en
Transferencia de Calor
329
película de vapor de agua, están entre 8000 y 14000 [W/m2.K].
Brown (7.3.3)
[W/m2.K]
18767
16452
15581
13710
14046
12172
12002
11857
11621
11601
Charm (7.3.5)
[W/m2.K]
Perry y Green (7.3.6)
[W/m2.K]
24851
21157
20159
20624
21844
21739
22784
21522
21529
21334
20173
17206
16414
16865
17846
17941
18834
17827
17902
17862
Según lo anterior, la ecuación de Brown realiza las mejores estimaciones. La aplicación de la ecuación de
Charm conduce a sobrevalorar este coeficiente. Sin embargo, la ecuación de Perry y Green puede ser utilizada
para cálculos en ollas de cocción, considerando el hecho de que la resistencia a la transferencia de calor es
baja en el lado del vapor, con relación a la resistencia en el lado del líquido. La ventaja de utilizar esta última
ecuación radica en que se requiere menos información y se trabaja con datos registrados en las pruebas, como
son la temperatura del vapor y la cantidad de condensado. Al ser una ecuación que depende en mayor extensión
de datos experimentales, también puede ser utilizada para controlar el funcionamiento del equipo en el lado
del vapor.
En la Figura 7.3.2. está representada la ecuación (7.3.10) en la forma:
Figura 7.3.2. Correlación de datos para ebullición en un recipiente de cocción por el método
de Roshsenow.
La línea continua corresponde a los datos originales de Rohsenow, reportados por Kreith (1970), y se incluyen
los valores calculados según la cantidad de agua evaporada en la olla de cocción. Se aprecia que la linealidad
Juan de Dios Alvarado
log((q/AμY)(I Γ/g((DL)-(DV)))0,5) contra log(Cp(dT)/Y(NPr)1,7)
Capítulo 7
330
prevista por el modelo se cumple de manera adecuada (r=0,967); sin embargo, no se confirma el valor del
exponente 0,33, que con estos datos es 1,18. El valor de la constante B es 0,115. Se requiere un mayor número
de pruebas para definir valores más consistentes con la ecuación representada, en especial con flujos de calor
mayores.
Segundo caso
Cuando se trabajó en un equipo nuevo, de construcción artesanal, de forma cilíndrica con fondo redondeado
de las dimensiones siguientes: diámetro exterior del cilindro 0,421 [m], diámetro interior 0,415 [m], espesor
de la lámina de acero inoxidable 0,003 [m] y con una altura del nivel del agua hasta 0,494 [m]; se obtuvieron
los datos indicados en la Tabla 7.3.3.
Tabla 7.3.3. Datos Registrados en una Olla de Cocción Cilíndrica Durante Pruebas de Transferencia de Calor en Estado
Estacionario con Agua en Ebullición.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Tiempo
Vapor
Agua
Presión absoluta
Temperatura
Condensado
Temperatura
Añadida
[s]
[kPa]
[C]
[cm3]
[kg]
[C]
[cm3]
[kg]
3600
3600
3600
89,2
106,5
123,7
94,2
95,0
96,2
8520
20250
33650
8,20
19,48
32,34
91,5
91,5
91,5
7300
17700
28550
7,04
17,07
27,53
Cálculos similares a los indicados en el primer caso, con la modificación del programa de computadora para
el cálculo de las áreas y los coeficientes de transferencia de acuerdo con la forma y dimensiones indicadas,
permitieron elaborar la Tabla 7.3.4.
Se destaca que en el intervalo de presiones de ingreso de vapor, trabajar a presiones mayores mejora el
coeficiente global de transferencia de calor, según la tendencia registrada en los valores calculados. Los
valores experimentales son superiores a los registrados en el primer caso, situación que se explica por ser un
equipo nuevo con mínima resistencia por ensuciamiento; sin embargo, estos valores permiten pensar en la
conveniencia de mejorar el diseño para elevar el coeficiente global y la transferencia de calor. Una alternativa
es cambiar la forma del recipiente.
Tabla 7.3.4. Valores Calculados y Experimentales del Coeficiente Global de Transferencia de Calor en una Olla de
Cocción Cilíndrica.
CALCULADOS
EXPERIMENTALES
Agua evaporada
Condensado
x
(RE)
[W/m .K]
Ux [W/m .K]
Ux [W/m .K]
[W/m .K]
[m2.K/W]
1741
2313
2499
1418
1774
1984
1556
1985
2300
1487
1880
2142
9,975*10-5
9,978*10-5
6,671*10-5
Ts
U
[C]
94,4
95,3
96,4
2
2
2
2
COMENTARIO
El procedimiento indicado es común para evaluar el funcionamiento de equipos de transferencia de calor. El
uso de ecuaciones específicas permitirá un ajuste más adecuado de los datos. El propósito fundamental de los
resultados presentados es señalar los pasos requeridos para utilizar los coeficientes de transferencia de calor,
como herramientas de control o de diseño en recipientes con camisa de calentamiento.
Transferencia de Calor
331
BIBLIOGRAFÍA Y REFERENCIAS
Bourgois, J. and Le Maguer, M. 1987. Heat-transfer correlation for upward liquid film heat transfer with phase
change: Application in the optimization and design of evaporators. J. Food Eng. 6: 291-300.
Cummings, G. H. and West, A. S. 1950. Heat transfer data for kettles with jackets and coils. Ind.Eng.Chem.,
42(11):2303-2313.
Chapman, F. S. and Holland, F. A. 1965. Heat-transfer correlations for agitated liquids in process vessels.
Chem. Eng., 72(4): 153-158.
Charm, S. E. 1981. “The Fundamentals of Food Engineering”. 3ra. ed. Westport, Connecticut. AVI Pub. Co.
Inc. p: 119-188.
Chilton, T. H.; Drew, T. B. and Jebens, R. H. 1944. Heat transfer coefficients in agitated vessels. Ind. Eng.
Chem., 36(6):510-516.
Earle, R. E. 1968. “Ingeniería de los Alimentos”. Traducido por D. José Alemán Vega. Zaragoza, España.
Editorial Acribia. p: 71-138.
Hall, C. W.; Farrall, A. W. and Rippen, A. L. 1978. “Encyclopedia of Food Engineering”. V.1. Westport,
Connecticut. AVI Pub. Co. Inc. p: 393.
Kreith, F. 1970. “Principios de Transferencia de Calor”. Traducido por Fernando Vásquez D. México,
México. Editorial Herrero Hnos. Suc., S. A. p: 470-523.
Perry, J. H. 1963. “Chemical Engineers’ Handbook”. 4th. ed. Tokyo, Japan. Mc Graw Hill Book Company.
10-19,20.
Pitts, D. R. y Sisson, L. E. 1979. “Transferencia de Calor”. Serie Schaum. Traducido por Santiago Gamboa.
Bogotá, Colombia. Editorial Mc Graw Hill Latinoamericana S. A. p: 216-238.
Saravacos, G. D. and Moyer, J. C. 1967. Heating rates of fruit products in an agitated kettle. Food Technol.,
21: 372-376.
Juan de Dios Alvarado
Singh, R. P. and Heldman, D. R. 1984. “Introduction to Food Engineering”. Orlando, Florida. Academic Press,
Inc. p: 60-90.
Capítulo 7
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
332
TEMA 7.4. APLICACIÓN DE LOS FUNDAMENTOS DE CONDUCCIÓN
DE CALOR DE ESTADO INESTABLE PARA CALCULAR CAMBIOS
DE TEMPERATURA EN PAPAS
INTRODUCCIÓN
Cuando la transferencia de calor depende del tiempo se denomina estado transitorio o estado inestable de
transferencia de calor. Este caso algo más complejo de transferencia ocurre en muchos de los procesos de
calentamiento y enfriamiento, durante la industrialización y comercialización de alimentos.
Según Heldman (1970), una de las claves para la evaluación de estos problemas está en definir la importancia
relativa de las resistencias interna y externa a la transferencia de calor. Para conocer la importancia de estos
factores se utiliza el número de Biot, definido por:
(NBi) = h l / k
(7.4.1)
Donde h es el coeficiente de transferencia de calor en la interfase producto-medio, l es la dimensión característica
del producto según la geometría considerada y k es la conductividad térmica del producto o alimento.
Cuando el número de Biot es pequeño, inferior a 0,1, la situación se denomina de resistencia interna despreciable;
según la ecuación (7.4.1) el coeficiente de transferencia de calor deberá ser muy bajo y la resistencia externa
predomina sobre la resistencia interna. Cuando el número de Biot está entre 0,1 y 40,0, la resistencia externa
y la resistencia interna determinan la transferencia de calor y requieren ser consideradas en conjunto. Cuando
el número de Biot es superior a 40,0, la resistencia interna es predominante con respecto a la transferencia
externa de calor; en esta situación el coeficiente de transferencia exterior deberá ser lo suficientemente alto,
para no constituir una resistencia apreciable y el caso se denomina de resistencia externa despreciable. Durante
Transferencia de Calor
333
el almacenamiento de alimentos, es común encontrar las dos primeras situaciones.
La ecuación general utilizada para el caso de resistencia interna despreciable, considerando que la temperatura
interna es uniforme en todo el material, es:
((T-Tm)/(T0-Tm)) = exp-(hA/Cp(DF)V)t
(7.4.2)
La cual escrita en términos de números adimensionales, tiene la siguiente forma:
((T-Tm)/(T0-Tm)) = exp-((NBi)(NFo))
(7.4.3)
Donde (NFo) es el número o módulo de Fourier, definido por:
(NFo) = (αt/l2) = (kt/(DF)Cpl2)
(7.4.4)
La ecuación (7.4.2) fue modificada, para introducir el término f, un factor de tiempo que representa la velocidad
de cambio de temperaturas, y el término j, que es un factor de corrección por temperaturas.
log(T-Tm) = -(t/f) + log j (T0-Tm)
(7.4.5)
Pflug y colaboradores (1965), desarrollaron gráficos para determinar estos parámetros de calentamiento y
enfriamiento como función del número de Biot, para su reemplazo en la ecuación (7.4.5). Las funciones
correspondientes a la forma esférica, obtenidas por técnicas de regresión son:
log(fα/R2) = -0,0437 - 0,9175 log(NBi)
j = 1,04 + 0,2194(NBi) - 0,0316(NBi)2
(7.4.6)
(7.4.7)
Que se aplican entre valores del número de Biot de 0,1 a 1,0 y facilitan el cálculo rápido de la temperatura a
diversos tiempos, en forma específica para el centro geométrico del objeto.
Sin embargo, ciertos alimentos redondos no presentan forma esférica; su forma se asemeja más a un elipsoide,
en cuyo caso aplica lo indicado por Smith y colaboradores (1967), quienes propusieron el uso de un índice
geométrico, G’, que puede ser calculado por:
G’ = 0,25+(3/8(A’)2)+(3/8(C’)2)
(7.4.8)
A’ = a’ / l’
C’ = c’ / l’
(7.4.9)
(7.4.10)
Donde:
El término a’ corresponde a la mitad del ancho en el centro, c’ es la mitad del largo de un eje que pasa por el
centro y l’ es la mitad del alto en el centro. La dimensión menor es la distancia característica del objeto.
(r/R) = (G’)0,14 - 0,25
(7.4.11)
Existen varias ecuaciones desarrolladas para el cálculo de la transferencia de calor en estado inestable. Cuando
la forma del producto es esférica, Heldman (1970) presentó la ecuación siguiente, que aplica para todas las
localizaciones excepto el centro geométrico.
((T-Tm)/(T0-Tm)) = (2/π)(R/r)
∞
Ʃ (((-1)
n+1
n=1
/n)(sen(nπr/R))(exp-(n2π2αt/R2)))
(7.4.12)
Juan de Dios Alvarado
Smith y colaboradores (1967) establecieron que el sitio en el cual debe ser medida la temperatura másica
promedio del objeto, varía con el índice geométrico, y puede ser calculado por:
Capítulo 7
334
Las principales suposiciones para obtener esta ecuación, a partir de la ecuación básica de transferencia de calor
por conducción en un sólido isotrópico, sin considerar el término correspondiente a la energía interna, son: Que
el objeto tiene una temperatura uniforme en toda su masa, y que el objeto es expuesto en forma instantánea a
la temperatura del medio de calentamiento o enfriamiento al tiempo cero. Se espera que el uso de la ecuación
(7.4.12) permita realizar cálculos más precisos.
La papa (Solanum tuberosum) es uno de los cultivos principales de la región andina. Para su almacenamiento
conviene utilizar el frío natural prevalente en estas zonas. Según lo establecido por Alvarez y Rivera (1982),
la temperatura más adecuada en tres variedades ecuatorianas fue de 5C, en cuyo caso y con el uso de un
compuesto antigerminante, se conservan por siete meses.
Los cambios de temperatura en el ambiente durante el día y la noche, o en diversas épocas del año, hacen
necesarios sistemas de regulación, en especial que eviten la disminución de la temperatura hasta valores del
orden de -2C, pues se producen cambios físicos que hacen al producto inaceptable para el mercado, por la
congelación parcial que sufre el mismo, según lo señalado por Alvarado (1979). En consecuencia es necesario
calcular los cambios de temperatura que experimentarían las papas frente a cambios ambientales bruscos, para
el diseño de sistemas de almacenamiento.
Los coeficientes superficiales de transferencia de calor hacia el aire son bajos. Bakal y Hayakawa (1973)
reportaron los valores siguientes, señalados por Mott para el caso de productos almacenados y empaquetados.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Velocidad de la corriente de aire
[m/s]
0
2,54
5,08
7,62
10,16
Natural
Coeficiente de transferencia de calor por convección
Almacenados En cajas de cartón
[W/m2.K]
[W/m2.K]
3,4
1,7
18,2
5,1
29,5
7,4
38,6
9,6
47,1
11,4
7,4
2,3
En pruebas realizadas con papas almacenadas, Alvarado (1979) determinó valores mas altos para este coeficiente
de transferencia en cuartos refrigerados. Papas al ambiente, 16,4 en calentamiento y 19,8 en enfriamiento;
papas en cajas, 7,4 en calentamiento y 8,5 en enfriamiento. Los valores están expresados en [W/m2.C o W/
m2.K].
Para el caso de temperaturas del ambiente variables con el tiempo, Hayakawa y Ball (1971), Hayakawa (1971),
Hayakawa (1974), Uno y Hayakawa (1979), presentaron métodos que utilizan ecuaciones o gráficos y permiten
el cálculo rápido de la temperatura en el centro y de la temperatura másica promedio para diferentes geometrías.
Mediante ejemplos que son comparados con datos experimentales, demostraron que el uso adecuado de los
factores f y j de la ecuación general permite resolver estos problemas.
OBJETIVOS
Revisar aspectos relacionados con la transferencia de calor por conducción en estado inestable.
Determinar experimentalmente la variación de temperaturas en papas enteras, sometidas a diferentes
temperaturas ambientales.
Calcular la variación de temperaturas en papas, con el uso de ecuaciones desarrolladas para conducción de
calor en estado inestable.
Establecer la aplicabilidad del cálculo por comparación de valores experimentales y calculados.
Transferencia de Calor
335
MATERIALES Y MÉTODOS
Seleccionar tres variedades de papas que presenten formas y tamaños diferentes.
Para las pruebas de calentamiento, en cuatro tubérculos de dimensiones similares y mantenidos por un día
en un desecador colocado en un ambiente de temperatura constante, introducir hasta el centro del producto
un termopar y esperar que se estabilice la temperatura. Trabajar por duplicado con una muestra sin ninguna
protección y otra colocada en una caja de cartón. Llevar las muestras a una estufa previamente estabilizada a
70C, cerrarla y registrar el cambio de temperaturas cada cinco minutos por el lapso de tres horas.
Para las pruebas de enfriamiento, trabajar en forma similar a la indicada en calentamiento; con la diferencia que
las muestras deben ser colocadas en un refrigerador a 5C.
En todos los casos, al retirar las muestras, medir las dimensiones para el cálculo del índice geométrico.
CUESTIONARIO
Mediante consulta (Kreith, 1970; Pitts y Sissom, 1979; Crosby, 1968), analizar y reportar la derivación de la
ecuación (7.4.12).
Graficar en forma separada los valores experimentales de tiempo de calentamiento y de enfriamiento [s] contra
la temperatura [C], registrados en las papas al ambiente y en cajas de cartón.
Consultar el valor de h que corresponda a la condición experimental, según lo reportado por Bakal y Hayakawa
(1973) o Alvarado (1979). Disponer los datos de las propiedades térmicas requeridos para los cálculos, ya sean
experimentales o de referencias bibliográficas.
Con la ecuación (7.4.5) calcular la temperatura a intervalos de 900 [s] o menos, graficar la curva resultante
sobre los datos experimentales. Discutir los resultados.
Calcular el índice geométrico y la historia de temperaturas para el sitio representativo de la temperatura másica
promedio. Comparar los valores experimentales y calculados.
A continuación se presentan los datos registrados en muestras de papas variedad Santa Cecilia, colocadas en
ambientes a 70C para las pruebas de calentamiento, y a 5C para las pruebas de enfriamiento. El registro de
temperaturas se realizó con termocuplas y un equipo Ellab ctd. con precisión de 0,1C.
Para calcular la historia de temperaturas en el centro del producto con la ecuación general modificada (7.4.5),
se requiere el coeficiente de transferencia de calor por convección, el que se debe calcular o determinar en
forma experimental. Son varios los factores que afectan a este coeficiente. Entre ellos: la forma del producto,
la posición, las características del ambiente, la velocidad del aire en el caso exista movimiento. Según las
condiciones de trabajo indicadas, es válido suponer que la transferencia de calor ocurre por convección natural.
Juan de Dios Alvarado
Los datos de las propiedades térmicas determinados en forma experimental fueron: densidad 1080 [kg/m3],
calor específico 4116 [J/kg.K], difusividad térmica 1,3187*10-7 [m2/s], conductividad térmica 0,42 [W/m.K].
Capítulo 7
336
RESULTADOS EXPERIMENTALES
Tabla 7.4.1. Temperaturas y Dimensiones Registradas en Papas Santa Cecilia a Diversos Tiempos.
Tiempo
[s]
Calentamiento
Sin protección
Enfriamiento
En cartón
Sin protección
En cartón
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Temperatura [C]
0
300
600
900
1200
1500
1800
2100
2400
2700
3000
3300
3600
3900
4200
4500
4800
5100
5400
5700
6000
6300
6600
6900
7200
7800
8400
9000
9600
10200
10800
16,3
17,9
22,4
26,1
29,7
33,3
36,6
39,3
42,4
44,8
47,2
49,1
51,0
52,7
54,1
55,7
56,8
57,9
59,0
59,6
60,3
60,8
61,3
61,7
62,2
63,1
63,7
64,2
64,6
64,8
65,1
16,8
20,7
26,6
31,1
34,9
38,7
41,9
44,6
47,4
49,5
51,5
53,1
54,5
55,7
56,8
57,9
58,6
59,3
60,2
60,9
61,7
62,2
62,7
63,1
63,5
64,1
64,4
64,7
64,9
65,1
65,3
18,6
22,2
27,2
31,6
34,5
36,8
38,5
40,3
43,1
45,6
48,0
50,0
51,8
53,5
54,9
56,4
57,4
58,5
59,5
60,0
60,0
60,1
60,2
60,4
60,8
61,7
62,7
63,4
64,0
64,5
64,8
18,0
20,9
26,6
30,5
33,6
36,3
38,3
40,0
42,5
44,7
46,8
48,6
50,3
52,0
53,3
54,9
56,0
57,2
58,3
59,0
59,5
59,6
60,0
60,4
61,0
62,2
63,3
64,1
64,7
65,1
65,4
65,3
60,9
56,1
51,0
46,4
42,0
38,6
35,3
32,4
29,8
26,3
25,2
23,2
21,4
19,8
18,3
16,9
15,8
14,7
13,7
12,8
11,9
11,2
10,5
9,9
8,8
7,9
7,1
6,5
5,9
5,4
64,5
56,3
50,3
44,7
39,7
35,2
31,8
28,6
25,7
23,1
20,8
18,8
17,1
15,5
14,2
13,0
11,9
11,0
10,1
9,4
8,7
8,1
7,5
7,1
6,6
5,8
5,2
64,8
58,3
53,5
48,6
44,3
40,3
37,1
34,1
31,6
29,1
26,8
24,9
23,1
21,4
19,9
18,5
17,3
16,2
15,2
14,2
13,4
12,6
11,9
11,3
10,7
9,6
8,7
7,9
7,3
6,7
6,2
65,5
60,5
55,9
51,1
46,7
42,5
37,2
36,1
33,4
30,8
28,5
26,4
24,5
22,7
21,1
19,7
18,3
17,1
16,1
15,1
14,2
13,3
12,6
11,9
11,2
10,1
9,1
8,3
7,6
7,0
6,4
0,017
0,027
0,015
0,013
0,029
0,014
0,017
0,029
0,015
0,019
0,026
0,016
Dimensiones [m]*
a’
b’
l’
*
0,017
0,027
0,015
0,013
0,029
0,014
0,017
0,029
0,015
0,019
0,026
0,016
Corresponden a las indicadas en la Figura 7.4.1.
Con los valores registrados en las papas sin protección, durante las pruebas de calentamiento, el cálculo del
número de Biot, considerando un valor promedio de la dimensión característica que corresponde al radio
menor de cada tubérculo, es:
(NBi) = h l’ / k
(NBi) = 7,4[W/m2.K]*0,0145[m2]/0,42[W/m.K] = 0,26
Figura 7.4.1. Dimenciones que deben ser consideradas para cuantificar en índice geométrico.
Según Smith y colaboradores (1967)
Transferencia de Calor
337
Para este número de Biot, según las ecuaciones (7.4.7) y (7.4.6), j = 1,1 y (fα/R2) = 3,1; en consecuencia:
f = 3,1(R)2/α = 3,1*(0,0145)2[m2]/1,3187*10-7[m2/s] = 4943 [s]
Por reemplazo en la ecuación (7.4.5):
log (T-Tm) = -(t/4943) + log 1,1(T0-Tm)
En el caso de calentamiento:
log (70-T) = -(t/4943) + log 1,1(70-16,55)
Figura 7.4.2. Valores experimentales y calculados de historias de temperaturas en papas.
Juan de Dios Alvarado
El reemplazo del tiempo (t), expresado en segundos, lleva al cálculo de la temperatura (T) en grados Celsius.
Como ejemplo para 300 [s] se obtiene:
log (70-T) = -(300/4943) + log 1,1(70-16,55)
log (70-T) = -0,0607 + 1,7693
(70-T) = antilog 1,7086 = 51,12
T = 18,88C
Capítulo 7
338
La curva resultante, al representar las temperaturas calculadas a los diversos tiempos, está graficada con línea
cortada en la Figura 7.4.2. Se aprecia que existen diferencias con relación a los datos experimentales.
Una de las causas principales que explicarían las diferencias es que el coeficiente de transferencia de calor
utilizado no corresponda a las condiciones experimentales. Se logra un ajuste aceptable con los datos registrados,
cuando h está entre 5,5 y 5,0 [W/m2.K], según se observa en las curvas graficadas con línea contínua.
Igual procedimiento se utilizó para el caso de enfriamiento de las papas, colocadas sin protección y en cajas
de cartón. Los valores estimados del coeficiente de transferencia de calor por convección hacia el aire son:
6,0 [W/m2.K] para enfriamiento al ambiente y en cajas de cartón; 5,0 [W/m2.K] para calentamiento en caja de
cartón.
Según se observa en la Figura 7.4.2., la ecuación general hace estimaciones aceptables de los cambios de
temperatura en papas a diversos tiempos. Cuando se utilizan valores apropiados del coeficiente de transferencia
de calor, las pequeñas desviaciones se explican por la forma irregular del producto. El efecto de almacenar el
producto en cajas de cartón tiene muy poca influencia en la velocidad de transferencia de calor. El disponer
de datos promedios de numerosas pruebas llevaría a tener curvas representativas de la historia de temperatura,
para cierto tipo o variedad de tubérculos, en base a las cuales se puede definir con exactitud el coeficiente de
transferencia de calor, para determinadas condiciones de almacenamiento.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Se pueden calcular los cambios de temperatura que ocurren en el centro geométrico de cada papa, para las
condiciones experimentales indicadas. Según las dimensiones de los tubérculos indicadas en la primera
columna de datos de la Tabla 7.4.1., el índice geométrico es:
A’ = a’/l’ = 0,017/0,015 = 1,133
C’ = c’/l’ = 0,027/0,015 = 1,800
G’ = 0,25 + (3/8(A’)2)+(3/8(C’)2)
G’ = 0,25 + 0,29 + 0,12 = 0,66
La relación (r/R) está definida por:
(r/R) = (G’)0,14 - 0,25
(r/R) = (0,66)0,14 - 0,25 = 0,693
El cálculo de la temperatura en este punto, para el tubérculo considerado, se realiza con la ecuación (7.4.12).
Como ejemplo luego de 300 [s] de ser colocado en el ambiente a 70C.
((T-Tm)/(T0-Tm)) = (2/π)(R/r)(((-1)n+1/n)(sen(nπr/R))(exp-(n2π2αt/R2)))
((T-70)/(16,3-70)) = (2/3,1416)(1/0,693) {(((-1)1+1/1) (sen(1*π*0,693))
(exp-(12*(3,1416)2*1,3187*10-7*300/(0,015)2)))
+(((-1)2+1/2)(sen(2*π*0,693) (exp-(22*(3,1416)2*1,3187*10-7 *300/(0,015)2)))
+(((-1)3+1/3)(sen(3*π*0,693) (exp-(32*(3,1416)2*1,3187*10-7*300/(0,015)2)))}
((T-70)/(-53,7)) = 0,919*(0,145+4,67*10-4+1,34*10-8) = 0,134
T = 0,134(-53,7) + 70 = 62,8C
Como se espera, este valor es más alto que el registrado en el centro del tubérculo al mismo tiempo, 17,7C. Lo
anterior se explica por ser un punto mucho más próximo a la superficie, que necesariamente deberá calentarse
más rápido. La distancia desde este punto, en el que se registra la temperatura másica promedio, hasta la
superficie, es apenas de 0,0051 [m].
Otro aspecto de interés es la rápida convergencia de la ecuación. Se observa que el segundo término de la
sumatoria, con n=2, y el tercer término de la sumatoria, con n=3, en el presente caso prácticamente no tienen
Transferencia de Calor
339
influencia sobre el resultado, por ser valores muy pequeños. Lo anterior aclara el hecho de que, al aplicar estas
ecuaciones, en muchos casos se utiliza únicamente el primer término de la sumatoria.
Cálculos similares se pueden realizar a diferentes tiempos, con los otros tubérculos y condiciones. El cálculo de
la temperatura en el sitio que corresponde a un valor másico promedio presenta la ventaja de ofrecer información
más representativa, para tomar resoluciones rápidas que eviten daños. Un caso concreto es calcular el tiempo
de inicio de la congelación del producto, cuando la temperatura es inferior a 0C.
BIBLIOGRAFÍA Y REFERENCIAS
Alvarado, J. 1979. “Ensayos de Almacenaje y Estudio de un Mecanismo de Secado a Temperaturas Bajas en
Patatas”. Guatemala, Guatemala. Tesis M. Sc. CESNA-INCAP. 68 p.
Alvarez, F. y Rivera, R. 1982. “Efecto de la Temperatura y Lavado sobre el Período de Vida Util de
Almacenamiento de Tres Variedades de Papas Cultivadas en Ecuador”. Ambato, Ecuador. Tesis de Ingeniero
en Alimentos. Escuela de Ingeniería en Alimentos, Universidad Técnica de Ambato. 68 p.
Bakal, A. and Hayakawa, K. I. 1973. Heat transfer during freezing and thawing of foods. Adv. Food Res.,
20: 217-256.
Crosby, E. J. 1968. “Experimentos sobre Fenómenos de Transporte en las Operaciones Unitarias de la Industria
Química”. Buenos Aires, Argentina. CRAT-AID. Experimento 5-a. p:65-82.
Hayakawa, K. I. 1974. Response charts for estimating temperatures in cylindrical cans of solid food subjected
to time variable processing temperatures. J. Food Sci., 39: 1090-1098.
Hayakawa, K. I. and Ball, C. O. 1971. Theorical formulas for temperatures in cans of solid food and for
evaluating various heat processes. J. Food Sci., 36: 306-310.
Hayakawa, K. I. 1971. Estimating food temperatures during various processing or handling treatments. J.
Food Sci., 36: 378-385.
Heldman, D. R. 1977. “Food Process Engineering”. Westport, Connecticut. AVI Pub. Co. Inc. 401 p.
Kreith, F. 1970. “Principios de Transferencia de Calor”. México. Herrero Hermanos Sucesores, S. A. 672 p.
Pflug, I. J.; Blaisdell, J. L. and Kopelman, I. J. 1961. Developing temperature-time curves for objects that can
be approximated by a sphere, infinite plate or infinite cylinder. ASHRAE Trans., 71, 1:238.
Pitts, D. R. y Sissom, L. E. 1979. “Transferencia de Calor”. Serie de Compendios Schaum. Bogotá, Colombia.
Editorial Mc Graw Hill Latinoamericana, S. A. 325 p.
Uno, J. I. and Hayakawa, K. I. 1979. Non simetric heat conduction in a infinite slab. J. Food Sci., 44: 396-403.
Juan de Dios Alvarado
Smith, R. E.; Nelson, G. L. and Henrickson, R. L. 1967. Analysis of transient heat transfer for anomalous
shapes. Trans. ASAE, 10(2): 236-245.
Capítulo 7
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
340
TEMA 7.5.
APLICACIÓN DEL MÉTODO NUMÉRICO DE
DIFERENCIAS FINITAS PARA CALCULAR CAMBIOS DE
TEMPERATURA EN ALIMENTOS ENLATADOS
INTRODUCCIÓN
El empleo del calor en la preservación de alimentos es una de las técnicas más utilizadas. A pesar del desarrollo
de nuevos envases y la aparición de las fundas termoprocesables, los envases de hojalata constituyen en nuestro
medio los recipientes más usados en la esterilización de alimentos.
Para obtener un producto enlatado, el alimento se somete a cambios bruscos de temperatura por tiempos
relativamente cortos y en varias ocasiones. Durante el blanqueo, el producto se calienta con el propósito
principal de inactivar a las enzimas; en el evacuado de los gases, está sujeto a otros cambios de temperatura,
y en un intervalo de tiempo corto ingresa al autoclave para la esterilización a temperaturas superiores, e
inmediatamente se enfría para evitar una cocción excesiva.
Según lo anterior, es lógico pensar que no existe el tiempo suficiente; tampoco, las condiciones adecuadas para
que toda la masa del producto alcance una temperatura uniforme. En cada uno de los pasos señalados existirá
un gradiente de temperaturas entre el centro y la superficie del envase.
Muchos de los métodos desarrollados para el cálculo de la transferencia de calor en estado inestable, a través de
sólidos, presuponen que existe una temperatura uniforme al tiempo cero, condición que es difícil que se cumpla
al inicio de cada operación al elaborar alimentos enlatados, en los que además se requiere considerar una
geometría de cilindro finito. Autores como Olson y Schultz (1942), Gillespy (1953), entre otros, presentaron
métodos y ejemplos de cálculo para el caso de cilindros finitos.
Transferencia de Calor
341
Heldman y Singh (1981) indicaron que muchos problemas de transferencia de calor en estado inestable, como
el indicado, pueden ser resueltos con facilidad utilizando métodos numéricos. Estos métodos ofrecen una
considerable flexibilidad para obtener soluciones y no presentan restricciones para su uso, como es el requisito
de una distribución uniforme de temperaturas al tiempo inicial. Otra de las ventajas es que incluyen la influencia
de las variaciones en las propiedades térmicas, conforme cambia la temperatura.
Presentaron la derivación de una ecuación básica para la sección de una pared delgada infinita, en la forma
siguiente.
La sección de la pared puede ser dividida en capas que forman una cuadrícula alrededor de un punto central de
coordenadas (e, i), cada capa tiene un espesor (x) en sentido horizontal e (y) en sentido vertical. Considerando
dos dimensiones en un cuerpo, la ecuación diferencial que gobierna la transferencia de calor es:
k((2T/x2)+(2T/y2)) = (DA)Cp(T/t)
(7.5.1)
Si se supone que las propiedades térmicas permanecen constantes, las derivadas parciales segundas pueden ser
aproximadas por:
(2T/x2)  (1/(Δx)2)(Te+1,i+Te-1,i-2Te,i)
(2T/y2)  (1/(Δy)2)(Te,i+1+Te,i-1-2Te,i)
(7.5.2)
(7.5.3)
La derivada del tiempo puede ser aproximada por:
p+1
p
(T/t)  ( Tej - Tej )/(dt)
(7.5.4)
Donde el supraíndice, p, designa el incremento del tiempo; por reemplazo:
p+1
p
p
p+1
p
p
p+1
p
(( Te+1j+ Te-1j - 2Tej )/(Δx)2)+( Te+1j+ Te-1j - 2Tej )/(Δy)2) = ((DA)Cp/k)((T ej + Tej )/(Δt))
(7.5.5)
La difusividad térmica (α) es igual a:
α = k/(DA)Cp
(7.5.6)
Por reemplazo se obtiene:
p
p
p+1
p
p
p+1
p
(7.5.7)
Según esta ecuación, si se conocen las temperaturas de los diferentes puntos circundantes en cualquier tiempo,
la temperatura después de un incremento de tiempo puede ser calculada para cualquier punto. Esto permite
obtener los valores de:
Tejp+1
La ecuación (7.5.7) se simplifica cuando Δx=Δy, despejando la temperatura luego de un intervalo de tiempo,
se establece:
p+1
p
p
p
p
p
Tej = (α(Δt)/(Δx)2)( Te+1j+ Te-1j + Te+1j + Te-1j )+(1-((4α(Δt)/(Δx)2)))Tej
(7.5.8)
Juan de Dios Alvarado
p+1
(( Te+1j+ Te-1j - 2Tej )/(Δx)2)+( Te+1j+ Te-1j - 2Tej )/(Δy)2) = ((1/α)((Tej + Tej )/(Δt))
Capítulo 7
342
Cuando los incrementos de distancia y tiempo se definen en forma que:
(Δx)2/α(Δt) = 4
(7.5.9)
La temperatura en el punto (e,i) después de un incremento de tiempo, es la media aritmética de las temperaturas
de los cuatro nudos o puntos circundantes al inicio del incremento de tiempo.
Para el caso de una dimensión la ecuación resultante es:
p+1
p
Tej = (α(Δt)/(Δx)2)(Te+j +
p
p
Te-j ) + (1-((2α(Δt)/(Δx)2))) Te
(7.5.10)
Por otra parte, Charm (1961) presentó un método para el cálculo de la distribución de temperaturas en alimentos
enlatados, durante el enfriamiento con agua y cuando la transferencia de calor ocurre por conducción, basado
en diferencias finitas.
Para el desarrollo de las ecuaciones que calculan la distribución de temperaturas consideró que el calor
se transmite por la sección curva del cilindro, que es la forma que tienen las latas. En base a una sección
longitudinal del cilindro, supuso que la distribución de temperaturas a través del anillo corresponde a una línea
recta, la pendiente de la línea cambia con el grosor del casquete o anillo.
Mediante balances calóricos realizados en una sección del recipiente, en la cual (r) es el centro y que tiene un
grosor 0,5 (dr) a cada lado de (r), obtuvo la ecuación siguiente:
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
(kA(T0-T1)/(dr))-(kA(T1-T2)/(dr)) = (A(dr)(DA)Cp(T1’-T1)/(dt))
(7.5.11)
Donde T1’ es la nueva temperatura en el plano 1, después de transcurrir un intervalo finito de tiempo.
Al reemplazar el área de una sección circular del cilindro o casquete:
(2πL(R-((dr)/2))(T0-T1)k)/(dr))-(2πL(R-((3(dr)/2))(T1-T2)k)/(dr)) =
(2πL(R-(dr))(DA)Cp(T1’-T1)(dr)/(dt))
(7.5.12)
Despejando T1’:
T1’ = T1+(((R-((dr)/2))(T0-T1)-(R-(3(dr)/2))(T1-T2))/((dr)2(R-(dr)))*(k(dt)/(DA)Cp)
(7.5.13)
Un balance igual alrededor de una sección similar, para un punto (r2) más cercano al eje central, lleva a:
T2’ = T2+(((R-(3(dr)/2))(T1-T2)-(R-(5(dr)/2))(T2-T3))/((dr)2(R-2(dr)))*(k(dt)/(DA)Cp)
(7.5.14)
De igual manera se pueden establecer tantas ecuaciones como número de anillos presente el cilindro, según
la dimensión (dr). Mientras más pequeño sea (dr), existirá un mayor número de anillos y el cálculo es más
exacto, en especial si el intervalo de tiempo (dt) también es pequeño. Todas las ecuaciones tendrán un patrón
sistemático similar al observado en las ecuaciones (7.5.13) y (7.5.14).
La ecuación para la temperatura del centro es diferente por tratarse de un cilindro sólido, en lugar de cilindros
anulares como en los casos anteriores, además la pendiente del gradiente de temperaturas es cero. Para el
centro :
Tn’ = Tn+(4(Tn-1-Tn)/(dr)2)(k(dt)/(DA)Cp)
(7.5.15)
Para la superficie, un balance de calor permitió obtener:
T0’ = T0+(((hs(R)(Tm-T0))-(k(R-((dr)/2))(T0-T1)))/ (dr))((dt)/(DA)Cp)*(2/(R-((dr)/4)))
(7.5.16)
Transferencia de Calor
343
Sin embargo, para el caso de enfriamiento de latas, al considerar que el coeficiente de transferencia de calor por
convección en la superficie exterior es difícil de evaluar, la temperatura al inicio del primer intervalo de tiempo
de un minuto se sugiere que corresponde a:
T0’ = (T0+Tm)/2
(7.5.17)
Al final del segundo intervalo de tiempo, después de dos minutos, se acepta que la temperatura en la superficie
(T0), es igual a la temperatura del agua de enfriamiento o del medio exterior (Tm).
El método y las ecuaciones indicadas fueron desarrolladas por Charm (1961), para el caso específico de
enfriamiento de latas con agua que mantiene su temperatura constante; sin embargo, puede ser usado en el
caso de calentamiento, durante la esterilización, luego del evacuado, si se conoce la distribución inicial de
temperaturas en el recipiente.
Existen otros métodos simplificados basados en las diferencias finitas. Burfoot y Self(1989) presentaron un
caso de aplicación en cilindros de carne en contacto con aire caliente.
Todas las ecuaciones, excepto la correspondiente a la temperatura de la superficie, requieren para su aplicación
el conocimiento de las propiedades térmicas. El trabajo más completo que se conoce para el cálculo de
las propiedades térmicas de alimentos a diferentes temperaturas, es el presentado por Choi y Okos (1986).
Conviene utilizar los modelos para calcular la conductividad térmica, la densidad y el calor específico.
Por otro lado, con el propósito de facilitar las operaciones, también se puede utilizar el modelo para el cálculo
de la difusividad térmica, que multiplicada por el incremento de tiempo corresponde al término entre paréntesis
que agrupa a todas las propiedades térmicas. El modelo presentado por Choi y Okos (1986) se encuentra en
el Tema 6.2. Para el caso específico de trabajar con carnes, la recopilación realizada por Sanz y colaboradores
(1989) es de especial interés.
Al existir un gradiente de temperaturas en el interior del recipiente, se requiere definir una temperatura que sea
representativa de todo el conjunto en un determinado tiempo. Charm (1981) definió a la temperatura másica
para el caso de un cilindro, con la ecuación siguiente:
TM =
Vd
∫0
T(dV)/Vd
(7.5.18)
En consecuencia, al graficar la distribución de temperaturas a un tiempo determinado, en la forma r contra
2πrLT, el área bajo la curva resultante entre r=0 y r=R, corresponde al numerador del integral. Este valor
dividido por el volumen total del recipiente cilíndrico (πr2L), corresponde a la temperatura másica promedio.
Durante la elaboración de diversos productos enlatados, se requiere decidir con respecto a los tiempos
adecuados de calentamiento por diferentes razones. Entre ellas: mantener la calidad del producto, evitar
daños irreversibles, ahorrar energía, disminuir costos, lograr las condiciones adecuadas para continuar con
la siguiente operación. El conocimiento de la temperatura másica promedio es de especial importancia para
ejecutar decisiones correctas.
Señalar las ventajas de utilizar los métodos numéricos, basados en diferencias finitas, para calcular cambios de
temperatura que ocurren en procesos que se realizan durante el enlatado de alimentos.
Desarrollar un programa de computación, para calcular la distribución de temperaturas de alimentos sólidos
enlatados a diferentes tiempos y condiciones.
Señalar la importancia de la variación con la temperatura de las propiedades físicas y térmicas de los alimentos,
para mejorar los cálculos.
Juan de Dios Alvarado
OBJETIVOS
Capítulo 7
344
Cuantificar el cambio de la temperatura másica promedio, conforme transcurre el tiempo de proceso en
calentamiento o enfriamiento.
MATERIALES Y MÉTODO
Utilizar dos latas iguales de las requeridas para conservar alimentos, con una capacidad aproximada de medio
kilogramo y de forma cilíndrica; medir exactamente las dimensiones.
Preparar el alimento que será enlatado, de preferencia atún o músculo de carne de res; llenar las latas y sellarlas.
Con ayuda de perforadores, introducir por una de las tapas y hasta la mitad del cuerpo, termocuplas a una
distancia de un centímetro, desde la pared interior del envase hasta el centro, y conectadas a un equipo de
registro de temperaturas de varios canales. Prever la necesidad de medir la temperatura del ambiente.
Para las pruebas de calentamiento, dejar las latas por diez minutos en una atmósfera de vapor, en la forma como
se realiza el escaldado; registrar las temperaturas en todos los puntos. Transferir inmediatamente la muestra a
un baño de agua en ebullición, y registrar la distribución de temperaturas a intervalos de un minuto por el lapso
de una hora.
Para las pruebas de enfriamiento, retirar la muestra calentada y transferirla en forma rápida a un tanque grande
que contenga agua a temperatura ambiente. Continuar con el registro de las temperaturas a intervalos de un
minuto, por el lapso de una hora.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Repetir el procedimiento con la segunda muestra, con el cuidado de mantener las condiciones de trabajo iguales.
CUESTIONARIO
Demostrar que las ecuaciones siguientes, utilizadas por Burfoot y Self (1989), son obtenidas considerando
diferencias finitas.
Flujo de calor al segmento superficial:
q = hsA0(T0-Tm)
(7.5.19)
Flujo de calor entre los segmentos interiores:
q = kAn+0,5(Tn+1-Tn)/(rn+1-rn)
(7.5.20)
Calor acumulado dentro de un segmento:
q = (DA)VCp(Tn’-Tn)/(dt)
(7.5.21)
Modificar el programa de computación que se presenta, según el producto considerado, con el propósito de
simular los procesos de calentamiento y enfriamiento realizados. Comparar los valores experimentales y
calculados con computadora, para las muestras individuales y con los valores promedios.
Calcular la temperatura másica promedio, a intervalos de cinco minutos con los valores experimentales y
calculados. Discutir las causas de las diferencias y la utilidad de disponer de estos datos en tecnologías y casos
específicos relacionados con alimentos.
Comentar las ventajas del uso de los métodos basados en diferencias finitas en el sector alimentario.
Transferencia de Calor
345
RESULTADOS
Un programa de computadora desarrollado para utilizar el método de diferencias finitas, al caso de un cilindro
finito por ser la forma de un enlatado, que considera la variación de las propiedades térmicas con la temperatura,
según los modelos de Choi y Okos (1986) y que además calcula la temperatura másica promedio a cada
intervalo de tiempo de diez segundos, durante un hipotético proceso de esterilización a 121C; generó los
resultados siguientes.
TRANSFERENCIA DE CALOR EN ESTADO VARIABLE
LATAS CILINDRICAS
DATOS:
Radio de la lata [m] = .05
Longitud de la lata [m] = .1
Temperatura ambiente [C] = 121
Incremento de tiempo [s] = 10
Incremento de radio [m] = .005
Temperatura inicial en el exterior [C] = 20
Número de datos iniciales (par) = 10
Tiempo final [s] = 150
radio ( 1 ) = .045
TEMPERATURA ( 1 ) = 20
radio ( 2 ) = .04
TEMPERATURA ( 2 ) = 30
radio ( 3 ) = .035
TEMPERATURA ( 3 ) = 40
radio ( 4 ) = .03
TEMPERATURA ( 4 ) = 50
radio ( 5 ) = .025
TEMPERATURA ( 5 ) = 60
radio ( 6 ) = .02
TEMPERATURA ( 6 ) = 70
radio ( 7 ) = .015
TEMPERATURA ( 7 ) = 80
radio ( 8 ) = .01
TEMPERATURA ( 8 ) = 90
radio ( 9 ) = 5.000003E-03
TEMPERATURA ( 9 ) = 100
radio ( 10 ) = 3.72529E-09
TEMPERATURA ( 10 ) = 110
fracciones en peso:
X agua = .8
X proteína = .03
X grasa = .03
X carbohidratos = .08
X fibra = .06
X minerales = .02
10
70.5
69.8
23.8
79.8
29.9
89.7
39.9
99.4
49.9
107.5
59.9
39.8
98.7
49.8
105.4
59.8
VOLUMEN TOTAL [m^3] = .0007854
AREA [C m^3] = 3.785212E-02
TEMPERATURA MEDIA [C] = 48.1947
20
70.5
69.7
27.2
79.6
30.1
89.4
VOLUMEN TOTAL [m^3] = .0007854
Juan de Dios Alvarado
TIEMPO [s] T 0 [C] T 1 [C] T 2 [C] T 3 [C] T 4 [C] T 5 [C]
T 6 [C] T 7 [C] T 8 [C] T 9 [C] T 10 [C]
Capítulo 7
346
AREA [C m^3] = 3.843123E-02
TEMPERATURA MEDIA [C] = 48.93205
30
70.5
69.5
30.2
79.4
30.4
89.0
39.8
98.0
49.7
103.7
59.6
39.7
97.4
49.6
102.3
59.5
39.7
96.7
49.5
101.0
59.4
39.7
96.1
49.4
99.9
59.3
39.8
95.4
49.3
98.9
59.2
39.9
94.8
49.3
98.1
59.0
40.0
94.2
49.2
97.2
58.9
40.1
93.6
49.1
96.5
58.8
40.3
93.1
49.1
95.7
58.7
VOLUMEN TOTAL [m^3] = .0007854
AREA [C m^3] = 3.895081E-02
TEMPERATURA MEDIA [C] = 49.5936
40
70.5
69.4
32.8
79.2
30.9
88.7
VOLUMEN TOTAL [m^3] = .0007854
AREA [C m^3] = 3.942036E-02
TEMPERATURA MEDIA [C] = 50.19144
50
70.5
69.2
35.1
79.0
31.5
88.4
VOLUMEN TOTAL [m^3] = .0007854
AREA [C m^3] = 3.984756E-02
TEMPERATURA MEDIA [C] = 50.73537
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
60
70.5
69.1
37.2
78.7
32.2
88.0
VOLUMEN TOTAL [m^3] = .0007854
AREA [C m^3] = 4.023874E-02
TEMPERATURA MEDIA [C] = 51.23344
70
70.5
68.9
39.1
78.5
32.9
87.7
VOLUMEN TOTAL [m^3] = .0007854
AREA [C m^3] = 4.059908E-02
TEMPERATURA MEDIA [C] = 51.69223
80
70.5
68.8
40.8
78.3
33.6
87.3
VOLUMEN TOTAL [m^3] = .0007854
AREA [C m^3] = 4.093282E-02
TEMPERATURA MEDIA [C] = 52.11717
90
70.5
68.6
42.3
78.1
34.4
87.0
VOLUMEN TOTAL [m^3] = .0007854
AREA [C m^3] = 4.12435E-02
TEMPERATURA MEDIA [C] = 52.51275
100
70.5
68.5
43.6
77.9
35.2
86.6
VOLUMEN TOTAL [m^3] = .0007854
AREA [C m^3] = 4.153409E-02
TEMPERATURA MEDIA [C] = 52.88272
110
70.5
68.3
44.9
77.6
36.0
86.3
VOLUMEN TOTAL [m^3] = .0007854
AREA [C m^3] = 4.180699E-02
TEMPERATURA MEDIA [C] = 53.23019
Transferencia de Calor
120
70.5
68.1
347
46.0
77.4
36.8
85.9
40.5
92.5
49.0
95.1
58.6
40.7
92.0
49.0
94.4
58.5
41.0
91.4
49.0
93.8
58.4
41.3
90.9
49.0
93.2
58.3
VOLUMEN TOTAL [m^3] = .0007854
AREA [C m^3] = 4.206427E-02
TEMPERATURA MEDIA [C] = 53.55777
130
121.0
68.0
50.6
77.2
37.6
85.6
VOLUMEN TOTAL [m^3] = .0007854
AREA [C m^3] = 4.561502E-02
TEMPERATURA MEDIA [C] = 58.07871
140
121.0
67.8
54.6
77.0
38.6
85.2
VOLUMEN TOTAL [m^3] = .0007854
AREA [C m^3] = 4.644124E-02
TEMPERATURA MEDIA [C] = 59.13068
150
121.0
67.7
58.2
76.7
39.7
84.9
VOLUMEN TOTAL [m^3] = .0007854
AREA [C m^3] = .0471999
TEMPERATURA MEDIA [C] = 60.09664
Los resultados corresponden a las temperaturas calculadas en 11 puntos, 6 en la linea superior y 5 en la linea
inferior, con las correspondientes variaciones a los diferentes tiempos. La temperatura másica promedio se
incrementa desde 48,2 °C a los 10 segundos hasta los 60,1 °C a 150 segundos.
Este método y el de ecuaciones diferenciales finitas son las mejores alternativas para el cálculo de cambio de
temperatura en alimentos.
BIBLIOGRAFÍA Y REFERENCIAS
Burfoot, D. and Self, K. P. 1989. Predicting the heating times of beef joints. J. Food Eng., 9: 251-274.
Charm, S. E. 1981. “The Fundamentals of Food Engineering”. 3rd. ed. Westport, Connecticut. AVI Pub. Co. Inc. p: 176.
Charm, S. E. 1961. A method for calculating the temperature distribution and mass average temperature in conductionheated canned foods during water cooling. Food Technol., 15: 248-253.
Choi, Y. and Okos, M. R. 1986. Effects of temperature and composition on the thermal properties of foods. In: “Food
Engineering and Process Applications”. V.1. Le Maguer, M. and Jelen, P. (Eds.). London, England. Elsevier Applied
Science Pub. p: 93-101.
Gillespy, T. G. 1953. Estimation of sterilizing values of processes as applied to canned foods. II. Packs heating by
conduction: complex processing conditions and value of coming-up time of retort. J. Sci. Food Agr., 4:553-558.
Olson, F. C. W. and Schultz, O. T. 1942. Temperatures in solids during heating or cooling. Ind.Eng.Chem.,34(7):874-877.
Sanz, P. D.; Domínguez Alonso, M. and Mascheroni, R. H. 1989. Equations for the prediction of thermophysical properties
of meat products. Lat. Am. Appl. Res. (LAAR), 19: 155-163.
Juan de Dios Alvarado
Heldman, D. R. and Singh, R. P. 1981. “Food Process Engineering”. 2nd. ed. Westport, Connecticut. AVI Pub. Co. Inc.
p: 142-144.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
348
Capítulo 8
8. Procesos Térmicos
Procesos Térmicos
349
8. PROCESOS TÉRMICOS
Posiblemente la parte del conocimiento que más identifica a la Ingeniería de Alimentos es la denominada
Procesos Térmicos. En éstos se estudia la relación entre la temperatura y el tiempo que permite conseguir una
destrucción máxima de microorganismos y esporas, con una pérdida mínima de los nutrientes presentes en el
alimento.
La cantidad de relaciones temperatura-tiempo, el número de microorganismos y la variedad de nutrientes, cada
uno de ellos con sus propias características y composición hacen que el campo de estudio sea ilimitado. Por ello
no es extraño el gran esfuerzo investigativo y el volumen considerable de información existente y que continúa
incrementándose.
Las visitas del Profesor Romeo Toledo a la Facultad de Ciencia e Ingeniería en Alimentos de la Universidad
Técnica de Ambato, Ecuador, permitieron lograr avances significativos en el trabajo experimental sobre el
cálculo de procesos térmicos. Lo que, conjuntamente con lo indicado en su libro “Fundamentals of Food
Process Engineering”, constituyen el soporte principal para el desarrollo de este Capítulo.
Uno de los métodos más utilizados para la preservación de alimentos es el de calentamiento en recipientes
cerrados. Este procesamiento térmico de productos no ácidos se realiza en autoclaves calentados con vapor,
a temperaturas entre 115,6 a 126,7 C y presiones de vapor manométricas entre 69 a 138 [kPa]. Ciertos
productos más ácidos se procesan a temperaturas de vapor entre 104,4 a 110,0C.
El propósito del procesamiento térmico, que varía con el grado inicial de contaminación, es la destrucción
completa de todos los microorganismos contaminantes que pudieran estar inicialmente presentes y que
estarían involucrados en infecciones o intoxicaciones alimenticias; así como también la destrucción de los
microorganismos que, si sobreviven, provocarían descomposición microbiana posterior.
Cuando se requiere conseguir la esterilidad con respecto a un organismo como Clostridium botulinum, para
seguridad de la salud pública, la esterilidad completa con respecto a otros microorganismos no es requerida. Es
decir, la esterilización se refiere únicamente a los microorganismos involucrados en daños bajo las condiciones
usuales de mercadeo y almacenamiento, los cuales deben ser destruidos o eliminados.
Una teoría propone que la extremada resistencia al calor de las esporas se debe a la presión contráctil ejercida
por la pared, que presiona a la parte central para mantenerla en un estado lo bastante seco para conferirle la
resistencia al calor.
Los métodos utilizados para calcular el tiempo de proceso térmico se clasifican en dos grupos. Los métodos
que utilizan la integración gráfica o numérica de las relaciones tiempo-temperatura, que se denominan Métodos
Generales, y fueron los primeros que se desarrollaron desde Bigelow en la década de 1920. Los Métodos
Matemáticos o de fórmulas iniciados por Ball, muchas veces presentados en forma de tablas y figuras, se
caracterizan por ser más rápidos y versátiles; en este grupo hay varios casos, según consideren el centro térmico
Juan de Dios Alvarado
Las esporas bacterianas pueden ser diez mil veces más resistentes al calor que las células vegetativas, y de diez
a cien veces más resistentes a la radiación. El mecanismo de la resistencia de las esporas al calor no es claro;
la pared de la célula esporulada contiene una gruesa corteza, en la que uno de sus constituyentes mayores es
el peptidoglicán. Este polímero puede existir como una capa finamente contraída. Otros dos componentes
característicos de las esporas son altos niveles de calcio, que alcanza hasta un 2% del peso seco de las esporas,
y el ácido dipicolínico, el cual puede sobrepasar el 10% del peso seco de la espora.
Capítulo 8
350
del producto llamado punto de calentamiento lento o punto frío, o la temperatura másica promedio de todo el
recipiente. En los últimos años es notable el uso de computadoras para el desarrollo de métodos numéricos que
utilizan las diferencias finitas y que permiten actualizar y mejorar los Métodos Generales.
Otros autores clasificaron a los métodos de cálculo de procesos térmicos en dos grandes grupos. Los métodos
basados en la concentración de sobrevivientes, con el registro de la temperatura en el punto frío o de calentamiento
lento del recipiente, en los que estarían incluídos el Método General y el Método Matemático; y los métodos
basados en la concentración másica promedio de sobrevivientes en todo el alimento. La clasificación es de
importancia cuando se toma en cuenta la calidad nutricional u organoléptica del producto, en cuyo caso se
prefieren los métodos que consideran todo el recipiente y no un punto particular.
Además de considerar la resistencia al calor de los microorganismos, también se utilizan como base para el
cálculo de procesos térmicos la inactivación de las enzimas y la destrucción de compuestos termolábiles, como
algunas vitaminas.
En este capítulo se desarrollan dos temas. El primero relacionado con la pasteurización de alimentos líquidos, y
el segundo con la esterilización comercial de alimentos sólidos, o en los que se transfiere el calor principalmente
por conducción. El Método General y el Método Matemático se consideran como aspectos centrales de cada
tema. Los resultados experimentales intentan proporcionar guías para el cálculo de procesos térmicos, con la
característica de considerar las condiciones y circunstancias que se viven en el medio, para dar alternativas
prácticas que permitan un mejor aprovechamiento de productos importantes como la leche.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
NOMENCLATURA DEL CAPÍTULO
a
A
b
B
C
=
=
=
=
=
C’
d
D
=
=
=
D’
(DP)
E
=
=
=
f
F
=
=
g
=
h
i
I
j
=
=
=
=
J
k
K
L
m
=
=
=
=
=
intercepto de las ecuaciones de la curva de tiempo de muerte térmica [min o s]
área [m2, cm2 o pulg2]
índice de consistencia [Pa.sn]
tiempo de muerte térmica a la temperatura de los alrededores o del autoclave [min o s]
tiempo de calentamiento a una determinada temperatura requerido para obtener un cambio de
calidad determinado [min o s]
calor específico [J/kg.K o J/kg.C]
derivada
factor de reducción decimal o tiempo requerido para destruir el 90% de los organismos bajo
consideración [min o s]
diámetro [m]
densidad del producto [kg/m3]
tiempo de calentamiento a una determinada temperatura requerido para obtener un grado deseado
de inactivación de una enzima [min o s]
constante de velocidad de calentamiento o enfriamiento [min o s]
tiempo de calentamiento a una determinada temperatura requerido para obtener un grado deseado
de esterilización [min o s]
diferencia entre la temperatura del autoclave y la temperatura en el punto frío del recipiente al
final del calentamiento [C o F]
coeficiente de transferencia de calor por convección [W/m2.K o W/m2.C]
número de intervalos correspondientes a 18F
diferencia entre la temperatura del autoclave y la temperatura inicial real del alimento [C o F]
constante de la razón de temperaturas relacionada con el coeficiente en el intercepto de la historia
de temperaturas [adimensional]
constante de la ecuación (8.2.1)
conductividad térmica [W/m.K o W/m.C]
constante de las ecuaciones de sobrevivencia de microorganismos [1/min o 1/s]
longitud [m]
diferencia entre la temperatura en el punto frío al final de la fase de calentamiento y la temperatura
del medio de enfriamiento [C o F]
Procesos Térmicos
n
N
N’
(N’Re)
P
r
r’
=
=
=
=
=
=
=
R
(SV)
t
T
T*
(TA)
(TC)
(TI)
(TR)
(TT)
U
U’
v
v’
v*
V
W
x
X
y
Y
z
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
351
índice de comportamiento al flujo [adimensional]
número de organismos viables
número de organismos por unidad de volumen
número de Reynolds generalizado [adimensional]
presión [Pa]
distancia radial [m]
parámetro utilizado en el cálculo de procesos térmicos cuando existe un quiebre en la curva de
calentamiento
radio [m]
factor de reducción de microorganismos o valor esterilizante
tiempo [min o s]
temperatura [C o F]
temperatura corregida [C]
temperatura del agua de enfriamiento [C o F]
temperatura máxima en el punto frío [C o F]
temperatura inicial real [C o F]
temperatura del autoclave [C o F]
temperatura inicial teórica [C o F]
coeficiente global de transferencia de calor [W/m2.K o W/m2.C]
tiempo para alcanzar un valor esterilizante [min o s]
velocidad [m/s]
velocidad máxima [m/s]
velocidad promedio [m/s]
volumen [m3]
caudal másico [kg/s]
espesor [m]
tiempo en el cual ocurre el quiebre en la curva de calentamiento [min o s]
distancia en ordenadas [pulg]
tiempo correspondiente a una pulgada de una escala corregida de razón letal [min o s]
número de grados de temperatura requeridos por la curva de tiempo de muerte térmica para
atravesar una escala logarítmica de tiempo [C o F], conocido también como coeficiente térmico.
Letras griegas
Δ
μ
π
Θ
=
=
=
=
cambio, diferencia
viscosidad [Pa.s]
3,1416
tiempo de proceso [min o s]
a
b
c
f
g
h
i
j
m
o
p
P
q
=
=
=
=
=
=
=
=
=
=
=
=
=
ambiente
punto de quiebre
central
fin del proceso térmico
relacionado con el fin del período de calentamiento
calentamiento
interior, inicial
índice numérico
medio, másica
exterior
presión constante
puntual
residencia
Juan de Dios Alvarado
Subíndices
Capítulo 8
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
352
r
s
T
w
=
=
=
=
distancia radial
superficie
temperatura
medio de enfriamiento
0
1
2
3
4
5
=
=
=
=
=
=
cero, inicial o referido a 250F (121,1C y z=10C)
condición, fase o área uno (121,1C y z10C)
condición, fase o área dos
condición o área tres
área cuatro
área cinco
Procesos Térmicos
353
TEMA 8.1. APLICACIÓN DEL MÉTODO GENERAL PARA
ESTABLECER EL TIEMPO DE PASTEURIZACIÓN EN ALIMENTOS
LÍQUIDOS
INTRODUCCIÓN
Con relación a la sobrevivencia de microorganismos, Toledo (1981) señaló que cuando una suspensión de
microorganismos se mantiene a una temperatura constante, la razón de disminución de los organismos viables
es directamente proporcional al número de organismos viables presente. Si se designa por N al número de
organismos viables, la razón de disminución en N con respecto al tiempo t, es definida por:
(-dN/dt) = KN
(8.1.1)
Agrupando variables e integrando entre los límites correspondientes a la condición de contorno:
t = 0, N = No
(8.1.2)
Juan de Dios Alvarado
Para calcular el tiempo de un proceso térmico se requiere conocer y considerar dos aspectos fundamentales:
la razón por la cual se destruyen con el calor los microorganismos que causan intoxicaciones o deterioro, y la
velocidad de transferencia de calor en el alimento. En consecuencia, este tiempo depende de varios factores,
como: el microorganismo y la carga microbiana; el pH del medio; la composición y características físicas del
alimento; la temperatura inicial del producto y de proceso; el tipo, forma y tamaño del envase, entre los más
importantes.
Capítulo 8
354
Se obtiene:
N
t
∫ N(dN/N) = - K ∫ 0 dt
(8.1.3)
0
ln (N/No) = - Kt
(8.1.4)
Según esta ecuación, un gráfico semilogarítmico del tiempo contra la razón de disminución de organismos
viables deberá aproximarse a una línea recta. Al considerar el tiempo requerido para que esta línea recta
atraviese un ciclo logarítmico que es equivalente a la destrucción del 90% de organismos, se define un valor
llamado D, que para el caso de utilizar logaritmo decimal, corresponde a:
D = 2,3026/K
(8.1.5)
Por reemplazo se establece:
log (N/No) = - t/D
(8.1.6)
Que puede ser modificada de la forma siguiente:
log (No/N) = t/D
(8.1.7)
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
El término (No/N) se denomina valor esterilizante de un proceso.
Existen diversas técnicas para la determinación experimental de D. El problema principal radica en la necesidad
de considerar y eliminar el tiempo de calentamiento requerido para llevar a la suspensión de microorganismos
hasta la temperatura de proceso, a la cual se realiza la determinación. Sognefest y Benjamin (1944) presentaron
factores de corrección para considerar esta etapa de calentamiento, trabajando con soluciones de sacarosa y
productos alimenticios en tubos y latas calentadas con vapor a 121C, que pueden ser utilizados para enfrentar
este problema.
Se requiere indicar que el valor D, llamado factor de reducción decimal, dependerá de las condiciones utilizadas
para la preparación de la suspensión de esporas y de las características del medio de cultivo, o del alimento
en los cuales se realicen las pruebas de resistencia al calor. Un factor de importancia considerable es el pH.
Sognefest y colaboradores (1948) determinaron la resistencia térmica de esporas de Clostridium botulinum
tipo B y de Clostridium sporogenes N.C.A. 3679, en purés de diez vegetales modificados en su pH natural. En
especial ensayos en latas con la segunda de las cepas indicadas, permitieron establecer que al bajar el pH hasta
4,5 o menos, el número de reducciones decimales requerido para prevenir daño, disminuyó por debajo de 0,1;
a valores de 5,5, se observó un claro incremento de este número 4,0 o más; en el intervalo de 6,0 a 9,0, existió
un ligero incremento en este valor.
Toledo (1984) indicó la forma de preparación de esporas para trabajar con envases inoculados y recomendó la
técnica por esterilización parcial para determinar el valor D. La técnica fue desarrollada por Stumbo (1948),
quien asumió que la razón de inactivación es logarítmica. En consecuencia, la suspensión de prueba puede
ser calentada por dos tiempos diferentes, con la condición que el primer tiempo debe superar al tiempo de
atemperamiento o calentamiento inicial. El valor D se calcula según el número de organismos sobrevivientes
a estos dos tiempos de calentamiento, por la ecuación:
D = (t2-t1)/(log N1 - log N2)
(8.1.8)
Argüello y Vallejo (1988) aplicaron esta técnica. Ellos trabajaron con esporas de Bacillus stearothermophilus
(FS-1518) y establecieron que la altura sobre el nivel del mar y probablemente la disminución en la presión
atmosférica, influye en la temperatura de trabajo. Los microorganismos fueron mantenidos entre 57 y 58C
durante la activación, esporulación y el subcultivo para obtener resultados, que no se manifestaron a 55C
recomendados en la literatura. Los valores D determinados a 120C y pH 4,5 en sopa de pollo estuvieron entre
Procesos Térmicos
355
7,81 a 7,49 minutos, y a pH 6,0 entre 8,96 a 8,40 minutos; en caldo de pata de res los valores correspondientes
fueron 6,99 a 8,02 y 8,98 a 8,70 minutos, respectivamente.
Pflug y Odlaug (1978) presentaron una revisión de valores de resistencia térmica publicados para el caso
de alimentos enlatados de baja acidez. Cuando trabajaron con Clostridium botulinum en fréjol, remolacha,
zanahoria, maíz y espinaca, Kaplan y colaboradores (1954) determinaron los valores D siguientes:
Temperatura [C]
D [minutos]
104,4
107,3
110,0
112,8
115,6
3,6 a 8,5
1,6 a 3,5
0,9 a 1,8
0,5 a 1,0
0,3 a 0,7
En la pasteurización de alimentos líquidos, los microorganismos considerados presentan valores D más bajos.
Toledo (1981), recopiló valores de diferentes fuentes y los presentó en la forma siguiente:
Un trabajo específico, realizado por Barreiro y colaboradores (1981), permitió establecer la resistencia térmica
de Candida tropicalis y Rhodotorula rubra en jugo de naranja con pH 3,1, cuyas cepas frecuentemente se
aislan de muestras pasteurizadas comerciales. Los valores D determinados a distintas temperaturas fueron.
Candida tropicalis: 31,1 minutos a 46,0C; 2,6 a 51,0; 1,3 a 51,3; 0,98 a 52,0; 0,78 a 52,5. Rhodotorula rubra:
2,8 minutos a 49,5C; 2,5 a 50,5; 1,9 a 51,5; 1,4 a 52,5. Se destaca el marcado efecto de la temperatura sobre
el valor D.
Organismo
Bacillus coagulans
Bacillus polymyxa
Clostridium pasteurianum
Mycobacterium tuberculosis
Salmonella spp
Staphylococcus spp.
Lactobacillus spp.
Levaduras y hongos
Temperatura [C]
D [minutos]
z [C]
121,1
100,0
100,0
82,2
82,2
82,2
82,2
82,2
0,07
0,50
0,50
0,0003
0,0032
0,0063
0,0095
0,0095
10
9
9
6
7
7
7
7
Rodrigo y Safón (1982) indicaron que por definición D es el tiempo de calentamiento a temperatura constante,
necesario para reducir o degradar a la décima parte el número de microorganismos o el factor de calidad. Se
refirieron a la ecuación (8.1.7) como la ley de supervivencia o primera ley de la cinética. Señalaron que, por el
carácter exponencial de esta ley, teóricamente no puede llegarse a una destrucción total de microorganismos,
aunque el tiempo de tratamiento sea muy largo. Lo anterior explica que en el caso de microorganismos se
requiere fijar un factor de reducción (SV), que equivale a una probabilidad de supervivencia tan bajo que no
suponga un riesgo para el consumidor.
El tiempo de calentamiento a una temperatura dada, necesario para lograr un grado deseado de esterilización,
es el valor F, el cual depende de varios factores. El valor F de un microorganismo específico es el producto del
valor esterilizante por D a cierta temperatura.
FT = (SV)(DT)
(8.1.9)
Cuando se mide la termoresistencia de enzimas o de un factor de calidad se utilizan los símbolos E y C en lugar
de F. Los tres tienen un significado similar.
Juan de Dios Alvarado
Se ha establecido para el caso de patógenos que el tratamiento calórico mínimo que se debe dar a un
alimento procesado, que puede guardarse eventualmente en un lugar seco, es doce veces D. Sin embargo,
otros microorganismos no patógenos más resistentes al calor son usualmente considerados para el cálculo de
procesos, en cuyo caso el tratamiento calórico deseable corresponde a cinco veces D.
Capítulo 8
356
Según Charm (1981), el tiempo F, requerido para destruir las unidades resistentes de un microorganismo dado
a una cierta temperatura, se conoce como el tiempo de muerte térmica (TDT).
El tiempo de muerte térmica, usualmente empleado para cálculos, es el tiempo requerido para que una curva
de sobrevivencia, graficando en ordenadas el logaritmo del número de microorganismos sobrevivientes y en
abscisas el tiempo a temperatura constante, pase completamente entre once y doce ciclos logarítmicos.
Se ha observado que al graficar el logaritmo del tiempo de muerte térmica, en ordenadas contra su temperatura
correspondiente, el gráfico resultante es lineal. Este gráfico se denomina curva de tiempo de muerte térmica o
curva TDT.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
La pendiente de la curva TDT en un sistema de coordenadas semilogarítmico es igual a (- 1/z). En consecuencia,
el término z es el número de grados Celsius o Fahrenheit, requeridos por la línea para pasar a través de un ciclo
logarítmico.
Del análisis de la curva TDT, considerando los dos triángulos semejantes se establece que:
(log t - log F)/(log 100 - log 10) = (121,1 - T)/z
(8.1.10)
Como (log 100 - log 10) = 1, la ecuación se simplifica a:
(log t - log F) = (121,1 - T)/z
(8.1.11)
Que puede ser escrita:
log (t/F) = (121,1 - T)/z
(t/F) = antilog ((121,1 - T)/z)
(8.1.12)
(8.1.13)
Despejando t:
t = F antilog ((121,1 - T)/z)
(8.1.14)
Escrita en términos de los valores inversos de los dos miembros:
(1/t) = 1/F antilog ((121,1 - T)/z)
(8.1.15)
Procesos Térmicos
357
Donde t es el tiempo de muerte térmica en minutos a una temperatura T en [C]. Cuando F=1, entonces (1/t)
es referida como razón letal.
Muy a menudo los procesos se comparan en términos de los minutos, que el producto se mantiene a 121C
o 250F; esto es referido como el valor de Fo del proceso específicamente cuando z=10C. Con el propósito
de determinar el valor F de un proceso gráficamente, se puede reordenar la ecuación (8.1.12) en la forma
siguiente:
log (F/t) = (T - 121,1)/z
(F/t) = antilog ((T - 121,1)/z)
(8.1.16)
(8.1.17)
Que puede ser modificada para graficar la razón de muerte expresado como (F/t). Esto es, en efecto, la relación
entre la razón de muerte a 121,1C o 250F, y la razón de muerte a una temperatura dada, para obtener:
(F/t) = 1/antilog ((121,1 - T)/z)
(8.1.18)
Un gráfico del tiempo contra el segundo miembro de la ecuación definirá una área que corresponde al valor F
de un proceso particular.
Según Izurieta y Pólit (1981), el valor F, correctamente definido, es el equivalente en minutos a una temperatura
dada de referencia, de todos los efectos letales de un proceso calórico, con respecto a la destrucción de un
microorganismo caracterizado por un valor z dado. Un valor z de 10C o 18F se presupone comúnmente para
esporas, y un valor F, calculado con este valor z, es frecuentemente designado como F0. Reportaron tablas con
valores F0, recomendados para procesos de esterilización comercial de productos de baja acidez, enlatados en
envases de una amplia gama de tamaños, y que permiten obtener un alto y moderado grado de seguridad en la
salud del consumidor.
Silla (1993) presentó una amplia recopilación con valores publicados de los parámetros de resistencia térmica,
correspondientes a cepas de Clostridium y Bacillus, como función del pH y en distintos alimentos.
Con relación a la velocidad de transferencia de calor en el alimento, existen varios métodos de cálculo que
permiten establecer el cambio de temperaturas en cualquier sitio del recipiente o del producto con distinta
forma. Sin embargo, en el presente caso, se considera que se dispone de datos experimentales de temperatura
registrados a diversos tiempos en el punto de más lento calentamiento (punto frío o zona crítica), donde la
probabilidad de sobrevivencia de microorganismos es mayor.
En el caso específico de pasteurización en recipientes abiertos con agitación del líquido, se puede aceptar
lo indicado por Rodrigo y Safón (1982), quienes señalaron que, convenientemente y de forma simplista, se
considera que la zona crítica está en el centro geométrico del envase, y que esta consideración puede ser
adecuada siempre que se trate de productos que se calientan y enfrían con bastante rapidez, o cuando las
temperaturas del proceso son bajas, inferiores a 100C.
Para utilizar los métodos gráficos se considera que la velocidad de esterilización a una temperatura particular es
igual al recíproco del tiempo de muerte térmica a esta temperatura particular. La letalidad total de un proceso
se determina integrando las interelaciones temperatura-tiempo con la velocidad de esterilización para el punto
frío. Este método fue sugerido primeramente por Bigelow y colaboradores (1920), y se lo conoce también
Juan de Dios Alvarado
Varios trabajos se han realizado para determinar la zona crítica. Para el caso de latas, Stumbo (1973) señaló
un método que permite definir un anillo concéntrico situado en el centro del recipiente, con un radio medido
desde el eje central equivalente a la cuarta parte del radio total. Izurieta y Pólit (1981) reportaron los criterios
siguientes, en los productos calentados principalmente por convección. El punto frío se encuentra sobre el
eje vertical cerca del fondo o de la tapa aproximadamente a una quinta parte de la altura; en los productos
calentados por conducción el punto frío está aproximadamente en el centro geométrico del recipiente.
Capítulo 8
358
como Método General.
Hay varias maneras de aplicar el método, una de ellas señalada por Stumbo (1949), indica lo siguiente:
Las curvas de calentamiento y enfriamiento se construyen para representar las temperaturas existentes en el
punto de más lento calentamiento. Cada temperatura representada por un punto en la curva se considera que
tiene un valor esterilizante o letal.
La resistencia térmica de las bacterias está representada por las curvas de tiempo de muerte térmica, obtenidas
al graficar el tiempo requerido para destruir las esporas de un microorganismo dado, a cierta temperatura de
calentamiento.
De las interrelaciones temperatura-tiempo representadas por la curva de tiempo de muerte térmica se puede
determinar un valor de razón letal para cada temperatura, representado por un punto sobre las curvas que
describen el calentamiento y el enfriamiento de un producto, durante el proceso. El valor de razón letal asignado
para cada temperatura representada es igual al recíproco del número de minutos requeridos para destruir el
organismo en cuestión a esta temperatura. El tiempo de destrucción correspondiente a una temperatura dada
puede ser obtenido de la curva de tiempo de muerte térmica del organismo.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Así, si la curva de tiempo de muerte térmica indica que 10 minutos fueron requeridos para destruir las esporas
de un organismo dado a 115C, el valor de razón de esterilización asignado a esta temperatura será 0,1. La
letalidad es entonces igual al producto de la razón de esterilización y el tiempo; un proceso de letalidad 1 es un
proceso justamente suficiente para esterilizar al alimento.
De acuerdo con los conceptos en los cuales el método está basado, se puede decir que cada punto sobre
las curvas que describen el calentamiento y enfriamiento de un alimento durante el proceso, representan un
tiempo, una temperatura y una razón de esterilización. Graficando los tiempos y las correspondientes razones
de esterilización representadas, se obtiene una curva de letalidad representativa del proceso.
Schultz y Olson (1940) presentaron una mejora del Método General, mediante la construcción de un gráfico
con un eje de coordenadas en escala especial, y que permite la evaluación directa del valor F por integración
del área bajo la curva, definida por la historia de temperaturas.
Para la construcción de este gráfico, con un valor de z definido previamente, se calculan las razones letales
para las distintas temperaturas de proceso. La escala total se divide según los valores de las razones letales
asignando a cada división la temperatura correspondiente. La parte superior del gráfico es la temperatura del
medio o del autoclave a 250F. El eje de abscisas corresponde al tiempo de proceso en escala lineal.
El valor F se calcula con la ecuación siguiente:
F = Y A / 10i y
(8.1.19)
Donde Y es el número de minutos correspondiente a una pulgada de la escala del tiempo, A es el área bajo la
curva medida en [pulgadas2], i es el número de intervalos de 18F que deben ser añadidos o disminuidos a la
línea de la parte superior según la temperatura de proceso utilizada; es positivo si esta línea se numera bajo
250F y negativo si se numera sobre 250F, y es el número de pulgadas de la escala de ordenadas.
Una de las principales desventajas de este método es que se requiere de un gráfico para cada valor de z; sin
embargo, para el caso de pasteurización muchos microorganismos presentan valores que varían entre 8, 9, 10,
12 y 16F, y el número necesario de gráficos es limitado.
Según Harper (1976), el proceso de pasteurización de leche de vaca está basado en 12 veces D del organismo
patógeno más resistente Coxiella burnetti, para el cual se ha reportado un valor D a 65,6C de 0,60 minutos y
un valor z de 5,56C.
Procesos Térmicos
359
Burton (1986) indicó que, históricamente, el microorganismo patógeno más importante en la leche ha sido
el Mycobacterium tuberculosis, y que las condiciones del tratamiento térmico mínimo para la pasteurización
se establecieron originalmente para garantizar la inactivación de este organismo en la leche. Las condiciones
recomendadas por la International Dairy Federation, usadas en la práctica son: 63C por 30 minutos en el
sistema de calentamiento a bajas temperaturas, y 72C por 15 segundos en el sistema de alta temperatura y
tiempo corto. Estas condiciones superan los requerimientos establecidos para M. tuberculosis.
Una forma de controlar que la pasteurización de la leche se realizó correctamente es mediante determinaciones
bioquímicas. Linden (1986) indicó que la inactivación de la fosfatasa alcalina es un indicativo que la leche está
libre de organismos patógenos en condiciones de calentamiento rápido. La presencia de peroxidasa después
de un tratamiento térmico a temperaturas altas indica que el producto no fue calentado en forma excesiva.
Sin embargo, señaló que es difícil relacionar el grado de inactivación enzimática con las características de un
tratamiento térmico particular, por los numerosos factores que influyen en la producción y comportamiento de
las enzimas.
El proceso de esterilización está basado en la destrucción de la espora más resistente al calor en el producto.
Harper (1976) reportó los datos del valor z en C, determinados en bacillus por Mikolajcik (1970).
Temperatura de calentamiento
Organismo
95,0C
B. licheniformis A-1
B. licheniformis A-5
B. licheniformis ATCC 10716
B. cereus 1
B. cereus 7
B. pumilus
B. cereus var. myccides
B. coagulans ATCC 7050
B. laterosporus
B. circulans
B. megaterium 9
B. sphaericus
17,76
20,50
12,10
10,16
14,40
4,03
10,90
6,90
5,95
4,75
6,50
7,60
97,2C
Valor
100,0C
Valor D [min]
6,40
6,00
6,00
6,45
7,90
1,65
5,30
3,53
3,13
2,70
2,70
4,20
z
[C]
2,85
4,10
2,87
3,10
2,70
0,88
2,40
1,97
1,18
1,65
2,35
2,25
6,4
6,8
7,8
9,6
7,1
7,5
7,6
9,1
7,0
11,5
8,4
9,1
Harper (1976) señaló que el B. stearothermophilus, el más resistente formador de esporas, crece únicamente
cuando se añaden carbohidratos o proteína vegetal a la leche. El valor z determinado para este microorganismo
por Argüello y Vallejo (1988) está entre 10,9 y 15,0C, para sopas tradicionales y en las condiciones señaladas
previamente.
En la pasteurización de jugos los valores z obtenidos por Barreiro y colaboradores (1981) son de especial
interés. En C. tropicalis de 4,1C, y en R. rubra de 9,8C.
Es necesario señalar que, a pesar de ser muy antiguo el Método General y las mejoras indicadas, en el momento
actual tienen vigencia. Autores como Spinak y Wiley (1982) se refirieron al método de letalidad acumulativa
de Patashnik como un método seguro de cálculo. El uso adecuado del método de Ball permite obtener mejoras
cuando se considera la esterilización en autoclave de alimentos, en envases flexibles termoprocesables
sumergidos en agua. Alvarado (1985) desarrolló ejemplos de cálculos con la aplicación del Método General.
En la mayoría de los casos la pasteurización de alimentos líquidos se realiza en equipos de transferencia de
calor tubular, a placas y actualmente en modelos especializados, que trabajan a temperaturas muy altas por
tiempos inferiores a un segundo.
Juan de Dios Alvarado
Patashnik (1953) presentó una nueva mejora al Método General, que permitió simplificar la evaluación del
proceso térmico. Consiste en hacer las lecturas de temperatura a intervalos iguales de tiempo, lo que permite
calcular los valores de las razones letales (F/t) y sumarlos. Este valor, multiplicado por el intervalo de tiempo,
conduce a obtener en forma directa el valor del proceso F para un determinado valor de z. Este procedimiento
evita la necesidad de construir gráficos y controlar un proceso conforme transcurre el tiempo.
Capítulo 8
360
El envasado aséptico, que consiste en pasteurizar o esterilizar el alimento fuera del recipiente, para luego ser
envasado en recipientes previamente esterilizados en un ambiente estéril, merece una atención especial por su
importancia industrial.
Toledo (1982) agrupó a los sistemas de envasado aséptico que están en operación comercial, en la forma
siguiente: Sistemas que utilizan calor y recipientes metálicos o de vidrio. Sistemas esterilizados por compuestos
químicos para transporte a granel, o de alimentos ácidos como productos de tomate o jugos de frutas. Sistemas
“Pure-Pak”, que se esterilizan por medios químicos y utilizan envases preformados; la línea de procesamiento
se esteriliza por aspersión con peróxido de hidrógeno, los cartones se esterilizan con óxido de etileno y un
tratamiento adicional con peróxido de hidrógeno seguido de secado por aire caliente estéril; en otros casos
se utilizan bolsas plásticas esterilizadas con óxido de etileno y la línea de procesamiento con calor húmedo
proveniente de vapor. Sistemas “Tetra-Pak”, que forman al recipiente, lo llenan con el producto estéril y lo
sellan bajo la acción de peróxido de hidrógeno como agente esterilizante, es un sistema ampliamente utilizado.
Sistemas de llenado y sellado, que utilizan el calor desarrollado durante el termoformado para la esterilización
del material de empaque, y un sistema de transporte que permite el ingreso de los empaques estériles a la
cámara de llenado sin contaminarse.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Indicó que el peróxido de hidrógeno caliente es un esterilizante efectivo para recipientes no metálicos, pero
existen interrogantes con relación al efecto residual en los alimentos. El aire seco o vapor sobrecalentado se
usan comercialmente para recipientes metálicos y para la esterilización de los equipos.
Presentó métodos para calcular y comparar la efectividad de trabajar con peróxido de hidrógeno caliente o aire
seco, como agentes esterilizantes de la superficie de envases y equipos. El tiempo y temperatura de proceso
pueden ser calculados con certeza al considerar la transferencia de calor desde el medio hacia la superficie, y
las temperaturas de las superficies exterior e interior a la cual se realiza la evaluación, definida por:
Ti = ((ha/hi)(Ta)+Ts(1+(hax/k)))/(1+(ha/hi)+(hax/k))
(8.1.20)
Donde T es la temperatura, h es el coeficiente de transferencia de calor por convección, x es el espesor de la
lámina y k la conductividad térmica del material. Los subíndices: m se refiere al medio esterilizante, s a la
superficie exterior, a al ambiente, e i al interior.
La aplicación del método permitió comprobar la recomendación de la Asociación Nacional de Procesadores de
Alimentos de los Estados Unidos de América, en el sentido que la esterilización previa de la unidad, cuando
se trabaja con aire caliente, se debe realizar por un mínimo de quince minutos, luego que la temperatura en el
punto más frío alcance los 176,6C.
Para el cálculo del tiempo de pasteurización de alimentos líquidos en equipos tubulares de transferencia de
calor, se requiere considerar el tipo de fluido. Si es newtoniano o no-newtoniano, y el flujo si es laminar o
turbulento. Además, el tiempo de calentamiento y enfriamiento para la pasteurización puede ser ignorado, por
ser mínimo en relación con el tiempo de retención en la sección de mantenimiento a la temperatura de proceso.
Según Toledo (1984a), el tiempo de residencia de una partícula en el tubo de mantenimiento se calcula
dividiendo la longitud del tubo (L) por la velocidad de la partícula (v).
t=L/v
(8.1.21)
La velocidad teórica de partícula en un tubo varía con la posición respecto a la pared: es mayor en el centro y
se aproxima a cero conforme se acerca a la pared.
Cuando el fluido es newtoniano y el flujo es laminar, la velocidad teórica de una partícula como función de la
distancia desde el centro es:
Procesos Térmicos
v = (ΔP) (R2-r2)/4Lμ
361
(8.1.22)
Donde (ΔP) es la diferencia de presiones entre los puntos extremos a lo largo del tubo de distancia (L). (R) es
el radio del tubo, (r) la distancia radial desde el centro y (μ) es la viscosidad.
La velocidad en el centro (r=0) es máxima y corresponde a:
v’ = (ΔP)(R2)/4Lμ
(8.1.23)
Una velocidad promedio puede ser derivada, para obtener:
v* = (ΔP)(R2)/8Lμ
(8.1.24)
La velocidad promedio se determina fácilmente por medio del volumen y el tiempo de residencia para un tubo
de dimensiones conocidas:
v* = V/t(πR2)
(8.1.25)
Al dividir la ecuación (8.1.23) por la ecuación (8.1.24), se establece:
v’ = 2 v*
(8.1.26)
La velocidad máxima se utiliza para calcular el tiempo de proceso, pues las partículas que la poseen son las
que reciben el tratamiento calórico mínimo; en consecuencia, las otras partículas más lentas recibirán un mayor
tratamiento calórico, que establece la esterilidad de todo el fluido.
Cuando el flujo es turbulento, Charm (1981) propuso un método gráfico para calcular el tiempo de proceso. El
procedimiento es:
Asumir un valor de T2 que también es Tc o la temperatura lineal central.
Calcular hi con una ecuación que sea apropiada y también las restantes resistencias térmicas.
Considerar un coeficiente global de transferencia de calor definido por:
(1/Ui) = (D’i/D’o ho)+(xD’o/km D’m)+(1/hi)
(8.1.27)
Donde: D’i, D’o, D’m son los diámetros interior, exterior y medio del tubo, respectivamente.
Determinar UA según:
W C’p(T2-T1) = UA(T)m
(8.1.28)
UiAi = UA
(8.1.29)
Evaluar Ai, como Ai es igual a πD’iL, se determina L, la distancia a lo largo del tubo.
Asumiendo varios valores de T2, los correspondientes de L pueden ser determinados por el procedimiento
indicado, para graficar L contra Tc y t contra Tc para flujo turbulento. La letalidad del proceso puede entonces
ser determinada por el método gráfico.
Los productos no-newtonianos requieren un tratamiento especial que considere a los parámetros reológicos.
Juan de Dios Alvarado
Calcular Ui y como:
Capítulo 8
362
Según Toledo (1984a) si el flujo es laminar:
v = ((ΔP)/2Lb)1/n(n/(n+1))(R(n+1)/n - r(n+1)/n)
(8.1.30)
La velocidad máxima:
v’ = ((ΔP)/2Lb)1/n(n/(n+1))(R(n+1)/n)
(8.1.31)
La velocidad promedio:
v* = ((ΔP)/2Lb)1/n(n/(3n+1))(R(n+1)/n)
(8.1.32)
Lo que permite establecer:
v’ = ((3n+1)/(n+1))v*
(8.1.33)
En el caso de flujo turbulento y fluidos no-newtonianos, reportó la ecuación siguiente para calcular la velocidad
máxima:
v’ = v* (1/(0,0336 log (N’Re)+0,662))
(8.1.34)
En la última ecuación (N’Re) es el número de Reynolds generalizado, definido por:
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
(N’Re) = 8(v*)2-n(R)n(DP)/b((3n+1)/n)n
(8.1.35)
El flujo es turbulento si (N’Re) es mayor que 3000. Existe una zona de transición entre flujo laminar y flujo
turbulento con valores de 2100 a 3000 en la cual es más seguro considerar flujo laminar.
Señaló que para calcular la inactivación de microorganismos en base al tiempo de residencia de una partícula
que se desplaza por una capa de la corriente de flujo, se utilizan las ecuaciones siguientes:
Designando por (N’o) al número de organismos por unidad de volumen del producto, en un elemento de área
en el tubo a una distancia r y con un espesor (dr), el volumen de producto que pasa por esta área por unidad
de tiempo es:
V = 2πr(dr)(vr)
(8.1.36)
Donde V es el volumen y vr la velocidad en este punto.
El número de organismos que ingresan a este elemento de área por unidad de tiempo, es definido por:
Nr = 2πr(dr)(vr)(N’o)
(8.1.37)
El tiempo de residencia de una partícula en este elemento de área, en un tubo de retención y de longitud (L) es:
tq = L/vr
(8.1.38)
Si D es el tiempo de reducción decimal y la temperatura del producto en el tubo es constante, el número de
organismos sobrevivientes que emerge de esta área en el tubo es:
N = 2πr(dr)(vr)(N’o)(10)-L/vrD
Integrando para toda la sección de área transversal del tubo:
(8.1.39)
Procesos Térmicos
N=
363
R
∫0
2πr(vr)(N’o)(10)-L/vrD (dr)
(8.1.40)
El número de organismos que ingresan al tubo, está definido por:
No = πR2(v*)(N’o)
(8.1.41)
En consecuencia, el número de reducciones decimales:
R
∫ 0 r(v )(10)
log (No/N) = log (πR2(v*)(N’o)/2π(N’o))
r
-L/vrD
(dr)
(8.1.42)
Simplificando:
log (No/N) = log (R2(v*))/2)
R
∫ 0 r(v )(10)
r
(dr)
-L/vrD
(8.1.43)
El primer miembro de esta ecuación puede ser evaluado resolviendo (vr) para diferentes valores de r, graficando:
r contra 2r(vr)(10)-L/vrD
Por cuantificación del área bajo la curva, se puede calcular el número de reducciones decimales y el valor F
del proceso.
Un modelo más completo para el caso analizar la esterilización de fluidos plásticos de Bingham, en régimen
laminar, que incluye el efecto de la temperatura y considera la retención de tiamina y la resistencia térmica
de Cl. botulinum, fue presentado por Guariguata y colaboradores (1979). Ellos concluyeron que es necesario
considerar el efecto de la temperatura sobre los parámetros reológicos para garantizar el cálculo de un proceso
térmico.
OBJETIVOS
Revisar los principios y fundamentos del cálculo de procesos térmicos en alimentos.
Señalar métodos de cálculo de procesos térmicos en el caso de utilizar equipos de transferencia de calor con
fluidos newtonianos y no-newtonianos.
Utilizar el Método General para el cálculo de tiempo de proceso para la pasteurización o esterilización comercial
de leches y la pasteurización de jugo de naranja.
Construir gráficos de razón letal para analizar su significado y uso.
Analizar la conveniencia de pasteurizar o esterilizar la leche que se consume a nivel casero.
MATERIALES Y MÉTODOS
Utilizar leche cruda de vaca. Preparar por duplicado tres muestras de un litro y colocarlas en vasos de vidrio.
Calentar una muestra en plato caliente o en hornilla de gas, con el cuidado de agitar constantemente y registrar,
a intervalos de un minuto, la temperatura en el centro geométrico del recipiente. Continuar el calentamiento
hasta alcanzar los 70C, retirar la muestra de la fuente de calor y permitir que se enfríe al ambiente, continuar
la agitación y registro de la temperatura hasta 40C o menos. Repetir la operación con la segunda muestra,
Juan de Dios Alvarado
Aplicar el método de letalidad acumulativa para determinar el valor F en distintas condiciones de proceso.
Capítulo 8
364
permitiendo que alcance 80C, y con la tercera muestra hasta ebullición.
Transferir las muestras de leche fría a recipientes de cristal con tapa esterilizados y mantenerlas a temperatura
ambiente. A intervalos de un día o menos registrar el pH, hasta que se produzca la coagulación.
Para el caso de jugo de naranja, trabajar con muestras de medio litro en la forma indicada para leches, pero
calentado solo hasta 50, 60 y 70C, y luego realizar el enfriamiento hasta 30C en un baño de hielo previamente
preparado. Mantener las muestras al ambiente hasta observar el crecimiento de hongos, registrar el tiempo.
CUESTIONARIO
Señalar las ecuaciones que sustentan el Método General de Bigelow, Schultz-Olson y Patashnik. Demostrar su
aplicación.
Con los datos de las historias de temperaturas correspondientes a cada una de las muestras de leche, aplicar el
Método General y calcular las condiciones de proceso considerando por lo menos los datos de letalidad de dos
microorganismos para la pasteurización o esterilización comercial. Discutir los resultados.
Considerar los datos de Coxiella burnetti y de Bacillus cereus 1 para calcular los valores de F1 según el método
de Patashnik. Determinar el tiempo que debe ser mantenido el producto a 70C, 80C o en ebullición para su
pasteurización, según los microorganismos indicados.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Definir un proceso para la pasteurización y otro para la esterilización comercial de la leche. Señalar el más
adecuado para ser aplicado en el hogar.
Utilizar la información obtenida y desarrollar un ejemplo del cálculo de la longitud requerida para la sección de
mantenimiento de un intercambiador tubular, que permita cumplir las especificaciones definidas del proceso.
Con los datos del jugo de naranja, realizar los cálculos indicados para la leche en lo relacionado con la
pasteurización, considerando los microorganismos Candida tropicalis y Rhodotorula rubra.
RESULTADOS EXPERIMENTALES
En la Tabla 8.1.1. se presentan las historias de temperaturas, registradas con un equipo digital de termistores
Cole-Parmer, en pruebas realizadas con muestras de un litro mantenidas en recipientes de aluminio para el caso
de leche y de vidrio para el caso de jugo de naranja. En la leche las condiciones de trabajo intentan reproducir
las prácticas que son comunes en los hogares según el método indicado. En el jugo se buscó obtener los tiempos
mínimos para el calentamiento y el enfriamiento.
Leche de vaca
Para la aplicación del Método General en los cálculos de pasteurización se consideraron los datos de Salmonella
spp. y los datos de Clostridium botulinum Tipo E.
Con el propósito de simplificar la aplicación del Método General se desarrollaron gráficos con escalas corregidas
de temperaturas, que son consecuencia de los datos de letalidad del microorganismo considerado.
Los datos recopilados por Toledo (1981), para Salmonella spp., se utilizaron para construir la curva de muerte
térmica (TDT) en papel semilogarítmico y en la siguiente forma: Se ubicó un punto en la escala logarítmica
que corresponde al valor D=0,0032 minutos (0,192 segundos) con la temperatura 82,2C; el valor z=7C,
corresponde al tiempo requerido por la sección recta del gráfico para atravesar un ciclo logarítmico y permite
definir la función.
Además es necesario considerar al número de microorganismos presentes. En leches no deben existir
Procesos Térmicos
365
salmonelas, que generalmente provienen del estiércol. Desafortunadamente, en el medio es común hallar
informes de laboratorio que denuncian la presencia de estas bacterias en leches crudas, donde conteos de 10 o
más UFC/cm3 son reportados.
Tabla 8.1.1. Cambios de Temperaturas [C] Registrados en Muestras de Leche de Vaca y Jugo de Naranja*
Tiempo
[min]
[s]
Leche
Prueba 1
Prueba 2
Jugo de naranja
Prueba 3
17,3
17,4
17,5
0
0
23,3
23,2
23,6
60
1
30,7
29,8
29,6
120
2
37,7
35,9
38,4
180
3
44,7
42,0
41,8
240
4
51,4
48,1
47,7
300
5
57,8
53,7
360
53,5
6
63,9
58,8
59,4
420
7
69,6
64,6
63,8
480
8
74,8
69,6
68,4
540
9
79,1
74,5
70,1**
600
10
83,1
78,7
68,3
660
11
87,1
79,8**
65,8
720
12
89,0
77,3
63,5
780
13
91,4**
73,6
61,5
840
14
86,3
70,6
59,6
900
15
79,0
67,9
57,9
960
16
75,0
65,4
56,3
1020
17
71,6
63,2
54,8
1080
18
68,7
61,2
53,4
1140
19
65,9
59,3
52,1
1200
20
56,1
51,9
46,6
1500
25
49,3
46,4
42,4
1800
30
44,1
42,3
2100
35
40,3
2400
40
* Valores promedios de dos muestras por duplicado.
** Finalización del calentamiento o inicio del enfriamiento.
Prueba 1
Prueba 2
Prueba 3
15,1
22,8
28,8
35,3
41,5
47,7
53,3**
47,0
38,9
33,6
29,6
14,8
21,5
28,6
34,9
40,9
46,9
52,7
58,5
63,7**
56,3
44,7
36,4
30,3
16,4
24,6
31,3
37,7
43,9
50,2
56,3
61,9
67,2
72,1**
59,1
47,5
40,0
33,3
28,6
En varios casos los valores de F corresponden a 12D, pero lo indicado con relación a la carga microbiana
requiere considerar un factor adicional de 4; en consecuencia, la curva de tiempo de muerte térmica está basada
en un valor mínimo de F=16D.
La ecuación de la función de una curva TDT corresponde a:
(8.1.44)
(8.1.45)
En esta ecuación, t es el tiempo de muerte térmica en segundos a una determinada temperatura T en grados
Celsius, permite calcular el tiempo de calentamiento requerido para destruir la carga de salmonelas, con un
margen alto de seguridad a las temperaturas de interés.
Se aprecia el efecto letal mínimo que tienen las temperaturas bajas sobre la carga de salmonelas. Al trabajar
con temperaturas de 60C o menores, se requieren tiempos de proceso de más de una hora, hasta valores
impracticables a 20C.
Juan de Dios Alvarado
log t = a - (1/z)T
log (0,192*16) = a - (1/7)82,2
0,4874 = a - 11,7429
a = 12,2303
log t = 12,2303 - 0,1429 T
Capítulo 8
366
Temperatura
[C]
Tiempo
[s]
(1/t)
[1/s]
20
30
40
50
60
65
70
75
80
85
87,5
90
91,4
2,36*109
8,78*107
3,27*106
1,22*105
4,53*103
8,75*102
1,69*102
3,26*10
6,28
1,21
0,53
0,23
0,15
4,24*10-10
1,14*10-8
3,06*10-7
8,22*10-6
2,21*10-4
1,14*10-3
5,93*10-3
0,03
0,16
0,82
1,88
4,27
6,77
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Al graficar la temperatura contra el inverso del tiempo de muerte térmica, según se observa en la parte izquierda
de la Figura 8.1.1., la curva resultante permite construir una escala corregida de temperaturas (T*), en base a la
cual se representan las historias de temperaturas registradas en las distintas pruebas.
Figura 8.1.1. Método gráfico para establecer tiempos de pasteurización en leche de vaca
según datos de Salmonella.
Según la escala utilizada en la Figura 8.1.1., un milímetro corresponde a diez segundos. En consecuencia, el
área de referencia que equivale a la destrucción de la carga microbiana, se establece multiplicando la altura en
ordenadas, definida por un valor de la temperatura, y la distancia del tiempo de muerte térmica.
A 80C corresponde un tiempo de 6,28 segundos, en términos de distancias es 8*0,628 = 5 milímetros
cuadrados. Igual resultado se obtiene al considerar otra temperatura; a 85C corresponde un tiempo de 1,21
segundos. El área de referencia es 41*0,121 = 5 milímetros cuadrados.
La representación gráfica de la historia de temperaturas de la Prueba 1 permite establecer que calentar la leche
hasta 70,1C, y enfriarla, es insuficiente para cumplir las condiciones de pasteurización fijadas. El área definida
bajo la curva es muy inferior al límite definido por el área de referencia.
Los datos de la Prueba 2 de calentamiento y enfriamiento definen una área superior a 5 milímetros cuadrados;
en consecuencia, calentar la leche hasta 79,8C y enfriarla hasta temperatura ambiente, es un tratamiento
Procesos Térmicos
367
excesivo para las condiciones fijadas. Según la figura y para las condiciones de trabajo señaladas, calentar el
producto durante 620 segundos o 600 segundos para considerar el período de enfriamiento, es un tiempo de
proceso adecuado.
Como es lógico, calentar la leche hasta ebullición a 91,4C según la Prueba 3, ocasiona un sobre proceso con
respecto a la destrucción de la carga de salmonelas.
En consecuencia, se establece que, calentar las muestras de un litro de leche hasta 77,5C, que según las
condiciones de trabajo señaladas ocurre aproximadamente en 10 minutos, es un proceso suficiente para destruir
una carga de salmonelas que puede estar presente en el producto.
Por otro lado, es necesario considerar la presencia de otros microorganismos. El Cl. botulinum Tipo E es un
termófilo muy resistente; en consecuencia los cálculos realizados en base a sus datos de resistencia térmica
conducen a obtener una esterilización comercial y la ausencia de patógenos.
Las leches de la localidad poseen una cantidad alta de microorganismos: recuentos totales entre 106 y 107
UFC/ml son comunes. En un litro, al estimar que del total de la carga microbiana el 1% lo constituyen las
bacterias termófilas, se necesita considerar un factor adicional de 108 sobre el valor esterilizante de 105, que
es recomendado para bacterias termófilas. El valor resultante F=13D asegura la esterilidad comercial del
producto resultante.
La ecuación de la curva de tiempo de muerte térmica es:
log (2,5*60*13) = a - (1/9)82,2
a = 12,4234
log t = 12,4234 - 0,1111 T
(8.1.46)
(8.1.47)
Temperatura
[C]
Tiempo
[s]
(1/t)
[1/s]
83,1
87,1
89,0
91,4
1552
558
343
186
6,44*10-4
1,79*10-3
2,91*10-3
5,38*10-3
Como en el caso anterior, la graficación de estos datos conduce a construir la escala de temperaturas corregida
para utilizar el Método General.
El proceso calculado es uno de los más severos al que puede ser sometida la leche. Se basa en un microorganismo
muy resistente al calor y explica la imposibilidad real de considerar los datos de la Prueba 1 y de la Prueba 2.
En estos casos se debe analizar el efecto del calor sobre los componentes del producto, en especial de vitaminas
y proteínas, que son destruidos parcialmente, para evitar pérdidas excesivas en el valor nutritivo.
Al disponerse de datos de los cambios de temperatura a intervalos de un minuto, se facilita la aplicación del
método de Patashnik para calcular el valor F.
Juan de Dios Alvarado
Según se observa en la Figura 8.1.2., al graficar los cambios de temperatura de la Prueba 3, el área delimitada
es inferior al área de referencia e indica que llevar a ebullición la leche y enfriarla no es un proceso suficiente
para lograr la esterilización comercial, considerando la carga indicada de Cl. botulinum. En consecuencia, se
requiere mantener la leche en ebullición a 91,4C por dos minutos, antes de iniciar el enfriamiento, en cuyo
caso el área bajo la línea cortada se iguala con el área de referencia y se obtiene un proceso adecuado para las
condiciones planteadas.
Capítulo 8
368
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Figura 8.1.2. Método gráfico pàra establecer el tiempo para la esterilización comercial de
leche de vaca sometida a ebullición en Ambato según datos de Cl. botulinum E.
El microorganismo Coxiella burnetti presenta un valor z = 5,56C y el Bacillus cereus 1 un valor z = 9,6C.
La aplicación de la ecuación:
(F/t) = 1/antilog ((121,1-T)/z))
Hace posible obtener los datos presentados en la Tabla 8.1.2.
Al considerar los datos de Coxiella burnetti D=0,60 minutos a 65,6C, el valor de F considerando una
probabilidad de sobrevivencia de una en un billón, una carga microbiana de 107/[ml] y un litro de producto,
corresponde a:
F = 22 D = 22*0,6 = 13,2 minutos
(8.1.48)
La ecuación de la curva de tiempo de muerte térmica es:
log (13,2) = a - (1/5,56)*65,6
a = 12,9191
log t = 12,9191 - 0,1799 * T
log F1 = 12,9191 - 0,1799 * 121,1
F1 = 1,36 * 10-9 minutos
(8.1.49)
(8.1.50)
Los valores (F/t) calculados para todas las pruebas se suman en forma directa, pues el intervalo de tiempo es
un minuto. Para la primera prueba la suma es 1,57*10-9 minutos. Este valor es ligeramente superior al valor
F1 de referencia, e indica que calentar la leche hasta 70,1C y enfriarla es un proceso suficiente para lograr la
pasteurización, según los datos de este microorganismo.
Se puede determinar en forma más exacta el tiempo de proceso: corresponde al tiempo en el cual la sumatoria
de los valores (F/t) es igual al valor de F1; sin embargo, por las condiciones de trabajo el resultado puede ser
considerado suficiente.
Procesos Térmicos
369
Tabla 8.1.2. Valores de (F/t) Calculados en Pruebas de Pasteurización de Leche de Vaca según Datos de Muerte Térmica
de dos Microorganismos
Tiempo
[minutos]
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Bacillus cereus 1
Coxiella burnetti
Prueba 1
Prueba 2
Prueba 3
Prueba 1
Prueba 2
Prueba 3
2,32*10-19
2,91*10-18
3,79*10-17
1,34*10-15
5,46*10-15
6,29*10-14
6,95*10-13
6,24*10-12
4,95*10-11
3,32*10-10
6,72*10-10
3,19*10-10
1,13*10-10
4,37*10-11
1,91*10-11
8,69*10-12
4,30*10-12
2,21*10-12
1,19*10-12
6,66*10-13
3,89*10-13
2,23*10-19
2,57*10-18
3,49*10-17
4,75*10-16
5,93*10-15
7,42*10-14
7,55*10-13
8,00*10-12
6,89*10-11
5,46*10-10
4,16*10-9
2,37*10-8
3,37*10-8
1,33*10-8
2,86*10-9
8,27*10-10
2,70*10-10
9,59*10-11
3,86*10-11
1,69*10-11
7,67*10-12
2,14*10-19
2,57*10-18
5,51*10-17
1,00*10-15
1,82*10-14
2,91*10-13
4,12*10-12
5,16*10-11
5,46*10-10
4,71*10-9
2,79*10-8
1,46*10-7
7,67*10-7
1,69*10-6
4,55*10-6
5,51*10-7
2,68*10-8
5,11*10-9
1,25*10-9
3,76*10-10
1,18*10-10
1,62*10-11
6,98*10-11
3,09*10-10
2,43*10-9
5,49*10-9
2,26*10-8
9,09*10-8
3,24*10-7
1,07*10-6
3,24*10-6
4,87*10-6
3,16*10-6
1,74*10-6
1,00*10-6
6,19*10-7
3,92*10-7
2,61*10-7
1,78*10-7
1,24*10-7
8,87*10-8
6,49*10-8
1,57*10-11
6,49*10-11
2,94*10-10
1,33*10-9
5,76*10-9
2,49*10-8
9,53*10-8
3,74*10-7
1,30*10-6
4,32*10-6
1,40*10-5
3,83*10-5
4,99*10-5
2,74*10-5
1,13*10-5
5,49*10-6
2,87*10-6
1,58*10-6
9,31*10-7
5,76*10-7
3,65*10-7
1,54*10-11
6,49*10-11
3,83*10-10
2,05*10-9
1,10*10-8
5,49*10-8
2,55*10-7
1,10*10-6
4,32*10-6
1,50*10-5
4,22*10-5
1,10*10-4
2,87*10-4
4,53*10-4
8,06*10-4
2,37*10-4
4,12*10-5
1,58*10-5
6,98*10-6
3,48*10-6
1,78*10-6
Como es lógico, las pruebas 2 y 3 indican que estos tratamientos térmicos son excesivos para la pasteurización
de la leche considerando a Coxiella burnetti.
Al considerar los datos de Bacillus cereus 1, que es más resistente al calor y asumiendo que:
F = 9 D = 9*3,10 = 27,9 minutos
log (27,9) = a - (1/9,6)*100
a = 11,8623
log t = 11,8623 - 0,1042 * T
log F1 = 11,8623 - 0,1042 * 121,1
F1 = 0,175 minutos
(8.1.51)
(8.1.52)
(8.1.53)
Los valores (F/t) de la prueba 1 y de la Prueba 2 señalan en forma clara que, para propósitos prácticos, calentar
la leche hasta 70,1C o 79,8C es un proceso insuficiente para destruir la carga considerada de este bacilo.
El valor escapa a las condiciones lógicas de trabajo. Esto puede ser explicado por el hecho de que la temperatura
de ebullición experimental es baja, debido a la altura sobre el nivel del mar. Para considerar el Bacillus cereus
1 se requiere esterilizar al producto a temperaturas superiores a 100C, y el proceso debe ser calculado en el
caso específico de establecer la presencia de este microorganismo en el producto.
En conjunto, al considerar todos los cálculos realizados con las condiciones conocidas para la leche de vaca
en la ciudad de Ambato, se sugiere que el proceso de pasteurización debe estar basado en la presencia de
salmonella; esto es, calentar la leche hasta 77,5C y enfriarla.
Por otro lado, al ser la leche de vaca un alimento destinado en especial a infantes, a nivel casero es conveniente
hervir la leche que ocurre a 91,4C, durante dos minutos, y enfriarla a temperatura ambiente. Las pérdidas
Juan de Dios Alvarado
La sumatoria de los datos de la Prueba 3 es 2,025*10-3 minutos; valor muy inferior al F1 requerido. La
diferencia entre estos dos valores es 0,173 minutos, al dividir por la letalidad a 91,4C, que es 8,06*10-4
minutos, se obtiene el tiempo que debe ser mantenida la leche en ebullición para cumplir el proceso, en este
caso es 214,6 minutos.
Capítulo 8
370
nutricionales son preferibles a posibles intoxicaciones y enfermedades por la ingestión de patógenos; sin
embargo, estas pérdidas en el valor nutritivo serán notablemente menores a las que ocurren en el momento
actual, pues es práctica común hervir el producto por cinco, diez y hasta quince minutos.
Jugo de naranja
Según lo determinado por Barreiro y colaboradores (1981), en jugo de naranja con pH 3,1, para Candida
tropicalis se consideró un valor D=3,4 minutos a 50,0C, para Rhodotorula rubra D=2,6 minutos a 50,0C.
Los valores de z respectivos son 4,1C y 9,8C. Al utilizar un valor esterilizante de 12, la aplicación del Método
General lleva a obtener los resultados siguientes.
Para Candida tropicalis, la ecuación de la curva de tiempo de muerte térmica es:
log (3,4*60*12) = a - (1/4,1)*50
a = 15,5839
log t = 15,5839 - 0,2439 T
(8.1.54)
(8.1.55)
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Con estos datos se construye la escala corregida de temperaturas de la Figura 8.1.3. Al representar las historias
de temperaturas, se observa que los datos de la Prueba 1 definen una área menor que el área de referencia;
según la línea cortada es necesario mantener el producto a 53,3C por 320 segundos para pasteurizar el jugo,
según la carga considerada de este microorganismo.
Temperatura
[C]
Tiempo
[s]
(1/t)
[1/s]
15
20
30
40
50
51
52
53
54
55
56
8,42*1011
5,08*1010
1,85*108
6,73*105
2,45*103
1,40*103
7,96*102
4,54*102
2,59*102
1,48*102
8,42*10
1,19*10-12
1,97*10-11
5,41*10-9
1,49*10-6
4,08*10-4
7,16*10-4
1,26*10-3
2,20*10-3
3,86*10-3
6,77*10-3
1,18*10-2
La alternativa señalada no es la recomendable, pues según los datos de las pruebas 2 y 3 se observa que estos
tratamientos térmicos son excesivos para la pasteurización.
El método de Patashnik es adecuado para determinar la temperatura a la que es necesario calentar el jugo,
seguido de un enfriamiento inmediato; y esto permite su pasteurización según los datos de Candida tropicalis.
Considerando la ecuación (8.1.55) el valor de F0 es:
log F1 = 15,5839 - 0,2439 * 121,1
F1 = 1,116*10-14[s] = 1,86*10-16[minutos]
Con los datos de la Prueba 2 se calculan los valores de (F/t), con la ecuación:
(F/t) = 1/antilog ((121,1-T)/4,1)
(8.1.56)
Al sumar los valores, a los 420 segundos se supera el valor de F1 e indica que el tiempo de proceso está entre
360 y 420 segundos. El intervalo de temperaturas respectivo establece que, calentar el jugo hasta 56C y
enfriarlo de manera inmediata, es un proceso suficiente para pasteurizar este jugo de naranja.
Los resultados siguientes se obtuvieron mediante cálculos similares, realizados con los datos de Rhodotorula
Procesos Térmicos
371
rubra.
Figura 8.1.3. Método gráfico pàra establecer tiempos de pasteurización en jugo de naranja
según datos de Candida tropicalis.
log (2,6*60*12) = a - (1/9,8)*50
a = 8,3743
log F1 = 8,3743 - 0,1020*121,1
F1 = 1,052*10-4[s] = 1,754*10-6[minutos]
(8.1.57)
(8.1.58)
(F/t)
0
60
120
180
240
300
360
420
480
540
600
1,184*10-26
5,097*10-25
2,748*10-23
9,454*10-22
2,748*10-20
7,988*10-19
2,076*10-17
5,391*10-16
1,000*10-14
1,567*10-16
2,322*10-19
Los datos de la Prueba 3 se consideraron para calcular los valores (F/t), con la ecuación:
(F/t) = 1/antilog ((121,1-T)/9,8)
Tiempo
[s]
(F/t)
0
60
120
180
240
300
360
420
480
540
2,072*10-11
1,423*10-10
6,866*10-10
3,089*10-9
1,326*10-8
5,825*10-8
2,442*10-7
9,103*10-7
3,162*10-6
1,000*10-5
(8.1.59)
Juan de Dios Alvarado
Tiempo
[segundos]
Capítulo 8
372
La suma hasta los 420 segundos es 1,230*10-6 minutos, hasta los 480 segundos 4,392*10-6 minutos, que supera
el valor F1 calculado de 1,754*10-6 minutos; en consecuencia, considerando la historia de temperaturas, calentar
el jugo hasta 63C y enfriarlo en forma inmediata es un proceso suficiente para lograr la pasteurización según
los datos de Rhodotorula rubra.
En conjunto, a base del hecho que un valor esterilizante de 12 puede ser considerado como demasiado riguroso
para jugos ácidos, la pasteurización del jugo de naranja por calentamiento, hasta los 56C, es un proceso de
pasteurización suficiente, según los datos y condiciones de trabajo señaladas.
BIBLIOGRAFÍA Y REFERENCIAS
Alvarado, J. 1985. Métodos para evaluación de procesos térmicos. Facultad de Ciencia e Ingeniería en Alimentos,
Universidad Técnica de Ambato, Ecuador. Cuaderno de Tecnología de Alimentos. 3(2): 1-49.
Argüello, F. y Vallejo, M. 1988. “Cálculo del Tiempo de Proceso Térmico en Sopas Tradicionales”. Tesis de Ingeniero en
Alimentos. Facultad de Ciencia e Ingeniería en Alimentos, Universidad Técnica de Ambato. Ecuador. 93 p. y Anexos.
Barreiro, J. A.; Vidaurreta, J. L. Boscán, L. A. Mendoza, S. y Saiz, E. 1981. Resistencia térmica de Candida tropicalis y
Rhodotorula rubra en jugo de naranja. Arch. Latinoamer. Nutr., 31: 463-470.
Bigelow, W. D.; Bohart, G. S. Richardson, A. C. and Ball, C. O. 1920. Heat penetration in processing canned foods.
National Canners’ Association Research Laboratory. Bull. 16-L.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
Burton, H. 1986. Microbiological aspects. Chapter III. In: Monograph on Pasteurized Milk. Bulletin IDF N 200. p:9-14.
Charm, S. E. 1981. "The Fundamentals of Food Engineering". 3rd. ed. Westport, Connecticut. AVI Publishing Company
Inc. Ch. 5. p: 189-195.
Guariguata, C.; Barreiro, J. A. and Guariguata, G. 1979. Analysis of continuos sterilization processes for Bingham plastic
fluids in laminar flow. J. Food Sci., 44: 905-910.
Harper, W. J. 1976. Processing induced changes. In: "Dairy Technology and Engineering".
Harper, W. J. and Hall, C. W. (Eds.). Westport, Connecticut. AVI Publishing Company. p: 568-574.
Izurieta, B. y Pólit, P. 1981. Evaluación del proceso calórico de esterilización de productos alimenticios de baja acidez
enlatados. Quito, Ecuador. Escuela Politécnica Nacional, Facultad de Ingeniería Química. 28 p.
Kaplan, A. M.; Reynolds, H. and Lichtenstein, H. 1954. Significance of variations in observed slopes of thermal death time
curves for putrefactive anaerobes. Food Res., 19: 173-179.
Linden, G. 1986. Biochemical aspects. Chapter V. In: Monograph on Pasteurized Milk. Bulletin IDF N 200. p:17-21.
Mikolajcik, E. M. 1970. Thermodestruction of bacillus spores in milk. J. Milk Food Technol., 33(2): 61.
Patashnik, M. 1953. A. simplified procedure for thermal process evaluation. Food Technol., 7(1): 1-6.
Pflug, I. J. and Odlaug, T. E. 1978. A review of z and F values used to ensure the safety of low-acid canned food. Food
Technol., 32(6): 63-70.
Rodrigo, M. y Safón, J. 1982. Optimización del proceso de esterilización-cocción. Bases científicas. Rev. Agroquím.
Tecnol. Aliment., 22(1): 22-38.
Schultz, O. T. and Olson, F. C. W. 1940. Thermal processing of canned foods in tin containers. III. Recent improvements
in the General Method of thermal process calculations. A special coordinate paper and methods of converting initial and
retort temperatures. Food Res., 5(4): 399-407.
Silla, M. H. 1993. Acidification as a factor to lower the resistance of bacterial spores. Rev. Esp. Cienc. Tecnol. Aliment.,
33(1):13-28.
Procesos Térmicos
373
Sognefest, P.; Hays, G. L. Wheaton, E. and Benjamin, H. A. 1948. Effect of pH on thermal process requirements of canned
foods. Food Res., 13(5): 400-416.
Sognefest, P. and Benjamin, H. A. 1944. Heating lag in thermal death-time cans and tubes. Food Res., 9(3): 234-243.
Spinak, S. H. and Wiley, R. C. 1982. Comparisons of the General and Ball formula methods for retort pouch process
calculations. J. Food Sci., 47: 880-884, 888.
Stumbo, C. R. 1973. "Thermobacteriology in Food Processing". 2nd. ed. New York. Academic Press. Ch. 12. p: 152158.
Stumbo, C. R. 1949. Thermobacteriology as applied to food processing. Adv. Food Res., 2: 47-115.
Stumbo, C. R. 1948. A technique for studying the resistance of bacterial spores to temperature in the higher range. Food
Technol., 2: 228-240.
Toledo, R. T. 1984. Preparación de suspensión de esporas para envases inoculados. Determinación de la resistencia
térmica de esporas, los valores D y z. III Curso Avanzado de Tecnología de Alimentos. Cálculo de Procesos Térmicos
en Alimentos. Ejercicios de Laboratorio I y II. Facultad de Ciencia e Ingeniería de Alimentos, Universidad Técnica de
Ambato. Ecuador. 7 p.
Toledo, R. T. 1984a. Sterilization of products for aseptic packaging. III Curso Avanzado de Tecnología de Alimentos.
Cálculo de Procesos Térmicos en Alimentos. Facultad de Ciencia e Ingeniería en Alimentos, Universidad Técnica de
Ambato. Ecuador. Suplement 11. Lecture V. 33 p.
Toledo, R. T. 1982. Update on container and equipment sterilization techniques for aseptic packaging. The American
Institute of Chemical Engineers. AIChE Symposium Series Nº 218, Vol. 78: 31-41.
Juan de Dios Alvarado
Toledo , R. T. 1981. "Fundamentals of Food Process Engineering". Westport, Connecticut. AVI Publishing Co. p: 242281.
Capítulo 8
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
374
TEMA 8.2. APLICACIÓN DEL MÉTODO DE BALL PARA CALCULAR
TIEMPOS DE PROCESO TÉRMICO EN LA ESTERILIZACIÓN
COMERCIAL DE ALIMENTOS ENLATADOS
INTRODUCCIÓN
En el cálculo de procesos térmicos el método más utilizado, considerado clásico a pesar de las críticas y
mejoras realizadas, es el Método Matemático. Este método fue desarrollado por Ball (1923, 1928), y efectúa la
integración matemática de los efectos letales producidos por las interrelaciones temperatura-tiempo existentes
en el punto de calentamiento más lento, en un recipiente con alimento durante un proceso.
Ball (1927) señaló que el estudio científico de un procesamiento incluye una combinación de investigaciones
en los campos de la Bacteriología, Física y Matemáticas. El bateriólogo estudia la resistencia al calor de las
bacterias y los factores que influyen; el físico estudia la velocidad a la cual el calor penetra en los alimentos
enlatados y los factores que influyen, el matemático correlaciona los datos obtenidos en estos dos campos
de investigación para calcular valores teóricos del proceso. El desarrollo de su método prueba la correcta
aplicación de lo indicado.
El trabajo de Ball no solamente extiende grandemente las posibilidades de cálculos de procesos; además, los
simplifica. Menos tiempo se utiliza en los cálculos de procesos térmicos. Pueden hacerse previsiones para
aplicar los datos de penetración de calor a todo tamaño de envase y temperaturas de autoclave.
Las fórmulas desarrolladas son relativamente simples. Según Olson y Stevens (1939), estas fórmulas pueden
ser aplicadas en cualquier caso, cuando la mayor parte de la curva de calentamiento, graficada en escalas
Procesos Térmicos
375
semilogarítmicas, se aproxima a una línea recta o dos líneas rectas. Ello ocurre cuando el modo de transferencia
de calor predominante es conducción, y cuando la curva de tiempo de muerte térmica representada en forma
semilogarítmica es, o puede suponerse que sea, una línea recta.
Hayakawa (1977) señaló que el trabajo se basa en la integración analítica de la ecuación:
(N/No) = J (10)-t/D
(8.2.1)
Las secciones lineales de las curvas de calentamiento y enfriamiento son definidas por:
T1 - T = jh (T1-T0)(10) -t/fh
T - Tw = je (Tg-Tw)(10)-t e /fe
(8.2.2)
(8.2.3)
La sección curvilínea de la curva de enfriamiento puede ser definida por:
T = Tg+0,3m-(0,3m/(0,0759fe))((0,0759fe)2+te)0,5
(8.2.4)
Esta ecuación fue derivada considerando que el tiempo de la sección curvilínea de la curva, al inicio del
calentamiento, es 0,141fe y que je es 1,41.
El reemplazo de estas ecuaciones en:
FP = (10)(T-To)/z dt
(8.2.5)
Permitió establecer una ecuación para calcular el valor esterilizante de un proceso térmico en un punto
determinado (FP).
La ecuación de Ball para curvas de calentamiento, que al ser graficadas en escala semilogarítmica presentan
una sección lineal, es:
Θ = fh (log jI - log g)
(8.2.6)
Para el caso que se definan dos secciones lineales:
Θ = fh1(log jI - log gbh)+fh2(log gbh - log g)
(8.2.7)
El procedimiento original fue mejorado por Ball y Olson (1957), con la introducción de dos parámetros
adicionales relacionados con el valor esterilizante en las fases de calentamiento y enfriamiento del proceso
térmico.
Stumbo (1949) puntualizó que es esencial familiarizarse con el sentido y significado de ciertos términos
propuestos y definidos por Ball, para un claro entendimiento de las fórmulas y los conceptos sobre los cuales
está basado el desarrollo del método.
Es más conveniente expresarla como el número de grados Fahrenheit o Celsius determinados en la escala de
temperatura, requeridos para que la línea atraviese un ciclo logarítmico en la escala de tiempo. A este valor
se lo designa con el símbolo z. El valor de z varía con ciertos factores. Equivale a decir que z es el recíproco
negativo de la pendiente de la curva de tiempo de muerte térmica.
Factores de penetración de calor j, I, f.
Las curvas de calentamiento, obtenidas al representar en papel semilogarítmico tiempo contra temperatura, son
Juan de Dios Alvarado
Pendiente de la curva de tiempo de muerte térmica.
Capítulo 8
376
generalmente líneas rectas. Sin embargo, en lugar de ubicar los valores de la temperatura del alimento en la
escala logarítmica, se grafican los valores que representan diferencias entre la temperatura del autoclave y la
temperatura del alimento.
En la práctica, el equivalente se realiza por un procedimiento muy simple. El papel semilogarítmico se rota en
180 y la escala logarítmica se incrementa desde la parte superior a la inferior; con el papel en esta posición
la primera línea superior es un valor dado que corresponde a un grado menos de la temperatura del autoclave.
El valor j fue introducido por Ball para localizar la intersección de la extensión de la sección de línea recta de
la curva de calentamiento, y la línea vertical que representa el inicio del proceso, considerando el tiempo que
se requiere en llevar al autoclave a la temperatura de mantenimiento o procesamiento.
PRINCIPIOS DE INGENIERÍA APLICADOS EN ALIMENTOS
El valor j se obtiene dividiendo la diferencia entre la temperatura del autoclave y la temperatura inicial teórica
del alimento o seudo temperatura inicial del alimento, por la diferencia entre la temperatura del autoclave y la
temperatura inicial real del alimento. La temperatura inicial real es la temperatura del alimento en el tiempo
que el vapor comienza a entrar en el autoclave.
La temperatura inicial teórica se determina de la manera siguiente: se traza una línea vertical de tal forma que
pase a través de un punto que sea 0,58, de la distancia que representa el tiempo en que se alcanza la temperatura
de proceso en