Subido por Ezequiel Zamora

NUEVOPROYECTODETESISEDGAR

Anuncio
UNIVERSIDAD CESAR VALLEJO
ESCUELA DE POST GRADO
PROYECTO
EL SOFTWARE EDUCATIVO CLIP 3.0 EN DESARROLLO DE CAPACIDADES EN EL AREA DE MATEMATICA EN LOS ALUMNOSDE DEL
1º GRADO DE SECUNDARIA DE LA INSTITUCIÓN EDUCATIVA Nº
6024 “JOSÉ MARIA ARGUEDAS” – UGEL Nº 01, SAN JUAN DE MIRAFLORES.
PARA OPTAR EL TITULO DE:
SEGUNDA ESPECIALIDAD EN
INFORMATICA EDUCATIVA
AUTOR:
Lic. MARTÍNEZ SÁNCHEZ, Edgar Fernando
ASESOR
LIC. JOSÉ LUIS SOLÍS TOSCANO
LIMA – PERÚ
2011
I.
GENERALIDADES
1.1.
Titulo
EL
SOFTWARE
EDUCATIVO
CLIP
3.0
EN
DESARROLLO DE CAPACIDADES EN EL AREA DE
MATEMATICA EN LOS ALUMNOSDE DEL 1º GRADO
DE SECUNDARIA DE LA INSTITUCIÓN EDUCATIVA
Nº 6024 “JOSÉ MARIA ARGUEDAS” – UGEL Nº 01, SAN
JUAN DE MIRAFLORES.
1.2.
Autor:
Lic. MARTÍNEZ SÁNCHEZ, Edgar Fernando
1.3.
Asesor:
Lic. SOLÍS TOSCANO, José Luis
1.4.
Tipo de investigación:
descriptiva
1.5.
Localidad:
Tablada de Lurín – Villa María del Triunfo
1.6.
Duración del proyecto:
3 meses
II: PLAN DE INVESTIGACION
2.1. Planteamiento del Problema
El acelerado desarrollo de la ciencia y la técnica en las últimas décadas ha provocado en la educación cambios significativos entre sus componentes; al docente se le plantean nuevos diseños didácticos, métodos, modelos, herramientas y procesos instruccionales para mejorar la enseñanza, modificar la forma
tradicional de enseñar por otra más novedosa basada en la construcción del
conocimiento por parte del alumno; a las instituciones educativas, la sociedad
les demanda mayores cambios e innovaciones de acuerdo con los avances de
la informática y la electrónica que enmarcan la aparición de la sociedad del conocimiento.
Es por tanto necesario pensar el proceso de enseñanza aprendizaje desde
perspectivas nuevas que permitan la incorporación de nuevos medios didácticos, qué estén de acuerdo con el desarrollo científico y tecnológico actual.
Software educativo CLIP3.0 Interactiva en el aula de clase, ya proporciona una
serie de funcionalidades que facilitan el desarrollo de las capacidades del área
de matemática.
Además de las ventajas que posee al ser manipulado por el alumno es sumamente sencillo y sin complicaciones, el no tener que utilizar la tiza, mas bien la
utilización dl ordenador , las facilidades para retocar y mover textos, y otras
ventajas, el contenido de los software educativos CLIP3.0 puede almacenarse
en el disco y utilizarse en una sesión posterior. También puede enviarse por email. Por supuesto, puede imprimirse y repartirse en papel entre los estudiantes.
Con el software educativo CLIP3.O interactiva resulta más fácil escribir, combinar y mover imágenes, subrayar… desde la propia pantalla, sin necesidad de
dirigirse al ordenador.
Desarrollar las capacidades en el área de matemática de los alumnos del primer grado de educación secundaria de la I.E.N° 6024 “Jose Maria Arguedas” – UGEL01
2.2. Formulación del Problema
¿Cuál es la influencia del Software Educativo CLIP 3.0 en el desarrollo de capacidades del Área de Matemática en los alumnos del 1° secundaria de la Institución Educativa Nº 6024 “José María Arguedas” – UGEL Nº 01?
2.3. Justificación
Nuestra investigación se justifica en el hecho de que como docentes de las diferentes áreas de permanecer indiferentes ante la problemática observada. Por tal
razón, nuestro estudio pretende constituirse en un aporte en este campo, ya que
en nuestro país no hemos encontrado investigaciones que hayan intentado identificar los factores que predisponen a la hora de desarrollar las capacidades en
el área de matemática con el uso de los software educativo en las aulas de innovación pedagógica, por lo menos de la forma de hacer de cómo desarrollarlos
con los estudiantes del primer grado de secundaria, luego de haber encontrado
las causas de este problema, se proponga una solución para enfrentarlo.
Como ya lo mencionamos anteriormente, con nuestro estudio no solo vamos a
determinar los factores que subyacen a la problemática observada sino que,
además, pretendemos proponer un método para enfrentar el problema, para
conseguir que los estudiantes mejoren su capacidad con la utilización de las TIC
en el aula de innovación pedagógica y el uso de los software educativos.
Hoy en día no se puede negar que las TIC forman parte del quehacer educativo,
convirtiéndose no sólo en una ventaja para quien la utiliza, sino también en una
necesidad. Sin embargo, el docente debe seleccionar con criterio los recursos
informáticos: software educativo, material audiovisual, multimedia, apletts, Internet (Web sites, WebQuest, bloggs, etc.) adecuados para reforzar los aprendizajes. De igual modo, el momento y la forma de utilizar este recurso tecnológico
requiere de mucha pericia, que el docente irá perfeccionando con una adecuada
capacitación y con la práctica.
2.4. Limitaciones
Consideramos Que para realizar la investigación nos hemos encontrado con
diversas limitaciones:
1.
El tiempo para la realización de una profunda investigación es limitada.
2.
El apoyo de los profesores del área para la aplicación del instrumento de
medición fue limitado.
Factor tiempo.-- Por las obligaciones como docentes de aula nos limita
el
desarrollo de nuestro proyecto de investigación para buscar bibliografías. Como
alternativa de solución me organizaba de tal manera que me daba el tiempo necesario para la ejecución de mi proyecto.
Factor Económico.- Me encontré con una limitación para cubrir los gastos que
demanda mi investigación como sala virtual (internet), tipeos, impresiones, copias, pasajes, etc. superándolo gracias a la perseverancia de mi inquietud de
conocer y solucionar los problemas que aquejan a nuestros estudiantes.
2.5.
Antecedentes
2.5.1. Tesis: Balbín Bastidas, Ana María. En su trabajo de investigación: Factores relacionados con el uso de la computadora como recurso de la práctica educativa de los docentes capacitados por el Programa Huascarán, afirma que se
han visto las mejoras en el aprendizaje que se derivan del uso de herramientas
de modelización basadas en las TIC (Tecnologías de la Información y la Comunicación). Muestra algunos resultados de su aplicación para la obtención de datos experimentales con sensores y con vídeos, las simulaciones con mini aplicaciones o apletts, y las hojas de cálculo.
2.5.2. Tesis: Albert Gras-Martí, Marisa Cano-Villalba, Yuri Milachay, Vicent Soler-Selva, Julio Santos Benito). En su trabajo de investigación: Aprovechamiento
de recursos TIC para mejorar el aprendizaje de los lenguajes de las Ciencias:
Investigaciones didácticas en el aula: afirman que los estudios detallados de las
respuestas de los alumnos en test pre y post aplicación de la herramienta correspondiente, así como comparaciones entre los resultados de diversos cursos
que el uso de estas herramientas promueven y facilitan la comprensión de los
distintos lenguajes de la ciencia: el lenguaje icónico, algebraico, tabular, formal,
etc.
2.5.3. Tesis: Edith Ruth Aliaga Vilchez. En su trabajo de investigación: “uso del
software matemático como medio de Asesoría y reforzamiento de las matemáticas a alumnas del Segundo grado de educación secundaria del colegio Mercedes Indacochea del distrito de Barranco: afirma que el uso de los software como
estrategia de enseñanza de las matemáticas es indispensable y la utilización de
un software por parte de los alumnos incrementa notablemente su rendimiento.
El aprendizaje de las matemáticas en alumnas cuyas edades se encuentran en
el rango superior al promedio, es más rápido, debido a las experiencias tanto
cognitivas como emocional.
Realizada el 14 de Julio del 2004 en la universidad Nacional Federico Villarreal –
Lima.
2.5.4 Tesis: Juana Zavala Martínez. En su trabajo de investigación: “la computadora como material didáctico para la enseñanza de la matemática”. Afirma que
entre los componentes educativos, la computadora se incorpora como un poderoso medio que adquiere sentido con las diversas mediciones del maestro; principalmente la mediación cognitiva y la mediación cognitiva.
La potencia de la computadora ayuda a promover la intuición matemática y el
entendimiento del escolar. Ya que este recurso didáctico que ayuda al alumno a
sentir la conformidad con el curso.
Los sitios que localizamos en la red, relativos a educación matemática, son extranjeros especialmente norteamericanos, y la presentación de los contenidos, lo
hacen con este corte tradicional con el que hemos convivido durante décadas.
Aun en nuestro país no hay colegios que ya estén utilizando la computadora en
la clase de matemática pero tenemos la referencia de otros colegios extranjeros
que usan este recurso didáctico teniendo resultados favorables. Por lo pronto se
ha estudiado las actitudes de los alumnos hacia la computadora y todas las respuestas han sido positivas. En el caso concreto de la educación en los niveles
de educación secundaria, todavía no se utiliza la computadora como recursos
didácticos para la enseñanza de la matemática el cual forma parte del tedio a
este curso por parte del alumno.
2.5.5 Tesis: Efraín Serafín Mamani Ticona y Roció Quispe Cutipa en su trabajo
de investigación “La influencia de la enseñanza virtual del aprendizaje de los
alumnos del quinto Grado de la especialidad de electrónica de las Instituciones
Educativas Secundarias Técnicas “Gran Unidad escolar San Carlos” , “Industrial
Nº 32 de la ciudad de Puno”. Afirma y concluye:
1.- La enseñanza virtual en la especialidad de electrónica influye directamente
en los educandos ya que posibilita un mejor aprendizaje de diferentes contenidos curriculares, principalmente utilizando los procesos educativos electrónicos
por parte de los profesores hacia los educandos y es muy importante para su
formación integral como persona.
2.- Utilizando las computadoras en el aula virtual, ayuda mejorar el nivel de enseñanza y aprendizaje de los alumnos, ya que les gusta utilizar computadoras
en el desarrollo de sus sesiones de aprendizaje significativo, así como en realizar sus diversas prácticas utilizando diferentes programas educativos electrónicos.
3.- Es ventajoso la utilización de las computadoras en el aula virtual ya que
coadyuva a una mejor enseñanza de los alumnos, les posibilita un mejor aprendizaje y pone a la altura de las grandes metrópolis la enseñanza virtual así mejorando la calidad de la educación técnica, cuyo objetivo es la de formar alumnos
con una sólida base científica, tecnológica y humanista.
Puno – Perú 2007.
2.6.
Preguntas de investigación
¿Cómo influye la aplicación del Software Educativo CLIP 3.0 en el desarrollo
de las capacidades de razonamiento y demostración en los alumnos del 1º
de Secundaria de la Institución Educativa Nº 6024
1º de secundaria
“José María Arguedas” – UGEL Nº 01?
¿Cómo influye
la aplicación de las Aulas de Innovación Pedagógica en el
desarrollo de las capacidades de comunicación matemática en los alumnos
del 1º de secundaria de la Institución Educativa Nº 6024 “José María Arguedas” – UGEL Nº 01
¿Cómo influye la aplicación de las Aulas de Innovación Pedagógica en el desarrollo de las capacidades de resolución de problemas en los alumnos del 1º
de secundaria de la Institución Educativa Nº 6024 “José María Arguedas” –
UGEL Nº 01?
2.7.
Objetivos de la Investigación
2.7.1 Objetivo General
Determinar si la aplicación del Software Educativo CLIP 3.0 mejora el
desarrollo de capacidades en el área de matemática en los alumnos del
1º de secundaria de la Institución Educativa Nº 6024 “José María Arguedas” – UGEL Nº 01.
2.7.2. Objetivo Específicos
Determinar si la aplicación del Software Educativo CLIP 3.0 mejora el
desarrollo de la capacidad de razonamiento y demostración en los
alumnos del 1º de Secundaria de la Institución Educativa Nº 6024 “José María Arguedas” – UGEL Nº 01
.
Determinar si la aplicación del Software Educativo CLIP 3.0 mejora el
desarrollo de la capacidad de comunicación matemática en los estudiantes del 1º de secundaria de la Institución Educativa Nº 6024 “José
María Arguedas” – UGEL Nº 01
Determinar si la aplicación del Software Educativo CLIP 3.0 mejora el
desarrollo de la capacidad de resolución de problemas en los estudiantes del 1º de secundaria de la Institución Educativa Nº 6024 “José
María Arguedas” – UGEL Nº 01
2.8.
Marco Teórico
2.8.1. Conceptualización de los Software Educativo
Podríamos definir el término software educativo como “programas de computadora para la educación”. Hay muchas definiciones entre las que destacamos
la de:
 Pere Marqués (1996), “son los programas de computadoras creados con
la finalidad específica de ser utilizados como medio didáctico, es decir,
para facilitar los procesos de enseñanza y de aprendizaje”.
 Begoña Gros (1997), “cualquier producto realizado con una finalidad educativa”.
 Ceja MENA (2000), “son aquellos programas creados con la finalidad específica de ser utilizados como medio didáctico; es decir, para facilitar los procesos de enseñanza y de aprendizaje, tanto en su modalidad
tradicional presencial, como en la flexible y a distancia”.
Estas definiciones engloban todos los programas que han sido elaborados
con fines didácticos, desde los tradicionales programas basados en los
modelos conductistas de la enseñanza, los programas de Enseñanza
Asistida por Computadora, hasta los programas de Enseñanza Inteligente Asistida por Computadora, que, utilizando técnicas propias del campo
de los Sistemas Expertos y de la Inteligencia Artificial, pretendiendo imitar la labor tutorial personalizada
presentan
modelos
que
realizan
los
profesores/as
y
de representación del conocimiento en consonancia con
los procesos cognitivos que desarrollan los alumnos/as.
Los software educativos pueden tratar las diferentes materias de formas muy diversas y ofrecer un entorno de trabajo más o menos
sensible a las circunstancias de los alumnos/as y más o menos
rico en posibilidades de interacción; pero todos comparten cinco características esenciales según Ríos y Ruíz (1998):
2.8.2. Clasificación de los Software Educativos
El software educativo a pesar de tener unos rasgos esenciales básicos y una
estructura general común se presentan con unas características muy diversas.
Se han elaborado múltiples tipologías que clasifican los programas didácticos
a partir de diferentes criterios.
Uno de estos criterios según Marqués (1996) se basa en la consideración
del tratamiento de los errores que cometen los estudiantes, distinguiendo:
 Programas tutoriales directivos, que hacen preguntas a los estudiantes y controlan en todo momento su actividad. La computadora adopta el papel de juez poseedor de la verdad y examina al alumno/a. Se
producen errores cuando
la
respuesta
del
alumno/a
está
en
desacuerdo con la que el ordenador tiene como correcta. En los
programas más tradicionales el error lleva implícita la noción de fracaso.
 Programas no directivos, en los que la computadora adopta el papel de un laboratorio o instrumento a disposición de la iniciativa de un alumno/a que pregunta y tiene una libertad de acción sólo limitada por las normas del programa. La computadora no juzga las acciones del alumno/a, se limita a procesar los datos que éste introduce y a mostrar las consecuencias de sus acciones
sobre un entorno. Objetivamente no se producen errores, sólo desacuerdos
entre los efectos esperados por el alumno/a y los efectos reales de sus
acciones sobre el entorno. Otra clasificación interesante de los software es
la dada por Poole (1999) que atiende a la posibilidad de modificar los contenidos
y
distingue
entre
software
Cerrados (que no pueden modificarse) y software abiertos, que proporcionan
un esqueleto, una estructura, sobre la cual los alumnos/as y los profesores/as
pueden añadir el contenido que les interese. De esta manera se facilita su
adecuación a los diversos contextos educativos y permite un mejor tratamiento
de la diversidad de los estudiantes.
No obstante, de todas las clasificaciones la que posiblemente proporciona categorías más claras y útiles a los profesores/as es la de Galvis (1996)
que tiene en cuenta el grado de control del programa sobre la actividad de los
alumnos/as y la estructura de su algoritmo, y que se presenta a continuación:
1. Programas tutoriales: Son programas que en mayor o menor medida
dirigen, tutorizan, el trabajo de los alumnos/as. Pretenden que, a partir de
unas informaciones y mediante la realización de ciertas actividades previstas de antemano, los estudiantes pongan en juego determinadas capacidades y aprendan o refuercen unos conocimientos y/o habilidades.
. A partir de la estructura de su algoritmo, se distinguen cuatro categorías:
 Programas
lineales,
que
presentan
al
alumno/a
una secuencia de información y/o ejercicios (siempre la
misma o determinada
dencia
de
aleatoriamente)
con
indepen-
la corrección o incorrección de sus respues-
tas.
 Programas ramificados, basados inicialmente también
en modelos
conductistas,
siguen
recorridos
peda-
gógicos diferentes según el juicio que hace el ordenador
sobre la corrección de las respuestas de los alumnos/as
o según su decisión de profundizar más en ciertos temas.
Entornos tutoriales. En general están inspirados en modelos pedagógicos cognitivistas, y proporcionan a los alumnos/as una serie de herramientas de búsqueda y de proceso de la información que pueden utilizar libremente para construir la respuesta a las preguntas del programa.
Sistemas tutoriales expertos, como los Sistemas Tutores Inteligentes,
que,
elaborados
con
técnicas
las
de
la
2. Bases de datos: Proporcionan unos datos organizados, en un entorno
estático, según determinados criterios, y facilitan su exploración y consulta
selectiva. Se pueden emplear en múltiples actividades como por ejemplo:
seleccionar datos relevantes para resolver problemas, analizar y relacionar
datos, extraer conclusiones, comprobar hipótesis. Las bases de datos
pueden
tener
una
estructura
jerárquica
(si
existen
unos
elementos
subordinantes de los que dependen otros subordinados, como los organigramas), relacional (si están organizadas mediante unas fichas o registros con una misma estructura y rango) o documental (si utiliza descriptores y su finalidad es almacenar grandes volúmenes de información documental: revistas, periódicos, etc). En cualquier caso, según la forma de acceder a la información se pueden distinguir dos tipos:
 Bases
de
datos
convencionales.
Tienen
la
in-
formación almacenada en ficheros, mapas o gráficos, que
el usuario puede recorrer según su criterio para recopilar información..
 Bases de datos tipo sistema experto. Son bases de
datos muy especializadas que recopilan toda la informa-
ción existente de un tema concreto y además asesoran
al usuario cuando accede buscando determinadas respuestas.
3. Simuladores: Presentan un modelo o entorno dinámico (generalmente través
de gráficos o animaciones interactivas) y facilitan su exploración y modificación a
los alumnos/as, que pueden realizar aprendizajes inductivos o deductivos mediante
la
observación
y
la
manipulación
de
la
estructura
subyacente; de esta manera pueden descubrir los elementos del modelo, sus interrelaciones, y pueden tomar decisiones y adquirir experiencia directa delante
de unas situaciones que frecuentemente resultarían difícilmente accesibles a
la realidad (control de una central nuclear, contracción del tiempo, pilotaje
de un avión...). También se pueden considerar simulaciones ciertos videojuegos que, al margen de otras consideraciones sobre los valores que incorporan (generalmente no muy positivos) facilitan el desarrollo de los reflejos, la percepción visual y la coordinación psicomotriz en general, además de estimular la
capacidad de interpretación y de reacción ante un medio concreto. En cualquier
caso, posibilitan un aprendizaje significativo por descubrimiento y la investigación de
los estudiantes/experimentadores puede realizarse en tiempo real o en tiempo acelerado, según el simulador.
 Modelos
físico-matemáticos:
Presentan
de
manera
numérica o gráfica una realidad que tiene unas leyes
representadas por un sistema de ecuaciones deterministas. Se incluyen aquí los programas-laboratorio, algunos
trazadores de funciones y los programas que mediante
un convertidor analógico-digital captan datos analógicos de
un fenómeno externo al ordenador y presentan en pantalla
un modelo del fenómeno estudiado o informaciones y gráficos que van asociados.
Estos programas a veces son utilizados por profesores/as delante
de la clase a manera de pizarra electrónica, como demostración
o para ilustrar un concepto, facilitando así la transmisión de información a los alumnos/as, que después podrán repasar el tema interactuando con el programa.
 Entornos sociales: Presentan una realidad regida por
unas leyes no del todo deterministas. Se incluyen aquí los
juegos de estrategia y de aventura, que exigen una estrategia cambiante a lo largo del tiempo.
4. Constructores: Son programas que tienen un entorno programable.
Facilitan
a
los
usuarios
unos
elementos
simples
con
los
cuales
puede
construir elementos más complejos o entornos. De esta manera potencian el aprendizaje heurístico y, de acuerdo con las teorías cognitivistas, facilitan a los alumnos/as
la construcción de sus propios aprendizajes, que surgirán a través de la reflexión
que realizarán al diseñar programas y comprobar inmediatamente, cuando los
ejecuten, la relevancia de sus ideas. Se pueden distinguir dos tipos de constructores:
 Constructores
de
específicos.
Ponen
a
disposición
los estudiantes una serie de mecanismos de actuación
(generalmente en forma de órdenes específicas) que les
permiten llevar a cabo operaciones de un cierto grado
de complejidad mediante la construcción de determinados entornos, modelos o estructuras, y de esta manera
avanzan en el conocimiento de una disciplina o entorno
específico
 Lenguajes de programación, como LOGO, PASCAL,
BASIC, DELPHY, etc., que ofrecen unos "laboratorios
simbólicos" en los que se pueden construir un número ilimitado de entornos. Aquí los alumnos/as se convierten en
profesores/as
 Proporciona
de
entornos
la
de
computadora.
exploración
donde
:
el
alumno/a puede experimentar y comprobar las consecuencias de sus acciones, de manera que va construyendo un marco de referencia, unos esquemas de conocimiento, que facilitarán la posterior adquisición de nuevos
conocimientos.
 Facilita una actividad formal y compleja, próxima al terreno
de la construcción de estrategias de resolución de problemas: la programación. A través de ella los alumnos/as pueden establecer
y
evaluar
proyectos,
tomar
los resultados de sus acciones.
decisiones
5. Programas herramientas: Son programas que proporcionan un entorno
instrumental con el cual se facilita la realización de ciertos trabajos generales de tratamiento de la información: escribir, organizar, calcular, dibujar, transmitir, captar datos, etc. A parte de los lenguajes de autor (que también
se podrían incluir en el grupo de los programas constructores), los más utilizados son programas de uso general que provienen del mundo laboral y, por
tanto, quedan fuera de la definición que se ha dado de software educativo. No obstante, se han elaborado algunas versiones de estos programas
"para niños" que limitan sus posibilidades a cambio de una, no siempre clara, mayor facilidad de uso. De hecho, muchas de estas versiones resultan innecesarias, ya que el uso de estos programas cada vez resulta más sencillo
y cuando los estudiantes necesitan utilizarlos o su uso les resulta funcional
aprenden a manejarlos sin dificultad. Los programas más utilizados de este grupo son:
 Procesadores de textos. Son programas que, con la ayuda
de una impresora, convierten el ordenador en una fabulosa
máquina de escribir. En el ámbito educativo debe hacerse una
introducción gradual que puede empezar a lo largo de la Enseñanza Primaria, y ha de permitir a los alumnos/as familiarizarse
con el teclado y con el ordenador en general, y sustituir
parcialmente
la
libreta
de
redacciones por un disco (donde almacenarán sus trabajos).
Al escribir con los procesadores de textos los estudiantes
pueden concentrarse en el contenido de las redacciones y demás trabajos que tengan encomendados despreocupándose
por la caligrafía.
Además el corrector ortográfico que suelen incorporar les ayudará a revisar posibles faltas de ortografía antes de entregar el
trabajo.
Además de este empleo instrumental, los procesadores de textos permiten realizar múltiples actividades didácticas, por ejemplo:

Ordenar párrafos, versos, estrofas.

Insertar frases y completar textos.

Separar dos poemas...
 Gestores de bases de datos. Sirven para generar poten-
tes sistemas de archivo ya que permiten almacenar información de manera organizada y posteriormente recuperarla y
modificarla.
Entre las muchas actividades con valor educativo que se pueden realizar están las siguientes:

Revisar una base de datos ya construida para buscar determinadas informaciones y recuperarlas.

Recoger información, estructurarla y construir una
nueva base de datos.
 Hojas de cálculo. Son programas que convierten el ordenador
en una versátil y rápida calculadora programable, facilitando la realización de actividades que requieran efectuar muchos
cálculos matemáticos. Entre las actividades didácticas que
se pueden realizar con las hojas de cálculo están las siguientes:

Aplicar hojas de cálculo ya programadas a la resolución
de problemas
así
de
diversas
asignaturas,
evitando
la realización de pesados cálculos y ahorrando
un tiempo que se puede dedicar a analizar los resultados

de
los
problemas.
Programar una nueva hoja de cálculo, lo que exigirá previamente adquirir un conocimiento preciso del
modelo matemático que tiene que utilizar.
 Editores
gráficos.
Se
emplean
desde
un
punto
de
vista instrumental para realizar dibujos, portadas para los
trabajos, murales, anuncios, etc. Además constituyen un recurso idóneo para desarrollar parte del currículum de Educación
Artística: dibujo, composición artística, uso del color, etc.
 Programas de comunicaciones. Son programas que permiten que ordenadores lejanos (si disponen de módem) se comuniquen entre sí a través de las líneas telefónicas y puedan
enviarse mensajes y gráficos, programas... Desde una perspectiva educativa estos sistemas abren un gran abanico de actividades posibles para los alumnos/as, por ejemplo:

Comunicarse
con
otros
compañeros
e
intercam-
biarse informaciones.

Acceder
a
bases
de
datos
lejanas
para
bus-
car determinadas informaciones.
 Programas de experimentación asistida. A través de variados instrumentos y convertidores analógico-digitales, recogen datos
sobre el comportamiento de las variables que inciden en determinados fenómenos.
Posteriormente
con
estas
informacio-
nes se podrán construir tablas y elaborar representaciones gráficas que representen relaciones significativas entre las variables estudiadas.
 Lenguajes y sistemas de autor. Son programas que facilitan
la elaboración de programas tutoriales a los profesores/as que
no disponen de grandes conocimientos informáticos. Utilizan unas
pocas instrucciones básicas que se pueden aprender en pocas
sesiones.
2.8.3. Funciones del software educativo
El software educativo, cuando se aplican a la realidad educativa, realizan las
funciones básicas propias de los medios didácticos en general y además,
en algunos casos, según la forma de uso que determina el profesor/a,
pueden proporcionar funcionalidades específicas.
Por otra parte, como ocurre con otros productos de la actual tecnología educativa, no se puede afirmar que el software educativo por sí mismo sea bueno
o malo, todo dependerá del uso que de él se haga, de la manera cómo se utilice en cada situación concreta. En última instancia su funcionalidad y
las ventajas e inconvenientes que pueda comportar su uso serán el
resultado de las características del material, de su adecuación al contexto educativo al que se aplica y de la manera en que el profesor/a organice su
utilización.
Las funciones que pueden realizar los software según Marquès (1996):
 Función informativa. La mayoría de los programas a través
de sus actividades presentan unos contenidos que proporcionan
una información estructuradora de la realidad a los estudiantes.
Como todos los medios didácticos, estos materiales representan
la realidad y la ordenan. Los programas tutoriales, los simuladores y, especialmente, las bases de datos, son los programas
que realizan más marcadamente una función informativa.
 Función instructiva. Todos los software educativos orientan y regulan el aprendizaje
de
implícitamente, promueven
mismos
encaminadas
los
estudiantes
determinadas
a facilitar
el
logro
ya
que,
explícita
actuaciones
de
unos
de
o
los
objetivos
educativos específicos. Además condicionan el tipo de aprendizaje
que se realiza pues, por ejemplo, pueden disponer un tratamiento
global de la información (propio de los medios audiovisuales) o a
un tratamiento secuencial (propio de los textos escritos).
Con todo, si bien la computadora actúa en general como mediador
construcción del conocimiento y el metaconocimiento de los estudiantes, son los programas tutoriales los que realizan de manera más
explícita esta función instructiva, ya que dirigen las actividades de
los estudiantes en función de sus respuestas y progresos.
 Función motivadora. Generalmente los estudiantes se sienten
atraídos e interesados por todo el software educativo, ya que los
programas suelen incluir elementos para captar la atención de los
alumnos/as, mantener su interés y, cuando sea necesario, focalizarlo hacia los aspectos más importantes de las actividades, por lo
tanto, la función motivadora es una delas más características de este tipo de materiales didácticos, y resulta extremadamente útil para
los profesores/as.
 Función evaluadora. La interactividad propia de estos materiales,
que les permiten responder inmediatamente a las respuestas y
acciones de los estudiantes, les hace especialmente adecuados para
evaluar el trabajo que se va realizando con ellos. Esta evaluación
puede ser de dos tipos:

Implícita, cuando el estudiante detecta sus errores, se evalúa,
a partir de las respuestas que le da la computadora.

Explícita, cuando el programa presenta informes valorando
la actuación del alumno/a. Este tipo de evaluación sólo la realizan los programas que disponen de módulos específicos de evaluación.
 Función investigadora. Los programas no directivos, especialmente las bases de datos, simuladores y programas constructo-
res, ofrecen a los estudiantes interesantes entornos donde investigar: buscar determinadas informaciones, cambiar los valores de
las variables de un sistema, etc.
Además, tanto estos programas como los programas herramienta,
pueden proporcionar al profesorado y estudiantado instrumentos
de gran utilidad para el desarrollo de trabajos de investigación que
se realicen básicamente al margen de los ordenadores.
 Función expresiva. Dado que las computadoras son capaces de
procesar los
símbolos
mediante
los
cuales
las
personas
conocimientos y nos comunicamos, sus posibilidades como instrumento expresivo son muy amplias. Desde el ámbito de la informática que estamos tratando, el software educativo, los estudiantes se
expresan y se comunican con las computadoras y con otros compañeros a través de las actividades de los programas y, especialmente,
cuando
utilizan
lenguajes
de programación, proce-
sadores de textos, editores de gráficos, etc.
Otro aspecto a considerar al respecto es que las computadoras no
suelen admitir la ambigüedad en sus "diálogos" con los estudiantes,
de manera que los alumnos/as se ven obligados a cuidar más la
precisión de sus mensajes.
o Función metalingüística. Mediante el uso de los sistemas operativos (, WINDOWS, etc.) y los lenguajes de
programación (BASIC, LOGO, etc.) Los estudiantes pueden
aprender los lenguajes propios de la informática.
o Función lúdica. Trabajar con las computadoras realizando actividades educativas es una labor que a menudo
tiene unas connotaciones lúdicas y festivas para los estudiantes.
o Función innovadora. Aunque no siempre sus planteamientos pedagógicos
educativos
se
resulten
pueden
innovadores,
los
considerar materiales
programas
didácticos
con esta función ya que utilizan una tecnología recientemente incorporada a los centros educativos y, en general,
suelen permitir muy diversas formas de uso. Esta versatilidad abre amplias posibilidades de experimentación di-
dáctica e innovación educativa en el aula.
2.8.4. Las funciones del profesor y los materiales didácticos
Los materiales didácticos, se pueden definir como "el conjunto de medios
materiales
que
intervienen
en
el acto
didáctico,
facilitando
los
procesos
enseñanza y aprendizaje..
enseñanza
y de aprendizaje". Sus fines centrales persiguen facilitar
la
comunicación entre el docente y el estudiante para favorecer a través de la
intuición y el razonamiento un acercamiento comprensivo de las ideas a través de los
sentidos. (Gómez, 1997). Estos materiales didácticos constituyen la variable dependiente del proyecto pedagógico y del entorno de aprendizaje que se trate.
La utilización de software educativo como material didáctico, cambia la manera en la cual los profesores estimulan el aprendizaje en sus clases; cambia el tipo de interacción entre alumnos y docentes y por lo tanto cambia
el rol y las funciones del profesor. En la Tabla se presenta un resumen de
dichas funciones según Squires y McDouglas (1997):
FUNCION
CARACTERISTICAS
Como proveedor de recursos
Muchas veces el profesor tiene
que adaptar los materiales de
un cierto paquete
a
educativo
las características de
la
clase y a los fines que él plantea
en ese momento
Como organizador
Cuando se usan computadoras,
hay muchas formas de organizar
su uso en el aula y variando de
acuerdo a los
los
diferentes
esti-
docentes.
También se debe tener en cuenta
la graduación del tiempo de interacción con las máquinas, ya
que es en los diálogos en clase
donde se produce gran parte del
aprendizaje
Como tutor
Hay
profesores
software para
tividades.
que
usan
un
las
ac-
centrar
El profesor trabaja con
un sólo alumno o un
grupo
pequeño, realizando actividades
de tutoría como: razonar y buscar
modelos o respuestas.
Como investigador
A nivel áulico, el uso de software puede dar a los profesores ideas sobre los proceso de
aprendizaje y de las dificultades
de sus alumnos.
En este papel de investigadores,
los docentes, usan al software
como una herramienta diagnóstica
Como facilitador
Esta es la responsabilidad principal del docente, como facilitadores
del aprendizaje
estudiantes y la que
olvidarse,
las
con
demás
de
no
los
debe
la aparición de
funciones que sur-
gen con la introducción del uso
de las computadoras en el aula
Entre las actividades de comprensión o "procesos de pensamiento" que los
alumnos pueden desarrollar al interactuar con los programas educativos, se
pueden mencionar:
Explicar relaciones causa efecto.

Formular conclusiones válidas.

Describir limitaciones de los datos.

Confrontar conocimientos nuevos con previos.

Clasificar y seleccionar información.

Producir, organizar y expresar ideas.

Elaborar mapas conceptuales (teniendo en cuenta la
conciliación integradora y la diferenciación progresiva)
re-

Integrar el aprendizaje en diferentes áreas.

Inferir correctamente.

Defender un punto de vista y fundamentar criterios.

Resolver problemas elaborando estrategias metacognitivas.
La comprensión, implica el compromiso reflexivo del alumno con el contenido de
enseñanza y la habilidad para articular significativamente el material comunicado
por acciones de guía (Callaos, 1993).
Entre los objetivos de los programas educativos se pueden mencionar:
1. Crear expectativas en el estudiante y estimular la planificación de su
aprendizaje.
2. Dirigir la atención del estudiante y permitir que inicie su aprendizaje por
diferentes caminos de acceso. (tiene gran importancia desde lo cognitivo).
3. Asegurar situaciones de aprendizaje significativo.
4. Aprovechar la posibilidad de usar imágenes, animaciones, simulaciones y
sonidos.
5. Desarrollar y hacer consciente el uso de diferentes estrategias:
− De procesamiento de la información.
− De producción y uso de la información.
− De recreación de la información.
6. Estimular la generalización y transferencia de lo aprendido.
7. Ofrecer situaciones de resolución de problemas.
8. Proveer retroalimentación constante e informar acerca de los progresos en
el aprendizaje. (Escudero, 1992).
Alessi y Trollip (1991), consideran que existe una motivación extrínseca
independiente del programa utilizado, y una intrínseca inherente en la
instrucción y recomiendan criterios para su promoción, como el uso de juegos,
de exploración, de desafíos, incentivación de la curiosidad del estudiante,
teniendo en cuenta un balance entre la motivación y el control del programa.
De la motivación permitiendo crear desafíos, curiosidad, control y fantasía y
con un diseño
motivacional
que
mantenga
la
atención
a
través
del
mismo. Los estudiantes deben poder ver la utilidad de resolución de problemas.
Ausubel (1968) sostiene que el papel de la motivación en el aprendizaje es uno
de los problemas más controvertidos de los teóricos de la psicología, y que aún
las posiciones son muy encontradas. En la Tabla se pueden ver la clasificación
de los diferentes tipos de motivación dadas por Galindo (2000).
Intresica
Es la que proviene del interior del
sujeto por su compromiso con la
tarea
Relacionada con el yo
Se relaciona con la auto estima,
con el no percibirse inferior a los
demás
Centrada en la valoración social
Se relaciona con la satisfacción
afectiva que produce la aceptación, aprobación
Extrínseca
Centrada en recompensas externas, se relaciona con premios y/o
castigos
La motivación intrínseca es superior a la extrínseca y para lograrla, quizás la
manera más eficaz es mediante el entusiasmo propio del docente por lo que
hace.
Para ello se debe considerar la creación de nuevos intereses en los alumnos
como uno de los objetivos de la intervención pedagógica, teniendo en cuenta las
necesidades
fisiológicas,
de
supervivencia,
de
seguridad,
de
amor,
de
pertenencia, de aceptación, de autoestima, de autorrealización.
La organización en bloques y sub-bloques se realizará de tal forma que permitan
de navegación en sentido horizontal, vertical y transversal y deberán estar de
acuerdo a las diferentes estrategias de búsqueda que se preparen desde alguna
de las visiones de los diferentes paradigmas educativos.
Esta organización será acorde con el diseño de las pantallas más adecuado
en cada caso, para la presentación de los contenidos.
Gallego y Alonso (1997), ofrecen una guía metodológica para el diseño
pedagógico de la interface de navegación, destacando la necesidad de un
diseño adecuado tanto de la organización de los contenidos como de las
estrategias de enseñanza y de aprendizaje. Esta interface es fundamental, ya
que es el sistema de recursos mediante el cual el usuario interactúa con el
sistema informático. Estos recursos implican tener en cuenta aspectos técnicos,
de funcionamiento de la interface y también los cognitivos y emocionales
resultantes de la interacción usuario-computadora.
La interface es el elemento clave de comunicación o aspecto fundamental de
diseño y presentación de los contenidos. Actualmente, se diseñan interfaces
orientadas al usuario, lo más cercanas posible al lenguaje humano, incluyendo
el modo de presentar la información en la pantalla y las funcionalidades
brindadas al usuario para interactuar con el programa.
Según Gallego y Alonso (1997), las características principales de una interface
orientada al usuario deben ser:
 Homogeneidad: requiere de una interface con funciones claras
para moverse de en el programa, incluyendo un mapa general.

Versatilidad: que pueda incorporar nuevas funciones específicas.

Adaptabilidad: deberá ofrecer modalidades de navegación de
acuerdo al contenido, los destinatarios y el nivel de profundidad.

Multimodalidad: con integración de modalidades de comunicación
necesaria para cada concepto.

Multidimensionalidad: para los diseños hipermediales.

Agilidad: para que la interacción sea dinámica.

Transparencia: cuanto más natural sea, será más fácil para el
usuario acceder a los contenidos.

Interactividad: darle al usuario un papel protagónico.

Conectividad: para utilizar redes.
Respecto de las funciones, la interface debe tener una triple funcionalidad:
utilidades, navegación e información.
En su artículo sobre los agentes de interface, Butler(2001) señala como
principales características de las mismas: dar respuestas, actuar como agente,
competencia y accesibilidad.
La metáfora navegacional a aplicar estará condicionada por el tipo de contenido,
las características de los destinatarios y el lenguaje o herramienta de autor usado
para desarrollar el software. Las metáforas más utilizadas son las de los menús:
cerrados, abiertos o mixtos y las de los iconos; en este caso su utilización es
mucho más intuitiva. La metáfora espacial, es aquella que usa la realidad como
modelo, con escenarios que simulan la realidad misma. Un modelo de interface
espacial
son los paisajes de información, este modelo incluye conjuntos de
datos, documentos interactivos, recorridos guiados, películas y actividades.
Como no hay una metáfora ideal de menú principal de usuario, se trata de
con caminos de aprendizaje múltiples a elección del alumno, los estilos de
aprendizaje pueden convertirse en un elemento más a tener en cuenta en el
diseño didáctico (Alonso, 1992).
Las funciones de navegación permiten saber al usuario dónde está en cada
momento, de dónde viene y a dónde puede ir. Los modelos de organización de la
información para estructurar los contenidos de las aplica- ciones educativas son
muy diversos. Dunlop(2001) plantea una estructura multidimensional que
permite al usuario acceder a la información sobre la base de distintos intereseLa
metodología recomendada por Gallego y Alonso (1997), para aplicar la interface al ámbito educativo y la formación, se basa en los siguientes principios:

Ofrecer al usuario la posibilidad de que se sienta protagonista.

Presentar los contenidos de forma atractiva y de fácil manejo.

Combinar diferentes metáforas de navegación interactivas.

Prever diversas funcionalidades de la interface de navegación en
función del tipo de contenido, del destinatario y de los niveles de
profundidad previstos.

Considerar las normas de calidad en el diseño. Las principales especificaciones de una interface de aprendizaje son:

Facilidad de manejo.

Ayudas alternativas.
2.8.5. Desarrollo de capacidades
2.8.5.1. Condiciones para el desarrollo de las capacidades.
Desde los años ochenta – de manera cada vez más creciente – existe un inusitado
interés por enseñar a pensar, como una de las metas más genuinas de la educación.
Numerosos países han ido acumulando experiencias y conocimientos al respecto y,
gracias al avance de la investigación psicopedagógica en torno al desarrollo de las
capacidades, hoy es posible orientar los esfuerzos de la educación en lograr las aspiraciones de muchas veces reclamada por la sociedad.
“Sin embargo, algunos creen que enseñar a pensar es una cuestión de
moda y que como toda moda, esta también es pasajera, avaladas por la
experiencia de que han visto pasar varias veces “lo ultimo” en educación;
pero en contra esta idea se puede señalar el interés que existe desde hace veinticinco años, por redireccionar
la educación en este sentido y
no en vano se habla de un cambio de paradigma educativo. Es evidente
que siempre ha habido un interés por hacer que los estudiantes aprendan
a pensar, pero hoy en día, dadas las condiciones generadas por los fenómenos socio – económicos que estamos viviendo, esta necesidad se
ha hecho mas patente. Basta con referirnos a tres hechos de nuestra
realidad:
1.- EL Cambio en las exigencias para acceder al empleo y sostenerlo, reclaman que
las personas posean mas capacidades que conocimientos específicos. Es algo verificable el hecho de que las personas con mas capacidades, accedan a mejores empleos y progresan mejor en ellos que las personas que no las poseen, y dado que las
personas cambian hoy en día mas rápidamente de empleo, son las capacidades las
que permiten mayor versatilidad.
2.- Las necesidades de reivindicación social para grandes mayorías – hoy en día –
excluidas del bienestar del bienestar y de una mejor calidad de vida, pasan necesariamente por hacer de estas, personas mas hábiles y mas pensantes, que puedan
sustraerse de lideres egoístas y dictatoriales que subordinan inclusive la paz a la que
todos tienen derecho, por su propio beneficio personal o de sus grupos afines.
3.- La puesta en marcha de un currículo por capacidades en la Educación Secundaria
de nuestro país, no es pues una cuestión de estar a la moda de la educación y tampoco es una cuestión sencilla, ya que implica un cambio de cultura pedagógica y, eso,
no es una empresa fácil; de alli que el poner en funcionamiento esta propuesta demanda una serie de condiciones, que modifiquen progresivamente una serie de actores y de procesos pedagógicos.
2.8.5.2. El cambio en los Docentes.
Es sabido que los educadores junto con los educandos y los padres de familia son los
agentes pedagógicos directos en el escenario educativo de la educación Básica. En
este sentido, el cambio educacional atañe en primer lugar a los docentes y a la enseñanza.
“Para fomentar el desarrollo de capacidades en los alumnos, se requiere
igualmente docentes que posean las capacidades, los conocimientos y
las actitudes para procurar un aprendizaje para la comprensión; o lo que
es lo mismo, se requieren docentes con las capacidades básicas para
hacer el aprendizaje y la enseñanza, en consecuencia, sean efectivos.
Como es sabido, los docentes ponen el tono emocional a la clase, dise-
ñan las estrategias didácticas, implementan y administran las actividades
de aprendizaje, monitorean y evalúan el progreso de los alumnos”.
a. El clima emocional de la clase depende que el docente posea y utilice en la práctica, las siguientes condiciones y características:
- Entusiasmo, para interesarse e involucrarse en el proceso de aprendizaje de sus
alumnos.
- Modelización; los docentes comunican muchas cosas no solo por lo que dicen,
sino, fundamentalmente, por lo que hacen y como lo hacen.
- Calidez y Empatía, lo que alude a la disposición del docente por demostrar que se
interesa por los alumnos como personas y no aprehendientes.
- Expectativas positivas, que son inferencias que los docentes hacen acerca de la
conducta futura o de los logros académicos de sus alumnos. Es obvio que, estar convencidos de que todos los alumnos pueden aprender, es una variable clave en los
docentes que obtienen logros altos en sus estudiantes.
b. la comunicación, es otro aspecto básico en el comportamiento docente, que influye notablemente en la aproximación del alumno y en su involucramiento en el proceso
de su aprendizaje. Las condiciones a observar en ella, son las siguientes:
- Terminología precisa, significa que los docentes deben sintetizar las ideas claramente y eliminar términos vagos e imprecisos; lo cual requiere un buen conocimiento
de lo que hay que enseñar.
- Discurso conectado, significa que cada clase o sesión debe estructurarse en torno
a un asunto preciso, que conduzca al estudiante a un propósito definido, sin divagaciones ni dudas.
- Señales de transición, constituidas por formulas verbales introducidas en el tratamiento del tema para dar pistas de que concluye una idea y se esta pasando a otra.
- El énfasis, que alerta a los estudiantes acerca de aspectos importantes de tema de
clase y que requieren ser conservados en la memoria de largo plazo.
c. El diseño de estrategias didácticas
Tiene como propósito establecer una necesaria coherencia entre la intencionalidad
docente y las actividades o acciones para conseguirla. El problema clave en este aspecto es responder eficientemente a interrogantes como ¿Qué van a aprender los
alumnos? Y ¿Cómo hacer para que aprendan?.
Aunque esta idea sobre la coherencia entre lo que el docente desea conseguir y la
forma como lograrlo pared de sentido común, es sorprendente la falta de dicha coherencia en numerosas situaciones de docentes; de allí que en la sección cuarta de este
documento se trate de un detalle este asunto, por ser de vital importancia en el desarrollo de capacidades, así como de las actividades de aprendizaje.
d. El monitoreo y la evaluación
Consisten en el chequeo o verificación constante de la conducta verbal y no verbal,
para obtener evidencias del progreso de los alumnos en el desarrollo de sus procesos
cognitivos de aprendizaje.
El cierre y revisión final de la clase es un buen momento para verificar el nivel de
comprensión al que han llegado los alumnos acerca del asunto y propósito del mismo,
sobre todo cuando se realiza mediante preguntas para reconstruir el proceso vivenciado y las actividades realizadas (metacognitivas). En esto el docente debe poseer
habilidades para preguntar.
2.8.5.3 las capacidades y los contenidos
Con respecto al desarrollo de las capacidades se han planteado tres posibilidades:
a) Enseñar contenidos,
b) Desarrollar capacidades y tener como medios a los contenidos, y
c) Desarrollar capacidades independientemente de los contenidos.
Muchos profesores de secundaria se centran únicamente en los contenidos de sus
áreas curriculares, porque asumen que esa es su única responsabilidad. Creen que
los buenos estudiantes desarrollan sus capacidades cognitivas sin necesidades de
enseñanza ex profesa, en ese sentido, por parte de los docentes.
Por otro lado, cuando se investigan las diferencias entre buenos y malos estudiantes
de igual nivel de inteligencia, estas diferencias radican, justamente, en el uso de las
capacidades y estrategias para aprender. Los buenos estudiantes tienen conciencia
de sus capacidades y las aplican con éxito a sus tareas de aprender algo; también
mantiene un buen control sobre los factores que intervienen en su aprendizaje, es
decir, que manejen procesos metacognitivos.
Otros profesores desarrollan capacidades pero no comparten con sus alumnos a manera como la mente humana las procesa y esto, motivacionalmente, es importante.
Creer en el valor de las capacidades tampoco es suficiente, si no se las conecta con
la comprensión de la importancia de su aprendizaje. Sin embargo, pareciera que la
creencia común es que los estudiantes capaces aprenderán por si mismos a usar sus
capacidades, si es que tienen una base adecuada de conocimientos.
Los estudiantes deben pensar, transformar y contextualizar lo que se le enseña, asi
como criticar y contrastar el conocimiento nuevo adquirido con el que tenían anterior-
mente, para poder construir nuevos andamiajes conceptuales o sea, nuevas estructuras de conocimientos.
“Es importante que en el desarrollo de las capacidades se suscite una
disposición fuerte para utilizarlas. Todos los especialistas aconsejan que
en el desarrollo las capacidades los alumnos deben aprender como usarlas, por que es util hacerlo y cuando se deben usar. Conviene desarrollar
situaciones que les demuestren a los educandos la conveniencia de usarlas y los efectos que logran con ello”.
La tercera cuestión sobre si las capacidades deben aprenderse y enseñarse separadas o en forma independiente de los contenidos, la respuesta apuntar a que la decisión ideal es desarrollar capacidades y considerar como medios a los contenidos. Es
bueno entonces, que la enseñanza de las capacidades este incorporada en el currículo, tal como se ha optado en el DCB de Educación Secundaria y que los conocimientos, sean, en verdad, los medios mas eficientes para lograrlas.
2.8.5.4 la enseñanza de las capacidades
Según Beltran2, a quien seguiremos en toda esta parte, el desarrollo de capacidades
deberá tener en cuenta todo lo que la investigación psicológica cognitiva ya ha establecido al respecto, por medio de los diversos programas que se han desarrollado
para el caso. Los puntos comunes en los que coinciden estos diversos programas
son: descripción de las situaciones de aplicación, modelado, práctica guiada, práctica
independiente, generalización y evaluación. De acuerdo a estas ideas el programa el
desarrollo de las capacidades podría tener la siguiente secuencia:
1) Introducción – Planteamiento
- Explorar el conocimiento previo de los alumnos sobre las capacidades a desarrollar.
- Considerar el nivel de desarrollo que tienen los alumnos sobre la capacidad para
ajustar la complejidad del material a usarse.
- Dividir la capacidad en las capacidades específicas o procesos implicados.
- Introducir la capacidad.
- Presentar visualmente alguna metáfora que ilustre el sentido de la estrategia o el
núcleo de la misma.
- Especificar los propósitos del desarrollo de la capacidad.
2) Enseñanza
- Comunicar a los alumnos lo que van a aprender.
- Valorar la utilidad de la capacidad, motivar.
- Explicar detenidamente la capacidad, y señalar como, cuando y donde usar las capacidades.
- Ilustrar la capacidad con algunos ejemplos.
3) Modelado
- Ejecutar la capacidad a la vista de los alumnos.
- Promover la enseñanza reciproca, disponer que los alumnos, por turno, hagan las
veces de profesor, y que repitan las ejecuciones que hizo este.
4) Practica guiada
- Organizar la práctica guiada: los alumnos desarrollan una actividad de realización o
desempeño, bajo la orientación y supervisión del profesor; ya sea en forma individual
o grupal.
Verbalizar el conocimiento de la capacidad y sus componentes y/o procesos implicados.
- Ofrecer retroalimentación a las verbalizaciones de los alumnos para reafirmar el
aprendizaje obtenido.
5) Practica independiente
- Promover la practica independiente. En este caso los alumnos realizan una serie de
actividades semejantes a la práctica guiada, pero con independencia del docente.
Pueden ser tareas de selección inducidas, de elección entre alternativas, etc., pero
que guarden alguna semejanza con las realizadas en la práctica guiada .la finalidad
es internalizar la capacidad aprendida y pasar del control externo (del profesor) al autocontrol (del propio alumno).
6) Generalizaciones y transferencia
Además de que se enfatiza la generalización durante toda la secuencia de aprendizaje, la generalización es un momento crítico de secuencia del - Activación. Se dan
oportunidades de practicar con nuevos materiales y en distintos contextos.
- Adaptación: se sugiere la modificación y combinación de la capacidad con otras capacidades para satisfacer diferentes demandas de desempeño en el contexto o situaciones concretas.
- Mantenimiento: uso de prácticas o de pruebas periódicas para determinar si el
alumno sigue aplicando la capacidad.
Ofrecer a los alumnos las oportunidades de aplicar y transferir la capacidad aprendida, a distintas situaciones y contextos en el área curricular o en la combinación de
ellas.
7) Evaluación
- Evaluar el dominio y la destreza alcanzados en la aplicación de la capacidad.
- La eficacia del aprendizaje de capacidades esta regida por estos cuatro principios:
. Especificidad: la eficacia de las capacidades depende de su congruencia con los
propósitos formulados para el aprendizaje, es decir, el impacto de la capacidad depende de su ajuste con las exigencias predeterminadas.
. Generatividad: la ejecución de una capacidad es tanto mas eficiente cuanto mas exige reformular y elaborar la información.
. Control ejecutivo: tiene tres funciones: valorar la necesidad de la capacidad, seleccionarla y verificar la eficacia.
. Eficacia personal; esta se proyecta en tres dimensiones: los alumnos pueden evitar
aprendizajes desafiantes (participación), o emplear menos del tiempo necesario para
la tarea (persistencia), o dejar de hacer el esfuerzo mental requerido (intensidad).
El aprendizaje eficiente, entonces, implica:
-
Utilizar capacidades congruentes con los propósitos educativos.
-
Estimar la necesidad de las capacidades, seleccionarlas y valorar la calidad de
su ejecución.
-
Promover un adecuado sentido de eficacia personal que permita seleccionar,
aplicar y regular las capacidades pertinentes con los propósitos del aprendizaje.
Como ya se sugirió, entre los métodos, estrategias o técnicas de enseñanza de las
capacidades se priorizan:
. El modelado
Implica la realización de la capacidad por parte del docente o de un experto, de tal
forma que los estudiantes observen y construyan un patrón conceptual de que procesos o actividades se requieren poner en juego para emplearla. Las ventajes principales del modelado son:
 Ver soluciones a situaciones planteadas.
 Integrar lo que sucede con el porque suceden.
 Hacer visibles u ostensibles partes o fases de un proceso que no se ven normalmente.
. El entrenamiento.
Consiste en observar a los estudiantes mientras realizan o resuelven una tarea propia
del desarrollo de capacidades y en ofrecerles sugerencias, orientaciones, soportes,
retroalimentación, modelado, recuerdo para aproximar su actuación del docente o experto.
Las ventajas del entrenamiento
- Suministra ayuda dirigida en situaciones concretas de dificultad del aprendizaje.
- Atiende y apoya los momentos críticos de la ejecución.
- Brinda la ayuda justa o ala medida de las dificultades que confrontan los estudiantes.
- Otorga nuevas perspectivas para la ejecución.
. El andamiaje
Implica el apoyo que el profesor suministra para ayudar al estudiante en aquellos
momentos que este no puede, por si solo, realizar la tarea, lo que requiere el esfuerzo
cooperativo por parte del docente, que realiza la tarea que el alumno no puede completar o consumar. Un requisito básico es que el docente sepa diagnosticar cuando el
alumno esta limitado para la parte de ejecución que le resulta dificultosa.
Las ventajas del andamiaje son:
-
Permite graduar los niveles de ayuda que requiere el alumno.
-
Permite que el alumno continué con el esfuerzo de mantenerse y concluir la tarea.
-
Facilita la internalizacion y el autocontrol.
-
Favorece el máximo respeto a la personalidad e independencia del alumno.
. La articulación:
Implica el uso de cualquier método, técnica o estrategia, para conseguir que los estudiantes articulen su conocimiento con el razonamiento y procesos cognitivos y metacognitivos, en la solución o realización de una tarea cualquiera.
La articulación tiene estas ventajas:
-
Hacer explicita la relación de la obtención del conocimiento con los procesos
mentales implicados para ello.
-
Hacer el conocimiento mas distinguible y disponible para su uso en otras aplicaciones.
-
Comparar y contrastar capacidades para la articulación en diversos contextos y
situaciones.
-
Promover la visión de perspectivas alternativas y multifunciónales de las capacidades y a la magnitud de sus adaptaciones y variaciones.
. La exploración:
Consiste en el uso de una estrategia que establece metas generales y en animarles
para que ellos mismos establezcan metas especificas o submetas de acuerdo a sus
intereses y motivaciones, o también a redefinir las metas generales que se establecieron a medida que se percatan de algo mas interesante a perseguir.
La exploración tiene estas ventajas:
-
Aprender a establecer metas alcanzables.
-
Aprender a formular hipótesis plausibles y probarlos.
-
Aprender a hacer descubrimientos por si mismos.
-
Aprender a conocerse a si mismos de manera mas profunda.
“Es claro, asimismo, que todas estas demandas exigen nuevos roles al docente, orientadas a pasar de su condición de transmisor del conocimiento a
otro de mediador de las experiencias o situaciones de aprendizaje, que permiten al alumno convertirse en el actor principal del proceso educativo”.
2.8.5.5 El cambio en las Instituciones Educativas
El cambio de la concepción curricular hacia el desarrollo de las capacidades como
asunto nuclear, requiere del acondicionamiento de la Institución Educativa para enfrentar esta intencionalidad pedagógica. Los profesores deben tener en cuenta que
ello va a significar sobre todo adoptar una cultura institucionalizada que potencie el
clima escolar, en donde prime el “enseñar a pensar” y el “enseñar a aprender”, asi
como procedimientos de evaluación renovados para verificar lo aprendido. Para llevar
esta práctica esta nueva orientación curricular se mencionan las siguientes reflexiones:
. El trabajo en equipo. “El “enseñar a pensar” no es un propósito que se puede alcanzar si los docentes de la Institución Educativa no están dispuestos a trabajar en
equipo. No se trata de los profesores del área de matemática se dediquen a enseñar
el pensamiento resolutivo y que los profesores de comunicación desarrollen las capacidades comunicacionales, o que los docentes de ciencias sociales se encarguen de
incentivar el pensamiento critico y, los de ciencia, tecnología y ambiente las capacidades inductivo – deductiva a los estudiantes. Todos los docentes de todas las áreas
curriculares tienen que trabajar sinergicamente para procurar el desarrollo de las capacidades fundamentales en los educandos. Poco se lograra si los profesores de cada área, unilateralmente se dedican a trabajar solo “las capacidades” que consideran
de “exclusividad” de su área. Es bueno hacer notar que tanto en las “capacidades
fundamentales”, como en las “capacidades específicas” están implicadas todas las
áreas.
. Educar para aprender a pensar. Es necesario que el profesorado explique a los
alumnos porque es conveniente el desarrollo de capacidades y que significan estas
para el aprendizaje y la obtención del conocimiento. Es importante, igualmente, que
los alumnos comprendan que el desarrollo de sus capacidades es un asunto de máxima importancia para su desarrollo personal integral y que ello les ayudara para enfrentarse con éxito a nuevas exigencias de la empleabilidad en el futuro. Ellos deberán adquirir conciencia que el aprender a pensar por si mismos es el fin más genuino
de la educación que reciben.
. Educar para aprender a aprender. Asumir con responsabilidad el desarrollo de un
currículo basado en capacidades demanda que los profesores no solo se familiaricen
con la terminología de los currículos con orientación cognitiva, sino que sus preocupaciones didácticos deben orientarse a la resolución de interrogante fundamental de
¿Cómo hacer para aprender y seguir aprendiendo? Y ¿Cómo desarrollar las capacidades fundamentales del pensamiento critico, la toma de decisiones y la resolución de
problemas?; asi como, la de ¿Cómo articular el desarrollo de capacidades con los
contenidos del área y los valores y actitudes previstos en el DCN
No es suficiente que la mención de las capacidades se encuentre solo en la programación curricular anual, sino que también deben tenerse en cuenta en la preparación
de las unidades didácticas y en las sesiones de aprendizaje de cada día.
“En relación a este ultimo aspecto sobre la evolución, prieto y Pérez* sugieren determinados indicadores que pueden permitir verificar si existe progreso, en Institución Educativa
en el desarrollo de las capacidades. Estos han sido tomados de Feuerstein y
Hoffman y, según detallan las autoras, esta escala permite incluso verificar tanto el progreso individual como colectivo de los estudiantes”.
2.8.5.6 CAPACIDADES DEL AREA DE MATEMATICA
ORGANIZACIÓN DEL CURRICULO
AREAS CURRICULARES
El diseño curricular básico esta organizado por aéreas curriculares. Un área curricular
articula e integra las capacidades, conocimientos y actitudes, de acuerdo a los criterios pedagógicos y epistemológicos. Todas las aéreas curriculares, en mayor o menor
intensidad, responden a las variadas relaciones que establece la persona consigo
mismo, con, os demás, con su entorno y con el mundo del trabajo. Consecuentemente cada área organiza un conjunto de aprendizajes orientados al logro de determinados propósitos.
4.2 CAPACIDADES
Las capacidades son potencialmente inherentes a la persona y que esta pueda desarrollarse a lo largo de toda la vida, dando lugar a la determinación de los logros educativos. Ellas se cimientan en la interrelación de procesos cognitivos, socio-afectivos y
motores.
CAPACIDADES FUNDAMENTALES
Son capacidades fundamentales aquellas que se caracterizan por su alto grado de
complejidad, y sintetizan las grandes intencionalidades del currículo. Son las siguientes.
Pensamiento creativo
Es la capacidad de proponer formas originales de actuación, superando las rutas conocidas o los cánones preestablecidos; no se ajusta a esquemas rígidos de acción
esta capacidad se caracteriza por:
 La divergencia
 La fluidez
 La flexibilidad
 La originalidad
 La profundidad del pensamiento
Pensamiento critico
Es la capacidades para actuar y conducirse en forma reflexiva, elaborando conclusiones propias y en forma argumentativa. Este pensamiento puede realizarse de diferentes formas como:
 Confirmación de conclusiones con hechos
 Identificación de tendencias, indicios, estereotipos y prototipos
 Identificación de supuestos implícitos
 Reconocimiento de generalizaciones y subgeneralizaciones
 Identificación de información relevante e irrelevante.
Toma de decisiones
Es la capacidad para optar, entre varias alternativas, por la mas coherente y oportuno,
discriminando los riesgos e implicancias de dicha elección. Se caracteriza por:
 Ser proactivo
 Orientado hacia el logro de objetivos
 Implicar una complementariedad entre las capacidades analíticosintética e hipotético-deductiva.
 Arribar a conclusiones reversibles.
Solución de problemas
Es la capacidad para encontrar respuestas, alternativas pertinentes y oportunas ante
situaciones difíciles o de conflicto. Se caracteriza por:
 Realizar transferencias multidireccionales.
 Hallarse estrictamente contextualizada.
 Tener una orientación divergente.
 Implicar la capacidad metacognitivo.
CAPACIDADES DE AREA DE MATEMATICA
Razonamiento y demostración
El trabajo matemático que realizan los estudiantes, especialmente en el nivel de educación secundaria, debe permitirles desarrollar su habilidad para razonar y realizar
demostraciones. Esto, en síntesis, significa la capacidad para elaborar y comprobar
conjeturas, formulas, contraejemplos, elaborar argumentos lógicos y manejarlos adecuadamente con la intención de, por ejemplo, mostrar la verdad de un enunciado, juzgar la validez de un argumento emitido por el mismo o por otra persona, construir argumentos validos etc.
Comunicación matemática
Una de las facultades propias del ser humano es la comunicarse con sus congéneres.
La comunicación se realiza Haciendo uso de un código, en pocas palabras, es un
conjunto de símbolos establecidos convencionalmente, los cuales van a ser codificados durante la emisión y decodificados durante la recepción. Pues bien el lenguaje
matemático, que emplea este código, permite expresar ideas diversas, formulas
enunciados, leyes y principios, y realizar generalizaciones; asimismo, permite reflexionar y clarificar conceptos y relaciones entre objetos. el uso y manejo de signos,
símbolos y términos para recibir y emitir información matemática, debe ser enfatizada
para el desarrollo de esta capacidad.
Resolución de problemas
La capacidad de resolución de problemas es de suma importancia, no solo para la
matemática sino fundamentalmente porque posibilita el desarrollo de multiples capacidades. Se entiende que un problema es una situación en la que, de partida, “no se
sabe que hacer”., t que resolverlo es, en esencia, organizar un sistema de ideas y acciones que muestren una ruta por la cual se puede enfrentar la situación y alcanzar el
resultado. La matemática debe desarrollar, en los estudiantes, la capacidad para plantear y resolver problemas, si se quiere contar en el futuro con ciudadanos productivos
2.9 Hipótesis
2.9.1. Hipótesis General
La aplicación del software educativo CLIP3.0 mejora el desarrollo de capacidades en el área de matemática en los alumnos del 1º de Secundaria de la Institución Educativa Nº 6024 – UGEL Nº 01.
2.9.2. Hipótesis especificas
HE1. La aplicación del software educativo CLIP3.0 mejora el desarrollo
de la capacidad de razonamiento y demostración en los estudiantes
del 1º de secundaria de la Institución Educativa Nº 6024 – UGEL Nº
01.
HE2. . La aplicación del software educativo CLIP3.0 mejora el desarrollo de la capacidad de comunicación matemática en los alumnos del
1º de secundaria de la Institución Educativa Nº 6024 – UGEL Nº 01.
HE3. . La aplicación del software educativo CLIP3.0 mejora el desarrollo de la capacidad de resolución de problemas en los estudiantes del
1º de secundaria de la Institución Educativa Nº 6024 – UGEL Nº 01
2.10. Variables
2.10.1. Variable Independiente
Software Educativo CLIP3.0
2.10.2. Variable dependiente
Desarrollo de capacidades en el área de matemática
III. METODOLOGIA
3.1. Tipo de estudio
De
Tipo de investigación
Cuasiexperimental
Enfoque
Cuantitativo
acuerdo
a
Hernández
(2003)
los
diseños
cuasiexperimentales
manipulan deliberadamente al menos una variable independiente para observar su efecto y relación con una o más variables dependientes, sólo que difie-
ren de los experimentos en el grado de confiabilidad que se pueda tener sobre la equivalencia inicial en los grupos, puesto que son grupos intactos.
De acuerdo a (Weiss, 2001) los diseños cuasiexperimentales tienen una
forma y una lógica propias y este tipo de diseño requiere que se proceda tan
rigurosamente como en el caso de los diseños experimentales.
3.2. Diseño del estudio
DISEÑO: Cuasi experimental con pre prueba - pos prueba y grupos intactos
(uno de ellos de control).
En este estudio se aplicó el diseño cuasi experimental que de acuerdo a
Hernández y otros (2003), señalan lo siguiente:
“Los diseños cuasiexperimentales también manipulan deliberadamente, al
menos, una variable independiente para observar su efecto y relación con
una o más variables independientes, sólo que difieren de los experimentos verdaderos en el grado de seguridad o confiabilidad que pueda tenerse
sobre la equivalencia inicial de los grupos.
En los diseños cuasiexperimentales los sujetos no se asignan al azar a los
grupos ni se emparejan, sino que dichos grupos ya estaban formados antes
del experimento: son grupos intactos (la razón por la que surgen y la manera como se formaron fueron independientes o aparte del experimento)”.
(p.256)
DIAGRAMA:
GE O1
GC
X
O3
O2
Z
Significado de los símbolos:
X = Clase con uso del software CLIP3.0
Z = Clase tradicional
GE = Grupo experimental
GC = Grupos de control
3.3. Población y muestra
3.3.1. Población
O4
CUADRO: Población del estudio
Institución Educativa
I.E.
Total
Total
Estudiantes
Docentes
120
10
Nº 6024 “JOSÉ MARIA AR-
GUEDAS”
FUENTE: Institución Educativa Nº 6024 “José María Arguedas”, UGEL N 01
S.J.M.
3.3.2. Muestra
Para determinar el tamaño de la muestra con el margen de error del 0,05 y
nivel de confiabilidad de la muestra del 95%
Donde z es el promedio de de la desviación normal 1,96
E margen de error es 0,05
P es la probabilidad del margen de error 0,05
q es el es la confiabilidad de la muestra 0,95
Aplicando la formula se determina que la muestra es 59,82 y
redondeando
es 60
CUADRO: Muestra del estudio
Institución Educativa
I.E. Nº 6024 “JOSE
MARIA ARGUEDAS”
Total de Estudiantes
Grupo Control 30
Gru-
Docentes
10
po experimental 30
FUENTE: Institución Educativa Nº 6024 “José María Arguedas”, UGEL N 01
S.J.M.
3.4. Método de investigación
Es el descriptivo. Donde se describen los hechos como son
observados.
(Hernández, Fernández y Baptista 2003).
3.5. Técnicas e instrumentos de recolección de datos
Cuasi Experimental
3.5.1. Técnicas e Instrumentos de Recolección de Datos
.
1.
Técnica e Instrumento:
Para la variable independiente, lista de cotejo a los Alumnos y
Docente.
Para la variable independiente, prueba escrita
2.
Técnica de procesamiento de datos, y su instrumento las tablas de
procesamiento de datos para tabular, y procesar los resultados de la
prueba escrita a los alumnos.
3.
Técnica de Opinión de expertos y su instrumento el informe de juicio
de expertos, aplicado a 3 magísteres o doctores en educación, para
validar la encuesta y cuestionario
3.6. Métodos de análisis de datos
CUADRO: Formulas estadísticas a usar
N°
ESTADIGRA-
FORMULAS
FOS
CAS
MEDIA
METICA
1
= Media aritmética

ARIT-
X
DE
X
DATOS AGRUPADOS
ESTADISTI- SIMBOLOS

X
 f .x

n
= Valor central o pun-
to medio de cada clase.
f
= Frecuencia en ca-
da clase.

f .X
=Sumatoria
de
los
productos de las frecuen-
cias en cada clase multiplicada por el punto medio de ésta.
n
= Número total de
frecuencias.
DESVIACIÓN
2
s
ESTANDAR
s
MUESTRAL
PARA
 fX 
muestral
2
 fX
2

n 1
= Desviación estándar
n
X
DATOS
= Punto medio de una
clase
AGRUPADOS
f
= Frecuencia de clase
n
= Número total de
observaciones
en
la
muestra.
3
Coeficiente
correlación
de
de
r
n X
n XY   X  Y
2

 ( X ) 2 n  Y 2  ( Y ) 2

Pearson
r = Coeficiente de correlación
n = Numero de observaciones
x = primera variable
y = segunda variable
IV. REFERENCIAS BIBLIOGRAFICAS Y ANEXOS
BIBLIOGRAFÍA
1. Joyanes Aguilar, "La gestión del Conocimiento en la Comunicación: Un enfoque
Tecnológico y de Gestión de Contenidos (Libro de Actas del Foro ComunicaciónComplutense) 2002: Ayto Madrid: U. Complutense
2. Joyanes Aguilar, "Historia de la Sociedad de la Información. Hacia la sociedad del
Conocimiento" en R-evolución tecnológica. U. de Alicante: Alicante, 2003
3. Villegas, J. José. Síntesis diacrónica del sistema tutorial de la uned. Revista interamericana de Desarrollo Educativo. Num. 105 OEA 1989.Washington, E.U.
4. CIE (2001) Conferencia Internacional de Educación "La educación para todo, para
aprender a vivir juntos", Ginebra 5-8 septiembre 2001, 5-8 de septiembre 2001 Segovia, M.Nuevas tecnologías aplicadas a la formación. Anced Force 1993 .
5. Escudero, J. M. La planificación de la enseñanza. Universidad de Santiago de
Compostela. 1972, España.
6. Fernández, J. Autodidactismo en la educación permanente a distancia. uned 1988.
Costa Rica.
7. Armengol, C. Miguel. Concepción, justificación y viabilidad de los sistemas de educación superior a distancia en América Latina. La educación a distancia en América
Latina. una 1974, Venezuela.
8. Sarramona, J. Tecnología educativa. Una valoración crítica. ceac 1990, Barcelona.
9 Cabero, J. (2000). Nuevas tecnologías aplicadas a la educación. Madrid: Síntesis
Educación.
10. Fernández Morante, C. (2002). Los medios audiovisuales, informáticos y nuevas
tecnologías en los centros educativos gallegos: Presencia y usos. Tesis Doctoral, Universidad de Santiago de Compostela.
11. Mena, B. y otros (1998). Aplicaciones educativas de las nuevas tecnologías: internet, infografía, y animación. Salamanca: Anthema ediciones.
12. Pérez Pérez, R. (1998). Nuevas tecnologías y nuevos modelos de enseñanza. En
Sevillano, M.L. (Coord.). Nuevas tecnologías, medios de comunicación y educación.
Formación inicial y permanente del profesorado, (pp. 105-150). Madrid: CCS.
13. Rodríguez Gómez y otros (1996). Metodología de la investigación cualitativa.
ANEXOS
ENCUESTA
Encuesta a los estudiantes del Quinto de secundaria de la Institución
Educativa Nº 6024 “José Maria Arguedas” – UGEL Nº 01, San Juan de Miraflores.
OBJETIVO.- Determinar el impacto del uso del Aula de Innovación Pedagógica en el desarrollo de las capacidades en los estudiantes del 5º de secundaria.
Le agradeceremos responder marcando con (x), o complementando donde
conviene, a este breve y sencillo cuestionario; que tiene como propósito obtener datos que ayuden a explicar el impacto del aula de innovación en el desarrollo de las capacidades TIC.
GENERALIDADES.- Informantes Estudiantes del 5º de secundaria de la Institución Educativa
Edad
a) 15- 16
b) 17 – 18
Sexo
a) Masculino
b) Femenino
TEMA: Aula de innovación pedagógica y desarrollo de capacidades TIC.
1. ¿Lugar de mayor uso del Internet?
En la casa
En el colegio
En la cabina de Internet
Otro lugar
No usa computadora
2. ¿Persona que enseña el uso del Internet?
El profesor en el colegio
Mi familia
Yo mismo
Otros
No uso Internet
3. ¿Principales actividades que realizan?
Buscar información
Comunicarse (E-mail y Chat)
Escribir trabajos del colegio
4. ¿Capacidad Adquisición de Información?
Marque una o mas casillas dentro del recuadro
(x)
Navegar por Internet
Entrar a la Web Proyecto Huascarán
Entrar sección estudiantes Web Huascarán
Entrar a otras paginas Web educativas Perú
Entrar a otras Web educativas de otros países
Realizar búsquedas sencillas para tareas
Realizar búsquedas avanzadas
Realizar búsquedas en otros idiomas
Usar varios buscadores para las tareas
Evaluar información científica
Crear favoritos en la computadora
Organizar favoritos por temas educativos
Guardar archivos para las tareas
Elaborar documentos con información obtenida
5. ¿Capacidad Trabajo en Equipo?
Marque una o mas casillas dentro del recuadro
Crear mi correo electrónico
Escribir y enviar correos a mis compañeros
Enviar archivos adjuntos de mis tareas
Crear una lista de correos electrónicos
Entrar al Chat
Conversar por Chat con mis compañeros
Entrar a un foro virtual
Participar en un foro virtual
Crear un foro de discusión
Crear mi weblog
Participar en weblog grupales
(x)
Publicar en wikipedia
Participar en proyecto colaborativo
Participar en la pagina Web de los colegios
6 ¿Capacidad estrategias de aprendizaje?
Marque una o mas casillas dentro del recuadro
(x)
Elaborar tareas en Word
Elaborar tareas escolares en Excel
Elaborar tareas escolares en Power Point
Elaborar mapas conceptuales
Elaborar mapas mentales
Utilizar los juegos educativos
Escuchar radio educativa por Internet
Crear una base de datos de las tareas
Bajar libros y otros archivos digitales
Hacer resúmenes con la información
Utilizar diccionario electrónico
Hacer presentaciones proyectos colaborativos
Reelaborar textos encontrados
Elaborar una pagina Web
GRACIAS POR SU PARTICIPACION
-
Guía de entrevista
Guía de Análisis documental
ENCUESTA
Encuesta a los estudiantes del Quinto de secundaria de la Institución Educativa Nº 6024 “José María Arguedas” – UGEL Nº 01, San Juan de Miraflores.
OBJETIVO.- Determinar si los estudiantes del 5º de secundaria poseen conocimientos básicos de computación y Internet antes
de ingresar al Aula de Innovación Pedagógica en el desarrollo de las capacidades TIC.
Le agradeceremos responder marcando con (x), o complementando donde conviene, a este breve y sencillo cuestionario; que tiene
como propósito obtener datos que ayuden a explicar el impacto del aula de innovación en el desarrollo de las capacidades t
Tema: CONOCIMIENTO BÁSICO DE COMPUTADORAS Y INTERNET
1 ¿Tiene acceso a una computadora?
Desde su casa
Desde el colegio
Desde ambos lugares (casa y colegio)
Desde una cabina de Internet
No tengo acceso a computadora
2 ¿Desde donde tiene acceso a Internet?
Desde casa
Desde el colegio
Desde ambos lugares (casa y colegio)
Desde una cabina de Internet
No tengo acceso al Internet
3 ¿Cómo se siente, en general, con el uso de computadoras?
Muy cómodo
Cómodo
Tengo algunos problemas
Muy incómodo
4 ¿Está usted familiarizado con Internet?
Sí
Un poco
No
5 ¿Cómo se siente con el uso de Internet?
Muy cómodo
Cómodo
Tengo algunos problemas
Muy incómodo
6 ¿Qué herramientas de Internet conoce? Indique su nivel de conocimiento
muy bajo bajo normal
Correo electrónico
Listas de correo
Páginas Web de organismos
Páginas Web de empresas
Páginas Web con noticias
Capacitaciones a distancia
Cursos a distancia
Compras en el Internet
Foros de discusión
Chat
Portales de búsqueda
Mensajería
Descargas
Videoconferencia
Pizarra electrónica
alto
muy alto
7 ¿Qué herramientas de Internet usa habitualmente? Indique la frecuencia de uso.
nunca alguna vez mensualmente semanalmente diariamente
Correo electrónico
Listas de correo
Páginas web de organismos
Páginas web de empresas
Páginas web con noticias
Capacitaciones a distancia
Cursos a distancia
Compras en el Internet
Foros de discusión
Chat
Portales de búsqueda
Mensajería
Descargas
Videoconferencia
Pizarra electrónica
8 ¿Qué programas usa con mayor frecuencia?
Procesador de textos (ejemplo: Word)
Presentaciones (ejemplo: Power Point)
Base de Datos (ejemplo: Access)
Hoja de cálculo (ejemplo: Excel)
Editor de página web (ejemplo: Microsoft Front Page, Dreamweaver)
Programación de software (ejemplo: ASP, PHP, Visual Basic)
Otro, especifique
9 ¿Desde cuando accede a Internet?
Hace un mes
no más de tres meses
Seis meses
1 año
2 años
más de dos años
10¿Indique su sexo?
Hombre
Mujer
MATRIZ DE CONSISTENCIA
TITULO:
EL AULA DE INNOVACIÓN PEDAGÓGICA Y DESARROLLO DE CAPACIDADES EN TECNOLOGÍAS DE LA INFORMACIÓN Y COMUNICA-
CIÓN - TIC EN LOS ESTUDIANTES DEL QUINTO SECUNDARIA DE LA INSTITUCIÓN EDUCATIVA Nº 6024 “JOSÉ MARIA ARGUEDAS” – UGEL Nº 01,
SAN JUAN DE MIRAFLORES.
PROBLEMAS
OBJETIVOS
Problema Principal
¿Cómo
influye
Software
el
Objetivo General
Educativo Determinar si la aplica-
CLIP3.0 en el desa- ción del Software Educarrollo de capacidades tivo CLIP3.0 mejora el
del área de matemáti- desarrollo de capacidaca
en los alumnos des en el área de mate-
del 1° secundaria de mática en los alumnos
la Institución Educa- del 1 º de secundaria de
tiva Nº 6024 “José la Institución Educativa
María
Arguedas”
– Nº 6024 “José María
UGEL Nº 01?
Arguedas” – UGEL Nº
Problemas Secundarios
¿Cómo
influye
01.
la
aplicación del Software Educativo CLIP3.0
Objetivo Específicos
.
Determinar si la
HIPÓTESIS
VARIABLES
METODOLOGÍA
Hipótesis General
Tipo
La aplicación del Soft- Variable Independiente
ware
Educativo Software Educativo
CLIP3.0 mejora el CLIP 3.0
Correlacionad
desarrollo de capaci- Variable Dependiente
dades en el área de Desarrollo de capacidades en el área de
matemática en los es- matemática
nal
tudiantes del 1º de
Descriptivo
Secundaria de la Insti-
correlacional
tución
Población
Educativa
Nº
6024 – UGEL Nº 01.
Nivel
Descriptiva - correlacioDiseño de la Investigación
I.E Nº 6024
Muestra
Hipótesis especificas
Representativa
HE1. La aplicación de
Técnicas
los software educativo
Encuesta
aplicación del softwa- CLIP3.0
mejora
el
re educativo CLIP3.0 desarrollo de la capamejora el desarrollo cidad de razonamien-
Instrumentos
Cuestionario
-
en el desarrollo de las
de la capacidad de to y demostración en
capacidades de ra-
razonamiento y de- los alumnos del 1º de
zonamiento
y
de-
mostración
mostración
en
los
alumnos del 1º de tución
en
los secundaria de la InstiEducativa
alumnos del 1º de
Secundaria de la Ins- 6024 – UGEL Nº 01
Secundaria de la Ins-
titución Educativa Nº
titución Educativa Nº
6024 “José María Ar- HE2.
6024
1º de se-
cundaria “José María
01
CLIP3.0
aplicación
la
mejora
de
si la
cidad de comunica-
las ción matemática en
educativo los alumnos del 1º de
software
aplicación del softwa-
CLIP3.0mejora
re educativo CLIP3.0
desarrollo de la ca- tución
en el desarrollo de las
pacidad de comuni- 6024 – UGEL Nº 01
capacidades de co-
cación
municación
en los alumnos del 1º HE3.
mate-
el
desarrollo de la capa. Determinar
¿Cómo influye
. La aplicación
guedas” – UGEL Nº del software educativo
Arguedas” – UGEL Nº
01?
Nº
el secundaria de la InstiEducativa
Nº
matemática
. La aplicación
mática en los alum-
de secundaria de la del software educativo
nos del 1º de secun-
Institución
daria de la Institución
Nº 6024 “José María desarrollo de la capa-
Educativa
Arguedas” – UGEL Nº cidad de resolución
Nº
6024
“José María Argue-
01
Educativa CLIP3.0
mejora
el
de problemas en los
das” – UGEL Nº 01
alumnos del
Determinar si la apli-
1º de
secundaria de la Insti-
¿Cómo influye la apli-
cación del
software tución
cación del software
educativo
CLIP3.0 6024 – UGEL Nº 01
educativo CLIP3.0 en
mejora el desarrollo
el desarrollo de las
de la capacidad de
capacidades de re-
resolución de pro-
solución de proble-
blemas en los alum-
mas en los alumnos
nos del 1º de secun-
del 1º de secundaria
daria de la Institución
de la Institución Edu-
Educativa
cativa Nº 6024 “José
“José María Argue-
María
das” – UGEL Nº 01
Arguedas”
UGEL Nº 01?
–
Nº 6024
Educativa
Nº
Descargar