Subido por Israel Atenas

Formulario integrales y derivadas

Anuncio
𝑭ó𝒓𝒎𝒖𝒍𝒂𝒔 𝒅𝒆 𝑰𝒏𝒕𝒆𝒈𝒓𝒂𝒄𝒊ó𝒏
0. ∫ 𝑥 𝑛 𝑑𝑥 =
𝑥 𝑛+1
+𝑘
𝑛 +1
1. ∫ 𝑎 𝑑𝑥 = 𝑎𝑥 + 𝑘
2. ∫ 𝑎 𝑢 𝑑𝑥 = 𝑎 ∫ 𝑢 𝑑𝑥
3. ∫ 𝑢´ 𝑢 𝑛 𝑑𝑥 =
4. ∫
𝑢 𝑛+1
+ 𝑘 𝑝𝑎𝑟𝑎 𝑛 ≠ −1
𝑛+1
𝑢´
𝑑𝑥 = ln(𝑢) + 𝑘
𝑢
5. ∫(𝑢 + 𝑣 − 𝑤)𝑑𝑥 = ∫ 𝑢 𝑑𝑥 + ∫ 𝑣 𝑑𝑥 − ∫ 𝑤 𝑑𝑥
6. ∫ 𝑢´ 𝑒 𝑢 𝑑𝑥 = 𝑒 𝑢 + 𝑘
7. ∫ 𝑢´ 𝑎𝑢 𝑑𝑥 =
𝑎𝑢
+𝑘
ln 𝑎
8. ∫ 𝑢´ sin(𝑢) 𝑑𝑥 = − cos(𝑢) + 𝑘
9. ∫ 𝑢´ cos(𝑢) 𝑑𝑥 = sin(𝑢) + 𝑘
𝑭ó𝒓𝒎𝒖𝒍𝒂𝒔 𝒅𝒆 𝑫𝒆𝒓𝒊𝒗𝒂𝒄𝒊ó𝒏
𝑰𝒅𝒆𝒏𝒕𝒊𝒅𝒂𝒅𝒆𝒔 𝑭𝒖𝒏𝒅𝒂𝒎𝒆𝒏𝒕𝒂𝒍𝒆𝒔
𝑑 𝑛
𝑑
𝑢 = 𝑛(𝑢 𝑛−1)
(𝑢)
𝑑𝑥
𝑑𝑥
𝑑
𝑑
𝑑
(𝑢𝑣) = 𝑢
(𝑣) + 𝑣
(𝑢)
𝑑𝑥
𝑑𝑥
𝑑𝑥
𝑑
𝑑
(𝑢) − 𝑢
𝑣
(𝑣)
𝑑 𝑢
𝑑𝑥
( ) = 𝑑𝑥
2
𝑑𝑥 𝑣
𝑣
𝑑
𝑑
(𝑠𝑒𝑛 𝑢) = cos 𝑢
(𝑢)
𝑑𝑥
𝑑𝑥
𝑑
𝑑
(cos 𝑢) = −𝑠𝑒𝑛 𝑢
(𝑢)
𝑑𝑥
𝑑𝑥
𝑑
𝑑
(tan 𝑢) = sec 2 𝑢
(𝑢)
𝑑𝑥
𝑑𝑥
𝑑
𝑑
(𝑐𝑡𝑔 𝑢) = csc 2 𝑢
(𝑢)
𝑑𝑥
𝑑𝑥
10. ∫ 𝑢´ tan(𝑢) 𝑑𝑥 = − ln(cos(𝑢)) + 𝑘
𝑑
𝑑
(sec 𝑢) = sec 𝑢 tan 𝑢
(𝑢)
𝑑𝑥
𝑑𝑥
11. ∫ 𝑢´ cot(𝑢) 𝑑𝑥 = ln(sin (𝑢)) + 𝑘
𝑑
𝑑
(csc 𝑢) = − csc 𝑢 𝑐𝑡𝑔 𝑢
(𝑢)
𝑑𝑥
𝑑𝑥
12. ∫ 𝑢´ sec(𝑢) 𝑑𝑥 = ln(sec(𝑢) + tan (𝑢)) + 𝑘
13. ∫ 𝑢´ csc(𝑢) 𝑑𝑥 = ln(csc(𝑢) − cot(𝑢)) + 𝑘
14. ∫ 𝑢´ sec 2 (𝑢)𝑑𝑥 = tan(𝑢) + 𝑘
15. ∫ 𝑢´ csc 2 (𝑢)𝑑𝑥 = − cot(𝑢) + 𝑘
16. ∫ 𝑢´ sec(u) tan(u) dx = sec(u) + k
17. ∫ 𝑢´ csc(𝑢) cot(𝑢) 𝑑𝑥 = − csc(𝑢) + 𝑘
𝑢´
1
𝑢
18. ∫ 2
𝑑𝑥 = arctan ( ) + 𝑘
𝑢 + 𝑎2
𝑎
𝑎
𝑢´
1
𝑢−𝑎
19. ∫ 2
𝑑𝑥 =
ln (
)+𝑘
𝑢 − 𝑎2
2𝑎
𝑢+𝑎
𝑢´
1
𝑎+𝑢
20. ∫ 2
𝑑𝑥 = ln (
)+𝑘
2
𝑎 −𝑢
𝑎
𝑎−𝑢
𝑢´
𝑢
21. ∫
𝑑𝑥 = arcsin ( ) + 𝑘
2
2
𝑎
√𝑎 − 𝑢
𝑢´
22. ∫
𝑑𝑥 = ln (𝑢 + √𝑢 2 + 𝑎2 ) + 𝑘
√𝑢 2 + 𝑎2
𝑢´
23. ∫
𝑑𝑥 = ln (𝑢 + √𝑢 2 − 𝑎2 ) + 𝑘
√𝑢 2 − 𝑎2
𝑢´
1
𝑢
24. ∫
𝑑𝑥 = arcsec ( ) + 𝑘
𝑎
𝑎
𝑢√𝑢 2 − 𝑎2
1
𝑎 + √𝑢 2 + 𝑎 2
25. ∫
𝑑𝑥 = − ln (
)+𝑘
2
2
𝑎
𝑢
𝑢√𝑢 + 𝑎
𝑢´
1
𝑎 + √𝑎 2 − 𝑢 2
26. ∫
𝑑𝑥 = − ln (
)+𝑘
𝑎
𝑢
𝑢√𝑎 2 − 𝑢 2
𝑑
1
𝑑
(𝑎𝑟𝑐 𝑆𝑒𝑛 𝑢) =
(𝑢)
𝑑𝑥
√1 − 𝑢 2 𝑑𝑥
𝑢
𝑎2
𝑢
√𝑎 2 − 𝑢2 + arcsin ( ) + 𝑘
2
2
𝑎
𝑢
𝑎2
28. ∫ 𝑢´√𝑢 2 ± 𝑎 2 𝑑𝑥 = √𝑢 2 ± 𝑎 2 ± ln (𝑢 + √𝑢 2 ± 𝑎 2 ) + 𝑘
2
2
𝑐𝑠𝑐(𝑥) =
1
𝑠𝑒𝑛(𝑥)
sec(𝑥) =
1
cos(𝑥)
tan(𝑥) =
𝑠𝑒𝑛(𝑥)
cos(𝑥)
cot(𝑥) =
1
tan (𝑥)
𝑫𝒆𝒍 𝒕𝒆𝒐𝒓𝒆𝒎𝒂 𝒅𝒆 𝑷𝒊𝒕á𝒈𝒐𝒓𝒂𝒔
𝑠𝑒𝑛2 (𝑥) + cos 2 (𝑥) = 1
1 + tan2(𝑥) = sec 2 (𝑥)
1 + cot 2 (𝑥) = csc2 (𝑥)
𝑺𝒖𝒎𝒂𝒔 𝒚 𝒓𝒆𝒔𝒕𝒂𝒔 𝒅𝒆 á𝒏𝒈𝒖𝒍𝒐𝒔
𝑠𝑒𝑛(𝑥 + 𝑦) = 𝑠𝑒𝑛(𝑥)𝑐𝑜𝑠(𝑦) + 𝑐𝑜𝑠(𝑥)𝑠𝑒𝑛(𝑦)
𝑠𝑒𝑛(𝑥 − 𝑦) = 𝑠𝑒𝑛(𝑥)𝑐𝑜𝑠(𝑦) − 𝑐𝑜𝑠(𝑥)𝑠𝑒𝑛(𝑦)
cos(𝑥 + 𝑦) = cos(𝑥) cos(𝑦) − 𝑠𝑒𝑛(𝑥)𝑠𝑒𝑛(𝑦)
cos(𝑥 − 𝑦) = cos(𝑥) cos(𝑦) + 𝑠𝑒𝑛(𝑥)𝑠𝑒𝑛(𝑦)
tan(𝑥 + 𝑦) =
tan(𝑥) + tan(𝑦)
(1 − tan(𝑥) tan(𝑦))
tan(𝑥 − 𝑦) =
tan(𝑥) − tan(𝑦)
(1 + tan(𝑥) tan(𝑦))
𝑳𝒆𝒚 𝒅𝒆 𝒔𝒆𝒏𝒐𝒔
𝑠𝑒𝑛 𝐴
𝑠𝑒𝑛 𝐵 𝑠𝑒𝑛 𝐶
=
=
𝑎
𝑏
𝑐
𝑳𝒆𝒚 𝒅𝒆 𝒄𝒐𝒔𝒆𝒏𝒐𝒔
𝑑
−1
𝑑
(𝑎𝑟𝑐 𝐶𝑜𝑠 𝑢) =
(𝑢)
𝑑𝑥
√1−𝑢 2 𝑑𝑥
𝑐 2 = 𝑎 2 + 𝑏2 − 2𝑎𝑏 𝑐𝑜𝑠(𝐶)
𝑑
1
𝑑
(𝑎𝑟𝑐 𝑇𝑎𝑛 𝑢) =
(𝑢)
2
𝑑𝑥
1 + 𝑢 𝑑𝑥
𝑠𝑒𝑛(−𝑥) = −𝑠𝑒𝑛(𝑥)
𝑑
−1 𝑑
(𝑎𝑟𝑐 𝑐𝑡𝑔 𝑢) =
(𝑢)
𝑑𝑥
1 + 𝑢 2 𝑑𝑥
𝑻𝒓𝒂𝒔𝒍𝒂𝒄𝒊𝒐𝒏𝒆𝒔
cos(−𝑥) = cos(𝑥)
𝜋
𝑠𝑒𝑛 ( − 𝑥) = cos(𝑥)
2
𝜋
𝑡𝑎𝑛 ( − 𝑥) = 𝑐𝑜𝑡(𝑥)
2
tan(−𝑥) = − tan(𝑥)
𝜋
𝑐𝑜𝑠 ( − 𝑥) = 𝑠𝑒𝑛(𝑥)
2
𝑑
1
𝑑
(𝑎𝑟𝑐 𝑆𝑒𝑐 𝑢) =
(𝑢)
2
𝑑𝑥
𝑑𝑥
𝑢√𝑢 − 1
𝑴ú𝒍𝒕𝒊𝒑𝒍𝒐𝒔 𝒅𝒆 á𝒏𝒈𝒖𝒍𝒐𝒔
𝑑
−1
𝑑
(𝑎𝑟𝑐 𝐶𝑠𝑐 𝑢) =
(𝑢)
2
𝑑𝑥
𝑑𝑥
𝑢√𝑢 − 1
𝑐𝑜𝑠(2𝑥) = 𝑐𝑜𝑠 2 (𝑥) − 𝑠𝑒𝑛2 (𝑥)
𝑑
1 𝑑
(𝐿𝑛 𝑢) =
(𝑢)
𝑑𝑥
𝑢 𝑑𝑥
𝑐𝑜𝑠(2𝑥) = 1 − 2𝑠𝑒𝑛2 (𝑥)
𝑑 𝑢
𝑑
(𝑎 ) = 𝑎𝑢 𝐿𝑛 𝑎
(𝑢)
𝑑𝑥
𝑑𝑥
𝑑
log 𝑒 𝑑
(log 𝑢) =
(𝑢)
𝑑𝑥
𝑢 𝑑𝑥
𝑑 𝑢
𝑑
(𝑒 ) = 𝑒 𝑢
(𝑢)
𝑑𝑥
𝑑𝑥
𝑑
𝑑
𝑑
(𝑢 𝑣 ) = 𝑣 𝑢 𝑣−1
(𝑢) + (𝐿𝑛 𝑢)(𝑢𝑣 ) (𝑣)
𝑑𝑥
𝑑𝑥
𝑑𝑥
𝑢´
27. ∫ 𝑢´ √𝑎 2 − 𝑢2 𝑑𝑥 =
𝑰𝒅𝒆𝒏𝒕𝒊𝒅𝒂𝒅𝒆𝒔 𝑻𝒓𝒊𝒈𝒐𝒏𝒐𝒎é𝒕𝒓𝒊𝒄𝒂𝒔
𝑪𝒐𝒎𝒑𝒆𝒕𝒂𝒓 𝑻𝒓𝒊𝒏𝒐𝒎𝒊𝒐𝟐 𝑷𝒆𝒓𝒇𝒆𝒄𝒕𝒐
𝑏 2
𝑏2
𝑥 2 + 𝑏𝑥 + 𝑐 = (𝑥 + ) + (𝑐 − )
2
4
𝑠𝑒𝑛(2𝑥) = 2 𝑠𝑒𝑛(𝑥) 𝑐𝑜𝑠(𝑥)
𝑐𝑜𝑠(2𝑥) = 2 𝑐𝑜𝑠 2 (𝑥) − 1
𝑥
1 − cos(𝑥) = 2𝑠𝑒𝑛2 (2 )
𝑡𝑎𝑛(2𝑥) =
𝑡𝑎𝑛(𝑥)
1 − 𝑡𝑎𝑛2 (𝑥)
𝑠𝑒𝑛2 (𝑥) =
1 1
− 𝑐𝑜𝑠(2𝑥)
2 2
𝑐𝑜𝑠 2 (𝑥) =
1 1
+ 𝑐𝑜𝑠(2𝑥)
2 2
𝑠𝑒𝑛(2𝑥)
= 𝑠𝑖𝑛(𝑥)𝑐𝑜𝑠(𝑥)
2
𝑶𝒕𝒓𝒂𝒔
𝑥
𝑡𝑎𝑛 ( ) = 𝑐𝑠𝑐(𝑥) − 𝑐𝑜𝑡(𝑥)
2
𝑰𝒏𝒕𝒆𝒈𝒓𝒂𝒄𝒊ó𝒏 𝒑𝒐𝒓 𝒑𝒂𝒓𝒕𝒆𝒔
∫ 𝑢 𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣 𝑑𝑢
JUAN CARLOS PRECIADO GÁMEZ
𝐶á𝑙𝑐𝑢𝑙𝑜 𝑑𝑒 á𝑟𝑒𝑎𝑠
𝑏
∫ 𝑓(𝑥) 𝑑𝑥 = #
𝑎
𝑆𝑖 𝑙𝑎 𝑔𝑟𝑎𝑓𝑖𝑐𝑎 𝑠𝑒 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑎 𝑐𝑜𝑛 𝑒𝑙 𝑒𝑗𝑒 𝑥:
𝑠𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑛 𝑑𝑜𝑠 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙𝑒𝑠
𝑝
𝑏
∫ 𝑓(𝑥) 𝑑𝑥 + ∫ 𝑓(𝑥) 𝑑𝑥 +
𝑎
𝑝
JUAN CARLOS PRECIADO GÁMEZ
Descargar