PATOLOGIAS DE LAS ESTRUCTURAS DEL CONCRETO Y ESTRUCTURAS METALICAS ALFREDO LEYTON JUAN PABLO GALVIS GIRON INGRID LEONELA REYES BERNAL PILAR ALEJANDRA SARRIA CASTILLO DURLEY CHAMORRO SERVICIO NACIONAL DE APRENDIZAJE (SENA) TECNOLOGO EN OBRAS CIVILES CODIGO 596008 CENTRO DE LA CONSTRUCCION SANTIAGO DE CALI 2014 PATOLOGIAS DE LAS ESTRUCTURAS DEL CONCRETO Y ESTRUCTURAS METALICAS APRENDICES: ALFREDO LEYTON JUAN PABLO GALVIS GIRON INGRID LEONELA REYES BERNAL PILAR ALEJANDRA SARRIA CASTILLO DURLEY CHAMORRO ORIGEN, CAUSAS, RIESGOS Y SOLUCIONES A LAS PATOLOGIAS EN LAS ESTRUCTURA DE CONCRETO Y METALICAS INSTRUCTOR: WILMER ANDRES SILVA MORIANO SERVICIO NACIONAL DE APRENDIZAJE (SENA) TECNOLOGO EN OBRAS CIVILES CODIGO 596008 CENTRO DE LA CONSTRUCCION SANTIAGO DE CALI 2014 Página 2 CONTENIDO PAG AGRADECIMIENTOS INTRODUCCION CONSIDERACIONES GENERALES 7 Definición de patologías Definición de lesión Definición de causa PRINCIPIOS BASICOS PARA EL RECONOCIMIENTODE UNA PATOLOGIA ESTRUCTURAL 8 Niveles de riesgo Procesos de reconocimiento para solucionar la patología 9 ANALISIS PREVIO: PATOLOGIAS SEGÚN EL MATERIAL 11 DEFINICION Y ALCANCE DE LAS PATOLOGIAS DEL CONCRETO 12 Tipos y causas del deterioro en estructuras de concreto PATOLOGIAS Y SOLUCIONES EN ESTRUCTURAS DEL CONCRETO 13 COMO SOLUCIONAR PATOLOGIAS EN ESTRUCTURAS DE CONCRETO 22 PATOLOGIAS EN ESTRUCTURAS METALICAS 23 Tipos y causas del deterioro en estructuras metálicas TIPOS DE AGRESIONES 25 Agresiones biológicas Agresiones físicas y mecánicas Página 3 Agresiones electroquímicas FALLOS CARACTERISTICOS 27 Fallo de las uniones Fallos mecánicos Fallos funcionales Fallos estéticos COMO SOLUCIONAR PATOLOGIAS EN ESTRUCTURAS METALICAS 30 GLOSARIO 38 CONCLUSIONES 40 BIBLIOGRAFIA 41 Página 4 AGRADECIMIENTOS Agradecemos al servicio nacional de aprendizaje (SENA) por la oportunidad de ingreso al programa de tecnólogo en obras civiles en el cual hemos contado un grupo de profesionales, los cuales nos han brindado herramientas de trabajo que han facilitado la realización de este anteproyecto, el cual nos ha permitido indagar sobre las patologías en estructuras de concreto y metálicas. Igualmente agradecemos al siguiente grupo de instructores cuales no han brindado su conocimiento y herramientas durante la ejecución de este anteproyecto. Instructor: Wilmer Andrés Silva Moriano. Área: TICS Instructor: Jair Felipe Chávez Cifuentes. Área: Coordinador TICS. Instructor: Jorge Salim Bouharb Cure. Área: Arquitectura. Bibliotecóloga: Paola Andrea Pérez Guisao. Cabe resaltar los agradecimientos a las fuentes citadas en la bibliografía. Página 5 INTRODUCCION En este trabajo se analizaran las patologías y posibles soluciones que se pueden presentar en las estructuras de concreto y metálicas. En Colombia la gran parte de las edificaciones que están construidas han sido construidas a base de concreto y acero siendo estos dos elementos los más afectados por patologías estructurales. Muchos de los concretos que se construyen en nuestro país tienen un acabado defectuoso, con una apariencia poco uniforme permitiendo así la identificación de las patologías que presentan a continuación. Para así analizar sus posibles causas y soluciones en las estructuras de concreto y metálicas obteniendo un conocimiento profundo de las causas que originan los defectos, de tal manera que se puedan enfocar los esfuerzos para reducir al mínimo posible o eliminar en el mejor de los casos estas causas y así mismo los defectos sobre la superficie. Entendiendo el funcionamiento del proceso patológico, podemos abordar su solución que no debe limitarse a una simple “reparación” que enmascare un síntoma que nos está avisando de la existencia de un problema. Página 6 ORIGEN, CAUSAS, RIESGOS Y SOLUCIONES A LAS PATOLOGIAS ENCONTRADAS EN LAS ESTRUCTURAS DE CONCRETO Y METALICAS. Consideraciones generales Resulta importante diferenciar entre lo que es una patología y lo que es una lesión, y la causa que lo produce. Dado que de hecho, un proceso patológico no queda resuelto o anulado hasta que no se ha interrumpido su origen. Esto es uno de los puntos claves de toda reparación: No se trata de resolver un síntoma (lesión) sino de atacar la causa (el origen), puesto que si no es así, las lesiones volverán a aparecer de nuevo. Definición de patología “Puede ser definida como la parte de la ingeniería que estudia los síntomas los mecanismos, las causas y los orígenes de los defectos de las obras civiles, o sea, es el estudio de las partes que componen el diagnostico del problema.” Manual de rehabilitación de estructuras de hormigón_ Red Cyted Definición de lesiones Son cada una de las manifestaciones observables de un problema constructivo. Se trata de un síntoma o un efecto final del proceso patológico en cuestión. Existiendo diferentes tipos de lesiones, primarias y secundarias, diferenciadas por el hecho de que en muchas ocasiones, una lesión es, a su vez, origen de otra. Las lesiones no suelen aparecer solas sino confundidas entre sí. Las lesiones secundarias son consecuencia de lesiones anteriores. Definición de causa Es el agente, activo a pasivo, que actúa como origen del proceso patológico, y que desemboca en una o varias lesiones. En ocasiones, también puede ocurrir que varias causas actúen conjuntamente para producir una misma lesión. Con el diagnóstico, pretendemos conocer la causa o causas de la enfermedad, su origen. Página 7 PRINCIPIOS BÁSICOS PARA EL RECONOCIMIENTO DE UNA PATOLOGÍA ESTRUCTURAL: Para iniciar cualquier tipo de investigación patológica a una estructura siempre se deben tener presentes los antecedentes históricos de la misma. Estos antecedentes permitirán a los investigadores tener una idea más clara de cuáles son las causas por las que se pueda estar presentando dicha patología en la estructura. A continuación se hacer referencia a los aspectos que se deben tener claros al inicial un estudio patológico: - Sismos: Los movimientos telúricos ocurridos durante la vida útil de la estructura. - Proceso constructivo: Dependiendo de la forma en que estén dispuestos todos los elementos que componen el sistema estructural primario de las edificaciones, se logrará de una forma más acertada diagnosticar las causas y de igual forma dar las recomendaciones para el tipo de intervención que se le deba realizar a la estructura afectada. - Estado de los materiales: en la calidad y la forma de como sea su composición se podrá determinar por medio de modelación y cálculos matemáticos los parámetros mínimos de resistencia que tiene la estructura. - Entorno: Depende de la geografía, topografía, características ambientales donde se encuentra ubicada la estructura y de todo su entorno, el que permita que por diferentes causas (físicas, mecánicas o químicas) se puedan estar presentando los síntomas para una patología estructural. Niveles de riesgo Los niveles de riesgo son indicadores que permiten de primera mano tomar las medidas de seguridad necesarias, para que la integridad de quienes habitan las estructuras afectadas no se vea afectada y de igual forma su funcionamiento dependiendo de sus características. Estos indicadores pueden determinarse por medio de colores, letras o números dependiendo del tipo o lugar donde se lleve a cabo la investigación o estudio patológico. De esta manera podemos identificar tres niveles de riesgo para una estructura de concreto reforzado: - Nivel de riesgo bajo: Cuando la vulnerabilidad sísmica de la estructura no se ha visto afectada de forma significativa después de un evento o por la afectación directa o indirecta de algún agente externo o interno y que no representa un daño o peligro de colapso para la integridad del sistema estructural. Este nivel de riesgo se puede manifestar en pequeñas fisuras Página 8 en los elementos de concreto y que muchas veces no se pueden percibir a simple vista. - Nivel de riesgo medio: Sucede cuando la estructura afectada muestra síntomas o signos puntuales, con fisuras o perdida de recubrimientos que se pueden percibir a simple vista, las cuales pueden comprometer de una manera no muy significativa pero que de igual forma son importantes el sistema estructural de la edificación. En este caso las edificaciones pueden ser utilizadas pero bajo medidas de tratamiento y supervisión. - Nivel de riesgo alto: Este se da cuando las a las estructuras después de un evento sísmico o después de una grave lesión por causa de alguna patología severa, se le producen desprendimientos parciales o totales de materiales, dejando al descubierto el refuerzo, también se presentan pandeos o deformaciones en los en los elementos. En este caso se recomienda de forma inmediata el desalojo de las estructuras afectadas puesto que su sistema estructural primario esta tan afectado que en cualquier momento se puede presentar un colapso. PROCESO DE RECONOCIMIENTO PARA SOLUCIONAR LA PATOLOGÍA: La ejecución de una reparación puede tener como posible procedimiento de reconocimiento, una técnica que emplea cinco etapas. 1. encontrar deterioro. 2. determinar la causa 3. evaluar la resistencia de la obra en su estado actual 4. evaluar las reparaciones 5. elegir y proponer un método de reparación. 1 Etapa: Encontrar el deterioro Es precisa la advertencia del deterioro antes de que sea demasiado tarde. Es imprescindible saber que buscar y como hacerlo, para descubrir los deterioros, los que se ven y los que no se ven. 2 Etapa: Determinación de la causa Es la etapa más difícil de todas y la más importante. No significa detectar la causa específica, sino eliminar posibilidades hasta quedarnos con algunas y así escoger un método de reparación, ya que muchas veces es difícil detectar la causa. No hay reglas ni métodos elaborados para determinar causas de los deterioros. Cada caso es particular y debe ser objeto de un diagnóstico. La experiencia Página 9 permite un esquema de principios, como las fisuras en muros de cimentación, se forman en diagonal; la pasta de cemento sometido a ataques de sulfatos tiene un aspecto blanquecino y mate. Las fisuras por corrosión de armaduras forman una línea recta paralela equidistante y dejan aparecer huellas de oxido. Sugerencias. Pasos de estudio: • Inspeccionar la obra • Observarla con mal y buen tiempo • Compararla a otras construcciones próximas y analizar lo anormal. • Estudiar el problema. (Tomarse tiempo en el mismo) • Estudiar la solución. 3 Etapa: Evaluar la resistencia de la obra en su estado actual En general la obra examinada esta en servicio. Por tanto resulta importante determinar cuanto antes el posible uso sin peligro o si conviene reducir el mismo. La evaluación de la resistencia de una obra dañada resulta importante. Aunque estos casos no son los mas comunes, se debe considerar como un ejemplo, que muchas veces los deterioros se presentan en recubrimientos que si bien no participan directamente en la resistencia, ayuda a la protección contra por ejemplo la corrosión de los aceros, que en caso de una alto grado del mismo puede poner en colapso a la estructura. Existen métodos de planteamiento de los problemas. • Método del porcentaje preestablecido • Análisis real de tensiones • Pruebas de carga 4 Etapa: evaluar las reparaciones En esta etapa es cuando se producen las decisiones en cuanto a: • Progresión de los deterioros • Tomar medidas de conservación de la obra en su estado actual sin reforzarla • Reforzar la obra • Como caso extremo la decisión de abandonar la obra, debido a que los deterioros son de gran importancia. 5 Etapa: elegir y proponer un método de reparación Se trata de elegir el procedimiento menos costoso que sirva para obtener el fin perseguido se debe tener en cuenta las siguientes consideraciones: • Se debe considerar el conjunto de gastos, que comprende inicial, conservación e interés. • Para realizar bien una reparación, esta debe hacerse con cuidado y reflexión. Página 10 • En caso de pocos daños y aislados se podrán realizar reparaciones aisladas. • es preciso asegurar que la reparación impedirá el progreso del deterioro, sino habrá que tomar medidas de seguridad de reparación. • Si la obra se ha debilitado se debe devolver la resistencia inicial. • Es preciso asegurar que las reparaciones, no dificultaran seriamente el uso de la obra. • Se debe prever que no se dañen otras obras o parte de la misma. ANÁLISIS PREVIO: PATOLOGÍAS SEGÚN EL MATERIAL Forma de expresión de las lesiones Existen tres vías principales que deberán contemplarse en todos los casos siempre que sea posible: • Inspección visual. • Toma de muestras y ensayos destructivos. • Ensayos no destructivos. Inspección visual. Deberá afectar a toda la estructura accesible, debiendo hacerse un reconocimiento de la estructura del edificio (luces, secciones, tipología de los perfiles, arriostramientos, etc.), de los sistemas de unión (geometrías de las uniones, disposición de los enlaces, dimensiones de algunos elementos como longitudes y gargantas de soldadura, etc.) y de los posibles defectos o disfunciones que pueda presentar la estructura (deformaciones, corrosión, etc.). Inspección referente a la toma de muestras, catas y ensayos destructivos. Busca principalmente determinar mediante ensayos de tipo organoléptico, mecánico y químico las características físicas (composición, densidad, resistencia a compresión, resistencia a tracción, módulo elástico, etc.) de los distintos materiales que forman parte de la estructura. Ensayos no destructivos. Pretende obtener la mayor cantidad de información posible con la menor afectación posible a la estructura mediante radiografías, líquidos penetrantes, ultrasonidos, pruebas de carga estáticas, ensayos dinámicos, etc. La inspección mediante ensayos dinámicos, basada en la lectura de la respuesta que presentan las estructuras al vibrar de manera libre o forzada, ha crecido de manera importante los últimos años gracias a la capacidad de este tipo de ensayos para facilitar información geométrica y mecánica de las estructuras así como detectar en algunos casos sus posibles daños o patologías. La principal ventaja que presentan los ensayos dinámicos es la posibilidad de realizar un número elevado de medidas en un margen de tiempo razonable, así como repetir las mediciones cuantas veces sea necesario. Página 11 DEFINICION Y ALCANSE DE LAS PATOLOGIAS DEL CONCRETO La patología del concreto, puede definirse entonces como el estudio sistemático de los procesos y características de las (enfermedades) o los (defectos y daños) que puede sufrir el concreto, sus causas, sus consecuencias y sus remedios. El alcance de la patología del concreto. Al igual que los seres vivos, el concreto puede sufrir enfermedades y lesiones (defectos o daños), que alteran su estructura interna y su comportamiento. Algunas de ellas pueden ser congénitas, es decir, que estuvieron presentes desde su concepción y/o construcción; otras pueden haberse contraído durante alguna etapa de su vida útil; y otras pueden ser consecuencia de accidentes. Las enfermedades se manifiestan mediante unos síntomas que están representados por fenómenos que exhiben el concreto, tales como manchas, cambio de color, hinchamientos, fisuras, pérdidas de masa, u otros. Identificar adecuadamente las causas de las patologías. Al realizar un estudio patológico para una estructura de concreto reforzado se debe tener muy presente tanto para la recopilación de datos como para la realización de los informes todas las características cualitativas y cuantitativas de cada patología. Estas características para cada caso deben ser entre otras de Forma, Estado, Color, Humedad, Cantidad, Dimensión, Sentido. Página 12 Tipos y causas de deterioros en estructuras de concreto. Al observar un concreto defectuoso no solo debemos concentrarnos en el efecto en si mismo sino que además debemos tratar de lograr recabar la mayor cantidad de datos que nos den una pista sobre la verdadera causa del defecto. Una fisura puede tener múltiples orígenes, en algunos casos una rápida mirada será suficiente para determinar el origen de la misma, pero en la mayoría de los casos no es así. Solo tendremos pistas sueltas que debemos ir uniendo a fin de hallar la verdadera causa. Grieta: Abertura incontrolada que afecta a todo el espesor. Fisura: Abertura que afecta a la superficie del elemento o su acabado superficial (revoque). Los orígenes de las mismas son: • Deficiencia de ejecución y/o materiales. • Acciones mecánicas externas (cargas o asentamientos del terreno). Los esfuerzos son de tracción, corte o rasantes. • Acciones higrotérmicas. • Deficiencias del proyecto. • Fisuras en revoques. Si bien no son patologías estructurales directas, pueden ser la manifestación de una patología estructural o ser origen de una patología. PATOLOGIAS Y SOLUCIONES EN ESTRUCTURAS DE CONCRETO: En una estructura de concreto se pueden encontrar las siguientes patologías: Página 13 Carbonatación. http://civilgeeks.com/2013/05/08/durabilidad-del-hormigon-proceso-carbonatacionuniversidad-politecnica-de-valencia En la hidratación del cemento (reacción entre el cemento y el agua) se forman, entre otros, cantidades importantes de Ca(OH)2, llamado también portlandita, que otorga al conjunto un carácter eminentemente básico y que oscila entre 12 y 13 en valores de Ph (protector de la armadura). Con el tiempo, el CO2 de la atmósfera pasa a través de los poros del hormigón, se combina con los compuestos químicos de éste, principalmente con el hidróxido Cálcico, y llega a formar carbonatos cálcicos, siguiendo la conocida reacción de adormecimiento de cal aérea. La transformación progresiva de los hidróxidos cálcicos en carbonatos cálcicos provoca el descenso del carácter básico hasta valores de Ph de 8 a 9, incluso inferiores, que hacen desaparecer la protección química que supone el pH básico (12-13) de cara a la corrosión de las armaduras. La corrosión se produce a lo largo de toda la superficie de la armadura y esto implica el consiguiente aumento de volumen del acero y, posteriormente, la aparición de grietas en el elemento constructivo. Página 14 Hay que hacer constar que la carbonatación comporta una serie de mejoras que serían excelentes si se tratara de un hormigón sin armar. Estas características favorables son la mayor resistencia mecánica del hormigón, el aumento de la impermeabilidad superficial y mejor comportamiento respecto a las disoluciones agresivas. Para diagnosticar elementos de hormigón sospechosos de presentar carbonatación, se suelen emplear diversos métodos: desde una simple inspección ocular, a la utilización de análisis químicos y microscópicos. Para detectar, a primera vista, las patologías causadas por la carbonatación será necesario buscar en principio manchas de óxido y grietas longitudinales que sigan la dirección probable de la armadura. La manera más clara de detectar esta patología es mediante un procedimiento químico, basado en la reacción de la fenolftaleína con el hidróxido cálcico. Solución: Se repicará el hormigón dañado por medios mecánicos o manuales hasta la zona de la armadura. Si la patología está muy avanzada se tendrá que plantear algún sistema de refuerzo. Aluminosis. http://www.azendra.com/el-problema-de-la-aluminosis-en-edificacion/ Página 15 Se trata de la transformación de determinados aluminatos cálcicos hidratados, cristalizados de forma hexagonal y de estructura metaestable, en otros aluminatos cálcicos hidratados cristalizados en forma cúbica. Este fenómeno comporta una pérdida de la resistencia del hormigón y un aumento de la porosidad. Estas patologías serán más o menos graves en función del contenido de cemento por metro cúbico utilizado, de la relación agua/cemento inicial, del proceso de fabricación y del proceso de curado. Los elementos constructivos afectados por ésta patología son los forjados formados por viguetas autorresistentes o pretensadas y sin chapa de compresión. La gravedad del problema se concentra en todos aquellos locales susceptibles de recibir humedades, como pueden ser los techos bajo cubierta, los forjados sanitarios y todos aquellos locales que se llaman locales húmedos. Las lesiones aparentes en las viguetas son fisuras y grietas y manchas de óxido. Para detectar un problema de aluminosis se deberá someter a un análisis químico una o varias muestras, que determinen la existencia o no de cemento aluminoso, además de otros ensayos como la difracción de rayos X que sirve para detectar el grado de transformación la porosidad. Solución: Cosiste en el refuerzo de aquellos elementos que se hallan deteriorados. Además de los refuerzos es conveniente realizar una rehabilitación general de los elementos comunes del edificio (fachadas, medianeras). Al objeto de lograr la máxima protección y la eliminación de humedades. Piritas. http://fimia.blogspot.com/2010/04/mina-victoria-de-piritas-de-navajun.html Página 16 La utilización de áridos contaminados con piritas para la confección de hormigones, provoca una patología en los elementos de hormigón realizados in situ, consistente en la total desintegración de los elementos que se encuentran en contacto con el exterior. - Solución: Protección del hormigón visto mediante un tratamiento a base de morteros con resinas u otros que impidan el contacto con el aire de la cara externa del hormigón. Fisuras. - Por fisuras reconocemos como la separación incompleta entre dos o más partes con o sin espacios entre ellas. Sus profundidades varían al igual que la dirección que toman. También las reconocemos como grietas. Sus causas pueden ser numerosas y dejarnos saber si hay fallas estructurales. - Para poder reparar una fisura o grieta necesitamos saber cuáles son sus causas, y seleccionar el procedimiento adecuado. Si no elegimos bien el procedimiento a aplicar, entonces la reparación va a durar poco. Las fisuras pueden suceder cuando el concreto está en su estado plástico o cuando el concreto ha endurecido. - A través del tamaño de la grieta o fisura y la forma como se presenta podemos preestablecer un posible origen. - Muchas veces se entiende que puede estar comprometida la estabilidad del edificio, conviene apuntalar el muro para prevenir un posible colapso o para tener un mejor estudio del muro. Luego de tener la seguridad que el muro esta asegurado, se prosigue con el estudio de las causas. Página 17 - Conviene que el estudio se desarrolle en un lapso de tiempo y se estudie el progreso de la grieta, para ver si esta es activa o pasiva. Ya que eso determinara el tipo de solución de reparación. - Si la grieta es pasiva, significa que la acción produjo una patología, esta se manifestó pero se estabilizo su crecimiento o propagación. - Si es activa, quiere decir que la grieta sigue avanzando y puede provocar mayores daños, por lo tanto la reparación debe hacerse cuanto antes. 1. Fisuración por retracción plástica - “La fisuración por retracción plástica ocurre cuando está sujeto a una pérdida de humedad muy rápida provocada por una combinación de factores que incluyen las temperaturas del aire y el hormigón. La humedad relativa y la velocidad del viento en la superficie del hormigón. Estos factores pueden combinarse de manera de provocar niveles altos de evaporación superficial tanto en clima caluroso como en clima frío” - Podemos decir que lo ideal es que la capa de humedad que se ve en la superficie del concreto recién colocado no se evapore de la superficie antes que el agua que esta subiendo a la superficie por exudación. Esto causa tensión entre la capa superficial mas seca y la mas blanda debajo de la superficie, la cual todavía esta en proceso de rigidación. Las fisuras causadas por esta tensión pueden variar en tamaño, su longitud puede estar entre unos milímetros y alcanzar más de un metro. También su ancho y profundidad pueden variar. - 2. Fisuración por precitación de los agregados - Después de la aplicación de la fundición del concreto y vibrado, el concreto tiende a “continuar consolidándose”. En esta etapa el concreto esta restringido por los encofrados. Estas restricciones pueden crear vacíos o grietas al lado del encofrado. También si el hierro a las varillas es demasiado impedirá que el concreto se asiente. Un vibrado insuficiente, o encofrados muy flexibles. - 3. Fisuraciónes térmicas - La diferencia en temperatura dentro de una estructura en concreto puede causar agrietamientos en el concreto. Hay partes de la estructura que reciben más calor y agua que otras debido a las condiciones climáticas. Las diferencias en temperatura modifican el volumen de la estructura Página 18 ocasionando tensiones de tracción que superan la capacidad de deformación por tracción del hormigón. Cuando las estructuras son grandes la probabilidad de agrietarse es mayor. Esto es debido a que la temperatura de la masa interior es mucho mayor a la temperatura de la masa exterior. - 4. Fisuraciones debido a reacciones químicas - Las reacciones químicas provocan figuraciones en el concreto. Estas pueden estar en los materiales usados cuando se preparaba el concreto o de materiales que entran en contacto con el concreto cuando esta ha endurecido. - 5. Prácticas constructivas inadecuadas - Las malas prácticas constructivas son causantes de agrietamientos en el hormigón. De las más comunes es la costumbre de agregarle agua al hormigón para mejorar su trabajabilidad. Esta reduce la resistencia, aumenta el asentamiento y aumenta la retracción por secado. Ahora si se le agrega mas cemento entonces aumentara la temperatura en el interior y exterior de la estructura, y cuyo resultado será un aumento de las tensiones térmicas y posible fisuración. - La falta de curado aumenta el grado de fisuración de una estructura de hormigón. - Otra práctica inadecuada es el no encofrar de acuerdo a las especificaciones y el uso de apoyos inadecuados, pues provocan movimientos de la masa antes de que esta se ponga rígida. - 6. Sobrecargas - Esto sucede cuando las cargas son mucho mayor que las que soportará la estructura. Normalmente sucede a poco tiempo de haber fundido el concreto, pues es cuando el concreto es más susceptible a las fisuras permanentes. - Las fundaciones o cimientos mal diseñados, provocan movimientos diferenciales excesivos dentro de una estructura. Si este movimiento es leve las fisuras serán prácticamente superficiales, afectando solamente la estética de la estructura. Sin embargo si el asentamiento es bastante la estructura no podrá redistribuir las cargas y se formaran grietas. Página 19 Hormiguero: Exposición del agregado grueso y vacíos irregulares en las superficies del concreto. - Solución: La solución planteada se enfoca en prevenir la pérdida del concreto, como el momento del vaciado, el colocarlo desde una distancia corta y compactar cada capa para garantizar un bien vibrado. Variación de color: Puede presentarse cuando hay deficiencias en la mezcla o manifestarse en forma de manchas, ejemplo: humedad y oxidación. - Solución: Se debe encaminar en lograr una planeación de las variables que ocasionan su formación, de tal manera que se presente la menor variación posible. Prever dificultades en el diseño, hacer paneles de prueba y someterlos a consideración del supervisor, preparación cuidadosa del encofrado, limpieza rigurosa del encofrado. Fuga de lechada: Mancha de agua blanca que se presenta por el exceso de agua en la mezcla. Transparencia del agregado: Se origina por deficiencias en el mortero donde el agregado se encuentra cubierto por una delgada película de lechada que permite verlo a través de ella. Página 20 Burbuja: Pequeña cavidad o poro creado a partir de la acumulación de burbujas de aire y agua atrapadas en la cara de la formaleta. - Solución: Controlar las dosificaciones y promover las prácticas de compactación adecuadas, incluyendo el revibrado en la capa superior del cemento para sacar el aire. Líneas entre capas: Líneas horizontales encontradas en el concreto, lo cual indica la frontera entre distintos tiempos de colocación del concreto, aun en un mismo vaciado. - Solución: planificación cuidadosa de los vaciados, suministro continuo del concreto, concreto uniforme, colocación a ritmo continuo, espesores de capas controladas, vibrar traslapando las capas, control de tiempos de colocación y fraguado inicial, monitoreo permanente. Grieta por asentamiento: Grieta superficial que ocurre por el desarrollo de esfuerzos en el concreto. Rebaba: Línea de concreto que se presenta entre los espacios y uniones de las formaletas cuando parte del mortero presente logra pasar estas. Desalineamiento: Cambio abrupto en la alineación o las dimensiones de los elementos de concreto a causa del desplazamiento de una formaleta. Descascaramiento: Eliminación accidental de la superficie provocada por la adherencia a la formaleta. - Solución: Se debe aplicar el desmonte de la formaleta de una manera uniforme e implantar un sistema de mantenimiento que permita limpiar la formaleta una vez desencofrada para evitar esta patología. Irregularidad dejada por los tensores: Es cuando los tensores usados alrededor de las formaletas no quedan bien ajustados. Líneas de acumulación de finos: Es cuando el agregado fino queda expuesto debido a la exudación extrema a través de la formaleta. Defecto por modulación: Se presenta cuando la distribución de las formaletas no sigue un patrón estándar o uniforme. Juntas frías. Página 21 - Solución: planificación cuidadosa de los vaciados, suministro continuo del concreto, concreto uniforme, colocación a ritmo continuo, espesores de capas controladas, vibrar traslapando las capas, control de tiempos de colocación y fraguado inicial, monitoreo permanente. ¿Qué es una solución? En general, una solución es la respuesta a un problema encontrado en una estructura de concreto. ¿CÓMO SOLUCIONAR PATOLOGÍAS EN LAS ESTRUCTURAS DE CONCRETO? Para solucionar una patología en estructuras de concreto se debe primero que todo unificar los defectos encontrados en la estructura con el fin de ser objetivos en la valoración y así presentar una solución. Una vez identificada la estructura afectada se procede a realizar una serie de toma de muestras con el fin de determinar los defectos encontrados y así poder clasificar el tipo de patología encontrada. Ya realizadas las muestras y teniendo un informe en el cual se define el tipo de patología encontrada en la estructura se procede a realizar el resultado del estudio realizado. En el cual se dará a conocer el procedimiento a seguir para tratar el daño o patología encontrada. Para prevenir estas patologías las cuales son las más frecuentes se debe contar con un buen acabado en el concreto, emplear buenos materiales, equipos, herramientas, mano de obra calificada, de esta manera tendremos una alta posibilidad de que las patologías o defectos aparezcan. Página 22 PATOLOGIAS EN ESTRUCTURAS METALICAS. Aunque las estructuras metálicas tienen una reciente implantación apoyada en una fuerte tecnología, también son susceptibles de sufrir lesiones que ponen en peligro tanto la integridad constructiva como la seguridad del edificio. Estos procesos patológicos pueden derivarse de causas propias de la naturaleza del material, especialmente su debilidad al ataque químico ambiental y la solución constructiva adoptada en proyecto y ejecución. Debido a este motivo, es necesario analizar las patologías sirviéndose de las técnicas de inspección adecuadas. Sólo de esta manera podrá intervenirse correctamente para realizar su reparación, siendo igualmente necesario establecer las medidas de prevención pertinentes. Tipos y causas de deterioros en estructuras metálicas: Los cinco tipos fundamentales son: • Corrosión. Se la define como la transformación de metales en compuestos diversos, bajo fenómenos naturales. Los defectos son distinguibles. Los síntomas son: superficie picada, oxidada, dejando aparecer placas o escamas de oxido que se desprenden con facilidad, de un color rojo oscuro típico. La superficie de la sección se reduce, y ante el aumento de tensiones, disminuyen la resistencia. Página 23 Afecta especialmente a elementos ocultos, exteriores o de difícil acceso, próximos a bajantes o instalaciones de hidráulicas (presentan fugas, condensaciones, etc.) o con escaso revestimiento protector contra condensaciones, filtraciones, humedad capilar o lluvia. • Erosión por abrasión. Se aprecia en la secciones de acero por el aspecto desgastado y liso de las superficies. Está relacionada con el trabajo de partes móviles en contacto o en elementos que sufren acción por el oleaje o partes sumergidas en líquidos. • Juego de las uniones. Es la causa de los deslizamientos en los nudos, provoca la deformación de la estructura, crea zonas de acumulación de tensiones muy elevadas y acrecienta la posibilidad de rotura por fatiga. Eso lleva a que se requirieran inspecciones regulares y la reparación inmediata en caso de ser necesario. • El efecto de la fatiga. Se define como la rotura de un elemento bajo esfuerzos repetidos y variables que producen tensiones iguales o inferiores a las consideradas como admisibles al proyecto. Los síntomas son pequeñas estrías perpendiculares a la dirección de las tensiones y son un grave peligro porque son difíciles de prever. Puede provocar el hundimiento de la obra sin aviso previo. • El efecto del impacto. Se caracterizan por deformaciones localizadas en los elementos afectados, ondulaciones de débil longitud. Hay que tener especial cuidado de no confundirse con el aspecto que presentan los elementos afectados por tensiones de pandeo trabajando a compresión ya que ambos se manifiestan de manera muy similar pero mientras el pandeo es señal de efectos mas profundos. Si se presentan deformaciones de aspecto de cresta de gallos o en elementos trabajando a tracción, se trata de un problema de impacto, mientras que el pandeo se manifiesta en forma de curva en S en ambos lados del eje del elemento. La ventaja principal de las estructuras metálicas es que las reparaciones, excepto en casos extremos, suele ser sencilla mediante la incorporación de nuevas chapas o perfiles atornillados, soldados a los dañados, previa verificación de la compatibilidad de aceros y recubrimientos de los electrodos. Página 24 TIPOS DE AGRESIONES. Las lesiones a las que se ven afectadas las estructuras metálicas pueden clasificarse en tres grupos: - Agresiones biológicas - Agresiones físicas y mecánicas - Agresiones químicas Agresiones biológicas Este es un caso poco frecuente en la edificación, puesto que no es corriente encontrar (micro) organismos alimentados por metal. A pesar de esto, sí existen ciertas bacterias que pueden intensificar con su actividad los procesos de corrosión. Por tanto, su importancia respecto a la corrosión electroquímica es mínima Corrosión microbiológica Se desarrolla en presencia de microorganismos, especialmente bacterias, hongos y algas microscópicas. Agresiones físicas y mecánicas Este tipo de agresiones son similares a las que puede padecer cualquier tipo de estructura. Probablemente, las vibraciones, dependiendo de la configuración de la estructura se transmitan con una mayor facilidad comparando con estructuras cuyo módulo de deformabilidad sea menor. Respecto a las demás agresiones físicas, el fuego es la más significativa debido a su gran destructividad, lo cual hace necesario establecer una cuidada protección específica: en el material, su disposición y la propia organización del edificio, facilitando su evacuación y la rápida extinción en caso de incendio. Los motivos mecánicos que originan la alteración y deterioro de los materiales incluyen movimientos, deformaciones y rupturas originados por: - Cargas externas directas Actúan sobre la estructura u otros elementos. - Cargas indirectas Debidas a variaciones de temperatura o humedad, que en caso de movimientos impedidos en las piezas, provocan importantes deformaciones. - Cargas reológicas Están producidas por la fatiga de los materiales. - Desplazamientos de la estructura Son consecuencia de las alteraciones experimentadas en los terrenos sobre los que se cimienta. Página 25 Agresiones electroquímicas La corrosión electroquímica tiene junto al fuego un poder destructivo muy importante, pero se diferencia en que su tiempo de actuación es mucho más lento y no suele percibirse hasta que los daños no son significativos. Además, puede actuar localmente en áreas muy reducidas y peligrosas de la estructura como ocurre en las soldaduras o tornillos de unión. La dificultad radica en que la estructura presenta zonas de acceso e inspección complicados, lo cual dificulta tanto el control como el mantenimiento de estos elementos estructurales frente a la corrosión. Algunas de las causas que favorecen este tipo de procesos son: - Agua Las aguas de tipo duro tienen un alto contenido de iones de calcio y magnesio que favorecen las reacciones químicas, incluso las limpias presentan impurezas minerales, oxígeno y dióxido de carbono disuelto. - Ácidos Procedentes de lluvia, terrenos, enyesados, maderas (roble, tuyas, castaño), algas y musgos. Provocan la perforación de los metales. - Sales En muchos casos ayudan en la formación de una película protectora e inhibidora de la corrosión, si no se superan en determinadas cantidades. - Álcalis El hidróxido de sodio y de potasio liberados por el cemento Pórtland son muy perjudiciales para el zinc, el aluminio y el plomo en presencia de humedad; sin embargo, no afectan al cobre y protegen de la corrosión a los materiales ferrosos embebidos en hormigón rico en cemento. La cal aérea si no es carbonatada también protege a los metales ferrosos, pudiendo atacar al aluminio y ser ligeramente corrosiva para el plomo y el zinc. - Clima Existe una clasificación de los climas según sea su impacto en los metales estructurales. Factores de diseño Para prevenir una corrosión prematura se debe dotar a las superficies de una ligera inclinación para posibilitar la evacuación de agua, distribuir orificios de drenaje y disponer espacio suficiente entre elementos para preparar las superficies y pintarlas, evitando lugares donde se acumule agua y otros contaminantes. Las zonas que experimentan deformaciones, tienden a comportarse como ánodos y de ahí resulten más propensas a la corrosión. Página 26 Normalmente aparece en bordes, cantos vivos y dobleces, lo cual debe ser considerado previamente en la fase de diseño y al determinar el tipo de protección anticorrosivo requerido. FALLOS CARACTERÍSTICOS Debido a la propia naturaleza de los materiales que constituyen estas estructuras, las patologías más comunes se concentran en el sistema, más que en el propio material o sistema constructivo. La relación de problemas más frecuentes en las estructuras metálicas es: La Corrosión - Des laminación de perfiles - Picaduras en conexiones Solicitaciones típicas A pesar de que globalmente las estructuras metálicas suelen presentar menor cantidad de problemas que otros sistemas constructivos, éstos se resumen en corrosión y deformabilidad fundamentalmente. No obstante, los fallos que experimentan tienen consecuencias catastróficas. De acuerdo con las explicaciones del profesor Félix Las eras Merino en la asignatura de Patología de la ETSAM, los problemas que sufren dichas estructuras son los siguientes: Necesidad de protección superficial Para facilitar su accesibilidad, efectuar la evacuación de agua, realizar operaciones de mantenimiento, puesta a tierra, impidiendo el riesgo de captación de corrientes parásitas. Por estos motivos, muchos forjados metálicos anteriores a 1960 utilizaban yeso para ejecutar los entrevigados, y a veces para regularizar la cara superior, favoreciendo en este caso la corrosión en presencia de humedad. Deformabilidad y dilatación térmica Las estructuras metálicas presentan una mayor deformabilidad y dilatación térmica que las admisibles por estructuras de fábrica. Esto explica el hecho de que las primeras lesiones observables aparezcan primero en cerramientos y forjados, y no Página 27 directamente en la estructura como cabría suponer. La deformabilidad y flexibilidad se expresan en: Exceso de flecha Exceso de vibración Pandeo de pilares o local de alas comprimidas Ejecución de nudos y encuentros La importancia decisiva reside en estos puntos para lograr las disposiciones de articulación y empotramiento establecidas en el proyecto. Este aspecto muestra una gran diferencia respecto a las estructuras de hormigón, en el sentido de que el acero requiere un mayor grado de precisión en la ejecución. Precisamente, son las uniones defectuosas las causantes de los desastres en estructuras metálicas, sobre todo si se les añaden los efectos de otros problemas típicos como la corrosión, la presencia de zonas de absorción o transmisión de tracciones. Las uniones soldadas debido al proceso de ejecución en obra y la dificultad que presenta su control, son más comprometidas que las atornilladas, a pesar de que éstas tienen mayor complejidad y sobredimensionan la estructura. La cuestión radica en el carácter más dúctil de las uniones soldadas. Muchos defectos están ocasionados en la construcción y por los propios soldadores, lo cual, en obras pequeñas y medianas, suele ser frecuente. Muchas veces, las soldaduras concentran tensiones provocadas por movimientos coartados, que causan fatiga si no hay una penetración suficiente. En las cubiertas ligeras, la presencia de numerosos nudos y uniones, así como la relativa importancia de las sobrecargas, las convierten en estructuras muy propensas a sufrir procesos patológicos. La escasa rigidez de los nudos requiere de arrostramientos externos mediante el uso de bielas de acero o tirantes, o bien con paños confinados de fábrica. Fallo de las uniones Las uniones constituyen uno de los puntos más delicados a tener en cuenta en la estructura, tanto en el proyecto como durante el proceso de ejecución. Su objetivo es dotar de continuidad a un elemento estructural que no puede construirse de Página 28 una sola pieza. Son esenciales para dotar de estabilidad y seguridad a la estructura. Los defectos pueden ser según la tipología de la unión los siguientes: Roblonado/Atornillado El problema más importante es la corrosión por aireación diferencial que puede surgir en los encuentros, causando una pérdida de sección útil en los roblones o tornillos. Hay que utilizar aceros de igual composición para evitar problemas de par galvánico. En las articulaciones habrá que emplear aceros de alta resistencia. Y de modo general, los elementos deben someterse a un control exhaustivo de calidad y de su colocación. Soldadura Los procesos patológicos mecánicos son consecuencia de una sección de cálculo insuficiente o de una ejecución no uniforme. Las patologías químicas son causadas por incompatibilidad de aceros o con el material de aportación. Anclajes Los procesos patológicos mecánicos conducen a aplastamiento y cizalladura del elemento traccionado, llegando a su rotura. Suele producirse un alargamiento diferido, que habrá que cuantificar en los primeros meses de puesta en funcionamiento. Los procesos de naturaleza química se deben a corrosión por aireación diferencial. Falta de rigidez Deformación - Mecánica Térmica, especialmente en elementos perimetrales situados en los cerramientos. Vibración: El acero aunque sufre deformaciones, suele recuperar su forma, salvo en determinados casos. Las lesiones mecánicas que afectan a forjados metálicos pueden ser de dos tipos: de flecha o de tensión excesiva. Su origen está en la inadecuación de la estructura frente a un estado límite; bien por un incremento de las cargas que puede soportar o por la disminución de la resistencia de la estructura. De modo general, las lesiones comienzan en las zonas más rígidas del edificio, donde son más visibles, como sucede en los cerramientos y particiones. Página 29 Los fallos característicos son los siguientes: Fallos mecánicos: afectan a la solidez, implican pérdida de capacidad mecánica o resistencia, estabilidad, rigidez que inciden en la seguridad estructural. Fallos funcionales: afectan a la utilidad, conllevan pérdida de nivelación horizontal, vertical que repercute en la durabilidad y transmisión de vibraciones. Fallos estéticos: afectan al decoro debido a cambio de coloración por acción de la corrosión. Son figuraciones inducidas que influyen más en cerramientos, revestimientos y paramentos que en la propia estructura. ¿CÓMO SOLUCIONAR PATOLOGÍAS EN LAS ESTRUCTURAS METÁLICAS? Procedo con el estudio de evaluación de daños, pero verificando la cuantía de la misma para poder elegir la solución más eficiente de actuación. Estabilizamos la estructura o el elemento estructural que se este estudiando. En los casos que se encuentren como componente estructural vigas o pilares debo evitar que dicha estructura siga absorbiendo las cargas actuales y las futuras provenientes de la intervención, por tanto procediendo al apuntalamiento correcto de la misma. Página 30 Protección Interna Protección catódica Es un tipo de protección consistente en el uso de corriente eléctrica para prevenir o reducir la velocidad de corrosión de un metal en un electrolito, haciendo que el acero actúe como cátodo y no se corroe. Es fundamental que se especifiquen y se calculen correctamente los parámetros adecuados para la protección catódica de una estructura o instalación concreta; es importante también la vigilancia constante de los medidores y del buen funcionamiento en general. Se puede lograr una máxima eficacia utilizando además recubrimientos protectores, teniendo especial cuidado en su elección para evitar que sean atacados en condiciones alcalinas o que se formen ampollas. Protección Externa • Revestimientos - Esmalte Vítreo Este esmalte se realiza sobre piezas de acero o de hierro fundido, aplicando una mezcla formada por silicatos, fundentes y pigmentos para colorear que constituyen un recubrimiento duro y resistente a la corrosión. Los cantos y ángulos deben ser redondeados para evitar que se fisure la superficie esmaltada, que resulta muy sencilla de limpiar. - Aplicación de pinturas Un sistema durable implica una o más capas de fuentes de protección activa y una o más capas de recubrimiento, que constituyen un último acabado. Es aconsejable recurrir a las imprimaciones anticorrosivas dentro del sistema para prevenir la corrosión, proteger al sustrato en roturas de la película de pintura, e impedir la extensión de la corrosión. La pintura que se aplican sobre el acero suelen dividirse en dos clases: Pinturas no pigmentadas (barnices, lacas y aceites secantes) Recubrimientos pigmentados (imprimadores y capas de acabado) se emplean en sistemas de secado al aire o estufa a temperaturas moderadas. - Efecto barrera Los recubrimientos orgánicos se basan en la acción ligante y adherente de las resinas o polímeros, que les permite adherirse a los sustratos y retener los Página 31 pigmentos. Las resinas o ligante puros (sin pigmentos) contienen disolventes para facilitar su aplicación, los cuales se evaporan al secar. Crean pequeños canales o huecos desde el fondo a la superficie, que se van cerrando en la última parte del secado, pero que permiten el paso de gases y vapores, aunque no de líquidos. La formación de esta película seca depende de su proceso de formación y del tamaño de las cadenas poliméricas, lo cual nos genera un problema frente a los agentes de deterioro. Ningún polímero deja un espacio tan pequeños como para impedir el paso de los gases, por lo que el oxígeno, vapor de agua y vapores ácidos siempre acaban por llegar a la interfase entre el metal y el recubrimiento orgánico. Para que las reacciones avancen. De todos modos, las reacciones de corrosión siempre se verán forzadas No obstante, se puede frenar y retrasar la corrosión permitiendo la entrada de menos oxígeno que el necesario cuando hay electrolitos (cloruro sódico o sulfatos) en el medio acuoso. Es aconsejable la realización de tres capas. Eliminación de agentes El riesgo de corrosión anticipada depende de su situación en la estructura y del medio ambiente dónde se encuentra el edificio. La primera acción que debe llevarse a cabo es la eliminación de la causa, sellando las posibles vías de entrada de agua o humedad con algún material como siliconas. Seguidamente se actúa sobre la pieza, para lo cual se puede proponer una serie de intervenciones generalizadas: • Ambiente Agresivo - Preparación de la superficie con chorro de arena hasta grado Sa-2 "casi metal blanco" Sa.2 Chorreado minucioso. Se quita casi toda la capa de laminación, el óxido suelto y las partículas extrañas sueltas. La superficie se limpiará con aspirador de polvo, aire comprimido limpio y seco o cepillo limpio. Deberá adquirir un color grisáceo. - Imprimación epoxi rica en zinc, con espesor 22μ de la capa de película seca Capa gruesa intermedia epoxi con un espesor de 75μ de película seca Esmalte epoxi en acabado de 35μ de espesor. Página 32 • Ambiente medianamente agresivo - Preparación de la superficie con cepillo hasta grado St-3 o con chorro hasta Sa-2 St.3 raspado, cepillado manual con cepillo de acero – cepillado a máquina – esmerilado a máquina – etc. de una manera minuciosa. Mediante el tratamiento se quitarán las capas sueltas de laminación, el óxido y las partículas extrañas. Luego se limpiará la superficie con un aspirador de polvo, aire comprimido limpio y seco o un cepillo limpio. Entonces deberá adquirir un claro brillo metálico. - Imprimación con clorocaucho, con espesor 30-35μ de la capa de película seca Capa gruesa intermedia de clorocaucho con un espesor de 40μ de película seca Capa de acabado de clorocaucho con 30-35μ de espesor de pintura seca. • Ambientes neutros - Preparación de la superficie con cepillo hasta grado St-2 St.2 raspado, cepillado manual con cepillo de acero – cepillado a máquina – esmerilado a máquina – etc. de una manera minuciosa. Mediante el tratamiento se quitarán las capas sueltas de laminación, el óxido y las partículas extrañas. Luego se limpiará la superficie con un aspirador de polvo, aire comprimido limpio y seco o un cepillo limpio. Entonces deberá adquirir un suave brillo metálico. - Imprimación antioxidante de óxido de hierro o minio de plomo electrolítico al aceite 35μ Dos manos de acabado con esmalte sintético o de aluminio (35μ cada capa) Fisuras y / o grietas en fundición: Suelen repararse con facilidad. Se sanea la grieta totalmente con la piedra redondeando su iniciación. El relleno de la grieta se debe hacer con electrodos de níquel, precalentando la zona, y según las instrucciones del fabricante de los electrodos. Página 33 Consolidación Externa • A través de una limpieza Limpieza con llama Consiste en pasar sobre la superficie de acero un soplete oxiacetilénico a gran velocidad y altas temperaturas. Debido a la diferencia en los coeficientes de dilatación en comparación con el soporte de acero, la mayor parte del óxido y la cascarilla se desprenden y el resto de deshidrata. Mientras la superficie todavía está caliente y seca es cuando se trabaja con ella. Limpieza por chorreado abrasivo Impulsando pequeñas partículas de material abrasivo a gran velocidad, mediante aire comprimido, vapor, agua, o discos centrífugos. Estas partículas pueden ser de arena fina, perdigones o restos de acero, o pueden tratarse de abrasivos sintéticos como carborundo o alúmina, pero conviene siempre que sean uniformes en cuanto a su tamaño, y lo más pequeñas posible. Existen tres grados posibles de la calidad de limpieza: chorreado abrasivo grado comercial, abrasivo a metal casi blanco, y abrasivo a metal blanco. El chorro de arena comprimido en general es considerado como un método de limpieza idóneo para la fase previa al pintado, ante todo porque elimina el óxido, la cascarilla y la pintura vieja hasta dejar el metal blanco. Limpieza con disolventes Limpieza por Emulsión: consistente en emplear un disolvente orgánico (queroseno) junto con un agente emulsionante (jabón) de modo que la combinación se pueda diluir en agua y formar un medio de limpieza. Disolventes Alcalinos: que van desde los álcalis como soda cáustica y potásica hasta los detergentes. Disolventes Ácidos: inorgánicos como el fosfórico, combinado con disolvente de grasas (alcoholes) y agentes humectantes que rebajan la tensión superficial, pero sus efectos anticorrosivos no son satisfactorios del todo. Disolventes Orgánicos: algunos son tóxicos o inflamables, pero es el tipo de disolvente más empleado, como son: naftas, mineral spirit, benceno, tolueno, xilenos, turpentina, hidrocarburos asfálticos y derivados. Decapado Químico: en piezas de acero no demasiado grandes, por el cual se introducen en tanques donde se disuelve la capa superficial del metal, eliminando el óxido y la cascarilla, y obteniendo una superficie Página 34 • Tratamientos de conversión química Fosfatado Tratamiento consistente en transformar la superficie metálica activa, conductora de la electricidad, en una superficie aislante y en consecuencia, pasiva. Sus principales ventajas son: • permite una mayor adherencia de la capa de pintura, • opone mayor resistencia a la formación de ampollas en ambientes húmedos, • obstaculiza la corrosión. Wash-Primer. Imprimaciones reactivas Productos de pretratamiento de calidad intermedia entre las soluciones fosfatantes y las imprimaciones normales de pintura. Suelen ser una combinación de productos que forma sobre la superficie un recubrimiento continuo, resistente a la corrosión y muy adherente. Sustitución de la estructura: Se realiza cuando el elemento presenta daños de tan gran magnitud que no es posible su consolidación o refuerzo ni desde el punto de vista técnico ni del económico, se debe realizar la sustitución de la estructura metálica. Página 35 Se realiza cuando el elemento presenta daños de tan gran magnitud que no es posible su consolidación o refuerzo ni desde el punto de vista técnico ni del económico. Ejemplo: Las reparaciones por oxidación o corrosión se realizarán mediante las sustitución de elementos que han tenido pérdidas en el área de su sección, mediante reemplazo de remaches y pernos, en su caso, o eliminación de las zonas deterioradas del recubrimiento mediante la preparación de la base y una adecuada ejecución del recubrimiento, de esta forma se evitará el contacto de las estructuras de acero con oxígeno y la humedad, y la entrada de agua al interior. Antes de cualquier sustitución se debe apuntalar la estructura, de la manera mas adecuada de acuerdo a cada caso. En muchos de los casos es necesario retirar parte de la estructura que cubre o es sostenida por esta viga, una vez despejada el área y desviada la descarga es posible retirar el perfil que se debe quitar. La sustitución es en muchos casos la solución mas segura, y también la mas radical, se hacen presente los problemas de descargas y nuevas cargas de la estructuras. En el caso de las estructuras de aceros las sustituciones en caso de ser parciales se realizan en su mayoría con el mismo material (acero) mediante soldado de las piezas o mediante roscado en situaciones especiales. Los Página 36 procedimientos para transmitir las cargas mientras se realiza la sustitución pueden variar de acuerdo a la situación de la estructura. Soportes por gatos oleodinámicos Los conectores roscados nos dan más seguridad que las soldaduras. Las técnicas de soporte por gatos oleodinamicos han recibido un fuerte impulso de la mano de la informática, se trata normalmente de equipos solo disponibles en obras de cierta envergadura. Los apeos convencionales, aparentemente mas asequibles, exigirán un control intensivo y deberán ser cuidadosamente diseñados y dimensionados. En cualquier caso, no conviene retirar un elemento hasta que su reemplazante está en servicio. La sustitución parcial de una sola pieza resultará mucho más fácil, tanto por la escala de la pieza como por la facilidad del apeo. Habrá que aplicar en este caso las recomendaciones ya dadas respecto a la elección de los medios de unión del acero nuevo al viejo. Establecimiento de una nueva estructura portante y mantenimiento de la antigua una vez liberada, total o parcialmente, de su cometido portante esta técnica se utiliza en su mayoría, en pilares de fundación o entrepisos de viguetas metálicas, en edificios unifamiliares dedicados posteriormente a usos y sobrecargas publicas, que exige una dosis de sensibilidad desde el arquitecto. Página 37 GLOSARIO Acciones higrotermicas: Variación de dimensiones de revestimiento por los cambios de humedad y temperaturas. Ánodos: Es un electrodo en el que se produce una reacción de oxidación. Anticorrosivo: es un material que sirve para proteger una superficie de un proceso de degradación llamado corrosión. Canto: Línea que forma la terminación de la superficie de una pieza o elemento. También llamado borde. Catódica: Es una técnica para controlar la corrosión galvánica de una superficie de metal convirtiéndola en el cátodo de una celda electroquímica. (Es un anticorrosivo). Cimentaciones: Son las bases que sirven de sustentación al edificio; se calculan y proyectan teniendo en consideración varios factores tales como la composición y resistencia del terreno, las cargas propias del edificio y otras cargas que inciden, tales como el efecto del viento o el peso de la nieve sobre las superficies expuestas a los mismos. Clorocaucho: Esmalte fabricado a base de resinas de gran dureza resistente a la abrasión y ataque de producto químico. Difracción: Fenómeno físico por el cual un rayo de luz se desvía al interferir con otro o al pasar por el borde de un cuerpo opaco o por una abertura estrecha. Emulsión: Es una mezcla de líquidos inmiscibles de manera más o menos homogénea. Un líquido es dispersado en otro. Muchas emulsiones son de aceite/agua. Epoxi: Polímero termo estable que se endurece cuando se mezcla con agente catalizador o endurecedor. Especie de pintura epòxica, que produce una buena película con adherencia y flexibilidad resistente y derivado del petróleo ácidos débiles, sales, álcalis y temperaturas de 90º C en seco. Equidistante: Que equidista o está a igual distancia que otro. Esmaltado: Cocción realizada para el revestimiento de un objeto cerámico con una capa vítrea. Página 38 Exudación: Salida de una sustancia o un líquido a través de los poros o las grietas del recipiente que lo contiene, la exudación de humedad por la pared. Ferrosos: Que contienen hierro. Forjados: Es el elemento estructural, generalmente horizontal, capaz de transmitir las cargas que soportan, así como su propio peso (vigas, pilares, muros). Fraguar: Proceso de endurecimiento y pérdida de plasticidad del hormigón producido por la desecación y recristalización de los hidróxidos metálicos. Fundente: Es un producto químico usado en proceso de soldar y en la fabricación de placas y otros componentes electrónicos Geometría: Es una parte de la matemática que trata de estudiar unas idealizaciones del espacio en que vivimos, que son los puntos, las rectas y los planos, y otros elementos conceptuales derivados de ellos, como polígonos o poliedro. Lechada: Es un material de construcción utilizado para integrar las barras en las paredes de mampostería con sesiones conectadas de hormigón para llenar los vacíos y las juntas de sellado. Ligante: Partículas un compuesto adhesivo que ligan y mantienen unidos dos elementos. Metaestable: Un estado de equilibrio fuertemente estable normalmente la metaestabilidad es debida a transformaciones de estado lentas. Metales alcalinos: Son aquellos que están situados en el grupo 1 de la tabla periódica1 (excepto el hidrógeno que es un gas). Todos tienen un solo electrón en su nivel energético más externo, con tendencia a perderlo (esto es debido a que tienen poca afinidad electrónica, y baja energía de ionización). Minio: Acido de plomo, de color a naranjado. Naftas: Son una mezcla de hidrocarburos que se encuentran refinados, parcialmente obtenidos en la parte superior de la torre de destilación atmosférica. Organoléptico: Son todas aquellas descripciones de las características físicas que tiene la materia en general. Su estudio es importante en las ramas de la ciencia en que es habitual evaluar inicialmente las características de la materia sin ayuda de instrumentos científicos. Página 39 Pandeo: Es un fenómeno de inestabilidad elástica que pueden darse en elementos comprimidos esbeltos. Pigmento: Es un material que cambia el color de la luz que refleja como resultado de la absorción selectiva del color. Piritas: Es un mineral del grupo de los sulfuros. Polímero: Compuesto de elevado peso molecular, que contiene unidades estructurales repetidas de forma periódica, monómeros, constituido por polimerización. Portlandita: Es un material de la clase de los minerales óxidos y dentro de esta pertenece al llamado grupo de la brucita. Rasantes: Línea de una calle o camino considerada en su inclinación respecto al plano horizontal. Sulfatos: son las sales o los ésteres del ácido sulfúrico. Contienen como unidad común un átomo de azufre en el centro de un tetraedro formado por cuatro átomos de oxígeno. Las sales de sulfato contienen el anión SO42-. Traslapando: Cubrir una cosa u otra. Página 40 CONCLUSIONES Es importante tener en cuenta que la conclusión del siguiente anteproyecto está basada en dar a conocer las causas, riesgos y soluciones a las patologías encontradas en las estructuras de concreto y estructuras metálicas. De igual forma podemos decir que de acuerdo a la información planteada en este anteproyecto se muestra la forma adecuada de como manipular y/o trabajar con estas estructuras, para prolongar la vida útil de las mismas. Para logar lo planteado se deben tener buenas prácticas constructivas, seguidas de mantenimientos preventivos y construir bajo las normas vigente de la entidad competente. Página 41 BIBLIOGRAFIAS Fuente: Soluciones. http://html.rincondelvago.com/patologias-producidas-en-la-edificacion.html http://issuu.com/bertoni_salazar/docs/9diagnostico_y_solucion_de_problemas_en_concreto_ http://revista.eia.edu.co/articulos10/art9.pdf Fuente: Origen y causas. Tomada de los artículos de Carlson et al. (1979), Kelly (1981), Price (1982) y Abdun-Nur (1983). Fuente: Riesgos. http://patologiasestructurasconcreto.blogspot.com/p/principios-basicos-para-el.html http://es.wikibooks.org/wiki/Patolog%C3%ADa_de_la_edificaci%C3%B3n/Estructur as_met%C3%A1licas/Acero/Problem%C3%A1tica Bibliografía -AA.VV. (1981): CURSO DE CONTROL DE CALIDAD EN LA EDIFICACIÓN. CURSILLO 3. ESTRUCTURAS METÁLICAS. Ed. COAM, Madrid, 1981. ISBN 8485572-28-9 (Biblioteca ETSAM Depósito 20.026) -Martínez Las Heras, R. (1984): PATOLOGÍA DE LAS ESTRUCTURAS METÁLICAS Y MIXTAS. CURSO DE REHABILITACIÓN. TOMO 5. LA ESTRUCTURA. Colegio Oficial de Arquitectos de Madrid, Madrid, 1985. ISBN 8485572-70-X (Biblioteca ETSAM, 69.059 CUR 5) -Monjo Carrió, J; Maldonado Ramos, L. (2001): PATOLOGÍA Y TÉCNICAS DE INTERVENCIÓN EN ESTRUCTURAS ARQUITECTÓNICAS, Ed. Munilla-Lería, Madrid, 2001. ISBN 84-89150-52-4 (Biblioteca ETSAM: 69.059 MON PAT) http://www.eduriesgo.org/eduriesgo/documentos/modulo_iii/05_causas_identificaci on_y_posibles_soluciones_para_las_fisuras.pdf Página 42 www.farq.edu.uy Tomado de patología en elementos estructurales madera, hierro - acero y muro portante cerámico. Tesina 2009 - 2010 _ Tutor: Jorge Schinca _ Estudientes: Pia Jelpo - Leticia Padilla Imágenes: http://www.azendra.com/el-problema-de-la-aluminosis-en-edificacion/ http://fimia.blogspot.com/2010/04/mina-victoria-de-piritas-de-navajun.html VIDEO RECOMENDADO http://www.youtube.com/watch?feature=player_embedded&v=ay5SSo9SAFA Página 43