Subido por maria loera

CIRCUITOS SEGUNDO ORDEN

Anuncio
capítulo
8
Circuitos de
segundo orden
Todo el que pueda obtener una maestría en ingeniería debe obtenerla, ¡con el fin de
maximizar el éxito de su carrera! Si se quiere hacer investigación, descubrir lo último
en ingeniería, enseñar en una universidad o iniciar su propio negocio, ¡entonces realmente necesita doctorarse!
—Charles K. Alexander
Desarrollo de su carrera
Para incrementar sus oportunidades profesionales de ingeniería una vez que se titule,
adquiera un firme conocimiento fundamental de una amplia serie de áreas de ingeniería.
De ser posible, esto se lograría idealmente cursando de manera inmediata estudios de
posgrado después de concluir su licenciatura.
Cada grado de ingeniería representa ciertas habilidades que los estudiantes adquieren. En el nivel de la licenciatura, usted aprende el lenguaje y los fundamentos de la
ingeniería y el diseño. En el nivel de la maestría adquiere la capacidad para realizar
proyectos avanzados de ingeniería y para comunicar eficazmente su labor tanto de manera oral como por escrito. El doctorado representa un conocimiento cabal de los fundamentos de la ingeniería eléctrica y el dominio de las habilidades necesarias tanto para
trabajar en las fronteras de un área de la ingeniería como para comunicar el esfuerzo
propio a los demás.
Si usted no tiene idea de qué curso seguirá después de titularse, un programa de
posgrado ampliará su capacidad para explorar opciones profesionales. En vista de que
su grado de licenciatura le proporcionará sólo los fundamentos de la ingeniería, un grado de maestría en ingeniería complementado por cursos de administración beneficia
más a los estudiantes de ingeniería que obtener una maestría en administración de empresas. El mejor momento para iniciar esta última maestría es después de que usted haya
ejercido como ingeniero durante algunos años y decida que su trayectoria profesional se
vería favorecida por el fortalecimiento de sus habilidades de negocios.
Los ingenieros deben educarse constantemente, de modo formal e informal, aprovechando todos los medios educativos. Quizá no haya mejor manera de desarrollar su
carrera que integrarse a una asociación profesional como el IEEE y convertirse en
miembro activo.
8.1
Introducción
En el capítulo anterior se trataron circuitos con un solo elemento de almacenamiento (un
capacitor o un inductor). Esos circuitos son de primer orden, porque las ecuaciones di-
Mejorar su carrera implica conocer sus
metas, adaptarse a cambios, prever oportunidades y planear su propio nicho.
©2005 Institute of Electrical and
Electronics Engineers (IEEE).
270
Capítulo 8
R
vs
L
+
−
C
a)
is
R
C
L
vs
+
−
R2
L1
L2
c)
R
is
C1
ferenciales que los describen son de primer orden. En este capítulo se analizan circuitos
que contienen dos elementos de almacenamiento. A estos circuitos se les conoce como
circuitos de segundo orden, porque sus respuestas se describen con ecuaciones diferenciales que contienen segundas derivadas.
Ejemplos comunes de circuitos de segundo orden son los circuitos RLC, en los que
están presentes los tres tipos de elementos pasivos. Ejemplos de tales circuitos se muestran en la figura 8.1a) y b). Otros ejemplos son los circuitos RC y RL como los que
aparecen en la figura 8.1c) y d). En la figura 8.1 es evidente que un circuito de segundo
orden puede tener dos elementos de almacenamiento de diferente tipo o del mismo
tipo (siempre y cuando los elementos del mismo tipo no puedan representarse con un
solo elemento equivalente). Un circuito de amplificador operacional con dos elementos
de almacenamiento también puede ser un circuito de segundo orden. Al igual que los
circuitos de primer orden, un circuito de segundo orden puede contener varios resistores
y fuentes dependientes e independientes.
Un circuito de segundo orden se caracteriza por una ecuación diferencial de segundo
orden. Consta de resistores y el equivalente de dos elementos de almacenamiento de
energía.
b)
R1
Circuitos de segundo orden
C2
d)
Figura 8.1 Ejemplos comunes de
circuitos de segundo orden: a) circuito
RLC en serie, b) circuito RLC en
paralelo, c) circuito RL, d) circuito RC.
El análisis de circuitos de segundo orden será similar al realizado con los de primer orden. Primero se considerarán circuitos excitados por las condiciones iniciales de los
elementos de almacenamiento. Aunque estos circuitos pueden contener fuentes dependientes, están libres de fuentes independientes. Como es de esperar, estos circuitos sin
fuente darán respuestas naturales. Después se tratarán circuitos excitados por fuentes
independientes. Estos circuitos darán tanto la respuesta transitoria como la respuesta en
estado estable. En este capítulo sólo se analizarán fuentes independientes de cd. El caso
de fuentes senoidales y exponenciales se dejará para capítulos posteriores.
Se iniciará con el aprendizaje para obtener las condiciones iniciales de las variables
de circuitos y sus derivadas, ya que esto es crucial para analizar circuitos de segundo
orden. Luego se tratarán circuitos RLC en serie y en paralelo, como los que aparecen en
la figura 8.1, en los dos casos de excitación: mediante las condiciones iniciales de los
elementos de almacenamiento de energía y mediante entradas de escalón. Posteriormente se examinarán otros tipos de circuitos de segundo orden, incluidos circuitos con amplificadores operacionales. Se analizarán circuitos de segundo orden con PSpice. Por
último, se tratará el sistema de encendido de un automóvil y los circuitos suavizadores
o estabilizadores como aplicaciones usuales de los circuitos tratados en este capítulo.
Otras aplicaciones, como circuitos resonantes y filtros, se presentarán en el capítulo 14.
8.2
Determinación de valores iniciales y finales
Quizás el principal problema que enfrentan los estudiantes al manejar circuitos de segundo orden es la determinación de las condiciones iniciales y finales de la variables de
circuitos. Los estudiantes suelen obtener cómodamente los valores inicial y final de v e
i, pero a menudo tienen dificultades para determinar los valores iniciales de sus derivadas: dv/dt y di/dt. Por tal razón, esta sección se dedicará explícitamente a las sutilezas
de la obtención de v(0), i(0), dv(0)/dt, di(0)/dt, i( ) y v( ). A menos que se indique otra
cosa en este capítulo, v denota la tensión del capacitor, mientras que i denota la corriente del inductor.
Hay dos puntos clave que se deben tener presentes en la determinación de las condiciones iniciales.
Primero, como siempre en análisis de circuitos, se debe manejar con cuidado la
polaridad de la tensión v(t) en el capacitor y la dirección de la corriente i(t) a través del
inductor. Tenga en cuenta que v e i se definen estrictamente de acuerdo con la convención pasiva de los signos (véanse figuras 6.3 y 6.23). Se debe observar con atención
cómo están definidas esas variables y aplicarlas en consecuencia.
8.2
Determinación de valores iniciales y finales
271
Segundo, tenga presente que la tensión del capacitor siempre es continua, de modo
que
v(0 )
v(0 )
(8.1a)
y que la corriente del inductor siempre es continua, de modo que
i(0 )
(8.1b)
i(0 )
donde t 0 denota el momento justo antes de un evento de conmutación y t 0 es
el momento justo después del evento de conmutación, suponiendo que este tiene lugar
en t 0.
Así, para determinar las condiciones iniciales primero hay que enfocarse en las
variables que no pueden cambiar abruptamente, la tensión del capacitor y la corriente
del inductor, aplicando la ecuación (8.1). Los siguientes ejemplos ilustran estas ideas.
El interruptor en la figura 8.2 ha estado cerrado mucho tiempo. Se abre en t 0. Halle:
a) i(0), v(0), b) di(0)/dt, dv(0)/dt, c) i( ), v( ).
Ejemplo 8.1
i
4Ω
0.25 H
Solución:
a) Si el interruptor está cerrado mucho tiempo antes de t 0, esto significa que el cir- 12 V +
−
cuito ha llegado al estado estable de cd en t 0. En estado estable de cd, el inductor
actúa como un cortocircuito, mientras que el capacitor lo hace como un circuito abierto,
así que se tiene el circuito de la figura 8.3a) en t 0. Por lo tanto,
2Ω
t=0
Figura 8.2
i(0 )
12
4
v(0 )
2 A,
2
2i(0 )
0.1 F
Para el ejemplo 8.1.
4V
Dado que la corriente del inductor y la tensión del capacitor no pueden cambiar abruptamente,
i(0 )
i(0 )
v(0 )
2 A,
v(0 )
b) En t 0, el interruptor está abierto; el circuito equivalente se muestra en la figura
8.3b). Tanto por el inductor como por el capacitor fluye la misma corriente. Así,
iC (0 )
i(0 )
4Ω
4V
12 V
+
−
2Ω
a)
iC (0 )
C
20 V/s
o sea
En consecuencia,
vL(0 )
4i(0 )
vL(0 )
di(0 )
dt
12
vL(0 )
L
8
v(0 )
4
0
0.25
0 A,
v( )
0.25 H
+ vL −
+
−
12 V
0.1 F
0
+
v
−
b)
0
4Ω
i
+
0 A/s
c) Para t 0, el circuito pasa por un transiente. Pero como t → , llega otra vez al estado estable. El inductor actúa como cortocircuito y el capacitor como circuito abierto,
de modo que el circuito de la figura 8.3b) se convierte en el que aparece en la figura
8.3c), del que se tiene
i( )
i
4Ω
2
0.1
De igual manera, como L di/dt vL, di/dt vL /L. Ahora se obtiene vL aplicando la
LTK al lazo de la figura 8.3b). El resultado es
12
+
v
−
2A
Puesto que C dv/dt iC, dv/dt iC /C, y
dv(0 )
dt
i
12 V
12 V
+
−
v
−
c)
Figura 8.3 Circuito equivalente del de
la figura 8.2 para: a) t 0, b) t 0,
c) t → .
+
v
−
272
Capítulo 8
Problema de práctica 8.1
Circuitos de segundo orden
El interruptor en la figura 8.4 estuvo abierto mucho tiempo, pero se cerró en t 0. Determine: a) i(0), v(0), b) di(0)/dt, dv(0)/dt, c) i( ), v( ).
t=0
10 Ω
+
2Ω
Figura 8.4
v
1
20
−
i
0.4 H
+
−
F
24 V
Para el problema de práctica 8.1.
Respuesta: a) 2 A, 4 V, b) 50 A/s, 0 V/s, c) 12 A, 24 V.
En el circuito de la figura 8.5, calcule: a) iL(0), vC(0), vR(0), b) diL(0)/dt, dvC(0)/
dt, dvR(0)/dt, c) iL( ), vC( ), vR( ).
Ejemplo 8.2
4Ω
Figura 8.5
+
vR
−
2Ω
3u(t) A
1
2
+
vC
−
F
+
−
iL
0.6 H
20 V
Para el ejemplo 8.2.
Solución:
a) Para t 0, 3u(t) 0. En t 0, dado que el circuito ha llegado al estado estable, el
inductor puede reemplazarse por un cortocircuito, mientras que el capacitor se reemplaza por un circuito abierto, como se advierte en la figura 8.6a). De esta figura se obtiene
iL(0 )
vR(0 )
0,
vC (0 )
0,
(8.2.1)
20 V
Aunque las derivadas de estas cantidades en t 0 no han sido requeridas, es evidente
que todas ellas son cero, ya que el circuito ha llegado al estado estable y nada cambia.
4Ω
a
+
vR
Figura 8.6 El circuito de
la figura 8.5 para: a) t 0,
b) t 0.
+
vC
−
2Ω
+
−
+ vo −
iL
b
iC
+
vC
−
4Ω
+
vR
−
2Ω
3A
20 V
1
2
F
+
−
20 V
iL
+
vL
−
0.6 H
−
a)
b)
Para t 0, 3u(t) 3, así que ahora el circuito es el equivalente al de la figura 8.6b).
Puesto que la corriente del inductor y la tensión del capacitor no pueden cambiar abruptamente,
iL (0 )
iL (0 )
0,
vC (0 )
vC (0 )
20 V
(8.2.2)
Aunque no se requiera la tensión del resistor de 4 se usará para aplicar las LTK y
LCK; llámese vo. La aplicación de la LCK al nodo a de la figura 8.6b) da
3
vR(0 )
2
vo(0 )
4
(8.2.3)
8.2
Determinación de valores iniciales y finales
La aplicación de la LTK al lazo intermedio de la figura 8.6b) produce
vR(0 )
vo(0 )
vC (0 )
20
(8.2.4)
0
Como vC(0) 20 V de la ecuación (8.2.2), la ecuación (8.2.4) implica que
(8.2.5)
vo(0 )
vR(0 )
De las ecuaciones (8.2.3) y (8.2.5) se obtiene
vR(0 )
vo(0 )
(8.2.6)
4V
b) Puesto que L diL /dt vL,
vL(0 )
L
diL(0 )
dt
Pero la aplicación de la LTK a la malla derecha de la figura 8.6b) da como resultado
vC (0 )
vL(0 )
20
0
De ahí que
diL(0 )
dt
(8.2.7)
0
De igual manera, como C dvC /dt iC, entonces dvC /dt iC/C. Se aplica la LCK al
nodo b de la figura 8.6b) para obtener iC:
vo(0 )
4
iC (0 )
(8.2.8)
iL(0 )
Dado que vo(0) 4 e iL(0) 0, iC(0) 4/4 1 A. Entonces,
dvC (0 )
dt
iC (0 )
C
1
0.5
(8.2.9)
2 V/s
Para obtener dvR(0)/dt, la aplicación de la LCK al nodo a produce
vo
4
vR
2
3
Al tomar la derivada de cada término y establecer t 0 se obtiene
0
2
dvo (0 )
dt
dvR(0 )
dt
(8.2.10)
También se aplica la LTK al lazo intermedio de la figura 8.6b), de lo que resulta
vR
vC
vo
20
0
Una vez más, al tomar la derivada de cada término y establecer t 0 se obtiene
dvR(0 )
dt
dvC (0 )
dt
dvo(0 )
dt
0
La sustitución de dvC(0)/dt 2 rinde
dvR(0 )
dt
dvo(0 )
dt
2
De las ecuaciones (8.2.10) y (8.2.11) se obtiene
dvR(0 )
dt
2
V/s
3
(8.2.11)
273
274
Capítulo 8
Circuitos de segundo orden
Se puede hallar diR(0)/dt aunque no se haya requerido. Dado que vR 5iR,
diR(0 )
dt
1 dvR(0 )
5
dt
12
53
2
A/s
15
c) Como t → , el circuito llega al estado estable. Así se tiene el circuito equivalente de
la figura 8.6a), salvo que ahora está en operación la fuente de corriente de 3 A. Por el
principio de división de corriente,
2
iL( )
vR( )
Problema de práctica 8.2
4
2
4
3A
3A
2
4
2
4 V,
(8.2.12)
vC ( )
20 V
En referencia al circuito de la figura 8.7, halle: a) iL(0), vC(0), vR(0), b) diL(0)/dt,
dvC(0)/dt, dvR(0)/dt, c) iL( ), vC( ), vR( ).
+ vR −
iR
iC
5Ω
F
−
iL
+
vL
−
+
1
5
4u(t) A
Figura 8.7
1A
vC
6A
2H
Para el problema de práctica 8.2.
Respuesta: a) 6 A, 0, 0, b) 0, 20 V/s, 0, c) 2 A, 20 V, 20 V.
8.3
R
L
I0
i
Figura 8.8
fuente.
+
V0
−
C
Circuito RLC en serie sin fuente
El conocimiento de la respuesta natural del circuito RLC en serie es un antecedente necesario para futuros estudios de diseño de filtros y redes de comunicación.
Considérese el circuito RLC en serie que se presenta en la figura 8.8. Este circuito
se excita con la energía inicialmente almacenada en el capacitor y el inductor. Tal energía está representada por la tensión inicial del capacitor V0 y la corriente inicial del inductor I0. Así, en t 0,
Circuito RLC en serie sin
v(0)
1
C
i(0)
I0
0
i dt
(8.2a)
V0
(8.2b)
Al aplicar la LTK a lo largo de la malla de la figura 8.8,
Ri
L
di
dt
1
C
t
i (t)dt
0
(8.3)
Para eliminar la integral, se deriva con respecto a t y se reordenan los términos. Así se
obtiene
d 2i
dt
2
R di
L dt
i
LC
0
(8.4)
Esta es una ecuación diferencial de segundo orden y es la razón de que a los circuitos
RLC de este capítulo se les llame circuitos de segundo orden. El objetivo es resolver la
ecuación (8.4). Resolver esa ecuación diferencial de segundo orden requiere que haya
8.3
Circuito RLC en serie sin fuente
275
dos condiciones iniciales, como el valor inicial de i y de su primera derivada o el valor
inicial de algunas i y v. El valor inicial de i se da en la ecuación (8.2b). Se obtiene el
valor inicial de la derivada de i de las ecuaciones (8.2a) y (8.3); es decir,
Ri(0)
L
di(0)
dt
V0
0
o sea
di(0)
dt
1
(RI0
L
(8.5)
V0)
Con las dos condiciones iniciales en las ecuaciones (8.2b) y (8.5), ahora se puede resolver la ecuación (8.4). Con base en la experiencia en el capítulo anterior, sobre circuitos
de primer orden, indica que la solución es de forma exponencial. Concédase entonces
que
i Aest
(8.6)
donde A y s son constantes por determinar. De la sustitución de la ecuación (8.6) en la
ecuación (8.4) y de la realización de las derivaciones necesarias se obtiene
AR st
se
L
As2est
A st
e
LC
0
o sea
Aest as2
1
b
LC
R
s
L
(8.7)
0
Puesto que i Aest es la supuesta solución que se intenta hallar, sólo la expresión entre
paréntesis puede ser de cero:
R
s
L
s2
1
LC
(8.8)
0
Esta ecuación cuadrática se conoce como ecuación característica de la ecuación diferencial (8.4), ya que sus raíces dictan el carácter de i. Las dos raíces de la ecuación (8.8)
son
s1
R
2L
R 2
b
B 2L
1
LC
(8.9a)
s2
R
2L
R 2
b
B 2L
1
LC
(8.9b)
a
a
Véase el apéndice C.1 en cuanto a la
fórmula para hallar las raíces de una
ecuación cuadrática.
Una forma más compacta de expresar estas raíces es
s1
a
2a2
2
0,
s2
a
2a2
2
0
(8.10)
donde
a
R
,
2L
1
0
2LC
(8.11)
Las raíces s1 y s2 se denominan frecuencias naturales, medidas en nepers por segundo
(Np/s), porque se asocian con la respuesta natural del circuito; v0 se conoce como frecuencia resonante, o más estrictamente como frecuencia natural no amortiguada, expresada en radianes por segundo (rad/s), y a es la frecuencia neperiana o factor de
El neper (Np) es una unidad adimensional, llamada así en honor a John
Napier (1550-1617), matemático
escocés.
276
Capítulo 8
Circuitos de segundo orden
amortiguamiento, expresada en nepers por segundo. En términos de a y v0, la ecuación
(8.8) puede escribirse como
s2
La razón av0 se conoce como razón
de amortiguamiento z.
2
0
2a s
0
(8.8a)
Las variables s y v0 son cantidades importantes sobre las que se tratará en el resto del
libro.
Los dos valores de s en la ecuación (8.10) indican que hay dos posibles soluciones
para i, cada una de las cuales es de la forma de la supuesta solución en la ecuación (8.6);
es decir,
A1es1t,
i1
A2es2t
i2
(8.12)
Como la ecuación (8.4) es una ecuación lineal, cualquier combinación lineal de las dos
distintas soluciones i1 e i2 también es una solución de la ecuación (8.4). Una solución
completa o total de la ecuación (8.4) requeriría por lo tanto una combinación lineal de i1
e i2. Así, la respuesta natural del circuito RLC en serie es
A1es1t
i(t)
La respuesta está sobreamortiguada
cuando las raíces de la ecuación
característica del circuito son
diferentes y reales, críticamente
amortiguada cuando las raíces son
iguales y reales y subamortiguada
cuando las raíces son complejas.
A2es2t
(8.13)
donde las constantes A1 y A2 se determinan a partir de los valores iniciales de i(0) y
di(0)/dt en las ecuaciones (8.2b) y (8.5).
De la ecuación (8.10) se puede inferir que hay tres tipos de soluciones:
1. Si a v0, se tiene el caso sobreamortiguado.
2. Si a v0, se tiene el caso críticamente amortiguado.
3. Si a v0, se tiene el caso subamortiguado.
Considérese por separado cada uno de estos casos.
Caso sobreamortiguado (A V0)
Con base en las ecuaciones (8.9) y (8.10), a v0 implica que C 4L/R2. Cuando esto
sucede, las raíces s1 y s2 son negativas y reales. La respuesta es
A1es1t
i(t)
A2es2t
(8.14)
la cual decrece y tiende a cero al aumentar t. La figura 8.9a) ilustra una respuesta sobreamortiguada común.
Caso críticamente amortiguado (A ⴝ V0)
Cuando a v0,, C 4L/R2 y
s1
R
2L
a
s2
(8.15)
En este caso, la ecuación (8.13) da por resultado
i(t)
A1e
at
at
A2e
A3e
at
donde A3 A1 A2. Esta no puede ser la solución, porque las dos condiciones iniciales
no pueden satisfacerse con la constante sencilla A3. ¿Qué pudo estar mal, entonces? La
suposición de una solución exponencial es incorrecta para el caso especial de amortiguamiento crítico. Vuélvase a la ecuación (8.4). Cuando a v0 R/2L, la ecuación
(8.4) se convierte en
d 2i
2
2a
dt
di
dt
a2i
0
o sea
d di
a
dt dt
aib
aa
di
dt
aib
0
(8.16)
Circuito RLC en serie sin fuente
8.3
Si se deja que
di
dt
f
(8.17)
ai
277
i(t)
entonces la ecuación (8.16) se convierte en
df
dt
af
0
la cual es una ecuación diferencial de primer orden con solución f A1eat, donde A1
es una constante. La ecuación (8.17) se convierte entonces en
di
dt
ai
A1e
0
t
at
a)
i(t)
o sea
eat
di
dt
eatai
(8.18)
A1
Esto puede escribirse como
0
d at
(e i)
dt
(8.19)
A1
1
␣
La integración de ambos miembros produce
at
e i
i
o sea
b)
A1t
(A1t
t
A2
A2)e
i(t)
e –t
at
(8.20)
donde A2 es otra constante. Así, la respuesta natural del circuito críticamente amortiguado es una suma de dos términos: una exponencial negativa y una exponencial negativa
multiplicada por un término lineal, o sea
0
t
2␲
␻d
c)
i(t)
(A2
A1t)e
at
(8.21)
Una respuesta críticamente amortiguada común se presenta en la figura 8.9b). De hecho, esta última figura es una aproximación gráfica de i(t) teat, la cual alcanza un
valor máximo de e1/a en t 1/a una constante de tiempo, y después decrece hasta
cero.
Caso subamortiguado (A V0)
Para a v0, C 4L/R2. Las raíces pueden escribirse como
s1
a
2 (
2
0
a2)
a
j
d
(8.22a)
s2
a
2 (
2
0
a2)
a
j
d
(8.22b)
donde j 1 y vd v20 a2, la cual se llama frecuencia de amortiguamiento.
Tanto v0 como vd son frecuencias naturales, porque contribuyen a determinar la respuesta natural; mientras que a v0 suele llamársele frecuencia natural no amortiguada,
vd se llama frecuencia natural amortiguada. La respuesta natural es
i(t)
A1e (a j d)t
e a t(A1e j d t
A2e
A2e
(a
ju
cos u
j
j
dt
d)t
(8.23)
)
Usando las identidades de Euler,
e ju
cos u
j sen u,
e
j sen u
(8.24)
Figura 8.9 a) Respuesta
sobreamortiguada, b) respuesta
críticamente amortiguada, c) respuesta
subamortiguada.
278
Capítulo 8
Circuitos de segundo orden
se obtiene
i(t)
e
at
e
at
[A1(cos
[(A1
dt
j sen
A2) cos
d t)
dt
A2(cos
j(A1
dt
j sen
A2) sen
d t)]
(8.25)
d t]
Al reemplazar las constantes (A1 A2) y j(A1 A2) por las constantes B1 y B2 se escribe
i(t)
R 0 produce una respuesta perfectamente senoidal. Esta respuesta no
puede cumplirse en la práctica con L y
C, a causa de las pérdidas inherentes a
ellos. Véanse las figuras 6.8 y 6.26. El
dispositivo electrónico llamado
oscilador puede producir una
respuesta perfectamente senoidal.
En los ejemplos 8.5 y 8.7 se mostrará el
efecto de la variación de R.
La respuesta de un circuito de
segundo orden con dos elementos de
almacenamiento del mismo tipo,
como en la figura 8.1c) y d), no puede
ser oscilatoria.
En la mayoría de los circuitos prácticos
esto significa que lo que se busca es
un circuito sobreamortiguado que se
acerque lo más posible a uno
críticamente amortiguado.
Ejemplo 8.3
e
at
(B1 cos
dt
B2 sen
(8.26)
d t)
Con la presencia de las funciones seno y coseno es claro que la respuesta natural para
este caso está amortiguada exponencialmente y es de naturaleza oscilatoria. Tal respuesta tiene una constante de tiempo de 1/a y un periodo de T 2p/vd. En la figura
8.9c) se representa gráficamente una respuesta subamortiguada común. [En la figura 8.9
se supone en cada caso que i(0) 0.]
Una vez hallada la corriente del inductor i(t) para el circuito RLC en serie como se ha
mostrado hasta aquí, pueden hallarse fácilmente otras variables del circuito, como las
tensiones de los elementos individuales. Por ejemplo, la tensión del resistor es vR Ri, y
la tensión del inductor es vL L di/dt. La corriente del inductor i(t) se selecciona como la
variable clave por determinar primero a fin de obtener provecho de la ecuación (8.1b).
Se concluye esta sección señalando las siguientes interesantes y peculiares propiedades de una red RLC:
1. El comportamiento de una red de este tipo se presenta en la idea de amortiguamiento, el cual es la pérdida gradual de la energía almacenada inicialmente, como
lo evidencia el continuo decremento de la amplitud de la respuesta. El efecto de
amortiguamiento se debe a la presencia de la resistencia R. El factor de amortiguamiento a determina la velocidad con la cual se amortigua la respuesta. Si R 0,
entonces a 0 y se tiene un circuito LC con 1/
LC como frecuencia natural no
amortiguada. Dado que a v0 en este caso, la respuesta no sólo es no amortiguada, sino también oscilatoria. Se dice que el circuito es sin pérdidas, porque el
elemento disipador o amortiguador (R) está ausente. Ajustando el valor de R, la
respuesta puede volverse no amortiguada, sobreamortiguada, críticamente amortiguada o subamortiguada.
2. La respuesta oscilatoria es posible debido a la presencia de los dos tipos de elementos de almacenamiento. La disposición tanto de L como de C permite que el flujo
de energía vaya y venga entre los dos. La oscilación amortiguada exhibida por la
respuesta subamortiguada se conoce como resonancia. Se deriva de la capacidad de
los elementos de almacenamiento L y C para transferir energía de un lado a otro
entre ellos.
3. Obsérvese en la figura 8.9 que las formas de onda de las respuestas difieren. En
general, resulta difícil percibir la diferencia entre las respuestas sobreamortiguada y
críticamente amortiguada en las formas de onda. Este último caso es la frontera entre
los casos subamortiguado y sobreamortiguado, y es el que decae con mayor rápidez.
Con las mismas condiciones iniciales, el caso sobreamortiguado tiene el mayor
tiempo de estabilización, porque es en el que la energía inicial almacenada tarda más
en disiparse. Si se desea la respuesta que aproxime con más rapidez el valor final sin
oscilación o resonancia, el circuito críticamente amortiguado es la opción correcta.
En la figura 8.8, R 40 , L 4 H y C 1/4 F. Calcule las raíces características del
circuito. ¿La respuesta natural está sobre, sub o críticamente amortiguada?
Solución: Primero se calcula
a
R
2L
40
2(4)
5,
1
0
2LC
1
24
1
4
1
Circuito RLC en serie sin fuente
8.3
2a2
a
s1,2
Las raíces son
o sea
s1
2
0
0.101,
225
5
s2
279
1
9.899
Puesto que a v0, se concluye que la respuesta está sobreamortiguada. Esto también
es evidente en el hecho de que las raíces son reales y negativas.
Si R 10 , L 5 H y C 2 mF en la figura 8.8, halle a, v0, s1 y s2. ¿Qué tipo de
respuesta natural tendrá el circuito?
Problema de práctica 8.3
Respuesta: 1, 10, 1 j 9.95, subamortiguada.
Ejemplo 8.4
Halle i(t) en el circuito de la figura 8.10. Suponga que el circuito ha llegado al estado
estable en t 0.
Solución: Para t 0, el interruptor está cerrado. El capacitor actúa como circuito abierto, mientras que el inductor lo hace como circuito derivado. El circuito equivalente se
muestra en la figura 8.11a). Así, en t 0,
10
i(0)
4
v(0)
1 A,
6
6i(0)
a
9
2(12)
s1,2
a
1
9,
0
2a2
o sea
2LC
2
0
212
281
9
9
s1,2
1
+
−
10 V
Figura 8.10
10 V
(A1 cos 4.359t
+
v
−
+
−
1
6Ω
100
a)
i
(8.4.1)
A2 sen 4.359 t)
Ahora se obtiene A1 y A2 usando las condiciones iniciales. En t 0,
i(0)
0.5 H
i
4Ω
j 4.359
9t
e
6Ω
Para el ejemplo 8.4.
Así, la respuesta está subamortiguada (a v); es decir,
i(t)
+
v
−
3Ω
10
1
50
i
0.02 F
6V
donde i(0) es la corriente inicial a través del inductor y v(0) es la tensión inicial a través
del capacitor.
Para t 0, el interruptor está abierto y la fuente de tensión desconectada. El circuito equivalente se presenta en la figura 8.11b), de un circuito RLC en serie sin fuente.
Nótese que los resistores de 3 y 6 , que están en serie en la figura 8.10, cuando el
interruptor se abre, se han combinado para producir R 9 en la figura 8.11b). Las
raíces se calculan de la siguiente manera:
R
2L
t=0
4Ω
A1
0.02 F
9Ω
+
v
−
0.5 H
(8.4.2)
Partiendo de la ecuación (8.5),
b)
di
2
dt t
1
[Ri(0)
L
0
v(0)]
2[9(1)
6]
6 A/s
(8.4.3)
Adviértase que se emplea v(0) V0 6 V, porque la polaridad de v en la figura
8.11b) es la opuesta a la de la figura 8.8. Al tomar la derivada de i(t) en la ecuación
(8.4.1),
di
dt
9e
e
9t
(A1 cos 4.359t
9t
A2 sen 4.359t)
(4.359)( A1 sen 4.359t
A2 cos 4.359t)
La imposición de la condición en la ecuación (8.4.3) en t 0 da por resultado
6
9(A1
0)
4.359( 0
A2)
Figura 8.11 El circuito de la figura
8.10: a) para t 0, b) para t 0.
280
Capítulo 8
Circuitos de segundo orden
Pero A1 1 por la ecuación (8.4.2). En consecuencia,
6
9
1
4.359A2
A2
0.6882
La sustitución de los valores de A1 y A2 en la ecuación (8.4.1) produce la solución completa como
i(t)
a
1
9
b
9t
( cos 4.359t
F
Respuesta: e2.5t(10 cos 1.6583t 15.076 sen 1.6583t) A.
t=0
i(t)
100 V +
−
5Ω
1H
8.4
Circuito RLC en paralelo sin fuente
Los circuitos RLC en paralelo tienen muchas aplicaciones prácticas, principalmente en
redes de comunicación y diseño de filtros.
Considérese el circuito RLC en paralelo que se presenta en la figura 8.13. Supóngase que la corriente inicial del inductor I0 y la tensión inicial del capacitor V0,
Figura 8.12 Para el problema
de práctica 8.4.
i(0)
I0
v(0)
+
v
−
+
L
I0 v
C
+
V0
−
−
v
R
1
L
(8.27a)
v(t) dt
(8.27b)
V0
Circuito RLC en paralelo
t
v(t) dt
C
dv
dt
0
(8.28)
Al tomar la derivada respecto a t y dividir entre C resulta
d 2v
Figura 8.13
sin fuente.
0
1
L
Puesto que los tres elementos están en paralelo, tienen la misma tensión v en sus extremos. De acuerdo con la convención pasiva de los signos, en cada elemento entra corriente; esto es, la corriente a través de cada elemento sale por el nodo superior. Así, la
aplicación de la LCK al nodo superior deriva en
v
R
0.6882 sen 4.359t) A
El circuito de la figura 8.12 ha llegado al estado estable en t 0. Si el conmutador sin
interrupción se mueve a la posición b en t 0, calcule i(t) para t 0.
Problema de práctica 8.4
10 Ω
e
1 dv
RC dt
1
v
LC
(8.29)
0
dt
Se obtiene la ecuación característica reemplazando la primera derivada por s y la segunda derivada por s2. Siguiendo el mismo razonamiento que el utilizado al establecer las
ecuaciones (8.4) a (8.8), la ecuación característica se obtiene como
2
s2
1
s
RC
1
LC
(8.30)
0
Las raíces de la ecuación característica son
1 2
b
B 2RC
a
1
2RC
s1,2
1
LC
o sea
s1,2
a
2a2
2
0
(8.31)
donde
a
1
,
2RC
1
0
2LC
(8.32)
8.4
Circuito RLC en paralelo sin fuente
281
Los nombres de estos términos son los mismos que en la sección anterior, pues desempeñan el mismo papel en la solución. De nueva cuenta, hay tres posibles soluciones,
dependiendo de si a v0, a v0 o a v0. Considérense estos casos por separado.
Caso sobreamortiguado (A V0)
A partir de la ecuación (8.32), a v0 cuando L 4R2C. Las raíces de la ecuación característica son reales y negativas. La respuesta es
A1es1t
v(t)
A2es2t
(8.33)
Caso críticamente amortiguado (A ⴝ V0)
Para a v0, L 4R2C. Las raíces son reales e iguales, así que la respuesta es
v(t)
(A1
at
A2t)e
(8.34)
Caso subamortiguado (A V0)
Cuando a v0, L 4R2C. En este caso las raíces son complejas y pueden expresarse
como
a
s1,2
donde
2
d
d
(8.35)
a2
(8.36)
j
2
0
La respuesta es
v(t)
e
at
(A1 cos
dt
A2 sen
dt)
(8.37)
Las constantes A1 y A2 pueden determinarse en cada caso con base en las condiciones iniciales. Se necesita v(0) y dv(0)/dt. El primer término se conoce a partir de la
ecuación (8.27b). El segundo se halla combinando las ecuaciones (8.27) y (8.28), en
esta forma:
V0
R
I0
C
dv(0)
dt
0
o sea
dv(0)
dt
(V0
RI0)
RC
(8.38)
Las formas de onda de la tensión son similares a las que se mostraron en la figura 8.9, y
dependerán de si el circuito está sobre, sub o críticamente amortiguado.
Habiendo hallado la tensión del capacitor v(t) para el circuito RLC en paralelo
como se ha indicado aquí, se pueden obtener fácilmente otras variables del circuito, como las corrientes en cada uno de los elementos individuales. Por ejemplo, la corriente del resistor es iR v/R, y la tensión del capacitor es vC C dv/dt. Se ha seleccionado la tensión del capacitor v(t) como la variable clave por determinar primero a fin
de aprovechar la ecuación (8.1a). Obsérvese que en el caso del circuito RLC en serie,
primero se halla la corriente del inductor i(t), mientras que en el del circuito RLC en
paralelo primero se halla la tensión del capacitor v(t).
En el circuito en paralelo de la figura 8.13, halle v(t) para t 0, suponiendo v(0) 5 V,
i(0) 0, L 1 H y C 10 mF. Considere estos casos: R 1.923 , R 5 y R 6.25 .
Ejemplo 8.5
Descargar