Subido por Erick Cardozo Cuenca

REDISEÑO ESTRIBO

Anuncio
MEMORIA DE CALCULO
PUENTE VEHICULAR MILIWAYA
Diseño de Estribo Lado Rosario
1.- Datos iniciales de diseño.σadm = 3.00 Kg/cm²
Tensión admisible del terreno:
Resistencia Característica del hormigón:
= 21000 Kn/m²
f'c
Tensión admisible del hormigón:
= 300 Kn/m²
σadmT = 8400 Kn/m²
fy
Límite de fluencia del acero:
= 420 Mpa
γH°A° = 24 Kn/m³
γt = 18 Kn/m³
Peso Específico del H°A°
Peso Específico del suelo de fundación
LT
= 25.60 m
Longitud de cálculo
LC
= 25.00 m
Ancho de distribución
ad
=
Angulo de fricción del terreno
Ø
= 30°
Longitud Total del puente
4.50 m
0.20
2.- Geometría sección principal.-
0.60
1.7
8
7
0.40
6
11
0.45
0.30
10
9.50
5
12
6.10
4
9
3
0.55
0.35
0.30
1
2
O
2.80
0.70
0.90
0.10
5.80
2.00
MEMORIA DE CALCULO
PUENTE VEHICULAR MILIWAYA
2.a.- Momentos y fuerzas resistentes propias de la estructura.Brazo
Momento
1
[m²] [Kn/m³] [Kn/m]
3.000
24
72
[m]
4.300
[Kn-m/m]
309.60
2
1.960
24
1.400
65.86
3
0.420
24
10.08
1.867
18.82
4
1.870
24
44.88
3.267
146.61
5
6
2.380
0.180
24
24
57.12
4.32
3.625
4.025
207.06
17.39
7
0.068
24
1.62
3.950
6.40
8
0.340
24
8.16
4.150
33.86
9
0.420
18
7.56
0.933
7.06
10
13.18
18
237.15
5.025
1191.68
11
0.068
18
1.22
4.100
4.98
12
2.745
18
49.41
4.025
198.88
∑
10.22
----
540.56
----
2208.18
Sección
Area
γ
PECM = 540.56 Kn/m
Peso
47.04
P
MECM = 2208.18 Kn-m/m
3.- Peso propio superestructura.N° de Vigas
:
Vol. 1 viga
: 12.57 m³
Vol. Losa y diafragmas
: 28.31 m³
2
Capa de rodadura
: 2.05 m³
Distancia Carga de la superestructura a la pantalla
: 0.33 m
Peso propio vigas
: 2 x 12.57 x 24 =
603.18 Kn
Peso propio losa y diafragmas
:
28.31 x 24 =
679.44 Kn
Peso propio capa de rodadura :
2.05 x 22 =
45.06
Barandado
PPS =
1432.54
Kn
: 2 x 2 x 25.60 = 104.86 Kn
PPS1 = 1432.54 Kn
= 159.17 Kn/m
2 x 4.50
MPS = 159.17 x 3.72 = 592.12 kn-m/m
D
Observaciones
H°A°
Relleno
--------
MEMORIA DE CALCULO
PUENTE VEHICULAR MILIWAYA
4.- Carga viva e impacto.- S/G AASHTO - 2002
P
P
P/4
4.300
4.300
25.00
1
h1
h1 =
h2 =
20.70
h2
= 0.8280
25.00
16.40
25.00
= 0.6560
0.6560
P1T
= ( 1 + 0.8280 +
P2T
= 2 x 144.72 = 289.44 Kn
I =
15
38 + 25
4
) x 72.65 = 144.72 Kn
I = 0.2381 < 0.30
I = 0.2381
P'CV+I = 1.2381 x 289.44 = 358.36 Kn
PCV+I =
358.36
4.50
= 79.63 Kn/m
MCV+I = 79.63 x 3.72 = 296.24 Kn-m/m
L+I
MEMORIA DE CALCULO
PUENTE VEHICULAR MILIWAYA
5.- carga de viento.0.12
0.12
0.15
0.30
1.35
25.60
Area proyectada superestructura
: Ap = 52.22 m²
Altura dado de apoyo
: 0.15 m
Viento longitudinal en la Superestructura
=
Viento transversal en la Superestructura
=
52.22 x 0.60
2 x
4.50
52.22 x 2.45
2 x
4.50
Momento por viento longitudinal en la Superestructura
Viento longitudinal sobre C.V.
=
25.60 x 0.60
2 x
4.50
= 3.48 Kn/m
= 14.22 Kn/m
= 3.48 x 7.95 = 27.68 Kn-m/m
= 1.71 Kn/m
WL
Momento viento sobre C.V.
= 1.71 x 7.95 = 13.57 Kn-m/m
6.- Carga frenado.FR'L = 0.05 ( 9.50 x 25.60 + 81.70 ) x 1 = 16.25 Kn
FRL =
16.25
2 x 4.50
= 1.805 Kn/m
MFRL = 1.81 x 7.95 = 14.35 Kn-m/m
LF
W
MEMORIA DE CALCULO
PUENTE VEHICULAR MILIWAYA
7.- Empuje de tierras.h' =
0.60
h =
9.50
Eat
Ya
Ep
h1 = 2.00
Ea =
Ya =
Yp
1
2
9.50 ² + 3 x 9.50 x 0.60
3 ( 9.50 + 2 x 0.60 )
MEa = 304.95 x 3.34
Ep =
Ya =
Mep =
1
2
1 - Sen 30°
x 18 x 9.50 ( 9.50 + 2 x 0.60 ) x
x 18 x 2.00 ² x
2.00
3
=
1 + Sen 30°
E
3.34 m
= 1019.83 Kn-m/m
1 + Sen 30°
1 - Sen 30°
=
54.00 Kn
E
= 0.667 m
54.00 x 0.67
= 304.95 Kn
=
36.00 Kn-m/m
MEMORIA DE CALCULO
PUENTE VEHICULAR MILIWAYA
8.- Momentos y fuerzas resistentes y desequilibrantes.- S/G AASHTO - 2002 (Etapa de servicio)
-GRUPO I:
σadm = 300 Kn/m²
1*D + 1(L+I) + 1*E
FR = 540.56 + 159.17 + 79.63
= 779.36 Kn/m
MR = 2208.18 + 592.12 + 296.24 = 3096.54 Kn-m/m
FD = 304.95 - 54.00 = 250.95 Kn/m
MD = 1019.83 - 36.00 = 983.83 Kn-m/m
-GRUPO II:
σadm = 375.00 Kn/m²
1*D + 1*E + 1*W
FR = 540.56 + 159.17 = 699.73 Kn/m
MR = 2208.18 + 592.12 = 2800.30 Kn-m/m
FD = 304.95 - 54.00 + 3.48 = 254.43 Kn/m
MD = 1019.83 - 36.00 + 27.68 = 1011.50 Kn-m/m
1*D +1(L+I) + 1*E + 0,3*W + 1*WL + 1*LF
-GRUPO III:
σadm = 375.00 Kn/m²
FR = 779.36 Kn/m
MR = 3096.54 Kn-m/m
FD = 304.95 - 54.00 + 0.3 x 3.48 + 1.71 + 1.81
= 255.51 Kn/m
MD = 1019.83 - 36.00 + 0.3 x 27.68 + 13.57 + 14.35 = 1020.05 Kn-m/m
9.- Verificaciones generales.a) Verificación al vuelco.-
FSv =
MRi
MDi
≥ 2.00
-Grupo I.-
FSv =
3096.54
= 3.147 > 2.00
OK
2800.30
= 2.768 > 2.00
1011.50
OK
983.83
-Grupo II.-
FSv =
-Grupo III.-
FSv =
3096.54
1020.05
= 3.036 > 2.00
OK
MEMORIA DE CALCULO
PUENTE VEHICULAR MILIWAYA
b) Verificación al delizamiento.δ = Tan Ø = Tan ( 30° ) = 0.5774
FRi
FSd = δ x
FDi
≥ 1.50
-Grupo I.-
FSv = 0.5774 x
779.36
250.95
=
1.79
> 1.50
OK
= 1.588 > 1.50
OK
=
OK
-Grupo II.-
FSv = 0.5774 x
699.73
254.43
-Grupo III.-
FSv = 0.5774 x
779.36
255.51
1.76
> 1.50
c) Tensiones en la Zapata.MR - MD
a =
b
6
FR
=
5.80
=
6
b
2
- a
;
e ≤
b
6
;
σmáx =
FR
b
( 1 ± 6
e
b
)
0.97 m
3096.54 - 983.83
779.36
σmáx =
e =
σadm = 300 Kn/m²
-Grupo I.-
a =
;
779.36
5.80
= 2.711 m
x( 1 + 6 x
0.189
5.80
;
e =
5.80
2
- 2.711 = 0.189 m < 0.97
) = 160.67 Kn/m²
< σadm = 300 Kn/m²
σmín =
-Grupo II.-
a =
779.36
5.80
x( 1 - 6 x
0.189
5.80
OK
OK
) = 108.08 Kn/m²
σadm = 375.00 Kn/m²
2800.30 - 1011.50
= 2.556 m
699.73
;
e =
5.80
2
- 2.556 = 0.344 m < 0.97
OK
MEMORIA DE CALCULO
PUENTE VEHICULAR MILIWAYA
σmáx =
699.73
x( 1 + 6 x
5.80
0.344
) = 163.52 Kn/m²
5.80
< σadm = 375.00 Kn/m²
σmín =
699.73
0.344
x( 1 - 6 x
) =
5.80
5.80
-Grupo III.-
a =
Kn/m²
σadm = 375.00 Kn/m²
3096.54 - 1020.05
= 2.664 m
779.36
σmáx =
77.76
OK
779.36
x( 1 + 6 x
5.80
0.236
5.80
;
e =
5.80
2
- 2.664 = 0.236 m < 0.97
OK
) = 167.13 Kn/m²
< σadm = 375.00 Kn/m²
σmín =
779.36
x( 1 - 6 x
5.80
0.236
5.80
OK
) = 101.62 Kn/m²
Grupo III el más desfavorable
10.- Sección A-A.-
σ' = 167.13 - 101.62 =
A
65.51
3
2
5.80
=
σ'1
65.51 Kn/m²
σ'1 =
32.76 Kn/m²
2.90
1
O
σc =
A
σc
167.13
101.62
2
σ'1
σ'
1
2.90
2.90
5.80
-Reacción del suelo.Figura
A
X
AX
1
47.496
1.93
91.83
2
389.68
1.45
565.04
∑
437.18
-----
656.86
32.76 + 101.62 = 134.37 Kn/m²
MEMORIA DE CALCULO
PUENTE VEHICULAR MILIWAYA
-Momento y peso propio de la zapata.Peso H° = 2.48 x 24 = 59.52 Kn/m
Figura
A
X
AX
1
2
2.030
0.420
1.45
1.03
2.944
0.434
3
0.030
0.05
0.002
∑
2.480
-----
3.379
-Brazo suelo.-
-Verificación al corte.-
656.86
Xσ =
3.379
XZ =
Vc = 760.7 kn/m²
= 1.503 m
437.18
Vu =
>
750.88 kn/m²
= 1.363 m
2.480
-Momento por la reacción del suelo.Mσ = 437.18 x 1.503 = 656.86 Kn-m/m
MH°Z =
59.52 x 1.363 =
MT = 656.86 - 81.10
81.10 Kn-m/m
= 575.77 Kn-m/m
S/G AASHTO 2005 (LRFD)
MµT = 1.30 ² x 575.77 =
Para Ø 25
-Cálculo de refuerzo.f'c =
d
μ =
21 Mpa
2.5
= 100 -
2
;
fy
= 420 Mpa
MU
0.85 x Ø x f'C x b x d ²
MU x 10
Ø x Z x fY
Asmín =
0.2
100
As3 =
x
1
1000
=
b
;
- 10 = 88.75 cm =
Z = d x( 1 - 1 x( 1 Z = 0.8520 m
As =
973.05 Kn-m/m
= 1.00 m
;
rec = 10 cm
0.888 m
973.05
0.85 x 0.90 x 21 x 1.00 x 0.888 ²
1 - 2 x μ ))
Z = 0.888 x ( 1 - 1 x ( 1 -
973.05 x 10
0.90 x 0.8520 x 420
x 100 x 88.75 = 17.75 cm²/m
x
1
1000
μ = 0.0769
1 - 2 x 0.0769 ) )
As = 30.21 cm²/m
Asmín < As
As = 30.21 cm²/m
Ø 25 c/ 16
As/3 = 10.07 cm²/m
Ø 16 c/ 20
MEMORIA DE CALCULO
PUENTE VEHICULAR MILIWAYA
Ø 16 c/ 20
Ø 25 c/ 16
5.80
11.- Sección B-B.-
B
o
0.30
B
1
2
8.50
167.13
σc
101.62
4
σ'1 5
6.1
3
σ'
0.45
1.55
2.00
σ' = 167.13 - 101.62 =
5.80
65.51 Kn/m²
a) Peso propio.Figura
A
X
AX
1
2.000
2.000
1.00
-----
2.000
2.000
X
AX
∑
65.51
5.80
σc =
=
σ'1
σ'1 =
2.00
1.00
1
3.80
3.80
XH° =
2.000
2.000
= 1.000 m
22.59 Kn/m²
2.00
22.59 + 101.62 = 124.21 Kn/m²
b) Peso del relleno.Figura
A
1
0.0675
0.30
0.020
2
13.175
1.225
16.139
3
2.745
0.225
0.618
∑
15.988
-----
16.777
XR =
16.777
15.988
= 1.049 m
MEMORIA DE CALCULO
PUENTE VEHICULAR MILIWAYA
c) Reacción del terreno.Figura
A
X
AX
4
5
203.23
22.59
1.00
0.67
203.23
15.06
∑
225.82
-----
218.29
218.29
= 0.967 m
225.82
XR =
d) Pesos.-
-Verificación al corte.Vc = 760.7 kn/m²
PH° = 2.000 x 1.00 x 24 = 48.00 Kn/m
PR = 15.988 x 1.00 x 18 = 287.78 Kn/m
>
Vu =
218.62 kn/m²
Pσ = 225.82 x 1.00 = 225.82 Kn/m
MB-B = 48.00 x 1.00 + 287.78 x 1.049 - 225.82 x 0.967
MB-B =
131.7 Kn-m/m
S/G AASHTO 2005 (LRFD)
= 1.30 ² x 131.70 = 222.57 Kn-m/m
Mµ
e) Cálculo del refuerzo.f'c =
d
μ =
21 Mpa
2.0
= 100 -
2
;
Para Ø 20
fy
= 420 Mpa
- # = 89.00 cm =
MU
0.85 x Ø x f'C x b x d ²
Z = d x( 1 - 1 x( 1 -
x
1
1000
b
;
= 1.00 m
;
rec =
10 cm
0.890 m
=
222.57
0.85 x 0.90 x 21 x 1.00 x 0.890 ²
1 - 2 x μ ))
x
Z = 0.890 x ( 1 - 1 x ( 1 -
1
1000
μ = 0.0175
1 - 2 x 0.0175 ) )
Z = 0.8821 m
As =
MU x 10
Ø x Z x fY
Asmín =
0.2
As3 =
222.57 x 10
0.90 x 0.8821 x 420
x 100 x 89.00 = 17.80 cm²/m
As =
6.68 cm²/m
Asmín > As
As = 17.80 cm²/m
Ø 20 c/
17
100
As/3 =
5.93 cm²/m
Ø 12 c/ 19
MEMORIA DE CALCULO
PUENTE VEHICULAR MILIWAYA
Ø 12 c/ 19
Ø 20 c/ 17
0.30
0.70
5.80
12.- Verificación y diseño sección C-C.-
h' =
0.60
h =
9.50
PS
0.33
5
4
3
2
Ea'
Ya' = 3.03 m
1
C
O
C
p1
p
MEMORIA DE CALCULO
PUENTE VEHICULAR MILIWAYA
p
2 x Ea
=
p1
9.10
ht
2 x 304.95
60.39
=
Ea' =
=
= 60.39 Kn/m²
p1 = 54.41 Kn/m²
10.10
1
10.10
x 54.41 x 9.10 = 247.55 Kn/m
2
a) Fuerzas y momentos propios.-
Sección
Area
γ
Peso
[m²] [Kn/m³] [Kn/m]
Brazo
Momento
[m]
[Kn-m/m]
PECM = 116.10 Kn/m
MECM = 74.63 Kn-m/m
1
1.870
24
44.88
0.367
16.46
2
2.380
24
57.12
0.725
41.41
3
0.068
24
1.62
1.050
1.70
4
5
0.180
0.340
24
24
4.32
8.16
1.125
1.250
4.86
10.20
∑
----
----
116.1
----
74.63
b) Presión de tierras.-
-Verificación al corte.Vc = 760.7 kn/m²
Ea' = 247.55 Kn/m
E
Ya' = 3.03 m
Ma' = 247.55 x 3.03 = 750.91 Kn-m/m
c) Solicitaciones por P.P. Superestructura.-
MCMS = 159.17 x ( 1.35 - 0.20 - 0.33 ) = 130.52 Kn-m/m
D
d) Carga viva e impacto.MCV+I =
79.63 x ( 1.35 - 0.20 - 0.33 ) = 65.30 Kn-m/m
e) Carga de viento.MW =
MWL =
3.48
1.71
x ( 6.80 + 0.15 ) = 24.20 Kn-m/m
x ( 6.80 + 0.15 ) = 11.86 Kn-m/m
W
WL
f) Carga de frenado.MFR =
1.81
P
x ( 6.80 + 0.15 ) = 12.54 Kn-m/m
LF
L+I
>
Vu =
556.95 kn/m²
MEMORIA DE CALCULO
PUENTE VEHICULAR MILIWAYA
g) Momentos y fuerzas resistentes y desequilibrantes.- S/G AASHTO - 2002
-GRUPO I:
1*D + 1(L+I) + 1*E
FR = 116.10 + 159.17 + 79.63
MR =
74.63
= 354.91 Kn/m
+ 130.52 + 65.30
270.45 Kn-m/m
=
FD = 247.55 Kn/m
MD = 750.91 Kn-m/m
-GRUPO II:
1*D + 1*E + 1*W
FR = 116.10 + 159.17 = 275.27 Kn/m
MR =
74.63
+ 130.52 =
FD = 247.55 + 3.48
205.15 Kn-m/m
= 251.03 Kn/m
MD = 750.91 + 24.20 = 775.11 Kn-m/m
-GRUPO III:
1*D +1(L+I) + 1*E + 0,3*W + 1*WL + 1*LF
FR = 354.91 Kn/m
MR =
270.45 Kn-m/m
FD = 247.55 + 0.3 x 3.48 + 1.71 + 1.81
= 252.11 Kn/m
MD = 750.91 + 0.3 x 24.20 + 11.86 + 12.54 = 782.58 Kn-m/m
h) Tensiones en la sección C-C.σadm = 8400 Kn/m²
-Grupo I.-
a =
270.45 - 750.91
354.91
σmáx =
354.91
1.00
= -1.35 m
x( 1 + 6 x
1.854
1.00
;
e =
1.00
2
- -1.35 = 1.854 m
) = 4302.39 Kn/m²
< σadm = 8400 Kn/m²
σmín =
354.91
1.00
205.15 - 775.11
σmáx =
1.00
) = -3592.58 Kn/m²
275.27
275.27
= -2.07 m
x( 1 + 6 x
1.00
2.571
;
e =
1.00
2
- -2.07 = 2.571 m
) = 4520.84 Kn/m²
1.00
< σadm = 10500 Kn/m²
σmín =
OK
σadm = 10500 Kn/m²
-Grupo II.-
a =
x( 1 - 6 x
1.854
275.27
1.00
x( 1 - 6 x
2.571
1.00
) = -3970.30 Kn/m²
OK
MEMORIA DE CALCULO
PUENTE VEHICULAR MILIWAYA
σadm = 10500 Kn/m²
-Grupo III.-
270.45 - 782.58
a =
354.91
σmáx =
354.91
1.00
= -1.44 m
x( 1 + 6 x
1.943
1.00
;
e =
1.00
- -1.44 = 1.943 m
2
) = 4492.39 Kn/m²
< σadm = 10500 Kn/m²
σmín =
354.91
1.00
x( 1 - 6 x
OK
1.943
) = -3782.58 Kn/m²
1.00
Grupo II el más desfavorable
i) Cálculo del refuerzo.-
= 1.30 ² x 569.96 =
Mµ
f'c =
d
μ =
Para Ø 20
21 Mpa
2.0
= 100 -
2
;
fy
963.23 Kn-m/m
= 420 Mpa
- 10 = 89.00 cm =
MU
0.85 x Ø x f'C x b x d ²
Z = d x( 1 - 1 x( 1 -
x
1
1000
=
b
;
= 1.00 m
;
rec = 10 cm
0.890 m
963.23
0.85 x 0.90 x 21 x 1.00 x 0.890 ²
1 - 2 x μ ))
x
Z = 0.890 x ( 1 - 1 x ( 1 -
1
1000
μ = 0.0757
1 - 2 x 0.0757 ) )
Z = 0.8549 m
As =
MU x 10
Ø x Z x fY
Asmín =
0.2
100
As =
963.23 x 10
0.90 x 0.8549 x 420
x 100 x 89.00 = 17.80 cm²/m
As = 29.81 cm²/m
Asmín < As
As = 29.81 cm²/m
As/3 =
9.94 cm²/m
Ø 20 c/ 10.0
Ø 12 c/ 10
MEMORIA DE CALCULO
PUENTE VEHICULAR MILIWAYA
Ø 20 c/ 20
Ø 12 c/ 10
Ø 12 c/ 20
Ø 20 c/ 20
MEMORIA DE CALCULO
PUENTE VEHICULAR MILIWAYA
13.- Diseño sección D-D.-
0.60
Eap
D
0.767
p2
D
1.70
O
9.50
p1
a) Empuje de tierras.0.20
p2
2.30
Eap =
60.39
=
10.10
1
2
FCH = 3.75 Kn/m
p1 = 13.75 Kn/m²
x 13.75 x 2.30 =
Map = 0.767 x 15.81 =
15.81 Kn/m
12.12 Kn-m/m
b) Fuerza de Choque.MCH =
3.75 x 1.70
= 6.38 Kn-m/m
0.03
c) Por peso propio.MD =
0.20 x 1.70 x 1.00 x 24 x 0.10 = 0.816 Kn-m/m
0.02
MEMORIA DE CALCULO
PUENTE VEHICULAR MILIWAYA
d) Momento total.Mp = 12.12 + 6.38 - 0.82
Mµp = 1.30 ² x 17.68
=
e) Refuerzo en la pantalla.f'c =
21 Mpa
d
20 -
μ =
=
1.2
2
;
29.88 Kn-m/m
Para Ø 12
fy
= 420 Mpa
- 2 = 17.40 cm =
MU
0.85 x Ø x f'C x b x d ²
Z = d x( 1 - 1 x( 1 Z = 0.1685 m
As =
= 17.68 Kn-m/m
MU x 10
As =
Ø x Z x fY
Asmín =
0.2
100
x
1
1000
b
;
0.174 m
=
29.88
0.85 x 0.90 x 21 x 1.00 x 0.174 ²
1 - 2 x μ ))
0.90 x 0.1685 x 420
As =
1000
μ = 0.0614
1 - 2 x 0.0614 ) )
4.69 cm²/m
Asmín < As
3.48 cm²/m
1
x
Z = 0.174 x ( 1 - 1 x ( 1 -
29.88 x 10
x 100 x 17.40 =
= 1.00 m
As =
4.69 cm²/m
Ø 12 c/ 20
14.- Diseño de base de apoyo de vigas por el método elaborado.0.60
0.20
1.05
2.40
1.- Carga equivalente por peso propio.-
0.70
qeqCM = 159.17 Kn/m
D
2.- Carga equivalente por carga viva.qeqCV = 79.63 Kn/m
L+I
q
= 1.30 x ( 159.17 + 1.67 x ( 79.63 ) )
q
= 379.81 Kn/m
1.05
qeq C.V.
2
qeq P.P.
1
MEMORIA DE CALCULO
PUENTE VEHICULAR MILIWAYA
q
1.05
2.40
A
1.05
B
C
MA =
-379.81 x 1.05 ²
2
MA = -209.37 Kn-m
2.40
MB =
= 379.81 Kn/m
64.09 Kn-m
-209.37
-209.37
64.09
a) Refuerzo.-
Para Ø 20
f'c =
21 Mpa
d
70 -
μ =
=
2.0
2
;
fy
= 420 Mpa
b
;
- 3 - 1.2 = 64.80 cm =
MU
0.85 x Ø x f'C x b x d ²
Z = d x( 1 - 1 x( 1 -
x
1
1000
=
= 0.80 m
;
rec = 3 cm
0.648 m
64.09
0.85 x 0.90 x 21 x 0.80 x 0.648 ²
1 - 2 x μ ))
Z = 0.648 x ( 1 - 1 x ( 1 -
x
1
1000
μ = 0.0119
1 - 2 x 0.0119 ) )
Z = 0.6441 m
As =
MU x 10
Ø x Z x fY
Asmín =
14
4200
As =
64.09 x 10
0.90 x 0.6441 x 420
x 80 x 64.80 = 17.28 cm²/m
As =
2.63 cm²
Asmín > As
As = 17.28 cm²
6 Ø 20
MEMORIA DE CALCULO
PUENTE VEHICULAR MILIWAYA
3 Ø 12
Ø 12 c/ 20
Ø 10 c/ 20
Ø 12 c/ 20
6 Ø 20
6 Ø 20
Descargar