MEMORIA DE CALCULO PUENTE VEHICULAR MILIWAYA Diseño de Estribo Lado Rosario 1.- Datos iniciales de diseño.σadm = 3.00 Kg/cm² Tensión admisible del terreno: Resistencia Característica del hormigón: = 21000 Kn/m² f'c Tensión admisible del hormigón: = 300 Kn/m² σadmT = 8400 Kn/m² fy Límite de fluencia del acero: = 420 Mpa γH°A° = 24 Kn/m³ γt = 18 Kn/m³ Peso Específico del H°A° Peso Específico del suelo de fundación LT = 25.60 m Longitud de cálculo LC = 25.00 m Ancho de distribución ad = Angulo de fricción del terreno Ø = 30° Longitud Total del puente 4.50 m 0.20 2.- Geometría sección principal.- 0.60 1.7 8 7 0.40 6 11 0.45 0.30 10 9.50 5 12 6.10 4 9 3 0.55 0.35 0.30 1 2 O 2.80 0.70 0.90 0.10 5.80 2.00 MEMORIA DE CALCULO PUENTE VEHICULAR MILIWAYA 2.a.- Momentos y fuerzas resistentes propias de la estructura.Brazo Momento 1 [m²] [Kn/m³] [Kn/m] 3.000 24 72 [m] 4.300 [Kn-m/m] 309.60 2 1.960 24 1.400 65.86 3 0.420 24 10.08 1.867 18.82 4 1.870 24 44.88 3.267 146.61 5 6 2.380 0.180 24 24 57.12 4.32 3.625 4.025 207.06 17.39 7 0.068 24 1.62 3.950 6.40 8 0.340 24 8.16 4.150 33.86 9 0.420 18 7.56 0.933 7.06 10 13.18 18 237.15 5.025 1191.68 11 0.068 18 1.22 4.100 4.98 12 2.745 18 49.41 4.025 198.88 ∑ 10.22 ---- 540.56 ---- 2208.18 Sección Area γ PECM = 540.56 Kn/m Peso 47.04 P MECM = 2208.18 Kn-m/m 3.- Peso propio superestructura.N° de Vigas : Vol. 1 viga : 12.57 m³ Vol. Losa y diafragmas : 28.31 m³ 2 Capa de rodadura : 2.05 m³ Distancia Carga de la superestructura a la pantalla : 0.33 m Peso propio vigas : 2 x 12.57 x 24 = 603.18 Kn Peso propio losa y diafragmas : 28.31 x 24 = 679.44 Kn Peso propio capa de rodadura : 2.05 x 22 = 45.06 Barandado PPS = 1432.54 Kn : 2 x 2 x 25.60 = 104.86 Kn PPS1 = 1432.54 Kn = 159.17 Kn/m 2 x 4.50 MPS = 159.17 x 3.72 = 592.12 kn-m/m D Observaciones H°A° Relleno -------- MEMORIA DE CALCULO PUENTE VEHICULAR MILIWAYA 4.- Carga viva e impacto.- S/G AASHTO - 2002 P P P/4 4.300 4.300 25.00 1 h1 h1 = h2 = 20.70 h2 = 0.8280 25.00 16.40 25.00 = 0.6560 0.6560 P1T = ( 1 + 0.8280 + P2T = 2 x 144.72 = 289.44 Kn I = 15 38 + 25 4 ) x 72.65 = 144.72 Kn I = 0.2381 < 0.30 I = 0.2381 P'CV+I = 1.2381 x 289.44 = 358.36 Kn PCV+I = 358.36 4.50 = 79.63 Kn/m MCV+I = 79.63 x 3.72 = 296.24 Kn-m/m L+I MEMORIA DE CALCULO PUENTE VEHICULAR MILIWAYA 5.- carga de viento.0.12 0.12 0.15 0.30 1.35 25.60 Area proyectada superestructura : Ap = 52.22 m² Altura dado de apoyo : 0.15 m Viento longitudinal en la Superestructura = Viento transversal en la Superestructura = 52.22 x 0.60 2 x 4.50 52.22 x 2.45 2 x 4.50 Momento por viento longitudinal en la Superestructura Viento longitudinal sobre C.V. = 25.60 x 0.60 2 x 4.50 = 3.48 Kn/m = 14.22 Kn/m = 3.48 x 7.95 = 27.68 Kn-m/m = 1.71 Kn/m WL Momento viento sobre C.V. = 1.71 x 7.95 = 13.57 Kn-m/m 6.- Carga frenado.FR'L = 0.05 ( 9.50 x 25.60 + 81.70 ) x 1 = 16.25 Kn FRL = 16.25 2 x 4.50 = 1.805 Kn/m MFRL = 1.81 x 7.95 = 14.35 Kn-m/m LF W MEMORIA DE CALCULO PUENTE VEHICULAR MILIWAYA 7.- Empuje de tierras.h' = 0.60 h = 9.50 Eat Ya Ep h1 = 2.00 Ea = Ya = Yp 1 2 9.50 ² + 3 x 9.50 x 0.60 3 ( 9.50 + 2 x 0.60 ) MEa = 304.95 x 3.34 Ep = Ya = Mep = 1 2 1 - Sen 30° x 18 x 9.50 ( 9.50 + 2 x 0.60 ) x x 18 x 2.00 ² x 2.00 3 = 1 + Sen 30° E 3.34 m = 1019.83 Kn-m/m 1 + Sen 30° 1 - Sen 30° = 54.00 Kn E = 0.667 m 54.00 x 0.67 = 304.95 Kn = 36.00 Kn-m/m MEMORIA DE CALCULO PUENTE VEHICULAR MILIWAYA 8.- Momentos y fuerzas resistentes y desequilibrantes.- S/G AASHTO - 2002 (Etapa de servicio) -GRUPO I: σadm = 300 Kn/m² 1*D + 1(L+I) + 1*E FR = 540.56 + 159.17 + 79.63 = 779.36 Kn/m MR = 2208.18 + 592.12 + 296.24 = 3096.54 Kn-m/m FD = 304.95 - 54.00 = 250.95 Kn/m MD = 1019.83 - 36.00 = 983.83 Kn-m/m -GRUPO II: σadm = 375.00 Kn/m² 1*D + 1*E + 1*W FR = 540.56 + 159.17 = 699.73 Kn/m MR = 2208.18 + 592.12 = 2800.30 Kn-m/m FD = 304.95 - 54.00 + 3.48 = 254.43 Kn/m MD = 1019.83 - 36.00 + 27.68 = 1011.50 Kn-m/m 1*D +1(L+I) + 1*E + 0,3*W + 1*WL + 1*LF -GRUPO III: σadm = 375.00 Kn/m² FR = 779.36 Kn/m MR = 3096.54 Kn-m/m FD = 304.95 - 54.00 + 0.3 x 3.48 + 1.71 + 1.81 = 255.51 Kn/m MD = 1019.83 - 36.00 + 0.3 x 27.68 + 13.57 + 14.35 = 1020.05 Kn-m/m 9.- Verificaciones generales.a) Verificación al vuelco.- FSv = MRi MDi ≥ 2.00 -Grupo I.- FSv = 3096.54 = 3.147 > 2.00 OK 2800.30 = 2.768 > 2.00 1011.50 OK 983.83 -Grupo II.- FSv = -Grupo III.- FSv = 3096.54 1020.05 = 3.036 > 2.00 OK MEMORIA DE CALCULO PUENTE VEHICULAR MILIWAYA b) Verificación al delizamiento.δ = Tan Ø = Tan ( 30° ) = 0.5774 FRi FSd = δ x FDi ≥ 1.50 -Grupo I.- FSv = 0.5774 x 779.36 250.95 = 1.79 > 1.50 OK = 1.588 > 1.50 OK = OK -Grupo II.- FSv = 0.5774 x 699.73 254.43 -Grupo III.- FSv = 0.5774 x 779.36 255.51 1.76 > 1.50 c) Tensiones en la Zapata.MR - MD a = b 6 FR = 5.80 = 6 b 2 - a ; e ≤ b 6 ; σmáx = FR b ( 1 ± 6 e b ) 0.97 m 3096.54 - 983.83 779.36 σmáx = e = σadm = 300 Kn/m² -Grupo I.- a = ; 779.36 5.80 = 2.711 m x( 1 + 6 x 0.189 5.80 ; e = 5.80 2 - 2.711 = 0.189 m < 0.97 ) = 160.67 Kn/m² < σadm = 300 Kn/m² σmín = -Grupo II.- a = 779.36 5.80 x( 1 - 6 x 0.189 5.80 OK OK ) = 108.08 Kn/m² σadm = 375.00 Kn/m² 2800.30 - 1011.50 = 2.556 m 699.73 ; e = 5.80 2 - 2.556 = 0.344 m < 0.97 OK MEMORIA DE CALCULO PUENTE VEHICULAR MILIWAYA σmáx = 699.73 x( 1 + 6 x 5.80 0.344 ) = 163.52 Kn/m² 5.80 < σadm = 375.00 Kn/m² σmín = 699.73 0.344 x( 1 - 6 x ) = 5.80 5.80 -Grupo III.- a = Kn/m² σadm = 375.00 Kn/m² 3096.54 - 1020.05 = 2.664 m 779.36 σmáx = 77.76 OK 779.36 x( 1 + 6 x 5.80 0.236 5.80 ; e = 5.80 2 - 2.664 = 0.236 m < 0.97 OK ) = 167.13 Kn/m² < σadm = 375.00 Kn/m² σmín = 779.36 x( 1 - 6 x 5.80 0.236 5.80 OK ) = 101.62 Kn/m² Grupo III el más desfavorable 10.- Sección A-A.- σ' = 167.13 - 101.62 = A 65.51 3 2 5.80 = σ'1 65.51 Kn/m² σ'1 = 32.76 Kn/m² 2.90 1 O σc = A σc 167.13 101.62 2 σ'1 σ' 1 2.90 2.90 5.80 -Reacción del suelo.Figura A X AX 1 47.496 1.93 91.83 2 389.68 1.45 565.04 ∑ 437.18 ----- 656.86 32.76 + 101.62 = 134.37 Kn/m² MEMORIA DE CALCULO PUENTE VEHICULAR MILIWAYA -Momento y peso propio de la zapata.Peso H° = 2.48 x 24 = 59.52 Kn/m Figura A X AX 1 2 2.030 0.420 1.45 1.03 2.944 0.434 3 0.030 0.05 0.002 ∑ 2.480 ----- 3.379 -Brazo suelo.- -Verificación al corte.- 656.86 Xσ = 3.379 XZ = Vc = 760.7 kn/m² = 1.503 m 437.18 Vu = > 750.88 kn/m² = 1.363 m 2.480 -Momento por la reacción del suelo.Mσ = 437.18 x 1.503 = 656.86 Kn-m/m MH°Z = 59.52 x 1.363 = MT = 656.86 - 81.10 81.10 Kn-m/m = 575.77 Kn-m/m S/G AASHTO 2005 (LRFD) MµT = 1.30 ² x 575.77 = Para Ø 25 -Cálculo de refuerzo.f'c = d μ = 21 Mpa 2.5 = 100 - 2 ; fy = 420 Mpa MU 0.85 x Ø x f'C x b x d ² MU x 10 Ø x Z x fY Asmín = 0.2 100 As3 = x 1 1000 = b ; - 10 = 88.75 cm = Z = d x( 1 - 1 x( 1 Z = 0.8520 m As = 973.05 Kn-m/m = 1.00 m ; rec = 10 cm 0.888 m 973.05 0.85 x 0.90 x 21 x 1.00 x 0.888 ² 1 - 2 x μ )) Z = 0.888 x ( 1 - 1 x ( 1 - 973.05 x 10 0.90 x 0.8520 x 420 x 100 x 88.75 = 17.75 cm²/m x 1 1000 μ = 0.0769 1 - 2 x 0.0769 ) ) As = 30.21 cm²/m Asmín < As As = 30.21 cm²/m Ø 25 c/ 16 As/3 = 10.07 cm²/m Ø 16 c/ 20 MEMORIA DE CALCULO PUENTE VEHICULAR MILIWAYA Ø 16 c/ 20 Ø 25 c/ 16 5.80 11.- Sección B-B.- B o 0.30 B 1 2 8.50 167.13 σc 101.62 4 σ'1 5 6.1 3 σ' 0.45 1.55 2.00 σ' = 167.13 - 101.62 = 5.80 65.51 Kn/m² a) Peso propio.Figura A X AX 1 2.000 2.000 1.00 ----- 2.000 2.000 X AX ∑ 65.51 5.80 σc = = σ'1 σ'1 = 2.00 1.00 1 3.80 3.80 XH° = 2.000 2.000 = 1.000 m 22.59 Kn/m² 2.00 22.59 + 101.62 = 124.21 Kn/m² b) Peso del relleno.Figura A 1 0.0675 0.30 0.020 2 13.175 1.225 16.139 3 2.745 0.225 0.618 ∑ 15.988 ----- 16.777 XR = 16.777 15.988 = 1.049 m MEMORIA DE CALCULO PUENTE VEHICULAR MILIWAYA c) Reacción del terreno.Figura A X AX 4 5 203.23 22.59 1.00 0.67 203.23 15.06 ∑ 225.82 ----- 218.29 218.29 = 0.967 m 225.82 XR = d) Pesos.- -Verificación al corte.Vc = 760.7 kn/m² PH° = 2.000 x 1.00 x 24 = 48.00 Kn/m PR = 15.988 x 1.00 x 18 = 287.78 Kn/m > Vu = 218.62 kn/m² Pσ = 225.82 x 1.00 = 225.82 Kn/m MB-B = 48.00 x 1.00 + 287.78 x 1.049 - 225.82 x 0.967 MB-B = 131.7 Kn-m/m S/G AASHTO 2005 (LRFD) = 1.30 ² x 131.70 = 222.57 Kn-m/m Mµ e) Cálculo del refuerzo.f'c = d μ = 21 Mpa 2.0 = 100 - 2 ; Para Ø 20 fy = 420 Mpa - # = 89.00 cm = MU 0.85 x Ø x f'C x b x d ² Z = d x( 1 - 1 x( 1 - x 1 1000 b ; = 1.00 m ; rec = 10 cm 0.890 m = 222.57 0.85 x 0.90 x 21 x 1.00 x 0.890 ² 1 - 2 x μ )) x Z = 0.890 x ( 1 - 1 x ( 1 - 1 1000 μ = 0.0175 1 - 2 x 0.0175 ) ) Z = 0.8821 m As = MU x 10 Ø x Z x fY Asmín = 0.2 As3 = 222.57 x 10 0.90 x 0.8821 x 420 x 100 x 89.00 = 17.80 cm²/m As = 6.68 cm²/m Asmín > As As = 17.80 cm²/m Ø 20 c/ 17 100 As/3 = 5.93 cm²/m Ø 12 c/ 19 MEMORIA DE CALCULO PUENTE VEHICULAR MILIWAYA Ø 12 c/ 19 Ø 20 c/ 17 0.30 0.70 5.80 12.- Verificación y diseño sección C-C.- h' = 0.60 h = 9.50 PS 0.33 5 4 3 2 Ea' Ya' = 3.03 m 1 C O C p1 p MEMORIA DE CALCULO PUENTE VEHICULAR MILIWAYA p 2 x Ea = p1 9.10 ht 2 x 304.95 60.39 = Ea' = = = 60.39 Kn/m² p1 = 54.41 Kn/m² 10.10 1 10.10 x 54.41 x 9.10 = 247.55 Kn/m 2 a) Fuerzas y momentos propios.- Sección Area γ Peso [m²] [Kn/m³] [Kn/m] Brazo Momento [m] [Kn-m/m] PECM = 116.10 Kn/m MECM = 74.63 Kn-m/m 1 1.870 24 44.88 0.367 16.46 2 2.380 24 57.12 0.725 41.41 3 0.068 24 1.62 1.050 1.70 4 5 0.180 0.340 24 24 4.32 8.16 1.125 1.250 4.86 10.20 ∑ ---- ---- 116.1 ---- 74.63 b) Presión de tierras.- -Verificación al corte.Vc = 760.7 kn/m² Ea' = 247.55 Kn/m E Ya' = 3.03 m Ma' = 247.55 x 3.03 = 750.91 Kn-m/m c) Solicitaciones por P.P. Superestructura.- MCMS = 159.17 x ( 1.35 - 0.20 - 0.33 ) = 130.52 Kn-m/m D d) Carga viva e impacto.MCV+I = 79.63 x ( 1.35 - 0.20 - 0.33 ) = 65.30 Kn-m/m e) Carga de viento.MW = MWL = 3.48 1.71 x ( 6.80 + 0.15 ) = 24.20 Kn-m/m x ( 6.80 + 0.15 ) = 11.86 Kn-m/m W WL f) Carga de frenado.MFR = 1.81 P x ( 6.80 + 0.15 ) = 12.54 Kn-m/m LF L+I > Vu = 556.95 kn/m² MEMORIA DE CALCULO PUENTE VEHICULAR MILIWAYA g) Momentos y fuerzas resistentes y desequilibrantes.- S/G AASHTO - 2002 -GRUPO I: 1*D + 1(L+I) + 1*E FR = 116.10 + 159.17 + 79.63 MR = 74.63 = 354.91 Kn/m + 130.52 + 65.30 270.45 Kn-m/m = FD = 247.55 Kn/m MD = 750.91 Kn-m/m -GRUPO II: 1*D + 1*E + 1*W FR = 116.10 + 159.17 = 275.27 Kn/m MR = 74.63 + 130.52 = FD = 247.55 + 3.48 205.15 Kn-m/m = 251.03 Kn/m MD = 750.91 + 24.20 = 775.11 Kn-m/m -GRUPO III: 1*D +1(L+I) + 1*E + 0,3*W + 1*WL + 1*LF FR = 354.91 Kn/m MR = 270.45 Kn-m/m FD = 247.55 + 0.3 x 3.48 + 1.71 + 1.81 = 252.11 Kn/m MD = 750.91 + 0.3 x 24.20 + 11.86 + 12.54 = 782.58 Kn-m/m h) Tensiones en la sección C-C.σadm = 8400 Kn/m² -Grupo I.- a = 270.45 - 750.91 354.91 σmáx = 354.91 1.00 = -1.35 m x( 1 + 6 x 1.854 1.00 ; e = 1.00 2 - -1.35 = 1.854 m ) = 4302.39 Kn/m² < σadm = 8400 Kn/m² σmín = 354.91 1.00 205.15 - 775.11 σmáx = 1.00 ) = -3592.58 Kn/m² 275.27 275.27 = -2.07 m x( 1 + 6 x 1.00 2.571 ; e = 1.00 2 - -2.07 = 2.571 m ) = 4520.84 Kn/m² 1.00 < σadm = 10500 Kn/m² σmín = OK σadm = 10500 Kn/m² -Grupo II.- a = x( 1 - 6 x 1.854 275.27 1.00 x( 1 - 6 x 2.571 1.00 ) = -3970.30 Kn/m² OK MEMORIA DE CALCULO PUENTE VEHICULAR MILIWAYA σadm = 10500 Kn/m² -Grupo III.- 270.45 - 782.58 a = 354.91 σmáx = 354.91 1.00 = -1.44 m x( 1 + 6 x 1.943 1.00 ; e = 1.00 - -1.44 = 1.943 m 2 ) = 4492.39 Kn/m² < σadm = 10500 Kn/m² σmín = 354.91 1.00 x( 1 - 6 x OK 1.943 ) = -3782.58 Kn/m² 1.00 Grupo II el más desfavorable i) Cálculo del refuerzo.- = 1.30 ² x 569.96 = Mµ f'c = d μ = Para Ø 20 21 Mpa 2.0 = 100 - 2 ; fy 963.23 Kn-m/m = 420 Mpa - 10 = 89.00 cm = MU 0.85 x Ø x f'C x b x d ² Z = d x( 1 - 1 x( 1 - x 1 1000 = b ; = 1.00 m ; rec = 10 cm 0.890 m 963.23 0.85 x 0.90 x 21 x 1.00 x 0.890 ² 1 - 2 x μ )) x Z = 0.890 x ( 1 - 1 x ( 1 - 1 1000 μ = 0.0757 1 - 2 x 0.0757 ) ) Z = 0.8549 m As = MU x 10 Ø x Z x fY Asmín = 0.2 100 As = 963.23 x 10 0.90 x 0.8549 x 420 x 100 x 89.00 = 17.80 cm²/m As = 29.81 cm²/m Asmín < As As = 29.81 cm²/m As/3 = 9.94 cm²/m Ø 20 c/ 10.0 Ø 12 c/ 10 MEMORIA DE CALCULO PUENTE VEHICULAR MILIWAYA Ø 20 c/ 20 Ø 12 c/ 10 Ø 12 c/ 20 Ø 20 c/ 20 MEMORIA DE CALCULO PUENTE VEHICULAR MILIWAYA 13.- Diseño sección D-D.- 0.60 Eap D 0.767 p2 D 1.70 O 9.50 p1 a) Empuje de tierras.0.20 p2 2.30 Eap = 60.39 = 10.10 1 2 FCH = 3.75 Kn/m p1 = 13.75 Kn/m² x 13.75 x 2.30 = Map = 0.767 x 15.81 = 15.81 Kn/m 12.12 Kn-m/m b) Fuerza de Choque.MCH = 3.75 x 1.70 = 6.38 Kn-m/m 0.03 c) Por peso propio.MD = 0.20 x 1.70 x 1.00 x 24 x 0.10 = 0.816 Kn-m/m 0.02 MEMORIA DE CALCULO PUENTE VEHICULAR MILIWAYA d) Momento total.Mp = 12.12 + 6.38 - 0.82 Mµp = 1.30 ² x 17.68 = e) Refuerzo en la pantalla.f'c = 21 Mpa d 20 - μ = = 1.2 2 ; 29.88 Kn-m/m Para Ø 12 fy = 420 Mpa - 2 = 17.40 cm = MU 0.85 x Ø x f'C x b x d ² Z = d x( 1 - 1 x( 1 Z = 0.1685 m As = = 17.68 Kn-m/m MU x 10 As = Ø x Z x fY Asmín = 0.2 100 x 1 1000 b ; 0.174 m = 29.88 0.85 x 0.90 x 21 x 1.00 x 0.174 ² 1 - 2 x μ )) 0.90 x 0.1685 x 420 As = 1000 μ = 0.0614 1 - 2 x 0.0614 ) ) 4.69 cm²/m Asmín < As 3.48 cm²/m 1 x Z = 0.174 x ( 1 - 1 x ( 1 - 29.88 x 10 x 100 x 17.40 = = 1.00 m As = 4.69 cm²/m Ø 12 c/ 20 14.- Diseño de base de apoyo de vigas por el método elaborado.0.60 0.20 1.05 2.40 1.- Carga equivalente por peso propio.- 0.70 qeqCM = 159.17 Kn/m D 2.- Carga equivalente por carga viva.qeqCV = 79.63 Kn/m L+I q = 1.30 x ( 159.17 + 1.67 x ( 79.63 ) ) q = 379.81 Kn/m 1.05 qeq C.V. 2 qeq P.P. 1 MEMORIA DE CALCULO PUENTE VEHICULAR MILIWAYA q 1.05 2.40 A 1.05 B C MA = -379.81 x 1.05 ² 2 MA = -209.37 Kn-m 2.40 MB = = 379.81 Kn/m 64.09 Kn-m -209.37 -209.37 64.09 a) Refuerzo.- Para Ø 20 f'c = 21 Mpa d 70 - μ = = 2.0 2 ; fy = 420 Mpa b ; - 3 - 1.2 = 64.80 cm = MU 0.85 x Ø x f'C x b x d ² Z = d x( 1 - 1 x( 1 - x 1 1000 = = 0.80 m ; rec = 3 cm 0.648 m 64.09 0.85 x 0.90 x 21 x 0.80 x 0.648 ² 1 - 2 x μ )) Z = 0.648 x ( 1 - 1 x ( 1 - x 1 1000 μ = 0.0119 1 - 2 x 0.0119 ) ) Z = 0.6441 m As = MU x 10 Ø x Z x fY Asmín = 14 4200 As = 64.09 x 10 0.90 x 0.6441 x 420 x 80 x 64.80 = 17.28 cm²/m As = 2.63 cm² Asmín > As As = 17.28 cm² 6 Ø 20 MEMORIA DE CALCULO PUENTE VEHICULAR MILIWAYA 3 Ø 12 Ø 12 c/ 20 Ø 10 c/ 20 Ø 12 c/ 20 6 Ø 20 6 Ø 20