Subido por isaacalef01

Trigonometric-Identities

Anuncio
Trigonometric Identities
The Six Trigonometric Functions
sin =
=
ℎ cos =
=
ℎ tan =
=
Pythagorean Identities
sin + cos = 1
Reciprocal Identities
1
csc 1
cos =
sec 1
tan =
cot ℎ =
ℎ sec =
=
cot =
=
tan =
Sum or Difference of Two Angles
sin 2 = 2 sin cos tan 2 =
2 tan 1 − tan Half-Angle Formulas
sin
tan
1 − cos = ±2
2
= csc − ./
2
1 − cos tan = ±1 + cos 2
sin tan =
2 1 + cos 1 − cos tan =
2
sin Complex Numbers
2 30 = cos + 4 sin 2 31 = cos + 4 sin 2 $31 = 4 cos − 4 sin cos cos = sin sin =
sin cos =
cos sin =
cos 2 = cos − sin cos 2 = 2 cos − 1
cos 2 = 1 −2 sin cos
cot
sin cos 1 + cos = ±2
2
= csc + ./
2
1 + cos tan = ±2
1 − cos sin tan =
2 1 − cos 1 + cos tan =
2
sin 5
cos = 62 31 + 2 $31 7
5
sin = 362 31 − 2 $31 7
31
$31
2 −2
tan =
42 31 + 2 $31 sin ± sin = 2 sin +
cos + cos =
cos − cos =
#±%
#∓%
, cos + ,
#&%
#$%
2 cos + , cos + ,
#&%
#$%
−2 sin + , sin + ,
Co-Function Identities
sin + $1, = cos csc + $1, = sec tan + $1, = cot cot + $1, = tan 0
0
cos + $1, = sin sec + $1, = csc 0
0
0
0
Even-Odd Identities
sin− = −sin cos− = cos tan− = −tan Expansions
sin = −
89
:!
tan = −
89
cos = 1 −
8
!
:
+
8<
=!
+
8 <
+
=
© 2010 ANOVA Learning Services
!"#$%& !"#&%
Sum to Product Formulas
Law of Cosines
sin H sin J
=
I
.
cos sin !"#$%$ !"#&%
"'(#&%&"'(#$%
"'(#&%$"'(#$%
Law of Sines
sin G
cot =
Product to Sum Formulas
sin ± = sin cos ± cos sin cos ± = cos cos ∓ sin sin tan ± tan tan ± =
1 ∓ tan tan Double Angle Formulas
csc =
Quotient Identities
sec = 1 + tan csc = 1 + cot 1
sin 1
sec =
cos 1
cot =
tan sin =
csc =
. =
8C
D!
−
5=
−
csc− = −csc sec− = sec cot− = −cot 8>
?!
8E
A!
+
+⋯
+⋯
5?8 >
:5=
8
?8 9
sec = 1 +
5
8
8
+
+ ⋯ cot = 8 − : −
+ I − 2 I cos J
www.anova-learning.com
5
:58 <
csc = 8 + A + :AB + 5=5B + ⋯
or
=8 C
D
58 9
D=
+
A58 E
?B
8 <
+⋯
− FD= − ⋯
J = cos$5 +
K &L $M ,
KL
Trigonometric Identities & Formulas
NOP Q
In terms of
NOP Q =
RSN Q UVP Q RSU Q RSN
RSN Q
UVP Q
sin T1 * cos T1 * sin cos RNR Q NXR Q Each trigonometric function in terms of the others
sin √1 * sin 1
sin 1
* sin √1
√1 * sin sin cos √1 *
cos 1
cos √1 *
1
cos cos √1 * cos RNR Q
tan √1 tan 1
√1
tan 1
csc tan √csc * 1
csc 1
√csc * 1
√1 tan tan T1 tan NXR Q
1
tan csc √csc sec √sec * 1
sec *1
Tcsc * 1
Tsec * 1
csc √sec * 1
sec 1
sec RSU Q
1
√1 cot cot √1 cot 1
cot T1 cot 1
√1 cot cot cot √sec * 1
Geometric Constructions of Trig Functions
Unit Circle
A
D
E
C
F
cccc
Circle with radius Jb
cccc
cccc
bd – sine
be – cosine
cccc
cccc
JG – cosecant
JH – secant
G
B
ccccc – tangent
bH
cccc – cotangent
bG
Trigonometric Val
Values for Common Angles
Degrees
0°
30°
45°
60°
90°
120°
135°
150°
180°
210°
225°
240°
270°
300°
315°
330°
360°
Radians
0[
[ ⁄6
[ ⁄4
[ ⁄3
[ ⁄2
2[⁄3
3[⁄4
5[⁄6
[
7[⁄6
5[⁄4
4[⁄3
[ ⁄2
5[⁄3
7[⁄4
11[⁄6
2[
© 2010 ANOVA Learning Services
sin 0
⁄2
1⁄
√2
2⁄2
√3
3⁄2
1
√3
3⁄2
√2
2⁄2
⁄2
1⁄
0
*1
1⁄2
*√
√2⁄2
*√
√3⁄2
--1
*√
√3⁄2
*√
√2⁄2
*1
1⁄2
0
cos 1
√3⁄2
√2⁄2
1⁄2
0
*1⁄2
*√2⁄2
*√3⁄2
-1
*√3⁄2
*√2⁄2
*1⁄2
0
1⁄2
√2⁄2
√3⁄2
1
tan 0
√3⁄3
1
√3
undefined
*√3
-1
*√3⁄3
0
√3⁄3
1
√3
undefined
*√3
-1
*√3⁄3
0
www.anova-learning.com
csc undefined
2
√2
2√3⁄3
0
2√3⁄3
√2
2
undefined
-2
*√2
*2√3⁄3
0
*2√3⁄3
*√2
-2
undefined
sec 1
2√
√3⁄3
√2
√
2
undefined
-2
*√2
*
*2√
√3⁄3
-1
*2√
√3⁄3
*√2
*
-2
undefined
2
√2
√
2√
√3⁄3
1
cot undefined
√3
1
√3⁄3
1
*√3⁄3
-1
*√3
undefined
√3
1
√3⁄3
-1
*√3⁄3
-1
*√3
undefined
Trigonometric
Trigonomet Identities & Formulas
Descargar