UNIVERSIDAD CENTRAL DEL ECUADOR FACULTAD DE INGENIERÍA QUÍMICA CARRERA DE INGENIERÍA QUÍMICA FORMULACIÓN Y EVALUACIÓN EN LABORATORIO DE UN NUEVO INHIBIDOR DE CORROSIÓN PARA DUCTOS EN CAMPOS PETROLEROS TRABAJO DE GRADO PARA LA OBTENCIÓN DEL TÍTULO DE INGENIERO QUÍMICO AUTOR: DIEGO FERNANDO PULLAS RIVERA TUTOR: ING. DIEGO EDUARDO MONTESDEOCA ESPÍN QUITO 2015 APROBACIÓN DEL TUTOR En calidad de Tutor del Trabajo de Grado titulado FORMULACIÓN Y EVALUACIÓN EN LABORATORIO DE UN NUEVO INHIBIDOR DE CORROSIÓN PARA DUCTOS EN CAMPOS PETROLEROS, certifico que el mismo es original y ha sido desarrollado por el señor DIEGO FERNANDO PULLAS RIVERA, bajo mi dirección y conforme a todas las observaciones realizadas considero que el trabajo reúne los requisitos necesarios como trabajo de titulación, y por tanto tiene mi aprobación. En la ciudad de Quito, a los 27 días del mes de julio de 2015. PROFESOR TUTOR ii AUTORIZACIÓN DE LA AUTORÍA INTELECTUAL Yo, DIEGO FERNANDO PULLAS RIVERA, en calidad de autor del trabajo degrado realizado sobre la FORMULACIÓN Y EVALUACIÓN EN LABORATORIO DE UN NUEVO INHIBIDOR DE CORROSIÓN PARA DUCTOS EN CAMPOS PETROLEROS, por la presente autorizo a la UNIVERSIDAD CENTRAL DEL ECUADOR, hacer uso de todos los contenidos que me pertenecen o de parte de los que contiene esta obra, con fines estrictamente académicos o de investigación. Los derechos que como autor me corresponden, con excepción de la presente autorización, seguirán vigentes a mi favor, de conformidad con lo establecido en los artículos 5, 6, 8, 19 y demás pertinentes de la Ley de Propiedad Intelectual y su Reglamento. En la ciudad de Quito, a los 27 días del mes de julio de 2015. Diego Fernando Pullas Rivera C.C.: 1719104422 [email protected] iii DEDICATORIA A mis padres, Enrique y Claudia por el apoyo y confianza incondicional en los momentos difíciles que tuve, su amor trabajo, honestidad y dedicación en sus actividades diarias han sido una motivación extra para luchar por conseguir esta meta tan anhelada. A mi hermano Enrique Jr., ya que sus ayudado consejos me han mucho a no desanimarme en ningún momento, igualmente su apoyo ha sido muy valioso para lograr este objetivo. iv AGRADECIMIENTOS A mis padres, por brindarme la posibilidad de estudiar, apoyarme en todo momento en las decisiones que he tomado. A los profesores de la Facultad de Ingeniería Química, quienes han sabido impartir conocimiento, promover el esfuerzo y dedicación por parte de los estudiantes, para lograr alcanzar las metas merecidamente. Al Ing. Diego Montesdeoca, tutor de mi trabajo de grado, por su apoyo, tiempo y paciencia para lograr culminar exitosamente este trabajo. A los Ingenieros de de la división OFC de Interoc: Diego Tamayo y Agustín Casanova, por sus valiosos aportes y su apertura para poder desarrollar el presente trabajo de grado. A mis amigas y amigos: Melissa, Maricela, Nataly, Glenda, Marcia, Vicky, Margoth, Dennis, Danny, Miguel, Diego Revelo; con quienes he compartido gratos momentos durante la vida universitaria. v CONTENIDO pág LISTA DE TABLAS..................................................................................................................... x LISTA DE GRÁFICOS .............................................................................................................. xii LISTA DE FIGURAS ................................................................................................................ xiii LISTA DE ANEXOS ................................................................................................................. xiv RESUMEN.................................................................................................................................. xv ABSTRACT ............................................................................................................................... xvi INTRODUCCIÓN ........................................................................................................................ 1 1. MARCO TEÓRICO .................................................................................................................. 3 1.1 Petróleo crudo ......................................................................................................................... 3 1.2 Agua de formación. ................................................................................................................. 3 1.2.1 Problemas asociados a la producción de agua.................................................................... 4 1.3 Corrosión ................................................................................................................................. 4 1.3.1 Elementos para una corrosión electroquímica .................................................................... 5 1.3.1.1 Ánodo. ............................................................................................................................... 5 1.3.1.2 Cátodo. .............................................................................................................................. 5 1.3.1.3 Electrolito.. ........................................................................................................................ 6 1.3.1.4 Unión metálica o conductor eléctrico. .............................................................................. 6 1.3.2 Tipos de corrosión................................................................................................................ 6 1.3.2.1 Corrosión uniforme.. ......................................................................................................... 6 1.3.2.2 Corrosión por picadura.. .................................................................................................. 7 1.3.2.3 Lixiviación selectiva. ......................................................................................................... 7 1.3.2.4 Corrosión galvánica.......................................................................................................... 7 1.3.2.5 Corrosión - erosión.. ......................................................................................................... 7 1.3.2.6 Corrosión por tensión.: ..................................................................................................... 8 1.3.2.7 Corrosión electroquímica.. ............................................................................................... 8 1.3.2.8 Corrosión microbiológica. ................................................................................................ 8 1.3.2.9 Corrosión por presiones parciales de oxígeno.. ............................................................... 8 1.3.2.10 Corrosión intergranular.. ................................................................................................ 9 1.3.2.11 Corrosión por cavitación. ............................................................................................... 9 1.3.2.12 Corrosión por socavados o grietas (Crevice).. ............................................................... 9 1.3.3 Tipos de corrosión más comunes en campos petroleros .................................................... 10 1.3.3.1 Corrosión dulce. .............................................................................................................. 10 1.3.3.2 Corrosión agria o amarga.. ............................................................................................ 11 1.3.3.3 Corrosión por oxígeno.. .................................................................................................. 11 1.4 Inhibidores de corrosión. ....................................................................................................... 13 1.4.1 Inhibidores del tipo pasivador.. ......................................................................................... 13 1.4.2 Inhibidores en Fase Vapor.. ............................................................................................... 13 1.4.3 Los inhibidores fílmicos de corrosión. ............................................................................... 13 1.5 Formulación de un inhibidor de corrosión ........................................................................... 15 1.5.1 Selección de bases para inhibidores en tratamientos a pozos y líneas de producción. ..... 16 1.5.2 Criterios para la selección de un inhibidor en campos petroleros. ................................... 18 1.5.2.1 Solubilidad del inhibidor.. ............................................................................................... 18 1.5.2.2 Oxígeno disuelto.............................................................................................................. 18 1.5.2.3 Incompatibilidad.. ........................................................................................................... 18 1.5.2.4 Detergencia del inhibidor. .............................................................................................. 18 1.5.2.5 Costo del inhibidor.. ........................................................................................................ 18 1.5.2.6. Aplicación del inhibidor. ................................................................................................ 18 1.6 Evaluación de inhibidores de corrosión en laboratorio. ........................................................ 19 1.6.1 Método Wheel Test. ............................................................................................................ 19 2. MARCO EXPERIMENTAL................................................................................................... 21 2.1 Proceso experimental seleccionado ...................................................................................... 21 2.1.1 Descripción del proceso .................................................................................................... 21 2.2 Diseño experimental para determinar la mejor formulación del inhibidor de corrosión a nivel de laboratorio. .................................................................................................................. 23 2.3. Materiales y Equipos ............................................................................................................ 24 2.3.1 Materiales para desarrollar la prueba de evaluación de inhibidores wheel test .............. 24 2.4 Sustancias y reactivos............................................................................................................ 24 2.4.1 Sustancias para simular el ambiente corrosivo líquido y formulaciones .......................... 24 2.5 Procedimiento ..................................................................................................................... 25 2.5.1 Preparación de cupones .................................................................................................... 25 2.5.2 Preparación de salmuera .................................................................................................. 25 2.5.3 Dosificación de inhibidores .............................................................................................. 25 2.5.4 Armado de la prueba Wheel Test ....................................................................................... 26 2.5.5 Limpieza de cupones ......................................................................................................... 26 3. CÁLCULOS ............................................................................................................................ 27 3.1 Cálculo del número de electrodos (cupones de corrosión) y botellas a utilizar para cada wheel test. ........................................................................................................................... 27 3.2 Cálculo del volumen de la salmuera a preparar para cada evaluación wheel test. ................ 27 3.3 Cálculo de la cantidad requerida de sal (cloruro de sodio) a añadir al volumen de la salmuera, para obtener la salinidad en ppm de cloruros.............................................................. 28 3.4 Cálculo de los ppm de inhibidor de corrosión en una dilución al 10%. ................................ 29 3.5 Cálculo de la cantidad de inhibidor de corrosión a inyectar en cada botella, para obtener los ppm que se desea evaluar. ........................................................................................ 29 3.6 Cálculo del porcentaje de protección (eficiencia) del inhibidor de corrosión. ...................... 30 4. DATOS EXPERIMENTALES ............................................................................................... 31 4.1 Datos obtenidos a 18ᵒC en el laboratorio de pH, solubilidad de las bases seleccionadas y nombres de los inhibidores de corrosión a evaluarse. ...................................... 31 4.2 Formulaciones de los 5 primeros inhibidores a evaluarse mediante wheel test a 50°C. ....... 32 4.3 Datos de las evaluaciones de los 5 primeros inhibidores mediante wheel test en la primera fase. ................................................................................................................................ 33 4.4 Datos de las formulaciones y evaluaciones de los inhibidores clasificados. ......................... 34 5. RESULTADOS ....................................................................................................................... 42 5.1 Eficiencia de protección de los inhibidores clasificados. ...................................................... 42 5.2 Comparación de la eficiencia del mejor producto formulado, con el producto actual. ......... 46 6. DISCUSIÓN ........................................................................................................................... 47 7. CONCLUSIONES .................................................................................................................. 49 8. RECOMENDACIONES ......................................................................................................... 51 CITAS BIBLIOGRÁFICAS ....................................................................................................... 52 viii BIBLIOGRAFÍA......................................................................................................................... 54 ANEXOS..................................................................................................................................... 55 ix LISTA DE TABLAS pág Tabla 1. Composición del petróleo ............................................................................................... 3 Tabla 2. Bases químicas para formular inhibidores de corrosión ............................................... 21 Tabla 3. pH de las bases .............................................................................................................. 31 Tabla 4. Solubilidad y dispersabilidad de las bases en diferentes solventes. .............................. 31 Tabla 5. Nombres de los inhibidores formulados para la primera fase de wheel test a 30 ppm de producto y a 10%aceite, 90%agua y 80000 ppm de salinidad. ...................................... 31 Tabla 6. Formulación de Ar 1 para la prueba a 30 ppm del inhibidor y a 10%aceite, 90%agua y 80000 ppm de salinidad. ........................................................................................... 32 Tabla 7. Formulación de Adb 3 para la prueba a 30 ppm del inhibidor y a 10%aceite, 90%agua y 80000 ppm de salinidad. ........................................................................................... 32 Tabla 8. Formulación de Corrcontrol Oil para la prueba a 30 ppm del inhibidor y a 10%aceite, 90%agua y 80000 ppm de salinidad. ........................................................................ 32 Tabla 9. Formulación de ICWS 40 para la prueba a 30 ppm del inhibidor y a 10%aceite, 90%agua y 80000 ppm de salinidad. ........................................................................................... 33 Tabla 10. Formulación de Mhb 2 para la prueba a 30 ppm del inhibidor y a 10%aceite, 90%agua y 80000 ppm de salinidad. ........................................................................................... 33 Tabla 11. Datos de las pruebas de wheel test realizadas a 30 ppm del inhibidor y a 10%aceite, 90%agua, 80000 ppm de salinidad y 50°C ............................................................... 33 Tabla 12. Datos de la variación de la formulación del inhibidor que tiene por nombre Ar1. ..... 34 Tabla 13. Datos de las pruebas de wheel test realizadas para la variación de fórmulas correspondientes a Ar 1 a 10%aceite, 90%agua, 80000 ppm de salinidad y 50°C. ................... 35 Tabla 14. Datos de las pruebas de wheel test realizadas para la variación de fórmulas correspondientes a Ar 1 a 65%aceite, 35% agua, 40000 ppm de salinidad y 50°C. ................... 36 Tabla 15. Datos de las formulaciones para el inhibidor ICOS. ................................................... 36 Tabla 16. Datos de las pruebas de wheel test realizadas para las fórmulas correspondientes a ICOS a 10%aceite, 90%agua, 80000ppm de salinidad y 50°C. ................... 37 x Tabla 17. Datos de las pruebas de wheel test realizadas para las fórmulas correspondientes a ICOS a 65%aceite, 35% agua, 40000 ppm de salinidad y 50°C. ................. 38 Tabla 18. Datos de las variaciones de la formulación del inhibidor que tiene por nombre ICWS ........................................................................................................................................... 39 Tabla 19. Datos de las pruebas de wheel test realizadas para la variación formulaciones del inhibidor ICWS 40 a 10% aceite. 90% agua y 80000 ppm de salinidad y 50°C ................... 39 Tabla 20. Datos de las pruebas de wheel test realizadas para las nuevas formulaciones del inhibidor ICWS 40 a 65% aceite, 35% agua, 40000 ppm de salinidad y 50°C.......................... 40 Tabla 21. Datos de eficiencias de protección de los inhibidores evaluados a 15 ppm de dosificación y a 10%aceite, 90%agua y 80000 ppm de salinidad y 50°C ................................... 42 Tabla 22. Datos de eficiencias de protección de los inhibidores evaluados a 30 ppm de dosificación y a 10%aceite, 90%agua, 80000 ppm de salinidad y 50°C ..................................... 43 Tabla 23. Datos de eficiencias de protección de los inhibidores evaluados a 45 ppm de dosificación y a 10%aceite, 90%agua, 80000 ppm de salinidad y 50°C ..................................... 43 Tabla 24. Datos de eficiencias de protección de los inhibidores evaluados a 15 ppm de dosificación y a 65%aceite, 35%agua, 40000 ppm de salinidad y 50°C ..................................... 44 Tabla 25. Datos de eficiencias de protección de los inhibidores evaluados a 30 ppm de dosificación y a 65%aceite, 35%agua, 40000 ppm de salinidad y 50°C ..................................... 44 Tabla 26. Datos de eficiencias de protección de los inhibidores evaluados a 45 ppm de dosificación y a 65%aceite, 35%agua, 40000 ppm de salinidad y 50°C ..................................... 45 Tabla 27. Comparación de eficiencia del mejor producto formulado (ICOS 42) con el producto actual, a 10%aceite, 90%agua, 80000 ppm de salinidad y 50°C ................................. 46 xi LISTA DE GRÁFICOS pág Gráfico 1. Velocidades de corrosión al acero en general por CO2, H2S y O2. [10] .................... 12 xii LISTA DE FIGURAS pág Figura 1. Celda de corrosión ......................................................................................................... 6 Figura 2. Estructura de una imidazolina típica para inhibidores de corrosión ............................ 14 Figura 3. Esquema representativo del mecanismo de funcionamiento de un inhibidor fílmico de corrosión. ................................................................................................................... 15 Figura 4. Diseño experimental para determinar la mejor formulación de un nuevo inhibidor de corrosión. ................................................................................................................ 23 xiii LISTA DE ANEXOS pág ANEXO A. Comportamiento de las formulaciones correspondientes a Ar, en ambas condiciones de evaluación. .......................................................................................................... 56 ANEXO B. Comportamiento de las formulaciones correspondientes a ICOS, en ambas condiciones de evaluación. .......................................................................................................... 57 ANEXO C. Comportamiento de las formulaciones correspondientes a ICWS, en ambas condiciones de evaluación. .......................................................................................................... 58 ANEXO D. Formas comunes de ataque de corrosión en campos petroleros. ............................. 59 ANEXO E. Equipos utilizados para la evaluación y formulación de inhibidores de corrosión...................................................................................................................................... 61 ANEXO F. Desarrollo de una evaluación de inhibidores de corrosión mediante wheel test. .............................................................................................................................................. 62 ANEXO G. Propiedades fisicoquímicas del nuevo inhibidor de corrosión. ............................... 66 ANEXO H. Norma NACE 1D196 para evaluar inhibidores de corrosión a nivel de laboratorio. .................................................................................................................................. 67 ANEXO I. Diagrama de flujo para la evaluación de los cinco primeros inhibidores formulados................................................................................................................................... 80 xiv FORMULACIÓN Y EVALUACIÓN EN LABORATORIO DE UN NUEVO INHIBIDOR DE CORROSIÓN PARA DUCTOS EN CAMPOS PETROLEROS RESUMEN Se obtuvo un nuevo inhibidor de tipo fílmico, para proteger internamente ductos en campos petroleros del oriente ecuatoriano. Se formuló un inhibidor de corrosión con cada una de las siguientes bases químicas: 1) imidazolinas, dietiltriamina, 2) amonio cuaternario, cloruro de alquil dimetil bencil amonio, 3) aminas etoxiladas, 4) alquil aminas y 5) aceites de resinas con dietilentriamina. Mediante el ensayo “wheel test” se simuló el ambiente corrosivo de pozos petroleros y se evaluó la eficiencia de cada inhibidor a una concentración de 30 ppm, los cuales previamente fueron expuestos a 120ᵒC durante 30 minutos para comprobar su estabilidad térmica. Los mejores inhibidores, correspondientes a las bases 1 y 4 fueron reformulados y se combinaron las bases 2 y 3 en diferentes proporciones, obteniendo nuevas formulaciones que fueron evaluadas en dos ambientes corrosivos C1 y C2, a tres dosificaciones: 15, 30 y 45 ppm. Con los datos obtenidos se determinó la eficiencia de cada inhibidor. Se concluye que uno de los inhibidores formulados con las bases 2 y 3 (5% - 20%) es el que posee mayor eficiencia de protección contra la corrosión (88,03%), superando incluso al producto actual de campo (73,22%). PALABRAS CLAVES: /FORMULACIONES/ INHIBIDORES EFICIENCIA/ POZOS PETROLEROS/ AMINAS/ WHEEL TEST/ xv DE CORROSIÓN/ FORMULATION AND EVALUATION AT A LABORATORY OF A NEW CORROSION INHIBITOR FOR PIPELINES IN OIL FIELDS ABSTRACT A new type inhibitor film was obtained to internally protect pipelines in oil fields of eastern Ecuador. A corrosion inhibitor with each of following chemical bases was formulated: 1) imidazolines, diethyltriamine, 2) quaternary ammonium, alkyldimethylbenzyl ammonium chloride, 3) ethoxylated amines, 4) alkyl amines and 5) diethylenetriamine oils resins. By the “wheel test” testing, the corrosive environment of oil wells was simulated and efficiency of each inhibitor at a concentration of 30 ppm, which were previously exposed to 120°C for 30 minutes to ensure thermal stability was evaluated. The best inhibitors, corresponding to bases 1 and 4 were reformulated and bases 2 and 3 were combined in different proportions, obtaining new formulations which were evaluated on two corrosive environments C1 and C2, in three doses: 15, 30 and 45 ppm. With the data obtained, the efficiency of each inhibitor was determined. It is concluded that one of the inhibitors formulated with bases 2 and 3 (5% - 20%) is the one with more efficient corrosion protection (88,03%), even surpassing the current product field (73,22%). KEYWORDS: / FORMULATIONS / CORROSION INHIBITORS / EFFICIENCY / OIL WELLS / AMINES / WHEEL TEST / xvi INTRODUCCIÓN La industria petrolera realiza inversiones significativas en su constante búsqueda de aumentar la recuperación de petróleo, esto también trae consigo el aumento de productos no deseados como el agua de formación, que es el principal culpable de la corrosión interna en tuberías y equipos por su alto contenido de sales y gases disueltos. La exigente competencia en el mercado petrolero demanda un mayor aprovechamiento de los recursos disponibles, así como también el desarrollo de métodos efectivos para el control de la corrosión de la infraestructura diseñada para la recuperación de petróleo, como es la aplicación de inhibidores de corrosión del tipo fílmicos. Las cambiantes condiciones de operación de pozos productores y campos petroleros en general, tales como: aumento del corte de agua, presión, temperatura; sumada a la agresividad de las propiedades físico químicas del agua de formación como: salinidad, dureza total, dureza cálcica, alcalinidad, pH, limitan de gran manera con el tiempo, el desempeño y eficiencia del inhibidor fílmico para el control de corrosión que actualmente se utiliza en los campos petroleros del oriente ecuatoriano, por lo que es necesario e indispensable realizar una nueva formulación del producto químico, de manera que se ajuste a las condiciones que generan problemas en las tuberías principalmente. En la actualidad, los principios activos de los inhibidores de corrosión del tipo fílmicos más utilizados en los campos petroleros debido a su efectividad y costos relativamente bajos son las aminas cíclicas tales como imidazolinas, piperazina o aminas lineales como las diaminas, así como también las aminas cuaternarias, las cuales presentan un buen desempeño en la protección interna de las tuberías en los ambientes corrosivos encontrados en los pozos petroleros. La formulación de un inhibidor de corrosión de tipo fílmico se realiza a nivel de laboratorio, simulando las condiciones existentes en pozos petroleros o líneas de producción, y mediante los resultados obtenidos en wheel test (método de evaluación de inhibidores fílmicos a nivel de laboratorio) y pruebas de estabilidad térmica, se seleccionan los mejores productos para probarlos y evaluarlos en el campo petrolero. 1 Los inhibidores de corrosión fílmicos son combinaciones de productos químicos que se adhieren a las paredes metálicas internas y cuya función principal es la de formar una película de protección que aísla el metal de los agentes que causan la corrosión. La película se forma por adsorción. El presente trabajo, tuvo por objetivo principal encontrar una nueva formulación de un inhibidor de corrosión del tipo fílmico que posea una eficiencia de protección mayor al producto que actualmente se aplica en campo, para lo cual se usaron cinco bases químicas diferentes compuestas por: 1) imidazolinas, dietiltriamina, 2) amonio cuaternario, cloruro de alquil dimetil bencil amonio, 3) aminas etoxiladas, 4) alquil aminas y 5) aceites de resinas con dietilentriamina. Con cada una se formuló un inhibidor, y la eficiencia de estos fue evaluada mediante wheel test a 30 ppm de concentración en un ambiente corrosivo, similar al encontrado en pozos productores del distrito amazónico del Ecuador. Además, se hicieron pruebas de estabilidad térmica de cada inhibidor previo a cada evaluación, sometiéndolos a 120ᵒC durante 30 minutos. Esto con el fin de confirmar el desempeño de los productos frente a las temperaturas de operación de pozos productores. Los inhibidores con mejores eficiencias, correspondientes a las bases 1 y 4 fueron reformulados, mientras que se formularon otros inhibidores, a partir de la mezcla de las bases 2 y 3 en diferentes proporciones. La base 5 fue descartada por presentar baja eficiencia de protección contra la corrosión. Los nuevos productos (inhibidores) fueron evaluados en dos ambientes corrosivos a tres dosificaciones de 15, 30 y 45ppm. Se determinó que el inhibidor formulado con la mezcla de las bases químicas 2 y 3 en proporciones del 5% y 20% respectivamente, es el que mejor eficiencia de protección presenta contra la corrosión en condiciones de alto corte de agua y alta salinidad, superando la eficiencia del actual producto usado en campo. 2 1. MARCO TEÓRICO 1.1 Petróleo crudo El crudo es la forma natural con la que el producto petróleo es extraído de su reservorio o yacimiento, y va acompañado de agua de formación, gases y otras impurezas es a menudo negro, pero puede ser de una amplia gama de colores dependiendo de la mezcla de hidrocarburos. Es una mezcla compleja de compuesto químicos orgánicos, en su mayoría hidrocarburos de enlaces covalentes C-C Y C-H, se encuentran en pequeñas cantidades sulfurados, oxigenados o nitrogenados.[1] La composición del petróleo genéricamente está dada en la tabla 1: [2] Tabla 1. Composición del petróleo Elemento Porcentaje Carbono 83-87 Hidrogeno 11-15 Azufre 0.1-0.6 Nitrógeno 0.1-1.5 Oxigeno 0.3-1.2 1.2 Agua de formación. Es el agua que se encuentra junto al petróleo y gas en los yacimientos y es la responsable de los mayores problemas de corrosión, incrustaciones (comúnmente llamada escala) y emulsiones. El agua de formación varía en su composición química de campo a campo, incluso de un pozo con respecto a otro en un mismo campo. Las aguas producidas son luego separadas del petróleo crudo mediante tratamientos químicos y físicos. 3 1.2.1 Problemas asociados a la producción de agua. El agua producida en campo es altamente incrustante y corrosiva, por lo que el tratamiento químico que se aplica para mitigar los efectos de la corrosión y escala (incrustaciones), debe ser eficiente, caso contrario se tendrá problemas en equipos, líneas y tanques receptores de agua de formación. Entre los problemas generados debido al agua de formación tenemos: Crea ambientes corrosivos. Mantiene superficies húmedas en la tubería Incrementa la conductividad del fluido. Disuelve gases corrosivos como CO2 y H2S Promueve la generación de emulsiones. Causa incrustaciones en tuberías y equipos de levantamiento artificial.[3]. 1.3 Corrosión NACE define a la corrosión como el deterioro de un material (acero, concreto, etc.), usualmente un metal, como consecuencia de la interrelación con el medio circundante. Siempre que la corrosión esté originada por una reacción química (oxidación), la velocidad a la que tiene lugar dependerá en alguna medida de la temperatura, la salinidad del fluido en contacto con el metal y las propiedades de los metales en cuestión. La mayoría de los metales se encuentran en la naturaleza como óxidos metálicos o sales. La refinación o purificación de estos compuestos para obtener metales en estado casi puro, requiere de una gran energía. Esta energía esta almacenada y disponible para suministrar la fuerza necesaria, y retornar el metal a su estado natural. Esto significa que los metales son inestables con respecto a la mayoría de medio ambientes, y tienen la tendencia natural de retornar a su estado original de baja energía, o corroerse. La corrosión de los metales es un fenómeno natural que ocurre debido a la inestabilidad termodinámica de la mayoría de los metales. En efecto, salvo raras excepciones (el oro, el hierro de origen meteorítico) los metales están presentes en la Tierra en forma de óxido, en los minerales (como la bauxita si es aluminio, la hematita si es hierro). La corrosión, de hecho, es el regreso del metal a su estado natural, el óxido. 4 El hierro, por ejemplo, en su estado natural forma diferentes compuestos oxidados tales como Fe2O3, FeO, Fe3O4 y otros, pero cuando son procesados pierden el oxígeno y quedan como hierro puro (Fe0). Cuando este metal en su sistema será expuesto al contacto con el oxígeno presente en el agua, se convierte a su forma natural u oxidada; normalmente ocurre en combinaciones de Fe2O3 y Fe3O4. La corrosión es, principalmente, un fenómeno electroquímico, esto significa que existen flujos de corriente eléctrica. Para que exista corrosión se necesita de de cuatro elementos: Ánodo Cátodo Electrolito Unión metálica o conductor eléctrico 1.3.1 Elementos para una corrosión electroquímica 1.3.1.1 Ánodo. Es la porción de la superficie del metal que se corroe. Es el punto donde el metal se disuelve o va a formar parte de la solución. Cuando un metal se disuelve, el átomo de este pierde electrones y se transforma en un ion. Como los átomos contienen igual número de protones (partículas con cargas positivas) y electrones (partículas con cargas negativas), la pérdida de electrones conduce a un exceso de cargas positivas, y el resultado es un ion cargado positivamente. La reacción química del hierro, principal compuesto del acero es: Fe(s) → Fe2+ + 2e- 1 Esta pérdida de electrones se llama “oxidación”. El ion hierro pasa a formar parte de la solución, mientras que los dos electrones se trasladan a otro sitio del metal para participar en otra reacción. 1.3.1.2 Cátodo. Es la porción de la superficie del metal que no se disuelve, pero es el sitio de reacciones químicas de los electrones liberados con los iones presentes en el agua, necesarias en el proceso de corrosión. Este consumo de electrones se conoce como “reacción de reducción”. 2H+ + 2e- → H2(g)↑ 5 2 1.3.1.3 Electrolito. Para que se produzcan las reacciones señaladas anteriormente y completar el circuito eléctrico, la superficie del metal tanto anódica como catódica, debe estar cubierta con una solución electrolítica conductiva. A esta solución se la conoce como electrolito. El agua es un electrolito cuya conductividad depende de la cantidad de sales disueltas, si es mayor el contenido de SDT (sólidos disueltos totales), la conductividad electrolítica será mayor. El electrolito conduce la corriente desde el ánodo al cátodo. 1.3.1.4 Unión metálica o conductor eléctrico. El ánodo y el cátodo deben estar conectados con algo que conduzca los electrones (corriente eléctrica), para completar el circuito eléctrico y proveer un camino para que la corriente fluya desde el cátodo hacia el ánodo. En el caso de la corrosión de la superficie de un metal en un medio conductivo o solución electrolítica, la misma superficie es la conductora de los electrones. La combinación del ánodo, cátodo, electrolito y conductor eléctrico se llama celda de corrosión. [4]. Un esquema del proceso de corrosión del hierro se muestra en la figura 1. [5] Figura 1. Celda de corrosión 1.3.2 Tipos de corrosión 1.3.2.1 Corrosión uniforme. Es definida como la corrosión que se encuentra distribuida más o menos de manera uniforme sobre la superficie de metal. Este tipo de corrosión puede ocurrir en lugares aislados a lo largo de tuberías, pero el daño será relativamente uniforme. 6 1.3.2.2 Corrosión por picadura. Es una de las formas de corrosión más destructivas, se encuentra en pequeñas áreas y toma la forma de cavidades llamadas pits. Es promovida por baja velocidad del agua, puntos inactivos tales como lo que se presentan en el lado una carcasa de un intercambiador de calor y por la presencia de iones cloruro. El incremento de la velocidad de corrosión en la picadura produce un exceso de iones metálicos cargados positivamente, los cuales atraen los iones cloruro. 1.3.2.3 Lixiviación selectiva. Es la corrosión selectiva de un elemento en una aleación. El ejemplo más común en un sistema de enfriamiento es la dezincificación, que consiste en la remoción selectiva del zinc en una aleación cobre-zinc; para este caso en particular, un pH<6 es extremadamente peligroso, ya que acelera la dezincificación 1.3.2.4 Corrosión galvánica. Se produce cuando dos metales distintos entran en contacto. La fuerza que dirige la corrosión galvánica es la diferencia de potencial entre los dos metales. La diferencia es mayor cuando los dos metales están más alejados en la serie galvánica. Cuando dos metales de esta serie galvánica se conectan, la velocidad de corrosión del más activo (anódico) se incrementa y la del más noble (catódico) se disminuye. 1.3.2.5 Corrosión - erosión. La corrosión - erosión resulta en un ataque localizado grave al metal. El daño aparece como ranura lisa o agujero en el metal, tal como se produce en fallas en tuberías de perforación, tuberías de revestimiento, o tuberías de producción en campos petroleros. El proceso se inicia por picaduras en una grieta que penetra en el acero. El proceso de erosión-corrosión completa la destrucción de metal. La erosión elimina películas protectoras de metal y expone la superficie de metal limpia para el medio ambiente corrosivo. Esto acelera el proceso de corrosión. El ataque impingement es una forma de proceso de erosión-corrosión, que se produce tras la ruptura de las películas protectoras. Las altas velocidades y presencia de material abrasivo en suspensión y agentes corrosivos en la perforación y fluidos producidos contribuyen a este proceso destructivo. La combinación de desgaste y la corrosión también podrá eliminar películas superficiales de protección y acelerar ataque localizado por la corrosión. Esta forma de corrosión a menudo se pasa por alto o reconocido como debido al desgaste. El uso de inhibidores de corrosión puede controlar esta forma de destrucción metal. Estos se utilizan ampliamente para la protección de equipos de bombeo de fondo en pozos de petróleo. 7 1.3.2.6 Corrosión por tensión. La corrosión por tensión es producida por los efectos combinados de la tensión y la corrosión sobre los metales. Una característica de la corrosión por tensión es que se desarrollan zonas concentradoras de esfuerzo debido a las tensiones residuales inducidas en partes del metal y en otras partes no, esto a lo largo de una tubería. La zona metálica sometida a tensión es anódica, mientras que la zona del metal que no está sometida a tensión es catódica. El grado en que estas tensiones se inducen en las tuberías varía con: las propiedades metalúrgicas, trabajo en frío el peso de la tubería efectos de los resbalones, efectos de primera clase en juntas de herramientas presencia de gas H2S. En los campos de petroleros, la corrosión bajo tensión en presencia de H2S ha sido fundamental para el fallo repentino de tubos de perforación. 1.3.2.7 Corrosión electroquímica. Se establece cuando en una misma superficie metálica ocurre una diferencia de potencial en zonas muy próximas entre sí en donde se establece una migración electrónica desde aquella en que se verifica el potencial de oxidación más elevado, llamado área anódica hacia aquella donde se verifica el potencial de oxidación (este término ha quedado obsoleto, actualmente se estipula como potencial de reducción) más bajo, llamado área catódica. 1.3.2.8 Corrosión microbiológica. La influencia de los microorganismos en la corrosión está relacionada con las actividades metabólicas microbianas, donde la interface entre la superficie del metal y estos organismos puede ser física y químicamente alterada. Las reacciones pueden producir ácidos, alcoholes, CO2, H2S, NH3, y otros productos metabólicos que son capaces de corroer varios tipos de metales bajos las condiciones apropiadas. Los microorganismos pueden consumir el oxígeno, formando aniones que se concentran en pits o cavidades, y bajo los depósitos, estropear las películas pasivas superficiales, lo que acelera la velocidad del ataque corrosivo por una variedad de mecanismos 1.3.2.9 Corrosión por presiones parciales de oxígeno. El oxígeno presente en una tubería por ejemplo, está expuesto a diferentes presiones parciales del mismo. Es decir una superficie es más aireada que otra próxima a ella y se forma una pila. El área sujeta a menor aireación (menor presión parcial) actúa como ánodo y la que tiene mayor presencia de oxígeno (mayor presión) actúa como un cátodo y se establece la migración de electrones, formándose óxido en una y 8 reduciéndose en la otra parte de la pila. Este tipo de corrosión es común en superficies muy irregulares donde se producen obturaciones de oxígeno. 1.3.2.10 Corrosión intergranular. Se produce cuando el metal es atacado preferentemente a lo largo de los límites de grano. Esto se debe a tratamientos térmicos inadecuados de aleaciones o exposición a altas temperaturas que puede causar la no homogeneidad de la estructura metálica en los límites de grano, que resulta en un ataque preferencial en estos sitios. El ataque se produce en una banda estrecha a cada lado del límite, debido a la sensibilización o cambios en la estructura de grano debido a la soldadura. La selección de un tratamiento térmico o metal adecuado puede prevenir la falla de la soldadura de granos. La corrosión tiña es un ataque selectivo típico de esta clase, que forma ranuras a lo largo de la tubería. Este tipo de ataque selectivo se evita por recocido de la tubería después de que se detecte una alteración. 1.3.2.11 Corrosión por cavitación. El daño por cavitación se manifiesta por una apariencia similar a una esponja con hoyos profundos en la superficie del metal. La destrucción puede ser causada por efectos puramente mecánicos en los que las presiones pulsantes causan vaporización con la formación y colapso de burbujas en la superficie del metal. El trabajo mecánico sobre la superficie metálica causa la destrucción, que se amplifica en un ambiente corrosivo. Este tipo de ataque de corrosión se puede mencionar los daños que producen en bombas centrífugas, y se puede prevenir mediante el aumento de la carga neta positiva de succión de los equipos de bombeo. Una carga neta de succión positiva siempre debe mantenerse no sólo para prevenir daños por cavitación, sino también para evitar la posible aspiración de aire en la corriente de flujo. Este último puede agravar la corrosión en muchos aspectos. 1.3.2.12 Corrosión por socavados o grietas (Crevice). Corrosión tipo grieta o socavado es un ejemplo de ataque localizado en las áreas blindadas de montajes metálicos, tales como tuberías y collares, pasadores de varilla y cajas, tubos y juntas de la tubería de perforación. Este tipo de corrosión es causada por diferencias de concentración de agentes corrosivos sobre una superficie metálica. Las diferencias de potencial electroquímico dan lugar a grietas selectivas o picaduras como forma de ataque de corrosión. El oxígeno disuelto en el fluido de perforación promueve grietas 9 y picaduras que atacan al metal en las áreas blindadas de sarta de perforación y es la causa común de derrumbes y destrucción de estas herramientas.[6] 1.3.3 Tipos de corrosión más comunes en campos petroleros 1.3.3.1 Corrosión dulce. La corrosión dulce es un tipo común de corrosión y se puede definir como el deterioro de metal debido al contacto con el dióxido de carbono, ácidos orgánicos u otros agentes corrosivos similares, pero con exclusión de sulfuro de hidrógeno H2S. Se puede reconocer este tipo de corrosión por picaduras en el acero. El CO2 seco por sí mismo no es corrosivo a las condiciones de presión y temperatura encontradas dentro de los sistemas de producción de petróleo y gas, pero sí lo es cuando se disuelve en una fase acuosa a través de la cual puede promover una reacción electroquímica entre el acero y la fase acuosa en contacto, mediante la generación del ácido carbónico y por ende, la acidificación del ambiente. Los sistemas de dióxido de carbono son uno de los entornos más comunes en la industria del campo petrolífero, donde se produce esta corrosión. El dióxido de carbono reacciona con la humedad en el ambiente y forma un ácido carbónico débil (H2CO3) en agua, que luego reacciona con el metal (sin embargo, esta reacción se produce muy lentamente): CO2(g) + H2O(l) ↔ H2CO3(ac) 3 H2CO3(ac) + H2O(l) ↔ H3O+ + H2CO3- 4 Fe(s) + H2CO3(sol) → FeCO3(s) + H2(g)↑ 5 3Fe(s) + 4H2O(l) → Fe3O4(s) + 4 H2(g)↑ 6 Las tasas de corrosión en un sistema con CO2 pueden alcanzar niveles muy altos (miles de milésimas de pulgada por año), pero la corrosión se puede inhibir con eficacia. La reacción de CO2 con agua disminuirá el pH, lo que provocará la corrosión. Con el aumento de solubilidad del dióxido de carbono en agua, la corrosión aumentará. La solubilidad se determina por la temperatura, la presión, y la composición. La presión aumenta la solubilidad, mientras que la temperatura la disminuye. La corrosión dulce siempre ocurre en pozos cuando ocurre condensación, generando el ataque llamado tipo lluvia. Los pozos 10 productores producen agua con pH inferior a 7 en la cabeza de pozo y comúnmente un valor tan bajo como 4 en el fondo. Esto es debido a: Los altos contenidos de CO2 gas; por lo general por encima del 3%. Alta presión total, que van desde 1.000 a 8.000 psi en el fondo del pozo. Presencia de ácidos orgánicos, tales como ácido acético (CH3COOH). La erosión por flujo de gas a alta velocidad agrava la corrosión.[7] Los tipos característicos de los daños causados por la corrosión dulce son: Ataque agujero tipo gusano (wormhole attack). Ataque tipo tiña (ringworm attack). Ataque tipo mesa (mesa attack). Ataque tipo gotas de lluvia (rain drop)[8]. 1.3.3.2 Corrosión agria o amarga. El deterioro de metal debido al contacto con sulfuro de hidrógeno (H2S) y la humedad se llama corrosión agria que es capaz de perforar tuberías. Aunque el H2S no es corrosivo por sí mismo, se convierte en un agente severamente corrosivo en presencia de agua, lo que lleva a la tubería a ser más frágil. El sulfuro de hidrógeno cuando se disuelve en el agua es un ácido débil, y por lo tanto, es una fuente de iones de hidrógeno, y este último es corrosivo. Los productos de corrosión son sulfuros de hierro (FeSx) y de hidrógeno. El sulfuro de hierro forma una capa que a baja temperatura puede actuar como una barrera capaz de desacelerar la corrosión. Las formas de corrosión agria son uniforme, picaduras de fondo agudo, forma cónica de bordes inclinados y grietas bajo tensión. La ecuación general de la corrosión ácida se puede expresar como sigue: H2S(g)+ Fe2+ + H2O(l) → FeSx(s) + 2H+ + H2O(l) 7 1.3.3.3 Corrosión por oxígeno. El oxígeno es un oxidante fuerte y reacciona con el metal muy rápidamente. El oxígeno disuelto en los fluidos de perforación es la principal causa de la corrosión de las tuberías utilizadas para este fin. La entrada de oxígeno toma lugar en los fluidos del pozo a través de los sellos de las bombas, revestimiento, y escotillas abiertas. Como un 11 despolarizador y aceptor de electrones en las reacciones catódicas, el oxígeno acelera la destrucción anódica del metal. El flujo de alta velocidad de los fluidos de perforación sobre las superficies de un tubo de perforación continúa para suministrar oxígeno al metal, el cual es destructivo a concentraciones tan bajas como 5 ppb. La presencia de oxígeno aumenta los efectos corrosivos de los gases ácidos (H2S y CO2). La inhibición de la corrosión promovida por el oxígeno es difícil de lograr y no es práctico en el sistema de fluido de perforación. Las formas de corrosión asociada con el oxígeno son principalmente uniforme la corrosión y del tipo de picaduras de corrosión. Las tipos de corrosión por oxígeno puede ser uniforme o picaduras, las cuales presentan fondos y lados lisos, diámetro mayor que la profundidad, inclusive da la apariencia de tubérculos en la superficie del metal. [9] Gráfico 1. Velocidades de corrosión al acero en general por CO2, H2S y O2. [10] 12 1.4 Inhibidores de corrosión. Un inhibidor de corrosión es una sustancia química que detiene, evita ó retrasa, alguno ó todos los pasos que tienen lugar durante el proceso de disolución de una estructura metálica. Sus características dependen del medio donde son requeridos, en el caso de las industrias que se relacionan con el petróleo (extracción, procesamiento, almacenaje y transporte), y se clasifican en tres grupos: pasivadores, inhibidores en fase vapor e inhibidores fílmicos. [11] 1.4.1 Inhibidores del tipo pasivador. Por lo general estos inhibidores son especies inorgánicas (sales) como: cromatos, nitritos, molibdatos etc., que reaccionan electroquímicamente con la fase metálica a proteger, ó los mismos productos de corrosión. En consecuencia las películas de corrosión formadas en presencia de este tipo de inhibidores, son de naturaleza semi-protectora, por una disminución en su carácter conductor de la corriente eléctrica; alargando la vida útil de las piezas tratadas. Adicionalmente se sabe que la presencia de estos inhibidores, generan cambios estequiométricos, cristalinidad y topográficos en las películas formadas. 1.4.2 Inhibidores en Fase Vapor. Estas especies se utilizan como pre tratamientos en estructuras nuevas ó que han recibido mantenimiento (remoción de productos de corrosión). En esencia, estas especies cuentan con las mismas características que los inhibidores fílmicos. La única diferencia que se observa con respecto a ellos, es la manera en cómo se forman las películas: por evaporación natural, ó por aerosoles. 1.4.3 Los inhibidores fílmicos de corrosión. Estos inhibidores se tratan de especies meramente orgánicas, con dos características en particular. Primeramente se requiere que cuenten con grupos funcionales con altas densidades de carga negativa (N, aminas, S, OH, carbonilos, anillos aromáticos etc.), que funcionen como un grupo quelante que favorezca la adsorción del inhibidor sobre la superficie metálica. En segundo lugar, el cuerpo del inhibidor debe de estar constituido por un sustituyente hidrofóbico, que tenga suficiente movilidad para rotar sobre el grupo quelante; de esta forma, se genera una sombrilla o capucha que impide el contacto entre el medio corrosivo y la superficie metálica. 13 Un problema que se presenta con este tipo especies (sin importar la manera como se usen), es la ausencia de una película de inhibidor, que aísle por completo la estructura, del medio corrosivo. Aunque un inhibidor del tipo imidazolina, con una masa molecular del orden de los 200 g/mol, podría cubrir un área aproximada de 1010 m2/mol (con una adsorción al 100%), existen cuatro factores que disminuyen su porcentaje de adsorción, y de protección contra la corrosión: La afinidad del inhibidor por el medio corrosivo y los derivados del crudo. La formación de micelas, por una mala dispersión del inhibidor. La velocidad del fluido. La temperatura. Las aminas grasas, imidazolinas, sales de amina, compuestos de amonio cuaternario, óxidos de amina, aminas etoxiladas son sustancias químicas muy usadas para la formulación de inhibidores fílmicos de corrosión para campos petroleros. Los inhibidores protegen a la tubería de la corrosión por adsorción del grupo polar a una superficie metálica. [12] Figura 2. Estructura de una imidazolina típica para inhibidores de corrosión. [13] 14 Figura 3. Esquema representativo del mecanismo de funcionamiento de un inhibidor fílmico de corrosión. [14] 1.5 Formulación de un inhibidor de corrosión La formulación de un inhibidor de la corrosión eficaz es una tarea compleja. Pruebas en laboratorio y campo a menudo se requieren para el desarrollo de un inhibidor de la corrosión. El primer paso en la formulación de un inhibidor de la corrosión es determinar una aplicación prevista del inhibidor en el sistema de producción de campos petroleros. La solubilidad y la dispersabilidad es importante para formular un inhibidor que funcione en las diferentes fases del sistema. Un inhibidor puede ser soluble en aceite y agua o dispersable en agua. Cualquier inhibidor líquido también puede ser mezclado con aminas volátiles para inhibir la corrosión en la fase gaseosa. En general, la neutralización de la amina con un ácido trímero dímero (DTA) hará que sea soluble en aceite. La neutralización con ácido acético hará que sea dispersable en agua. [15] Los DTA son ácidos orgánicos insaturados que poseen en su estructura entre 36 y 54 átomos de carbono. [16] La neutralización con una combinación de ácido acético y DTA lo hará soluble en aceite y dispersable en agua. En sistemas con 100% aceite, lo mejor es neutralizar la amina con 100% de DTA. Hay ciertas técnicas de tratamiento que requieren un inhibidor soluble en aceite. Incluso con pequeñas cantidades de agua presente puede ser mejor hacer un inhibidor dispersable en agua y soluble en aceite, o añadir un compuesto de amonio cuaternario a la mezcla. Cuando hay un alto porcentaje de agua presente en el pozo, una mezcla dispersable en agua puede ser la mejor opción. 15 1.5.1 Selección de bases para inhibidores en tratamientos a pozos y líneas de producción. Un inhibidor soluble en aceite es normalmente mejor para tratamientos Squeeze (inyección a presión a la formación). Los tratamientos squeeze se realizan forzando el inhibidor en la formación del pozo. Como el pozo produce fluidos (petróleo y agua de formación), el inhibidor de la corrosión retorna lentamente en el fluido producido, manteniendo así un largo período de inhibición de la corrosión a lo largo de todo el pozo. En ciertos pozos estos tratamientos pueden causar daños a la formación ya que el inhibidor de corrosión puede causar el taponamiento de las arenas. La dimensión del daño depende de la concentración de inhibidor de bombeado, el tipo de inhibidor utilizado, las características de la formación y el fluido de control utilizado. Para esto, es necesario realizar pruebas de compatibilidad, así como recurrir a historiales de daños anteriores en la formación. Un demulsificante puede ser añadido para prevenir batchs de emulsión. En estos tratamientos se usa el inhibidor soluble en aceite junto con un diluyente también base aceite (diesel o condensado), que se utiliza para llenar aproximadamente la mitad del volumen de la tubería de revestimiento (casing). A medida que el inhibidor sube a la cabeza del pozo durante la producción, el inhibidor deja un depósito (film) en la tubería interna (tubing). Este depósito puede inhibir la corrosión desde el fondo de pozo durante un largo periodo de tiempo. En tratamientos tipo batch (por lotes) normalmente utilizan un inhibidor soluble en aceite. En este tipo de tratamiento se inyectan unos cuantos litros de inhibidor seguido de unos cuantos litros de agua en el espacio anular del pozo. Este método de tratamiento permite atender a varios pozos en poco tiempo. El inhibidor de corrosión se mezcla con los fluidos de producción en el espacio anular y un residual del producto va hacia afuera del pozo. Los tratamientos pigging (conocido como rascado interno o marraneo de tubería) requiere un inhibidor soluble en aceite. En pigging, una dosis de inhibidor se envía antes de un ¨cerdo¨ para recubrir la tubería con una película persistente. Lo mejor es dosificar una cantidad entre dos cerdos para obtener una cobertura más completa de las superficies internas de la tubería. Un recubrimiento completo de la tubería depositará inhibidor en puntos bajos donde se acumula el agua y en las partes superiores de la tubería, donde la corrosión por vapores condensados es un problema serio. Estos tratamientos de rascado (pigging) 16 también pueden eliminar formaciones de escala (incrustaciones) que albergan bacterias reductoras de sulfato. Tuberías que conducen petróleo y agua requieren un inhibidor dispersable en agua y soluble en aceite. Incluso pequeñas cantidades de agua puede acumularse en las partes bajas, por lo que un inhibidor dispersable en agua es indispensable. Bases químicas de amonio cuaternario o aminas son eficaces como inhibidores de la corrosión en la fase de agua. En el tratamiento para sartas de producción el inhibidor de corrosión puede ser aplicado por lotes (batch) o inyección continua. Con la inyección por lote, un inhibidor soluble en aceite puede ser mejor la mejor opción, mientras que para la inyección continua, un inhibidor soluble en aceite y dispersable en agua es recomendable. Cuando hay un exceso de agua producida en separadores (bifásicos o trifásicos), o líneas de inyección de agua, un inhibidor dispersable en agua puede ser necesario para complementar la inhibición en el tratamiento de inyección hacia el fondo del pozo (pozos inyectores). Pozos con gases corrosivos (CO2 y H2S) pueden requerir la inyección de un inhibidor, dispersable en agua en la cabeza del pozo para evitar la corrosión por la fase acuosa. Líneas y pozos de inyección de agua sin revestimientos plásticos (sin liners), obviamente, requieren un inhibidor dispersable en agua. Es necesario mencionar que solo el agua libre de oxígeno puede inhibirse. La inhibición de la fase de gas o vapor requiere inhibidores especiales. Las aminas volátiles tales como dietil amina, dietanolamina, morfolina, y metoxipropil amina son bases usadas para el control de la corrosión en la fase de vapor. El vapor de agua puede ser muy corrosivo. Estas aminas no neutralizarán todo el gas ácido del sistema, por lo que aumentará el pH del agua condensada. Sistemas de gas amargo a menudo requieren alquil piridina para controlar esta corrosión agresiva. Las recomendaciones anteriores no cubren todas las situaciones en el campo petrolero, pero se presentan como una guía general para la selección de bases químicas para inhibidores de corrosión. Las características consideradas de la dispersión que se necesita en cada caso a tratar son muy importantes. Es por esto que las especificaciones de un inhibidor pueden variar de un campo a otro. La adición de agentes tensoactivos debería resultar en mezcla dispersable en agua. Las aminas etoxiladas, presentan una doble función como un agente tensoactivo y un inhibidor de la corrosión. 17 Los tensoactivos también limpian la superficie del metal y permiten que el inhibidor de la corrosión trabaje en la superficie metálica. Demulsificantes son usualmente mezclados con el inhibidor de la corrosión para evitar emulsiones.[17] 1.5.2 Criterios para la selección de un inhibidor en campos petroleros. 1.5.2.1 Solubilidad del inhibidor. Normalmente, en sistemas de agua se utilizan inhibidores solubles en agua, aunque con frecuencia los inhibidores dispersables en agua ofrecen una mejor protección que los inhibidores solubles. Sin embargo, existe inquietud acerca de la posibilidad de la formación de taponamiento de líneas por el uso de este tipo de inhibidores. 1.5.2.2 Oxígeno disuelto. Los inhibidores de corrosión orgánicos normales no inhiben en forma eficaz la corrosión causada por el oxígeno disuelto. Los inhibidores orgánicos comunes son raramente efectivos en presencia de oxígeno disuelto, por lo que el oxígeno deberá ser eliminado o minimizado a un valor de 20ppb para poder utilizar este tipo de inhibidores. 1.5.2.3 Incompatibilidad. Si se inyectan otros químicos en el sistema como inhibidor de escala, biocidas o secuestrante de oxígeno, debe revisarse la compatibilidad con estos. Si reaccionan entre sí, puede que se reduzca o destruya la efectividad del inhibidor. 1.5.2.4 Detergencia del inhibidor. La mayoría de inhibidores de la corrosión poseen detergencia que ayudan a que el sistema se mantenga limpio. Esto es deseable ya que el inhibidor debe alcanzar la superficie del metal para poder cumplir su función. Si se acumulan lodos en la superficie del metal, puede haber una interferencia con el inhibidor, por eso cierta cantidad de detergencia es conveniente. Pueden presentarse problemas de taponamiento, si una gran cantidad de sedimentos se limpian de la superficie del metal de la tubería y se inyecta a un pozo. 1.5.2.5 Costo del inhibidor. No se debe hacer la selección de un inhibidor basado en el costo del químico por galón. Algunas veces el químico más caro será el efectivo. En resumen, se seleccionará el inhibidor que genere el menor costo de tratamiento químico por barril de agua inyectado, manteniendo la menor velocidad de corrosión. 1.5.2.6. Aplicación del inhibidor. Los inhibidores orgánicos se proveen en forma líquida y se inyectan con bombas químicas. Con frecuencia, se diluye el químico para facilitar su aplicación. En climas fríos, se debe acondicionar el químico a esta condición (frecuentemente con alcohol) o se lo debe mantener en una instalación calefaccionada. Si se acondiciona para el frío, el químico debe ser compatible con el alcohol ya que puede provocar precipitados.[18] 18 1.6 Evaluación de inhibidores de corrosión en laboratorio. 1.6.1 Método Wheel Test. Conocido también como prueba de la rueda es un ensayo de evaluación de inhibidores de corrosión que utiliza una caja de temperatura controlada con una rueda giratoria a la que se adjuntan botellas que contienen las muestras de ensayo, es decir, piezas metálicas en un ambiente corrosivo líquido en ausencia de oxígeno. Los resultados del examen se basan en la pérdida de masa (peso) y el examen visual de la muestra de ensayo en un ambiente corrosivo. Los líquidos corrosivos son fluidos producidos, como por ejemplo agua de formación de un pozo determinado, aunque se utilizan a veces salmueras sintéticas y aceites refinados para simular las proporciones de agua y petróleo en el caso de pozos productores. Estos fluidos y los recipientes de ensayo deben excluir la contaminación con oxígeno, además se deben saturar los líquidos con gases corrosivos para simular las condiciones de campo. La duración del ensayo oscila entre 18 a 72 horas. Los metales usados para el ensayo son de acero al carbono. Se utilizan generalmente cupones para evaluar corrosión en líneas de producción, aunque por cuestión de costos y facilidad de adquisición, se opta por trabajar con electrodos para soldadura sin su capa fundente, además, se usa el equipo wheel test (una caja cerrada que contiene una rueda giratoria). Los recipientes de ensayo (normalmente botellas de bebidas) se colocan en la rueda y se ponen en movimiento circular constante durante toda la prueba a aproximadamente 30 rpm. La caja de rueda debe ser capaz de mantener una temperatura constante en un relativo amplio rango de temperatura. Las muestras de ensayo (piezas de metal), se limpian, y se pesan. La cantidad deseada de inhibidor de corrosión se añade a los recipientes de ensayo, luego los líquidos corrosivos se midieron y se coloca en los recipientes de ensayo. Se añade la pieza de metal y el recipiente sellado es unido a la rueda. Los recipientes de ensayo son rotados a temperatura constante durante el periodo de prueba que se desee, por lo general, 24 horas. A menos que la temperatura de campo esté fuera de la temperatura de funcionamiento del recipiente de caja de la rueda y o de resistencia de las botellas, la temperatura usada es por lo general la temperatura de campo. 19 Al final del período de prueba, los recipientes de ensayo son enfriados y se eliminan los fluidos corrosivos, las muestras de ensayo (piezas de metal), se limpian, y se pesan. Los valores de eficiencia del inhibidor se obtienen mediante la una fórmula que relaciona la pérdida de peso de un cupón con inhibidor, con la pérdida de peso de un cupón blanco, es decir, sin inhibidor. Una inspección visual de las muestras de ensayo proporciona información importante sobre el tipo de ataque de la corrosión. [19] La eficiencia como porcentaje de los inhibidores de corrosión se calcula con la ecuación (1): %Efi = (1 − Wic )∗ Wb 100 (1) Donde: Wic = Peso perdido (en gramos) por la pieza metálica (cupón) con inhibidor de corrosión. Wb = Peso perdido (en gramos) por la pieza metálica sin inhibidor de corrosión (peso del blanco). % Efi = Porcentaje de eficiencia o protección contra la corrosión. [20] 20 2. MARCO EXPERIMENTAL 2.1 Proceso experimental seleccionado 2.1.1 Descripción del proceso Fueron seleccionadas 5 familias químicas que para este trabajo se las denominó base, con las que se formularon inhibidores de corrosión. Estas fueron seleccionadas luego de una amplia revisión bibliográfica que arrojó, las familias más usuales usadas en este tipo de productos químicos. Así, las bases tienen por componentes: Tabla 2. Bases químicas para formular inhibidores de corrosión Nombre Composición Base 1 Imidazolina, dietiltriamina Base 2 Amonio cuaternario, Cloruro de alquil dimetil bencil amonio. Base 3 Aminas etoxiladas Base 4 Alquil aminas Base 5 Aceites de resinas, ácidos grasos con dietilentriamina Fuente: Hojas técnicas y de seguridad del laboratorio de investigación y desarrollo de Interoc en Quito. Los 5 primeros inhibidores fueron formulados de acuerdo a las recomendaciones del fabricante de las bases, y se las evaluó a 30 ppm de concentración de cada uno, en el ambiente corrosivo líquido de 10% aceite, 90% agua y 80000 ppm de salinidad a 50°C mediante wheel test. Debido a la baja eficiencia protección del inhibidor formulado con la base 5 que se observa en la tabla 11, se lo eliminó, continuando con las restantes formulaciones en una segunda fase de evaluación. Previo a cada evaluación, todos los inhibidores fueron sometidos a un calentamiento durante 30 minutos a 120 ᵒC, para probar su estabilidad frente a altas temperaturas. 21 La evaluación fue realizada continuando con el procedimiento establecido para wheel test. En la segunda etapa, a aquellos inhibidores con las mejores eficiencias, los correspondientes a la base 4 se varió el porcentaje de base y solventes de la formulación inicial, mientras que a las bases 2 y 3 se las combinó en diferentes proporciones, dando como resultado nuevas formulaciones, que fueron denominadas con la misma codificación alfabética pero se modificó el número de serie, para reconocer a la familia que pertenece. Cada una de estas formulaciones se dosificó a diferentes concentraciones: 15, 30 y 45ppm, que son dosificaciones que permitirán establecer una tendencia de cada producto, además de que estas dosis son rangos establecidos por parte de empresas productoras de petróleo, y fueron evaluados en dos ambientes corrosivos a 50ᵒC. Los ambientes corrosivos fueron los siguientes: 35% aceite, 65% agua y 40000 ppm de salinidad, y el segundo ambiente es 10% de aceite, 90% de agua, 80000 ppm de salinidad que corresponde a la condición inicial de evaluación. Los datos de las evaluaciones a 3 dosificaciones, permitirán determinar la mejor base, así como el comportamiento de cada producto en los diferentes ambientes corrosivos y la mejor composición del mismo. Cada dosificación se evaluó por duplicado, de tal manera que la pérdida de peso, sea un promedio y que de esta manera, el valor obtenido de eficiencia de protección, sea lo más real posible. El producto con mejor eficiencia y estabilidad, fue comparado con la eficiencia del producto que actualmente se usa en campo, y se determinan las propiedades físico químicas del mismo. 22 2.2 Diseño experimental para determinar la mejor formulación del inhibidor de corrosión a nivel de laboratorio. Figura 4. Diseño experimental para determinar la mejor formulación de un nuevo inhibidor de corrosión. Donde: C1.- Condiciones de evaluación 80000 ppm de salinidad, 90% agua, 10% aceite y 50°C. C2.- Condiciones de evaluación 40000 ppm de salinidad, 35% agua, 65% aceite y 50°C. Dn.- Dosificación de cada producto en ppm (15, 30, 45 ppm). P.FQ.- Propiedades físico químicas del mejor producto formulado. 23 2.3. Materiales y Equipos 2.3.1 Materiales para desarrollar la prueba de evaluación de inhibidores wheel test Electrodos de soldadura AGA 7018 1/8 cortados y lijados (cupones de corrosión) Lijas para metal Botellas plásticas de 500 ml. con tapa rosca Recipientes de plástico para preparación de salmuera. Probetas de 500 ml. Vasos de precipitación de 200mL, 500mL y 1000mL Pinzas o imán Crema lavaplatos o detergente Estropajos Papel toalla Estufa Balanza analítica (Ap = ± 0,001 g) Equipo Wheel Test Micropipetas dosificadoras (R = 10 – 100 μL) (Ap = ± 0,5 μL) 2.4 Sustancias y reactivos 2.4.1 Sustancias para simular el ambiente corrosivo líquido y formulaciones Ácido clorhídrico al 5% HCl(ac.) Ácido tioglicólico C2H4O2S(conc.) Metanol CH4O(conc.) Agua H2O(l) Ácido acético C2H4O2(conc.) Cloruro de sodio comercial (sal común) NaCl(s) Agua mineral con gas (Güitig) Diesel Dióxido de carbono gaseoso CO2(g) Alcohol isopropílico (IPA) C3H8O(conc.) 24 2.5 Procedimiento 2.5.1 Preparación de cupones Calcular la cantidad de cupones a ser preparados de acuerdo al número de productos, dosis a evaluar y número de réplicas de cada dosis (duplicado). Con un martillo retirar la capa fundente de los cupones, cortarlos de acuerdo a la medida de las botellas plásticas para que al introducirlos en las mismas no se muevan demasiado, es decir deben tener la misma longitud una vez que las botellas sean tapadas. Lijar cada cupón a fin de retirar todo el remanente de la capa fundente. Lavar los cupones con el paño estropajo y crema detergente, enjuagarlos, y con el uso de una pinza o imán sumergirlos en HCl al 5% por aproximadamente 20 segundos, enjuagarlos con abundante agua y sumergirlos después en IPA por otros 20 segundos. Secar los cupones con una toalla y colocarlos individualmente en tubos de vidrio previamente enumerados y codificados. Introducir los tubos con los cupones en la estufa a 60 ᵒC por 30 minutos, retirarlos de la estufa y dejarlos enfriar a temperatura ambiente por 60 minutos. 2.5.2 Preparación de salmuera Pesar la sal de acuerdo a los ppm de cloruros requeridos para cada condición a evaluarse. Colocar la sal en el recipiente adecuado y disolver con agua mineral con el volumen requerido para llenar las botellas de prueba. Burbujear CO2 gaseoso en la salmuera por aproximadamente 30 minutos. 2.5.3 Dosificación de inhibidores Preparar soluciones al 10% con agua destilada, de cada uno de los químicos inhibidores a evaluarse. Dosificar los ppm de cada producto en cada botella plástica, de acuerdo al porcentaje de agua y aceite (diesel) de cada botella, empleando un tip individual de la micropipeta, para cada producto. Este paso se hace por duplicado a cada concentración de inhibidor. Aforar cada botella con la salmuera y diesel con mucho cuidado evitando que ingrese oxígeno al interior, taparlas y sellarlas muy bien para evitar fugas. 25 Se colocan dos botellas con dos cupones (electrodos AGA) y se afora con salmuera y diesel, sin adicionar ningún inhibidor. Estos serán los cupones en ¨blanco ¨ por duplicado. 2.5.4 Armado de la prueba Wheel Test Previo a la prueba, calentar los inhibidores a 120 ᵒC durante 30 minutos, dejar enfriar y dosificar. Pesar los cupones luego de su preparación y registrar este valor como peso inicial. Enumerar cada botella, y llevar el registro del cupón, tipo de inhibidor de corrosión y cuántos ppm que contendrá cada una. Preparar soluciones al 10% con agua destilada, de cada uno de los químicos inhibidores a evaluarse. Dosificar los ppm de cada producto en cada botella plástica, de acuerdo al porcentaje de agua y aceite (diesel) que cada botella contendrá, empleando un tip individual de la micropipeta, para cada producto. Este paso se hace por duplicado a cada concentración de inhibidor. Aforar cada botella con la salmuera y diesel con mucho cuidado evitando que ingrese oxígeno al interior, taparlas y sellarlas muy bien para evitar fugas. Se preparan dos botellas con dos cupones (electrodos AGA) y se afora con salmuera y diesel, sin adicionar ningún inhibidor. Estos serán los “cupones blanco” por duplicado. Colocar las botellas adecuadamente en el equipo wheel Test, y sujetarlas a la estructura giratoria con cinta de embalaje. Calibrar la temperatura a 50°C y encender el equipo durante 24 horas. 2.5.5 Limpieza de cupones Transcurridas 24 horas apagar el equipo y retirar el cupón de cada botella. Lavar los cupones con el paño estropajo y crema detergente, enjuagarlos, y con el uso de una pinza o imán sumergirlos en HCl al 5% por aproximadamente 20 segundos, enjuagarlos con abundante agua y sumergirlos después en IPA por otros 20 segundos. Secar los cupones con una toalla y colocarlos individualmente en tubos de vidrio enumerados y codificados. Introducir los tubos con los cupones en la estufa a 60 ᵒC por 30 minutos, retirarlos de la estufa y dejarlos enfriar por 60 minutos. Pesar cada cupón y registrar este valor como peso final. 26 3. CÁLCULOS 3.1 Cálculo del número de electrodos (cupones de corrosión) y botellas a utilizar para cada wheel test. Ncup = (𝑛𝑖𝑛ℎ𝑏 ∗ 𝑛𝑑𝑜𝑠𝑓 ∗ 𝑛𝑟𝑒𝑝𝑡 ) + 𝑛𝑏𝑙𝑛𝑐 (2) Donde: Ncup = Número de cupones necesarios para la wheel test. 𝑛𝑖𝑛ℎ𝑏 = Número de inhibidores a evaluar. 𝑛𝑑𝑜𝑠𝑓 = Número de dosificaciones en ppm de inhibidor a evaluar. 𝑛𝑟𝑒𝑝𝑡 = Número de repeticiones por dosificación e inhibidor a evaluar. 𝑛𝑏𝑙𝑛𝑐 = Número de cupones blanco, es decir, sin inhibidor de corrosión. El número de botellas es igual al número de cupones necesarios. Cálculo modelo para determinar el número de cupones a usar, de acuerdo a la wheel test que resume la tabla 11, donde se evaluaron 5 inhibidores, a una sola dosificación (30ppm), y por duplicado de cada inhibidor, además de dos cupones blanco. Ncup = (5 ∗ 1 ∗ 2) + 2 Ncup = 12 unidades 3.2 Cálculo del volumen de la salmuera a preparar para cada evaluación wheel test. 𝑉𝑠𝑎𝑙𝑚 = (𝑁𝑐𝑢𝑝 ∗ 𝑉𝑏𝑜𝑡𝑙 ∗ 𝑋𝑎𝑔𝑢𝑎 ) + 1000 Donde: 𝑉𝑠𝑎𝑙𝑚 = Volumen de la salmuera a preparar en mL. Ncup = Número de cupones necesarios para la wheel test. 27 (3) 𝑉𝑏𝑜𝑡𝑙 = Volumen total de la botella recipiente en mL. 𝑋𝑎𝑔𝑢𝑎 = Fracción de agua en la botella. Los 1000 mL es un excedente para tener volumen de salmuera de reserva para las botellas. Cálculo modelo, para determinar el volumen de salmuera a preparar para la prueba que indica la tabla 11, para 12 botellas de 500 mL de capacidad total cada una, con una fracción de agua de 0,9 que equivale a 90%. 𝑉𝑠𝑎𝑙𝑚 = (12 ∗ 500 ∗ 0,9) + 1000 𝑉𝑠𝑎𝑙𝑚 = 6400 𝑚𝐿 3.3 Cálculo de la cantidad requerida de sal (cloruro de sodio) a añadir al volumen de la salmuera, para obtener la salinidad en ppm de cloruros. 𝑝𝑝𝑚∗ 𝑉𝑠𝑎𝑙𝑚 ) 1∗ 106 𝑚𝐶𝑙− = ( (4) 𝑚𝑁𝑎𝐶𝑙 = 1,647 ∗ 𝑚𝐶𝑙− (5) Donde: 𝑚𝐶𝑙− = Masa requerida de cloruros en gramos. ppm = Partes por millón de salinidad, expresada como cloruros. 𝑉𝑠𝑎𝑙𝑚 = Volumen de la salmuera preparada en mL. 𝑚𝑁𝑎𝐶𝑙 = Masa de cloruro de sodio necesaria para obtener la salinidad en ppm de cloruro. Cálculo modelo para obtener la cantidad de cloruro de sodio necesaria para obtener la salinidad requerida en la salmuera, para la prueba de la tabla 11, en donde se requiere preparar 6400mL de salmuera con una salinidad de 80000 ppm de cloruros. 80000∗ 6400 ) 1∗ 106 𝑚𝐶𝑙− = ( 𝑚𝐶𝑙− = 512 g Cl− 28 𝑚𝑁𝑎𝐶𝑙 = 1,647 ∗ 512 𝑔𝐶𝑙 − 𝑚𝑁𝑎𝐶𝑙 = 843,26 𝑔 𝑁𝑎𝐶𝑙 3.4 Cálculo de los ppm de inhibidor de corrosión en una dilución al 10%. V ppmdil10 = ( Vinhb ) ∗ 1 x 106 dilu (6) Donde: Vinhb = Volumen del inhibidor en mL. Vdilu = Volumen total de la dilución en mL. ppm𝑑𝑖𝑙10 = ppm del inhibidor presentes en la dilución al 10%. Cálculo modelo para determinar los ppm obtenidos en una dilución al 10%, que es la dilución a partir de la cual, se dosificará en las botellas. 1mL ppm = ( ) ∗ 1 x 106 10mL ppm = 100000 3.5 Cálculo de la cantidad de inhibidor de corrosión a inyectar en cada botella, para obtener los ppm que se desea evaluar. 𝑝𝑝𝑚𝑟𝑒𝑞 ∗ 𝑉𝑎𝑔𝑏𝑡 𝑉𝑑𝑠𝑖𝑛 = ( ppm𝑑𝑖𝑙10 ) ∗ 1000 (7) Donde: 𝑉𝑑𝑠𝑖𝑛 = Volumen en μL (microlitros) a dosificar del inhibidor de corrosión diluido al 10%. 𝑝𝑝𝑚𝑟𝑒𝑞 = ppm requeridos de inhibidor de corrosión para la evaluación. 𝑉𝑎𝑔𝑏𝑡 = Volumen de agua en la botella en mL. ppm𝑑𝑖𝑙10 = ppm del inhibidor presentes en la dilución al 10%. 29 Cálculo modelo para determinar la cantidad de inhibidor diluido al 10% se debe dosificar, a una botella de volumen total de 500mL, con un porcentaje de agua 90% o fracción 0,9 para obtener 15 ppm de producto al interior de la botella. Esto de acuerdo a los valores de las condiciones de evaluación de la tabla 11. 𝑉𝑑𝑠𝑖𝑛 = ( 15𝑝𝑝𝑚 ∗ 450𝑚𝐿 ) ∗ 1000 100000𝑝𝑝𝑚 𝑉𝑑𝑠𝑖𝑛 = 67,5μL 3.6 Cálculo del porcentaje de protección (eficiencia) del inhibidor de corrosión. %Efi = (1 − Wic )∗ Wb 100 Cálculo modelo para la determinación de la eficiencia del inhibidor Ar 1 evaluado a 30 ppm, según se indica en la tabla 11. Para esto, se toma el promedio de la pérdida de peso del cupón con inhibidor, y se lo relaciona con el promedio de la pérdida de peso del “cupón blanco”. %Efi Ar 130ppm = (1 − 0,012 ) ∗ 100 0,071 %Efi Ar 130ppm = 83,10 % 30 4. DATOS EXPERIMENTALES 4.1 Datos obtenidos a 18ᵒC en el laboratorio de pH, solubilidad de las bases seleccionadas y nombres de los inhibidores de corrosión a evaluarse. Tabla 3. pH de las bases Nombre pH Base 1 11 Base 2 6 Base 3 7 a 11,6 Base 4 12 Base 5 12 Tabla 4. Solubilidad y dispersabilidad de las bases en diferentes solventes. Nombre Solvente Agua Xileno Diesel Base 1 Sí No No Base 2 Sí No No Base 3 Dispersable Sí Sí Base 4 Dispersable Sí Sí Base 5 Sí No No Datos extraídos de pruebas experimentales de laboratorio Tabla 5. Nombres de los inhibidores formulados para la primera fase de wheel test a 30 ppm de producto y a 10%aceite, 90%agua y 80000 ppm de salinidad. Base Nombre del inhibidor de corrosión Base 1 Ar 1 Base 2 Adb 3 Base 3 Corrcontrol Oil Base 4 ICWS 40 Base 5 Mhb 2 31 4.2 Formulaciones de los 5 primeros inhibidores a evaluarse mediante wheel test a 50°C. Tabla 6. Formulación de Ar 1 para la prueba a 30 ppm del inhibidor y a 10%aceite, 90%agua y 80000 ppm de salinidad. Componentes %P Base 1 10,0 Ác. Tioglicólico 4,0 Agua 54,0 Metanol 32,0 Tabla 7. Formulación de Adb 3 para la prueba a 30 ppm del inhibidor y a 10%aceite, 90%agua y 80000 ppm de salinidad. Componentes %P Base 2 12,0 Ác. Tioglicólico 5,0 Metanol 25,0 Agua 44,0 Tabla 8. Formulación de Corrcontrol Oil para la prueba a 30 ppm del inhibidor y a 10%aceite, 90%agua y 80000 ppm de salinidad. Componentes %P Base 3 20,0 Ác. Acético 5,0 Ác. Tioglicólico 5,0 Solveso 100 70,0 32 Tabla 9. Formulación de ICWS 40 para la prueba a 30 ppm del inhibidor y a 10%aceite, 90%agua y 80000 ppm de salinidad. Componentes Base 4 Ác. Tioglicólico Metanol Agua %P 10,0 5,0 20,0 65,0 Tabla 10. Formulación de Mhb 2 para la prueba a 30 ppm del inhibidor y a 10%aceite, 90%agua y 80000 ppm de salinidad. Componentes Metanol %P 26,0 Base 5 15,3 Agua 52,7 Ác. Tioglicólico 6,0 4.3 Datos de las evaluaciones de los 5 primeros inhibidores mediante wheel test en la primera fase. Tabla 11. Datos de las pruebas de wheel test realizadas a 30 ppm del inhibidor y a 10%aceite, 90%agua, 80000 ppm de salinidad y 50°C Botella 1 2 3 4 5 6 7 8 9 10 11 12 Inhibidor Ar 1 Adb 3 Corrcontrol Oil ICWS 40 Mhb 2 BLANCO ppm Wi, g Wf, g Wi - Wf 30 12,991 12,973 0,018 30 13,000 12,994 0,006 30 12,393 12,377 0,016 30 11,381 11,340 0,041 30 12,220 12,197 0,023 30 12,471 12,447 0,024 30 12,393 12,376 0,017 30 12,395 12,378 0,017 30 12,940 12,907 0,033 30 12,953 12,916 0,037 0 11,037 10,962 0,075 0 12,545 12,478 0,067 33 Promedio % Protección 0,012 83,10 0,029 59,86 0,024 66,90 0,017 76,06 0,035 50,70 0,071 De las eficiencias obtenidas en la tabla 11 se eliminó al inhibidor Mhb 2 por baja eficiencia de protección. El Adb 3 y Corrcontrol oil poseen eficiencias muy cercanas, por lo que se hicieron pruebas combinando las bases de ambos productos, que tendrán por nombre ICOS 40 en las siguientes evaluaciones. Por lo tanto los inhibidores que continúan en el proceso de formulación y evaluación de un nuevo inhibidor serán: Ar 1, ICOS 40 e ICWS 40. Con los inhibidores clasificados, se realizaron nuevas formulaciones de cada uno. Todos los inhibidores, previo a ser evaluados mediante wheel test, fueron sometidos por 30 minutos a 120°C, con el fin de verificar la estabilidad térmica de cada producto. 4.4 Datos de las formulaciones y evaluaciones de los inhibidores clasificados. Tabla 12. Datos de la variación de la formulación del inhibidor que tiene por nombre Ar 1. Ar 1 % Peso Ar 2 % Ar 3 Peso Base 1 % Peso 12,0 Ar 4 Base 1 % Peso Base 1 10,0 Base 1 10,0 Á. tioglicólico 4,0 Á. tioglicólico 8,0 Agua 54,0 Agua 54,0 Agua 52,0 Agua 52,7 Metanol 32,0 Metanol 28,0 Metanol 26,0 Metanol 26,0 Á. tioglicólico 10,0 Á. tioglicólico 34 15,3 6,0 Tabla 13. Datos de las pruebas de wheel test realizadas para la variación de fórmulas correspondientes a Ar 1 a 10%aceite, 90%agua, 80000 ppm de salinidad y 50°C. Botella 1 2 3 4 5 Inhibidor Ar 1 Ar 2 Ar 3 6 7 8 Ar 4 9 10 11 12 13 14 15 16 17 Ar 1 Ar 2 Ar 3 Ar 4 Ar 1 18 19 20 Ar 2 21 22 23 24 25 26 Ar 3 Ar 4 BLANCO Ppm Wi, g Wf, g Wi - Wf 15 12,991 12,958 0,033 15 12,947 12,909 0,038 15 12,917 12,883 0,034 15 12,946 12,912 0,034 15 12,984 12,952 0,032 15 13,011 12,983 0,028 15 12,924 12,897 0,027 15 12,962 12,938 0,024 30 12,415 12,405 0,010 30 10,909 10,894 0,015 30 11,265 11,246 0,019 30 12,223 12,192 0,031 30 12,356 12,346 0,010 30 12,364 12,345 0,019 30 12,500 12,479 0,021 30 12,382 12,370 0,012 45 12,314 12,296 0,018 45 12,396 12,378 0,018 45 12,634 12,625 0,009 45 12,166 12,151 0,015 45 12,793 12,756 0,037 45 12,929 12,888 0,041 45 12,985 12,951 0,034 45 12,201 12,198 0,003 0 11,037 10,962 0,075 0 12,545 12,478 0,067 35 Promedio % Protección 0,035 50,00 0,034 52,11 0,030 57,75 0,025 64,08 0,013 82,39 0,025 64,79 0,015 79,58 0,017 76,76 0,018 74,65 0,012 83,10 0,039 45,07 0,018 73,94 0,071 Tabla 14. Datos de las pruebas de wheel test realizadas para la variación de fórmulas correspondientes a Ar 1 a 65%aceite, 35% agua, 40000 ppm de salinidad y 50°C. Botella 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Inhibidor Ar 1 Ar 2 Ar 3 Ar 4 Ar 1 Ar 2 Ar 3 Ar 4 Ar 1 Ar 2 Ar 3 Ar 4 BLANCO Ppm Wi, g Wf, g Wi – Wf 15 15 15 15 15 15 15 15 30 30 30 30 30 30 30 30 45 45 45 45 45 45 45 45 0 0 12,917 12,946 12,991 12,947 12,984 13,011 12,924 12,962 12,940 12,952 12,884 12,911 12,960 12,909 12,953 12,985 12,901 12,927 12,916 12,923 12,793 12,929 12,985 12,201 12,848 12,977 12,883 12,912 12,958 12,909 12,952 12,983 12,897 12,938 12,917 12,926 12,842 12,868 12,919 12,868 12,909 12,937 12,858 12,884 12,877 12,877 12,756 12,888 12,951 12,165 12,795 12,933 0,034 0,034 0,033 0,038 0,032 0,028 0,027 0,024 0,023 0,026 0,042 0,043 0,041 0,041 0,044 0,048 0,043 0,043 0,039 0,046 0,037 0,041 0,034 0,036 0,053 0,044 Promedio % Protección 0,034 29,90 0,035 26,80 0,03 38,14 0,025 47,42 0,024 49,48 0,042 12,37 0,041 15,46 0,046 5,15 0,043 11,34 0,042 12,37 0,039 19,59 0,035 27,84 0,049 Tabla 15. Datos de las formulaciones para el inhibidor ICOS. ICOS 40 % Peso ICOS 41 % ICOS 42 Peso % Peso ICOS 43 % Peso Metanol 10,0 Metanol 11,0 Metanol 11,0 Metanol 11,0 Base 3 10,0 Base 3 5,0 Base 3 20,0 Base 3 10,0 Base 2 15,0 Base 2 20,0 Base 2 5,0 Base 2 5,0 Á. tioglicólico 4,0 Á. tioglicólico 4,0 Á. tioglicólico 4,0 Agua 60,0 Agua 60,0 Agua 70,0 Á. tioglicólico 8,0 Agua 57,0 36 Tabla 16. Datos de las pruebas de wheel test realizadas para las fórmulas correspondientes a ICOS a 10%aceite, 90%agua, 80000ppm de salinidad y 50°C. Botella Inhibidor 1 Ppm Wi, g Wf, g Wi - Wf 15 12,991 12,958 0,033 15 12,947 12,909 0,038 15 12,917 12,883 0,034 15 12,946 12,912 0,034 15 10,856 10,850 0,006 15 12,108 12,102 0,006 15 12,351 12,339 0,012 15 12,138 12,124 0,014 30 12,393 12,376 0,017 30 12,395 12,378 0,017 30 12,247 12,226 0,021 30 12,674 12,655 0,019 30 12,191 12,188 0,003 30 12,418 12,415 0,003 30 12,291 12,273 0,018 30 12,564 12,545 0,019 45 12,314 12,296 0,018 45 12,396 12,378 0,018 45 12,634 12,625 0,009 45 12,166 12,151 0,015 45 12,585 12,577 0,008 45 12,348 12,342 0,006 45 12,963 12,950 0,013 45 12,985 12,970 0,015 0 11,037 10,962 0,075 0 12,545 12,478 0,067 ICOS 40 2 3 ICOS 41 4 5 ICOS 42 6 7 ICOS 43 8 9 ICOS 40 10 11 ICOS 41 12 13 ICOS 42 14 15 ICOS 43 16 17 ICOS 40 18 19 ICOS 41 20 21 ICOS 42 22 23 ICOS 43 24 25 BLANCO 26 Promedio % Protección 0,035 50,00 0,034 52,11 0,006 91,55 0,013 81,69 0,017 76,06 0,020 71,83 0,003 95,77 0,019 73,94 0,018 74,65 0,012 83,10 0,007 90,14 0,014 80,28 0,071 37 Tabla 17. Datos de las pruebas de wheel test realizadas para las fórmulas correspondientes a ICOS a 65%aceite, 35% agua, 40000 ppm de salinidad y 50°C. Botella Inhibidor 1 Ppm Wi, g Wf, g Wi - Wf 15 12,917 12,877 0,040 15 12,946 12,912 0,034 15 12,991 12,958 0,033 15 12,947 12,909 0,038 15 12,991 12,957 0,034 15 11,133 11,097 0,036 15 12,613 12,578 0,035 15 12,407 12,375 0,032 30 12,211 12,177 0,034 30 12,364 12,330 0,034 30 12,884 12,842 0,042 30 12,911 12,868 0,043 30 12,940 12,917 0,023 30 12,952 12,926 0,026 30 12,884 12,862 0,022 30 12,082 12,058 0,024 45 12,901 12,850 0,051 45 12,927 12,884 0,043 45 12,916 12,874 0,042 45 12,396 12,348 0,048 45 12,247 12,220 0,027 45 12,919 12,897 0,022 45 12,985 12,955 0,030 45 12,995 12,965 0,030 0 12,825 12,772 0,053 0 12,827 12,771 0,056 ICOS 40 2 3 ICOS 41 4 5 ICOS 42 6 7 ICOS 43 8 9 ICOS 40 10 11 ICOS 41 12 13 ICOS 42 14 15 ICOS 43 16 17 ICOS 40 18 19 ICOS 41 20 21 ICOS 42 22 23 ICOS 43 24 25 BLANCO 26 Promedio % Protección 0,037 32,11 0,035 34,86 0,035 35,78 0,034 38,53 0,034 37,61 0,042 22,02 0,024 55,05 0,023 57,80 0,047 13,76 0,045 17,43 0,024 55,05 0,030 44,95 0,054 38 Tabla 18. Datos de las variaciones de la formulación del inhibidor que tiene por nombre ICWS ICWS 40 % Peso % ICWS 41 ICWS 42 Peso % Peso ICWS 43 % Peso Base 4 10,0 Base 4 20,0 Base 4 30,0 Base 4 20,0 Á. tioglicólico 5,0 Á. tioglicólico 5,0 Á. tioglicólico 5,0 Á. tioglicólico 5,0 Metanol 20,0 Metanol 25,0 Metanol 30,0 Metanol 20,0 Agua 65,0 Agua 50,0 Agua 35,0 Agua 55,0 ICWS 44 % Peso % ICWS 45 Peso Base 4 20,0 Base 4 20,0 Á. tioglicólico 10,0 Á. tioglicólico 15,0 Metanol 25,0 Metanol 30,0 Agua 45 Agua 35 Tabla 19. Datos de las pruebas de wheel test realizadas para la variación formulaciones del inhibidor ICWS 40 a 10% aceite. 90% agua y 80000 ppm de salinidad y 50°C Botella 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Inhibidor ICWS 40 ICWS 41 ICWS 42 ICWS 43 ICWS 44 ICWS 45 ICWS 40 ppm Wi, g Wf, g Wi - Wf 15 10,893 10,877 0,016 15 12,478 12,462 0,016 15 12,368 12,35 0,018 15 11,247 11,229 0,018 15 12,405 12,381 0,024 15 12,191 12,174 0,017 15 12,624 12,598 0,026 15 12,382 12,363 0,019 15 12,297 12,275 0,022 15 12,152 12,125 0,027 15 12,345 12,326 0,019 15 12,344 12,325 0,019 30 10,876 10,86 0,016 30 12,458 12,441 0,017 39 Promedio % Protección 0,016 77,46 0,018 74,65 0,021 71,13 0,023 68,31 0,024 65,49 0,019 73,24 0,016 76,76 Continuación Tabla 19. Botella 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 Inhibidor ICWS 41 ICWS 42 ICWS 43 ICWS 44 ICWS 45 ICWS 40 ICWS 41 ICWS 42 ICWS 43 ICWS 44 ICWS 45 BLANCO ppm Wi, g Wf, g Wi - Wf 30 12,347 12,331 0,016 30 11,226 11,210 0,016 30 12,379 12,367 0,012 30 12,171 12,163 0,008 30 12,596 12,584 0,012 30 12,274 12,259 0,015 30 12,362 12,355 0,007 30 12,125 12,108 0,017 30 12,327 12,319 0,008 30 12,325 12,309 0,016 45 12,457 12,415 0,042 45 12,595 12,550 0,045 45 12,739 12,702 0,037 45 12,509 12,475 0,034 45 12,290 12,261 0,029 45 11,044 11,017 0,027 45 12,483 12,474 0,009 45 12,600 12,582 0,018 45 12,967 12,935 0,032 45 12,911 12,867 0,044 45 13,038 12,991 0,047 45 12,645 12,625 0,020 0 11,037 10,962 0,075 0 12,545 12,478 0,067 Promedio % Protección 0,016 77,46 0,010 85,92 0,013 80,99 0,012 83,10 0,012 83,10 0,044 38,73 0,036 50,00 0,028 60,56 0,013 80,99 0,038 46,48 0,034 52,82 0,071 Tabla 20. Datos de las pruebas de wheel test realizadas para las nuevas formulaciones del inhibidor ICWS 40 a 65% aceite, 35% agua, 40000 ppm de salinidad y 50°C. Botella 1 2 3 4 Inhibidor ICWS 40 ICWS 41 Ppm Wi, g Wf, g Wi – Wf 15 12,790 12,738 0,052 15 13,040 12,989 0,051 15 12,777 12,726 0,051 15 12,879 12,834 0,045 40 Promedio % Protección 0,051 5,50 0,048 11,93 Continuación Tabla 20. Botella 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 Inhibidor ICWS 42 ICWS 43 ICWS 44 ICWS 45 ICWS 40 ICWS 41 ICWS 42 ICWS 43 ICWS 44 ICWS 45 ICWS 40 ICWS 41 ICWS 42 ICWS 43 ICWS 44 ICWS 45 BLANCO Ppm Wi Wf Wi – Wf 15 12,815 12,780 0,035 15 12,756 12,719 0,037 15 12,725 12,687 0,038 15 12,707 12,675 0,032 15 12,966 12,928 0,038 15 12,771 12,742 0,029 15 12,960 12,930 0,030 15 12,777 12,742 0,035 30 12,845 12,814 0,031 30 12,857 12,810 0,047 30 12,797 12,748 0,049 30 12,835 12,783 0,052 30 12,674 12,626 0,048 30 12,728 12,676 0,052 30 12,684 12,632 0,052 30 12,774 12,728 0,046 30 12,684 12,642 0,042 30 12,774 12,728 0,046 30 12,879 12,839 0,040 30 12,674 12,634 0,040 45 12,821 12,787 0,034 45 12,831 12,768 0,063 45 12,834 12,790 0,044 45 12,875 12,828 0,047 45 12,874 12,838 0,036 45 12,819 12,765 0,054 45 12,714 12,689 0,025 45 12,798 12,736 0,062 45 12,816 12,777 0,039 45 12,836 12,788 0,048 45 12,789 12,761 0,028 45 12,746 12,694 0,052 0 12,825 12,772 0,053 0 12,827 12,771 0,056 41 Promedio % Protección 0,036 33,94 0,035 35,78 0,033 38,53 0,032 40,37 0,039 28,44 0,051 7,34 0,05 8,26 0,049 10,09 0,044 19,27 0,040 26,61 0,048 11,01 0,046 16,51 0,045 17,43 0,043 20,18 0,044 20,18 0,040 26,61 0,054 5. RESULTADOS 5.1 Eficiencia de protección de los inhibidores clasificados. Tabla 21. Datos de eficiencias de protección de los inhibidores evaluados a 15 ppm de dosificación y a 10%aceite, 90%agua y 80000 ppm de salinidad y 50°C Orden Inhibidor Ppm % Protección 1 ICOS 42 15 91,55 2 ICOS 43 15 81,69 3 ICWS 40 15 77,46 4 ICWS 41 15 74,65 5 ICWS 45 15 73,24 6 ICWS 42 15 71,13 7 ICWS 43 15 68,31 8 ICWS 44 15 65,49 9 Ar 4 15 64,08 10 Ar 3 15 57,75 11 ICOS 41 15 52,11 12 Ar 2 15 52,11 13 ICOS 40 15 50,70 14 Ar 1 15 50,00 42 Tabla 22. Datos de eficiencias de protección de los inhibidores evaluados a 30 ppm de dosificación y a 10%aceite, 90%agua, 80000 ppm de salinidad y 50°C Orden Inhibidor ppm % Protección 1 ICOS 42 30 95,77 2 ICWS 42 30 85,92 3 ICWS 45 30 83,10 4 ICWS 44 30 83,10 5 Ar 1 30 82,39 6 ICWS 43 30 80,99 7 Ar 3 30 79,58 8 ICWS 41 30 77,46 9 ICWS 40 30 76,76 10 Ar 4 30 76,76 11 ICOS 43 30 71,83 12 ICOS 41 30 71,83 13 Ar 2 30 64,79 14 ICOS 40 30 50,00 Tabla 23. Datos de eficiencias de protección de los inhibidores evaluados a 45 ppm de dosificación y a 10%aceite, 90%agua, 80000 ppm de salinidad y 50°C Orden Inhibidor ppm % Protección 1 ICOS 42 45 90,14 2 ICOS 41 45 83,1 3 Ar 2 45 83,1 4 ICWS 43 45 80,99 5 ICOS 43 45 80,28 6 ICOS 40 45 75,64 7 Ar 1 45 74,65 8 Ar 4 45 73,94 9 ICWS 42 45 60,56 10 ICWS 45 45 52,82 11 ICWS 41 45 50,00 12 ICWS 44 45 46,48 13 Ar 3 45 45,07 14 ICWS 40 45 38,73 43 Tabla 24. Datos de eficiencias de protección de los inhibidores evaluados a 15 ppm de dosificación y a 65%aceite, 35%agua, 40000 ppm de salinidad y 50°C Orden Inhibidor ppm % Protección 1 Ar 4 15 47,42 2 ICWS 45 15 40,37 3 ICOS 43 15 38,53 4 ICWS 44 15 38,53 5 Ar 3 15 38,14 6 ICOS 42 15 35,78 7 ICWS 43 15 35,78 8 ICOS 41 15 34,86 9 ICWS 42 15 33,94 10 ICOS 40 15 32,11 11 Ar 1 15 29,90 12 Ar 2 15 26,80 13 ICWS 41 15 11,93 14 ICWS 40 15 5,50 Tabla 25. Datos de eficiencias de protección de los inhibidores evaluados a 30 ppm de dosificación y a 65%aceite, 35%agua, 40000 ppm de salinidad y 50°C Orden Inhibidor ppm % Protección 1 ICOS 43 30 57,80 2 ICOS 42 30 55,05 3 Ar 1 30 49,48 4 ICOS 40 30 37,61 5 ICWS 40 30 28,44 6 ICWS 45 30 26,61 7 ICOS 41 30 22,02 8 ICWS 44 30 19,27 9 Ar 3 30 15,46 10 Ar 2 30 12,37 11 ICWS 43 30 10,09 12 ICWS 42 30 8,26 13 ICWS 41 30 7,34 14 Ar 4 30 5,15 44 Tabla 26. Datos de eficiencias de protección de los inhibidores evaluados a 45 ppm de dosificación y a 65%aceite, 35%agua, 40000 ppm de salinidad y 50°C Orden Inhibidor ppm % Protección 1 ICOS 42 45 55,05 2 ICOS 43 45 44,95 3 Ar 4 45 27,84 4 ICWS 45 45 26,61 5 ICWS 43 45 20,18 6 ICWS 44 45 20,18 7 Ar 3 45 19,59 8 ICOS 41 45 17,43 9 ICWS 42 45 17,43 10 ICWS 41 45 16,51 11 ICOS 40 45 13,76 12 Ar 2 45 12,37 13 Ar 1 45 11,34 14 ICWS 40 45 11,01 De los resultados observados, luego de analizar cada una de las tablas que abarca de forma resumida los datos de eficiencia tanto en el caso de las condiciones de 10%aceite, 90%agua y 80000 ppm, como a las condiciones de 65%aceite, 35%agua y 40000 ppm se procede a comparar la eficiencia de protección del mejor producto (ICOS 42) con el producto que actualmente se inyecta en campo. 45 5.2 Comparación de la eficiencia del mejor producto formulado, con el producto actual. Tabla 27. Comparación de eficiencia del mejor producto formulado (ICOS 42) con el producto actual, a 10%aceite, 90%agua, 80000 ppm de salinidad y 50°C Botella Inhibidor 1 Ppm Wi, g Wf, g Wi - Wf 15 12,613 12,600 0,013 15 11,968 11,957 0,011 3 15 12,648 12,640 0,008 4 30 12,814 12,808 0,006 30 12,534 12,528 0,006 30 12,594 12,585 0,009 15 12,605 12,588 0,017 15 12,715 12,694 0,021 9 15 12,588 12,564 0,024 10 30 12,659 12,639 0,020 30 12,899 12,885 0,014 30 12,649 12,636 0,013 0 12,245 12,190 0,055 0 12,882 12,820 0,062 2 5 ICOS 42 ICOS 42 6 7 8 11 Producto actual Producto actual 12 13 BLANCO 14 Promedio % Protección 0,011 81,77 0,007 88,03 0,021 64,67 0,016 73,22 0,058 46 6. DISCUSIÓN 6.1 Selección de bases químicas para formular inhibidores de corrosión fílmicos. En el mercado, existe una gran oferta de bases químicas para formular inhibidores de corrosión del tipo fílmico, cada una con diferente composición, sin embargo, las bases seleccionadas para el desarrollo de un nuevo producto han demostrado tener buen desempeño en la mayoría de los campos petroleros del oriente ecuatoriano, esto se fundamenta en pruebas anteriores tanto a nivel de laboratorio como en campo realizadas por empresas proveedoras de productos químicos contra la corrosión e incrustaciones. 6.2 Formulación de inhibidores de corrosión. La formulación fue una labor compleja, debido a la gran cantidad de información que se requiere revisar, ya sea en textos especializados o datos de pruebas anteriores en varios campos, para poder seleccionar los componentes del inhibidor, como lo son las bases químicas y los solventes a usar, para lograr un mejor desempeño del producto que se quiere obtener. Para obtener un mejor resultado en las formulaciones, estas fueron realizadas siguiendo las recomendaciones por parte del proveedor de bases químicas, así como también, de acuerdo a las experiencias previas por parte de profesionales que trabajan en el control de la corrosión en campos petroleros, de esta manera se evitó generar una gran cantidad de pruebas con productos que muy probablemente no hubiesen dado buenos resultados y hubiesen consumido tiempo y recursos. 6.3 Evaluación de inhibidores de corrosión. El rango de dosificación de 15 ppm, 30 ppm, 45 ppm de los inhibidores a evaluar, fue seleccionado para determinar el comportamiento de la eficiencia de cada producto, además de cumplir con las normas de la cantidad de dosificación establecidas por parte de la mayoría de empresas encargadas de la exploración y explotación de petróleo del Ecuador. 47 Los ambientes corrosivos que sirvieron para evaluar los inhibidores de corrosión, fueron similares a las condiciones de operación de pozos petroleros, esto con el fin de desarrollar un producto que funcione adecuadamente en estos ambientes. El tiempo adecuado de exposición de los cupones al ambiente corrosivo y al inhibidor debe ser 24 horas exactas en lo posible, para que la evaluación se realice bajo las mismas condiciones posibles a todos los productos. La determinación de la eficiencia de protección, se la realizó en base a la pérdida promedio de peso de los cupones, que es una manera sencilla de establecer la efectividad de los inhibidores, sin tener que medir las dimensiones largo ancho y espesor de los cupones. El modo en que se realizó la limpieza de los cupones luego de las 24 horas de prueba fue muy importante, ya que no se excedió en la fuerza con que se retiran los productos de la corrosión de la superficie del cupón, porque afecta directamente al peso del mismo y por ende, afecta a la eficiencia real de protección del inhibidor que estuvo en contacto con aquel cupón. 48 7. CONCLUSIONES 7.1 Selección de bases químicas para formular inhibidores de corrosión fílmicos. Las bases químicas 2 y 3, compuestas principalmente por aminas etoxiladas y amonio cuaternario, demuestran ser bases adecuadas para formular inhibidores de alta eficiencia de protección contra la corrosión en los dos ambientes corrosivos evaluados, como se observa desde la tabla 21 hasta la tabla 26. 7.2 Eficiencias de protección y comportamiento de los inhibidores de corrosión. El inhibidor formulado con la base 5 (Mhb2) compuesto por ácidos grasos, demostró baja eficiencia de protección en las condiciones de evaluación de 10% agua, 90% aceite y 80000 ppm de salinidad pese a que según la información obtenida sobre esta base, ofrecería un buen rendimiento en las condiciones que se pretendía evaluar. (Ver tabla 11) Los inhibidores compuestos por las mezclas de las bases 2 y 3 (ICOS 42 e ICOS 43), desempeñan una gran protección contra la corrosión en las condiciones de 10% aceite, 90% agua y 80000 ppm de salinidad expresada como cloruros, pero mantienen una protección relativamente baja aunque estable a las condiciones de 35% agua, 65% aceite y 40000 ppm de salinidad. (Ver gráfico B.1 y gráfico B.2) El inhibidor ICOS 42 es el mejor producto contra la corrosión, así como también demuestra una estabilidad en los valores de eficiencia en las tres concentraciones y en ambos ambientes corrosivos que fue evaluado. (Ver anexos A, B y C) Los inhibidores formulados con la base 4 (ICWS) tienen un rango de dosificación de producto muy corto en las condiciones de 90% agua, 10% aceite y 80000 ppm como lo indica el gráfico C.1, ya que si se excede los 30 ppm, su eficiencia de protección cae drásticamente, y limitaría seriamente su aplicación en pozos petroleros, principalmente en aquellos de producción irregular. 49 Los inhibidores ICWS no ofrecen una adecuada protección contra la corrosión en las condiciones de 35% agua, 65% aceite y 40000 ppm de salinidad, tal como lo indica el gráfico C.2, por lo tanto, estos productos no son adecuados para una aplicación en un campo petrolero que tenga estos ambientes corrosivos. Los inhibidores formulados con la base 1 (Ar), tampoco mantienen un comportamiento estable en su eficiencia de protección, de acuerdo a las gráficas del anexo A, por lo tanto, tampoco sería un buen producto para aplicar en campo. El inhibidor ICOS 42, según el resultado de wheel test que indica la tabla 27, tiene una mayor eficiencia de protección contra la corrosión que el producto actual de campo, por lo que su aplicación en campo tiene grandes posibilidades de mejorar la protección contra la corrosión de las tuberías de los pozos petroleros. 50 8. RECOMENDACIONES Se recomienda tener cuidado en cuanto al uso de electrodos (cupones) usados en pruebas anteriores, y de preferencia no usarlos, ya que pueden presentar picaduras en su superficie, dificultando que el inhibidor logre llegar a aquellos puntos, y por lo tanto, afectando al valor de su eficiencia de protección. Las condiciones de los cupones para la evaluación de inhibidores deben ser iguales para todos. Se debe tener mucho cuidado al momento de llenar las botellas con la salmuera y el aceite (diesel), evitando cualquier turbulencia al momento del trasvase, para evitar lo más posible el ingreso de oxígeno al interior, así como también llenar hasta el rebose las botellas con diesel para no contaminar la botella con este agente extremadamente oxidante, ya que como se menciona en la bibliografía, los inhibidores fílmicos pierden casi totalmente su efectividad en presencia de oxígeno. Se recomienda, evaluar este mejor producto formulado en campo haciendo uso de técnicas avanzadas de evaluación para comprobar su efectividad y ver la posibilidad de implementarlo ya en un campo petrolero. Con el nuevo inhibidor formulado, se recomienda realizar pruebas de formación de espuma, formación de emulsión y análisis de compatibilidad con agua de formación, para determinar posibles desventajas que pueda tener este producto en los campos petroleros. Se recomienda realizar la evaluación en campo de este producto, en un pozo productor de petróleo que históricamente haya presentado problemas severos de corrosión, ya sea en su sistema de levantamiento artificial, o tuberías. 51 CITAS BIBLIOGRÁFICAS [1] MÉNDEZ, José. Diseño y construcción del reactor de mezcla completa para la evaluación de inhibidores de corrosión en crudo, agua de formación y petróleo de PetroproducciónLago. Tesis de grado. Ingeniero Químico. Escuela Superior Politécnica de Chimborazo. Facultad de Ciencias. Escuela de Ingeniería Química. Riobamba. 2010. p. 31 [2] Ibíd., p. 29 [3] Ibíd, p. 30 [4] GORDILLO, María y SANTANA, Luis. Diseño y construcción de un reactor con agitación para evaluar inhibidores de corrosión en aguas de formación. Tesis de grado previo a la obtención del título de Ingeniero Químico. Escuela Superior Politécnica de Chimborazo. Facultad de Ciencias. Escuela de Ingeniería Química. Riobamba 2008. pp. 10 - 13 [5] Ibíd, p. 12 [6] CHILINGAR, George y MOURHATCH, Ryan y AL-QAHTANI, Ghazi. The fundamentals of corrosion and scaling for petroleum and environmental engineers. Gulf Publishing Company, Houston, 2008. 269 p. [7] INDUSTCHEM, Corrosion problems during oil and gas production and its mitigation, [en línea], documenting electronic source on the internet: [Fecha de consulta: 2 de junio 2015] Disponible en: <http://www.industchem.com/content/4/1/35> p. 2 – 4 [8] ONDEO NALCO, Corrosion in the petroleum industry, [en línea], documenting electronic source on the internet: [Fecha de consulta: 13 de abril 2015] Disponible en: <www.ondeones.com> p. 1 [9] INDUSTCHEM, Op. Cit., p. 5 [10] ONDEO NALCO, Op. Cit., p. 34 52 [11] FINK, Johannes. Petroleum engineer’s guide to oil field chemicals and fluids. Gulf Professional Publishing, Waltham, 2012. 767 p. [12] GALICIA, Policarbo. Influencia de los inhibidores fílmicos en el mecanismo de corrosión del acero al carbono 1018, en presencia del medio amargo alcalino. Tesis para obtener el grado de Doctor en ciencias. Universidad Autónoma Metropolitana. Departamento de química. México D.F. 2007. Pág 21-22 [13] REYNAUD, Adriana, MARTÍNEZ, Lorenzo, CHACÓN, José y MARTÍNEZ, Alberto. Efecto de la imidazolina láurica hidroxietil en la inhibición de la corrosión de acero API5L-X52 en salmueras acidificadas [en línea]. Cuernavaca: Instituto de Ciencias Físicas – UNAM. 2010 [Fecha de consulta: 09 de Julio de 2015]. Disponible en : <http://smcsyv.fis.cinvestav.mx/supyvac/23_S/SV23S0410.pdf> p. 6 [14] GALICIA, Op. Cit., p. 21 [15] AKZO NOBEL, Corrosion inhibitors for oilfield production, [en línea]. [Fecha de consulta: 20 de marzo 2015] Disponible en: < http://docslide.us/documents/corrosioninhibitors-for-oilfield-production.html> pp. 6 – 8 [16] EPA, Final submission for fatty acid dimers and trimers, [en línea], documenting electronic source on the internet: [Fecha de consulta: 06 de julio 2015] Disponible en: < http://www.epa.gov/hpv/pubs/summaries/ftadmrtr/c13651rt1.pdf> pp. 10-11 [17] AKZO NOBEL, Op. Cit., pp. 10 – 11. [18] PATTON, Charles. Applied water technology. Second edition. Campbell petroleum series. Norman, 1995. 341p [19] NACE International. Laboratory test methods for evaluating oilfield corrosion inhibitors. NACE International publication 1D196. (24192): 4- 5, diciembre 1996. [20] GÓMEZ, Félix y ALCARÁZ, Diego. Manual básico de corrosión para ingenieros. Universidad de Murcia. Servicio de Publicaciones. Murcia 2006. 176 p. 53 BIBLIOGRAFÍA DEGRÉMONT. Manual técnico del agua. Cuarta edición. Editorial Grafo S.A. Bilbao 1979. GONCALVES, Alejandro. Selección de inhibidores de corrosión para aplicaciones en fondo de pozos con levantamiento artificial por bombeo electrosumergible. Trabajo de grado para optar al grado académico de Magíster Scientiarum en Corrosión. Universidad de Zulia. Faculta de Ingeniería. División de posgrado. Maracaibo 2008 L.L. Sheir, R. A. Jarman y G. T. Burstein. Corrosion. Volumen 1. Tercera edición. Butterworth Henemann Professional Publishing Ltd. Gran Bretaña 2000. PEMEX. Norma de referencia para protección interior de ductos con inhibidores. México D.F. 2009. [en línea]. [Fecha de consulta: 10 de mayo de 2015]. Disponible en: http://www.pemex.com/procura/procedimientos-de-contratacion/normasreferencia/Normas%20vigentes/NRF-005-PEMEX-2009.pdf RAMÍREZ, Luis y XIQUES, Julio. Evaluación del desempeño de un nuevo inhibidor de corrosión en líneas de flujo multifásico en los campos petroleros de Colombia. Proyecto fin de carrera para la obtención del título de ingeniero químico. Universidad Industrial Santander. Facultad de Ingenierías Fisicoquímicas. Escuela de Ingeniería Química. Bucaramanga 2007. 54 ANEXOS 55 ANEXO A. Comportamiento de las formulaciones correspondientes a Ar, en ambas condiciones de evaluación. % PROT ECCI Ó N VS PPM I NHI BI DO R % PROTECCIÓN Ar 1 Ar 2 Ar 3 Ar 4 90 80 70 60 50 40 30 20 10 0 10 15 20 25 30 35 40 45 50 PPM DE INHIBIDOR Gráfico A.1. Comportamiento de los inhibidores Ar a diferentes dosis en ppm evaluados en condiciones de 10% aceite, 90% agua, 80000 ppm de salinidad a 50°C % PROT ECCI Ó N VS PPM I NHI BI DO R Ar 1 Ar 2 Ar 3 Ar 4 60 % PROTECCIÓN 50 40 30 20 10 0 10 15 20 25 30 35 40 45 50 PPM DE INHIBIDOR Gráfico A.2. Comportamiento de los inhibidores Ar a diferentes dosis en ppm evaluados en condiciones de 65% aceite, 35% agua, 40000 ppm de salinidad a 50°C 56 ANEXO B. Comportamiento de las formulaciones correspondientes a ICOS, en ambas condiciones de evaluación. % Pro tec c i ó n vs p p m i n h i b i d o r ICOS 40 ICOS 41 ICOS 42 ICOS 43 120 % PROTECCIÓN 100 80 60 40 20 0 10 15 20 25 30 35 40 45 50 PPM DE INHIBIDOR Gráfico B.1. Comportamiento de los inhibidores ICOS a diferentes dosis en ppm evaluados en condiciones de 10% aceite, 90% agua, 80000 ppm de salinidad a 50°C % PROT ECCI Ó N VS PPM I NHI BI DO R ICOS 40 ICOS 41 ICOS 42 ICOS 43 70 % PROTECCIÓN 60 50 40 30 20 10 0 10 15 20 25 30 35 40 45 50 PPM DE INHIBIDOR Gráfico B.2. Comportamiento de los inhibidores ICOS a diferentes dosis en ppm evaluados en condiciones de 65% aceite, 35% agua, 40000 ppm de salinidad a 50°C 57 ANEXO C. Comportamiento de las formulaciones correspondientes a ICWS, en ambas condiciones de evaluación. % PROT ECCI Ó N VS PPM I NHI BI DO R ICWS 40 ICWS 41 ICWS 42 ICWS 43 ICWS 44 ICWS 45 90 % PROTECCIÓN 80 70 60 50 40 30 10 15 20 25 30 35 40 45 50 PPM DE INHIBIDOR Gráfico C.1. Comportamiento de los inhibidores ICWS a diferentes dosis en ppm evaluados en condiciones de 10% aceite, 90% agua, 80000 ppm de salinidad a 50°C % PROT ECCI Ó N VS PPM I NHI BI DO R ICWS 40 ICWS 41 ICWS 42 ICWS 43 ICWS 44 ICWS 45 % PROTECCIÓN 50 40 30 20 10 0 10 15 20 25 30 35 40 45 50 PPM DE INHIBIDOR Gráfico C.2. Comportamiento de los inhibidores ICWS a diferentes dosis en ppm evaluados en condiciones de 65% aceite, 35% agua, 40000 ppm de salinidad a 50°C 58 ANEXO D. Formas comunes de ataque de corrosión en campos petroleros. Figura D.1. Corrosión tipo wormhole en una sección de tubería. Figura D.2. Fallo de la tubería causada por corrosión tipo wormhole. Figura D.3. Fallo de la tubería causada por la unión de varios wormhole. 59 Continuación ANEXO D. Figura D.4. Corrosión por dióxido de carbono en la succión de una bomba hidráulica tipo jet. Figura D.5. Ataque tipo mesa causado por la presencia de dióxido de carbono. 60 ANEXO E. Equipos utilizados para la evaluación y formulación de inhibidores de corrosión. Figura E.1. Agitador magnético Figura E.2. Equipo para wheel test Figura E.3. Digestor Hach Figura E.4. Balanza analítica 61 ANEXO F. Desarrollo de una evaluación de inhibidores de corrosión mediante wheel test. Figura F.1. Preparación y saturación con CO2(g) de la salmuera. Figura F.2. Calentamiento de los inhibidores a 120 ᵒC durante 60 minutos previo a ser evaluados. 62 Continuación ANEXO F Figura F.3. Dilución de los inhibidores al 10% Figura F.4. Preparación de las botellas con los cupones, inhibidores, salmuera y aceite (diesel) 63 Continuación ANEXO F Figura F.5. Colocación de las botellas en el equipo para wheel test. Figura F.6. Limpieza de cupones con estropajo 64 Continuación ANEXO F Figura F.7. Lavado con HCl diluido, agua y alcohol isopropílico respectivamente. Figura F.8. Medida del peso de los cupones luego de la limpieza y secado. 65 ANEXO G. Propiedades fisicoquímicas del nuevo inhibidor de corrosión. 66 ANEXO H. Norma NACE 1D196 para evaluar inhibidores de corrosión a nivel de laboratorio. 67 Continuación ANEXO H 68 Continuación ANEXO H 69 Continuación ANEXO H 70 Continuación ANEXO H 71 Continuación ANEXO H 72 Continuación ANEXO H 73 Continuación ANEXO H 74 Continuación ANEXO H 75 Continuación ANEXO H 76 Continuación ANEXO H 77 Continuación ANEXO H 78 Continuación ANEXO H 79 ANEXO I. Diagrama de flujo para la evaluación de los cinco primeros inhibidores formulados. Cupones Salmuera, 90% Diesel, 10% Agua destilada Inhibidor formulado CALENTAMIENTO BALÓN AFORADO BOTELLAS 30ppm 120ᵒC 30 min Dilución al 10% Cupones LIMPIEZA EQUIPO WHEEL TEST ENFRIAMIENTO ≈ 30 min LAVADO HCl, 5% Agua IPA SECADO ≈ 30 rpm 24 horas 50ᵒC PESAJE 30 min 60ᵒC 80 CÁLCULO DE EFICIENCIA