1 república bolivariana de venezuela universidad del zulia

Anuncio
1
REPÚBLICA BOLIVARIANA DE VENEZUELA
UNIVERSIDAD DEL ZULIA
FACULTAD DE HUMANIDADES Y EDUCACIÓN
DIVISIÓN DE ESTUDIOS PARA GRADUADOS
MAESTRÍA EN MATEMÁTICA, MENCIÓN DOCENCIA
ESTRATEGIA DIDÁCTICA EN LÍNEA PARA EL APRENDIZAJE DE LA
TRIGONOMETRÍA
Trabajo de Grado para optar al Título de Magíster Scientiarum en
Matemática Mención Docencia
Autor:
Jhordan Brito Brito
C.I: 17.958.339
Tutora:
Dra. Carmen Logreira
C.I. 10.169.251
Maracaibo, Julio 2012
4
DEDICATORIA
A Dios Todopoderoso, por ser mi guía y mi razón de ser.
A mi queridos Padres Sidis Brito y Armando Brito, por haberme apoyado y
estimulado durante toda mi vida como estudiante.
A mi amada esposa Deyse Ceballos, por sus consejos y apoyo incondicional,
sin ella difícil hubiese terminado.
A mí querida hija: Gabriela Sofía, le dedico este esfuerzo.
A mis hermanos: Sergio y Enrique, Gracias por creer siempre en mí.
A todos mis compañeros y amigos, puesto que me han enseñado que hay
cosas que son difíciles pero no imposibles de alcanzar.
Gracias por su apoyo.
5
AGRADECIMIENTO
A Dios todo poderoso por permitirme la vida, guiarme y estar siempre en mi
camino.
A mi tutora Carmen Logreira por toda la orientación en la revisión y
recomendaciones para finalizar este trabajo.
A la institución educativa “Luis Giraldo”, por apoyarme en la aplicación del
presente trabajo a los alumnos de decimo grado.
A los profesores de de la Facultad de Humanidades y Educación de la
Universidad del Zulia, quienes con su estimulo, orientación y asesoría
contribuyeron al desarrollo y ejecución de la presente investigación.
A todos aquellos que de una manera directa o indirectamente me dieron su
ayuda y apoyo.
¡Gracias a todos!
6
Brito, Jhordan. Estrategia didáctica en línea para el aprendizaje de la
trigonometría. Universidad del Zulia. Facultad de Humanidades y Educación.
División de Estudios para Graduados. Maestría en Matemática. Mención:
Docencia. Julio 2012.
RESUMEN
El propósito de este trabajo es analizar el efecto de la estrategia didáctica BLearning para el aprendizaje de la trigonometría en la Institución Educativa “Luis
Giraldo, ubicada en el Departamento del Cesar de la República de Colombia.
Conceptualmente se fundamentó en autores como: Argyris y Schön (1978) para el
caso de las teorías que relacionan el nivel de aprendizaje, al igual que en los
autores Huerta (2008), Entwistle (1981), Ramsdem (1992) y Biggs (1993) Fasce
(2002), Schmeck, (1981 citado por Vega 2007). Para tal efecto se desarrolló una
investigación evaluativa pues se pretendió estimar la efectividad del uso de la
estrategia de aprendizaje B-Learning, bajo un diseño cuasi-experimental utilizando
grupo control con pre y postprueba. Se asumió como población al conjunto de
estudiantes de la referida institución y como unidades de información a las dos
secciones de décimo grado de secundaria, cada una con 30 estudiantes, que
contemplan en su plan de estudios los contenidos de la Trigonometría, por lo cual
puede hablarse del uso de un muestreo de tipo intencional. Para recoger la
información se recurrió al uso de una prueba de aprovechamiento, conformada por
17 preguntas, el cual fue validado por docentes expertos en la asignatura y
establecida su confiabilidad en una prueba piloto a través de Coeficiente de Kuder
Richardson, estimándose en rtt = 0.95, indicador de una muy alta confiabilidad.
Los datos fueron procesados a través del paquete SPSS, versión 17.0,
calculándose las medidas de tendencia central y dispersión, así como la t de
Student para evidenciar las diferencias estadísticas significativas. Los resultados
permitieron corroborar que el uso de B-Learnig fue más efectivo para el
aprendizaje de la trigonometría que la clase tradicional basada en la exposición
del docente.
Palabras claves: Aprendizaje de la trigonometría, B-Learnig, Clase expositiva.
E-mail: [email protected]
7
Brito, Jhordan. B-learning strategy for the learning of trigonometry. University
of Zulia. Faculty of Humanities and Education. Division of Graduate Studies.
Masters in Mathematics. Mention: Teaching. July 2012.
ABSTRACT
The purpose of this study is to analyze the effect of B-Learning teaching strategy
for learning trigonometry at the Educational Institution "Luis Giraldo, located in the
Cesar Department of the Republic of Colombia. Conceptually was based on
authors such as Argyris and Schön (1978) for the case of theories that relate the
level of learning, Huerta (2008), Entwistle (1981), Ramsden (1992) and Biggs
(1993) Fasce (2002), Schmeck, (1981 cited by Vega 2007), Marzano et al (1992).
To this end was developed as an evaluative research was intended to estimate the
effectiveness of using the learning strategy B-Learning, under a quasi-experimental
control group using pre-and posttest. It was assumed as the whole population of
students of that institution and as units of information to the two sections of tenth
grade high school, each with 30 students, which provide for the curriculum content
of trigonometry, so it can talk of using a sampling of intentional type. To collect the
information is resorted to using an achievement test, consisting of 17 questions,
which was validated by experts in the subject teachers and established its reliability
in a pilot through Kuder Richardson coefficient, estimated at rtt = 0.95 , indicating a
very high reliability. The data were processed through the SPSS package, version
17.0, calculated measures of central tendency and dispersion, and the Student t
show statistically significant differences. The results allowed to confirm that the use
of B-Learnig was more effective for learning trigonometry that the traditional
lecture-based teaching exposure.
Keywords: Learning trigonometry, B-Learnig, Class exhibition.
E-mail: [email protected]
ÍNDICE GENERAL
8
VEREDICTO
DEDICATORIA
AGRADECIMIENTO
RESUMEN
ABSTRACT
ÍNDICE GENERAL
INDICÉ DE CUADROS
ÍNDICE DE FIGURAS
ÍNDICE DE TABLAS
ÍNDICE DE GRÁFICOS
INTRODUCCIÓN.
14
CAPÍTULO I: EL PROBLEMA
Planteamiento del Problema…………………………………………………
17
Objetivos de Investigación……………………………………………………
27
Objetivo General…………………………………………………………………
27
Objetivos Específicos…………………………………………………………...
27
Justificación de la Investigación……………………………………………….
27
Delimitación ……………………………………………………………………..
29
CAPITULO II: MARCO TEÓRICO
Antecedentes……………………………………………………………………
30
Bases Teóricas………………………………………………………………….
35
Niveles de aprendizaje …………………………………………………….
36
El b-learning ……………………………………………………………….
42
Teorías del Aprendizaje en Blended Learning …………………………
45
Elementos del Blended Learning ………………………………………..
47
El tutor en Blended Learning ……………………………………………
49
El estudiante en Blended Learning. …………………………………
50
Ventajas del Blended Learning…………………………………………..
51
9
Desventajas del Blended Learning ………………………………………
52
Blended Learning en Colombia …………………………………………..
53
Recursos para el Blended Learning. ……………………………………
54
3. Sistema de variables ………………………………………………………..
56
CAPÍTULO III: METODOLOGÍA
1. Tipo de Investigación………………………………………………………
59
2. Diseño de la Investigación ………………………………………………….
60
3. Población de la Investigación……………………………………………….
62
4. Técnica e Instrumento para la Recolección de Datos ……………..
63
5. Validez del Instrumento …………………………………………………
64
6. Técnicas de Análisis de la Información …………………………………..
66
7. Procedimiento de la Investigación…………………………………………
67
8. Estrategia didáctica en línea para el aprendizaje de la trigonometría
68
CAPÍTULO IV: ANÁLISIS Y DISCUSIÓN DE LOS RESULTADOS …….
76
Discusión de los Resultados …………………………………………………
101
CONCLUSIONES……………………………………………………………..
106
RECOMENDACIONES………………………………………………………...
108
REFERENCIAS BIBLIOGRÁFICAS ……………………………………….
111
ANEXOS
A. INSTRUMENTO SIN VALIDACIÓN
B. INSTRUMENTO VALIDADO
ÍNDICE DE CUADROS
10
Cuadro
Pág.
1
Cuadro de Operacionalización …………………………………….
58
2
Notación del diseño de investigación ……………………………..
62
3
Característica de la Población …………………………………..
63
4
Validadores ………………………………………………………..
65
5
Baremo clasificación nivel de aprendizaje
67
6
Programación de los momentos de actuación para el
70
desarrollo de la clase con el uso de la estrategia didáctica blearning para el aprendizaje de la trigonometría
7
8
Cuadro comparativo de las medias del pre test ………………...
Cuadro comparativo de las medias del pos test ………………..
ÍNDICE DE FIGURAS
87
99
11
Figuras
Pág.
1
Diagrama del B-learning………… …………………………………
55
2
Pantalla Principal del recurso ………………………………………
72
3
Modo de ejercitación …………………………………………………
73
4
Modo de ejercitación …………………………………………………
73
5
Demostración gráfica…………………………………………………
74
6
Ilustración de áreas …………………………………………………
74
7
Ejercicio de trabajo ……………………………………………………
75
ÍNDICE DE TABLAS
12
Tablas
Pág.
1
Características de los triángulos ……………………………………...
77
2
Clasificación de los triángulos ………………………………………….
78
3
El uso de las razones trigonométricas …………………………………
79
4
El teorema de Pitágoras …………………………………………………
81
5
Características de los triángulos ………………………………………
82
6
Clasificación de los triángulos …………………………………………
83
7
El uso de las razones trigonométricas …………………………………
84
8
El teorema de Pitágoras …………………………………………………
86
9
88
10
Medias obtenidas de la aplicación de la prueba de Pre-test ………
Resultados arrojados de la aplicación de la prueba de Pre-test…….
88
11
Características de los triángulos………………………………………..
89
12
Clasificación de los triángulos ………………………………………
90
13
El uso de las razones trigonométricas …………………………………
91
14
El teorema de Pitágoras …………………………………………………
93
15
Características de los triángulos ………………………………………
94
16
Clasificación de los triángulos ………………………………………….
95
17
El uso de las razones trigonométricas …………………………………
96
18
El teorema de Pitágoras …………………………………………………
98
19
Medias obtenidas de la aplicación de la prueba de Pre-test ……
1
ÍNDICE DE GRÁFICOS
13
Gráficos
Pág.
1
Características de los triángulos ………………………………………...
77
2
Clasificación de los triángulos …………………………………………..
79
3
El uso de las razones trigonométricas …………………………………..
80
4
El teorema de Pitágoras …………………………………………………..
81
5
Características de los triángulos ………………………………………...
82
6
Clasificación de los triángulos …………………………………………..
84
7
El uso de las razones trigonométricas …………………………………..
85
8
El teorema de Pitágoras …………………………………………………..
86
9
Características de los triángulos ………………………………………...
89
10
Clasificación de los triángulos …………………………………………..
91
11
El uso de las razones trigonométricas …………………………………..
92
12
El teorema de Pitágoras …………………………………………………..
93
13
Características de los triángulos ………………………………………...
94
14
Clasificación de los triángulos …………………………………………..
96
15
El uso de las razones trigonométricas …………………………………..
97
16
El teorema de Pitágoras …………………………………………………..
98
INTRODUCCIÓN
14
Los historiadores concuerdan en que fueron los griegos anteriores a
Sócrates los que iniciaron el estudio de la trigonometría. A Tales de Mileto, uno de
los siete sabios de Grecia, se le atribuye el descubrimiento de cinco teoremas
geométricos y su participación en la determinación de las alturas de las pirámides
de Egipto utilizando la relación entre los ángulos y lados de un triángulo. Hiparco,
notable geómetra y astrónomo griego, sistematizó estos conceptos en una tabla
de cuerdas trigonométricas que hoy son la base de la trigonometría moderna. Por
su trabajo se le considera el padre o fundador de la trigonometría.
Las primeras aplicaciones de la trigonometría se hicieron en los campos de la
navegación, la geodesia y la astronomía, en las que el principal problema era
determinar una distancia inaccesible, como la distancia entre la Tierra y la Luna, o
una distancia que no podía ser medida de forma directa. La trigonometría se aplica
a otras ramas de la geometría, razón por la cual los conocimientos trigonométricos
son de capital importancia, pues entre otros aspectos permiten, tanto el estudio de
las esferas, de la geometría del espacio; como también son usados en astronomía
para medir distancias a estrellas próximas, así como en la medición de distancias
entre puntos geográficos, y en sistemas de navegación por satélites. Otras
aplicaciones de la trigonometría se pueden encontrar en la física, química y en
casi todas las ramas de la ingeniería, sobre todo en el estudio de fenómenos
periódicos, como el sonido o el flujo de corriente alterna.
Sin embargo, las consideraciones de UNESCO, específicamente el informe
emitido por el Laboratorio Latinoamericano de Evaluación de la Calidad de la
Educación indican que la trigonometría es uno de los temas donde los profesores
de matemática encuentran mayores dificultades a la hora de enseñar sus
contenidos y evaluar su aprendizaje. En respuesta a esta problemática y
valiéndose de los recursos derivados de la tecnologías de la información y la
comunicación, se han diseñado diversas estrategias para abordarla en el
escenario escolar, siendo el B-Learning una de ellas.
15
Entre las distintas definiciones de Blended Learning (BL) la más aceptada
sería entenderlo como aquel diseño docente en el que tecnologías de uso
presencial (físico) y no presencial (virtual) se combinan con el fin de optimizar el
proceso de aprendizaje. Un aspecto a destacar de esta estrategia sería el
centrarse en los procesos de aprendizaje, herencia del peso que la Psicología del
Aprendizaje ha tenido en el mundo anglosajón, por contraste con la didáctica del
ámbito latino. Así, el concepto recibe otras denominaciones como “educación
flexible”, “semipresencial o “modelo híbrido”.
En el modelo de formación combinada que propone el BL, el formador asume
un rol tradicional pero utiliza en beneficio propio todas las posibilidades que le
ofrece la plataforma del servicio web en la que está alojado el entorno educativo:
publicando anuncios, atendiendo a tutorías a distancia y asistiendo al alumnado
como educador tradicional por medio de los cursos presenciales. La forma en que
se combine ambas estrategias dependerá del curso en cuestión. La formación
presencial y online que de esta manera se consigue gana en flexibilidad y
posibilidades.
Esta combinación en la formación no es una novedad. Durante años
numerosos docentes de matemática han estado combinando las clases
magistrales con los ejercicios, los estudios de caso, juegos de rol y las
grabaciones de vídeo y audio, por no citar el asesoramiento y la tutoría.
Uno de los beneficios claves que algunos autores han reportado, es la
posibilidad de beneficiarse del abundante material disponible en la red, compartido
de modo abierto. Y es que el Blended learning no consiste en colocar materiales
en Internet sino en aprovechar los materiales que existen en Internet. Ejemplos de
ellos son: el World Wide Web (WWW), Voz sobre Protocolo de Internet (VoIP),
Protocolo de Transferencia de Archivos (FTP) entre otros. Se trata de no cambiar
de medio sin necesidad y de aprovechar lo existente, tal como lo reconocía Adell
16
en el 2002, al afirmar que
las líneas básicas del proyecto no son reproducir
electrónicamente material didáctico cuyo soporte ideal es el impreso, sino
aprovechar la enorme cantidad de información disponible en la Internet.
A partir de estas reflexiones iniciales se configura la presente investigación,
la cual tiene como propósito el verificar los efectos que tiene el B-Learnig para el
aprendizaje de la trigonometría en los estudiantes de una institución educativa del
Departamento del Cesar en Colombia.
En base a lo expuesto, la presente investigación se estructura en capítulos,
distribuidos de la siguiente manera:
En el capítulo I, se plantea y formula el problema, los objetivos, así como la
justificación y la delimitación de la investigación.
En el capítulo II, se plantean los antecedentes y las bases teóricas, así como
las bases legales, se conceptualizan y operacionalizan las variables.
El capítulo III denominado Marco Metodológico, estructurado para la
descripción del tipo de investigación, diseño del estudio, población y muestra, el
tipo de instrumento diseñado para la recolección de datos.
El cuarto capítulo denominado Resultados, se presentan las tablas y gráficos
que ilustran la manera como se lograron percibir las dimensiones e indicadores del
estudio, finalmente se establecen las conclusiones y recomendaciones del estudio.
CAPITULO I
17
EL PROBLEMA
1. PLANTEAMIENTO DEL PROBLEMA
El mundo ha ido evolucionando día tras día, y con él todas y cada una de las
cosas que este lo conforman; dicho desarrollo puede ser visto especialmente en el
campo de la educación, puesto, que ha sido aquí donde han sucedido más
cambios en pro de la calidad de vida de las personas, todo ello como parte de una
gran movilidad global que busca posicionarse en los mejores niveles para de esta
manera generar beneficios.
Es por ello, que la búsqueda del mejoramiento continúo en el campo
educativo, se ha presentado por lo general con múltiples complejidades. En
ocasiones los procesos cognitivos han sido truncados por diferentes corrientes
ideológicas, sin embargo, siempre se ha podido salir adelante, pese a la
persistencia de problemas los cuales son el producto de diversos factores, entre
los más comunes se encuentran la deserción escolar y el bajo rendimiento
académico, siendo situaciones que impiden lograr la formación integral del niño.
Otro problema importante, considerado por Ruiz (2008) es la existencia de
profesores que, aunque con un adecuado dominio del contenido de su asignatura,
no acuden al uso de estrategias didácticas para favorecer su proceso. Al respecto,
Díaz (2002) señala que debido a una ruptura entre el conocimiento científico y el
conocimiento didáctico, existen instituciones educativas en que se ha llegado a
aceptar, tácita o explícitamente, que basta con saber para enseñar, siendo esta
expresión un rechazo atrevido a la dimensión teórica de la educación.
La anterior situación deja ver que en ocasiones el proceso de enseñanza
impartido por el docente no se realiza conforme debe ser, en el sentido, que no es
suficiente solo conocer a profundidad la temática o el área que se va a trabajar,
sino que también es necesario que se convine con estrategias que conlleven al
18
trabajo organizado y fundamentado.
Los nuevos enfoques pedagógicos y especialmente en la enseñanza y
aprendizaje de las ciencias aplicadas o puras como la matemática, el docente
debe tender a llevar al alumno al análisis, compresión y resolución de problemas
aplicando diversas estrategias didácticas , las cuales son interpretadas como un
conjunto de acciones realizadas por el docente con una intencionalidad
pedagógica clara y explícita.
Es en estas estructuras de actividad, según lo plantean Gallego y Salvador
(2007), en las que se hacen reales los objetivos y los contenidos, por ello el
carácter intencional de las estrategias didácticas se fundamenta en el
conocimiento pedagógico, así mismo, pueden ser de diferentes tipos: por ejemplo,
las de aprendizaje (perspectiva del alumno) y las de enseñanza (perspectiva del
profesor). Por lo tanto, se hace necesario que los docentes comprendan la
importancia que tiene la puesta en práctica de estrategias que permitan generar
un conocimiento más de las temáticas que son abordadas en su formación.
De acuerdo al Instituto Tecnológico y de Estudios Superiores de Monterrey
(2004), las estrategias didácticas, son un sistema planificado aplicado a un
conjunto articulado de acciones, que permiten conseguir un objetivo y sirven para
obtener determinado resultados. Es por ello, que las estrategias dan sentido y
coordinación a todo lo que se hace para llegar a la meta. Mientras que si se ponen
en práctica las estrategias todas las acciones tienen un sentido, una orientación.
Sobre este particular, el amplio universo de aplicaciones para las estrategias
permite que las mismas sean insertadas de manera cuidadosa en el acontecer de
las cátedras que se cursan en las instituciones educativas, pero son las
resultantes de la praxis las cuales señalan los espacios más necesarios para que
las mismas sean integradas.
A juicio de Labori (2008), la aceleración del cambio tecnológico hace cada
19
vez más caduco el estático planteamiento educativo tradicional, por ello, la
práctica inexistencia de formación continua de los profesores constituye un claro
ejemplo del escaso valor de mercado que la sociedad generalmente asigna a la
enseñanza. La sociedad siente la inadecuación de los productos que proporcionan
los sistemas educativos formales con relación a las necesidades del presente y del
futuro inmediato.
De igual manera Labori (2008), considera que dentro de los planes de
estudio, durante los años de formación, la enseñanza clásica ha sido, en general,
monolítica. Es decir: el desarrollo curricular ha sido fijo y estable, orientado a la
adquisición de unos conocimientos teóricos, más que al logro de un cierto grado
de aplicación de los conocimientos adquiridos siguiendo un modelo educativo
totalmente conductista carente de la más mínima flexibilidad.
La enseñanza ha estado basada, fundamentalmente, en la lección magistral
impartida por el profesor en el aula, donde el alumno realiza preguntas, toma
apuntes y luego, con los libros de texto y consulta convencionales, procede al
estudio individual. La realización de ejercicios, problemas y casos, de forma
aislada o en la misma aula, junto con la realización de prácticas de forma
masificada o en número insuficiente, permitía al docente ver la aplicación de esa
enseñanza a la práctica además servía para reforzar los conceptos adquiridos.
Hoy en día, afirma Labori (2008), la tecnología de la comunicación está
perfectamente enraizada con la información dando lugar al desarrollo de las
Tecnologías de la Información y Comunicación (TIC), a su vez, la cultura colectiva
está cambiando esencialmente de estar soportada por los libros a estar basada en
el ordenador a través de los medios y soportes de información y comunicación que
conforman las TIC.
Al hacer referencia a las alternativas de cambio en el proceso de enseñanzaaprendizaje mediante el uso de las TIC, el B-Learning representa una alternativa
de educación y capacitación a través de Internet, este tipo de enseñanza online
20
facilita la interacción del usuario con el material mediante la utilización de diversas
herramientas informáticas.
Refiere Bernárdez (2008), que este nuevo concepto educativo es una
revolucionaria modalidad de capacitación que posibilita Internet, la cual se
posiciona como una modalidad predominante en el futuro. Debido a las
transformaciones en la educación, logrando abrir puertas al aprendizaje individual
y organizacional.
Esta forma de trabajo educativo llamada B-Learning según el citado autor,
comprende fundamentalmente aspectos de orden pedagógico, referido a la
Tecnología Educativa como disciplina de las ciencias de la educación, vinculada a
los medios tecnológicos, la psicología educativa y la didáctica. Desde el aspecto
tecnológico, referido a la Tecnología de la Información y la Comunicación,
mediante la selección, diseño, personalización, implementación, alojamiento y
mantenimiento de soluciones en dónde se integran tecnologías propietarias y de
código abierto.
La implementación de esta forma de trabajo, permite una serie de beneficios
como la reducción de costos debido a que permite reducir y hasta eliminar gastos
de traslado, alojamiento, material didáctico, además la rapidez y agilidad esto
basado en que las comunicaciones a través de sistemas en la red confiere rapidez
y agilidad a las comunicaciones, por otro parte, un elemento fundamental es que
los usuarios pueden acceder al contenido desde cualquier conexión a Internet,
cuando les surge la necesidad.
A su vez una de estas ventajas refiere que no se requiere que un grupo de
personas coincidan en tiempo y espacio, razón por la cual se configura como una
alternativa ante las complejas situaciones que se presentan en los actuales
sistemas educativos que se encuentran en tiempos de transición y cambio, pero
los cuales deben explorar en su mayoría la utilización de estas novedosas
21
herramientas posibilitadas por las TIC.
En este orden de ideas, la realidad del sistema educativo Colombiano,
muestra interesantes cambios y avances, estos van desde la implementación de
los sistemas para la generación de competencias, hasta la integración de las TIC
en los procesos educativos del sector educativo, sin embargo, no todas las
organizaciones logran las respectivas adaptaciones al tiempo requerido, por lo
cual es posible preveer dificultades en el medio.
De ahí que trabajos como los de Altuve (2009), refieren que en un grupo de
instituciones pertenecientes al Departamento de la Guajira en la cual se presenta
una división territorial de quince municipios, se logró evidenciar que la enseñanza
de las matemáticas presenta una serie de contratiempos específicamente en lo
que respecta a temas como la trigonometría.
Afortunadamente, los resultados permitieron la revisión de los esquemas de
trabajo docente y la disponibilidad de recursos didácticos para generar un cambio
al cual se comprometió la realización de mediciones para identificar la posible
mejora y la ruta que este había logrado. Posterior a un año, se observaron algunos
avances como cambios en el rendimiento escolar, pero no sostenibles, lo que
indica que no fueron tomados en consideración las verdaderas causas de la
problemática.
El debate sobre el papel que las matemáticas desempeñan en el sistema
educativo y, de manera más general, su papel en la sociedad, viene ya de muy
atrás. Para el año 2000, la UNESCO lo declaró año Internacional de las
Matemáticas, por ello desempolvó diversos aspectos que han sido objeto desde
entonces de diversas iniciativas en diferentes ámbitos.
Partiendo de la consideración que la enseñanza de la matemática, para la
UNESCO (2000), atribuye un papel formativo, pues al ser una ciencia que a partir
de nociones fundamentales desarrolla teorías que se valen únicamente del
22
razonamiento lógico, contribuye a desarrollar el pensamiento lógico – deductivo,
permitiendo formar sujetos capaces de observar, analizar y razonar.
De esa manera, la matemática posibilita la aplicación de los conocimientos
fuera del ámbito escolar, donde debe tomar decisiones, enfrentarse y adaptarse a
situaciones nuevas, exponer sus opiniones y ser receptivos con las de los demás.
El desarrollo de la competencia cognitiva general, y la posibilidad de llevar a cabo
razonamientos de tipo formal, abren nuevas oportunidades para avanzar en el
proceso de la construcción del conocimiento matemático, asegurando mayores
niveles de abstracción.
Por ello, que a partir de las indagatorias de la UNESCO (2000), se
evidencian que, a pesar de los esfuerzos realizados, los programas de estudio aún
presentan una excesiva carga de contenidos que no sólo resultan difíciles de
cubrir en las horas de que se dispone, sino que ponen más énfasis en la
memorización que en la comprensión y uso de los mismos, lo cual no se identifica
como una situación deseable para la educación.
Esta realidad aun se identifica en la enseñanza y aprendizaje de la
trigonometría, tal como lo plantea Martin (2009), quien argumenta que en México,
un estudio realizado por la Universidad Pedagógica Nacional, en instituciones de
educación media reveló la insuficiente preparación de los docentes de
matemáticas así como la carencia de recursos o prototipos educativos los cuales
faciliten la acción del estudiante para la construcción de su conocimiento
trigonométrico. Sin embargo uno de los aspectos identificados con mayor
tendencia por el estudio se relacionó con la falta de estrategias de enseñanza
aplicadas para el compromiso de la trigonometría.
Por su parte Bonalde (2010), soportado en los estudios del
Comité
Latinoamericano de Matemática Educativa (CLAME 2009), afirma que los
estudiantes
no
logran
desarrollar
conceptos
claros
de
trigonometría,
encontrándose que en ocasiones utilizan la notación algebraica de manera
23
informal, de ahí que muchos de ellos no comprende el concepto de trigonometría
numérica, y solo aseveran que la misma se trata de las relaciones entre los
ángulos y los lados de un triángulo rectángulo.
Tales circunstancias parecen ser coincidentes con las percibidas en la
consulta realizada por el investigador de manera no estructurada con un grupo de
docentes de la Institución Educativa “Luis Giraldo” del municipio Agustín Codazzi
en Cesar Colombia, donde el nivel de aplazados en el área de trigonometría
resulta preocupante no solo para estos profesionales sino para la institución y los
representantes.
Ante esto, las argumentaciones de los docentes refieren que existe poco
interés por parte de los alumnos en cumplir con las asignaciones establecidas
para este propósito instruccional, al punto que son pocos los que cumplen con las
fechas pautadas, además en el aula ni las actividades grupales han permitido que
se logre un interés en el proceso de resolución de problemas, aun cuando se ha
tratado de aprovechar en alguna medida de la experiencia y dominio de los pocos
estudiantes que logran una mejor desempeño con la temática.
Sin embargo, el investigador, ante su experiencia en el área educativa, logró
observar que dentro de los materiales que se disponen para el proceso de
enseñanza y aprendizaje de la trigonometría, se mantienen los tradicionales
textos, los manuales de ejercicios, los cuales se han utilizado por años en forma
reiterada, la pizarra, dejando a un lado el apoyo que pueden brindar el uso de las
tecnologías de información y comunicación presentes en la institución.
Así mismo, en esta indagatoria con los docentes, se evidencia que estos al
parecer no han logrado unificar criterios
para dar solución al problema: para
algunos es una situación que caracteriza de manera general el aprendizaje de las
matemáticas, lo cual se ha etiquetado como compleja tradicionalmente y ante esto
no asumen nuevas acciones para responder a la dificultad encontrada. De ahí que
otros dan como referencia que no han migrado al uso de las TIC, por la falta de
24
apoyo institucional y en casos muy particulares, han logrado opinar que las
mismas no serian una vía acorde por la falta de conexión que ellos consideran
tendría con la trigonometría.
Tales argumentaciones resultan contrarias al criterio de Pérez (2009) quien
plantea que en todo momento el ejercicio docente requiere de estrategias
didácticas para el abordaje de los conocimientos, por ello asevera que uno de los
propósitos fundamentales de la docencia es brindar las condiciones adecuadas
para que los alumnos logren aprendizajes constructivos y coherentes con el
espacio en que viven.
Analizando esta premisa desde una perspectiva constructivista se entiende
que el docente debe utilizar procedimientos, métodos, recursos que contengan la
contextualidad de los aprendizajes y por ende la adecuada práctica educativa que
conlleve a procesar la enseñanza desde el enfoque de la construcción de
conocimientos. En tal sentido Muraro (2005) señala:
Dentro de la teoría práctica-situacional en el currículo práctico el
conocimiento se produce por las interacciones humanas, necesitándose
herramientas y estrategias cognitivas para su elaboración. En informática y
computación, esta concepción se encuadra en las propuestas curriculares
en torno a la adquisición de técnicas y herramientas de producción,
permitiendo un juego mutuo entre las modalidades de trabajo que ellas
ofrecen e imponen. EI lugar del docente es ser guía de los procesos
mentales de sus alumnos. (p.87)
En relación a lo planteado, se evidencia la importancia del uso de las TIC
para coadyuvar con el aprendizaje de los educandos, así como la necesidad de
docentes
con
formación
para
que
puedan
desarrollar
competencias,
exclusivamente, tecnológicas con el propósito que propicien una formación
conceptual por medio de estos recursos.
Esta enseñanza en el abordaje, generación y desarrollo del conocimiento
debe proporcionar al educando la capacidad de observar el contexto, de relacionar
y conectar fenómenos físicos y humanos, de entender y discernir acerca de la
realidad y de acuerdo con el nivel educativo en que se encuentra; creando en el
25
sujeto aprendiz premisas hacia el análisis y la síntesis, situación que puede
propiciarse; también con el uso de las computadoras.
Ahora bien, para el investigador esta indagatoria también le comprometió en
lograr acceder a la opinión de los propios estudiantes, los cuales inicialmente
plantean que la trigonometría no les representa un área de interés por la falta de
aplicación que la misma les establece, lo cual denota una falta de conocimientos
sobre el verdadero significado y aplicabilidad de la misma, responsabilidad que
descansa en el rol del docente.
Así mismo, los estudiantes coinciden con los hallazgos del investigador en
considerar que el uso de recursos y rutinas de trabajo es claramente estático,
poco evolutivo y falta de la generación de interés para ellos, de hecho argumentan
que se disponen de los mismos ejercicios en cada periodo, por ello a juicio de
estos, los docentes en ocasiones prestan poca profundidad en la dedicación de la
enseñanza de esta temática. Además, afirman que el uso de las TIC nunca se ha
ejecutado para el caso de la cátedra de matemática en ninguna de sus unidades.
Tales consideraciones son contradictorias con el criterio de Santiago (2008),
el cual asevera que la enseñanza plantea una estrecha relación con la flexibilidad,
reacomodo, multiplicidad y diversidad de las condiciones debiendo proporcionar al
educando los fundamentos teórico-metodológicos requeridos para el uso de las
TIC, procurando la construcción de aprendizajes óptimos y la búsqueda de nuevos
saberes.
En este sentido, es conveniente entender que el docente no es una panacea
capaz de solucionar todos los problemas del aula, pero si un ser creativo,
investigador y consciente del rol que tiene en sus manos y del dominio que debe
tener acerca de los contenidos que fluyen de su enseñanza como emisor de
información, canal de contenidos que se despliegan al alumno pues es un ente
participativo, para generar cambios cognitivos a partir del contexto.
26
Por otro lado Darías, (2001), indica que los docentes deben estar
conscientes y asumir la responsabilidad de liderar el uso de las tecnologías en el
proceso de aprendizaje, para lo cual deben incorporar al proceso estrategias
innovadoras. Por lo tanto, corresponde a los docentes actualizar su práctica
pedagógica en atención a esta nueva realidad.
El proceso de aprendizaje se convierte en un proceso activo y no en una
mera recepción-memorización pasiva de datos: el aprender implica un proceso de
reconstrucción de la información, donde la información nueva es integrada y
relacionada con la que alguno ya posee, donde el docente adquiere un papel de
facilitador del aprendizaje y desarrollo académico y personal en beneficio del
verdadero aprendizaje.
Así mismo, el docente apoya el proceso constructivo del conocimiento; sin
embargo, es el alumno el responsable último de su proceso de aprendizaje y se
considera que los resultados del aprendizaje, en última instancia, dependen de él,
de su actividad mental constructiva. Las actividades teóricas y prácticas
propuestas deben fomentar la práctica reflexiva y el aprender haciendo; es decir,
el aprender a aprender. Un medio que facilita este aprendizaje es el trabajo y
colaboración entre el grupo de estudiantes, que permite explorar diferentes
perspectivas, ideas y experiencias.
Ante todo lo expuesto, es posible constatar la veracidad del problema
planteado, y en qué medida se podría solucionar tal situación, conduciendo al
siguiente interrogante. ¿Cuál será el efecto de una estrategia didáctica en línea
para el aprendizaje de la trigonometría en la Institución Educativa “Luis Giraldo”
en Colombia?
2. OBJETIVOS DE LA INVESTIGACIÓN
27
2.1. OBJETIVO GENERAL
Analizar el efecto de la estrategia didáctica B-Learning para el aprendizaje de
la trigonometría en la Institución Educativa “Luis Giraldo”.
2.2. OBJETIVOS ESPECÍFICOS
Diagnosticar el nivel de aprendizaje sobre trigonometría que poseen los
alumnos del grupo control y del grupo experimental de la Institución Educativa
Luis Giraldo.
Determinar el nivel de aprendizaje sobre trigonometría en los alumnos del
grupo control que recibieron clase magistral de la Institución Educativa
“Luis
Giraldo”.
Determinar el nivel de aprendizaje sobre trigonometría en los alumnos del
grupo experimental que utilizaron B-Learning en la Institución Educativa “Luis
Giraldo”.
Comparar el nivel de aprendizaje sobre trigonometría en los alumnos que
utilizaron la clase magistral y el B-Learning
en la Institución Educativa
“Luis
Giraldo”, antes y después del tratamiento.
3. JUSTIFICACIÓN DE LA INVESTIGACIÓN
Dentro
de
las
circunstancias
educativas
es
necesario
la
correcta
implementación de estrategias apoyadas en el uso de las tecnologías, por lo tanto,
las instituciones educativas, los directores, docentes, alumnos y representantes
deben ser promotores del cambio de paradigma institucional, que para el caso de
muchos países en América Latina han sido razonados y avalados los mismos
dentro de sus normativas y entidades ministeriales como es el caso particular de
28
Colombia.
En cuanto al punto de vista práctico, será relevante ya que las instituciones
educativas debido a los nuevos e importantes cambios evidenciados dentro de su
esquema de trabajo con regular frecuencia vivencia estas situaciones, por ello la
información generada le permitirán conocer la utilidad del B-Learning como
estrategia didáctica para el aprendizaje de la trigonometría en la Institución
Educativa Luis Giraldo.
En relación a su aporte teórico, la presentación de temas para sustentar el
estudio de las variables implicada permitirá consolidar una fuente para los
resultados obtenidos además de constituir en un medio de consulta para
interesados en la temática, de manera que soportara el desarrollo de otros
investigadores. Asimismo será propicio para determinar las coincidencias o
diferencias que se presentan en los resultados y las teorías confrontadas.
De esta forma, desde el punto de vista metodológico, al generar un
instrumento válido y confiable para conocer cómo se comporta la variable de
estudio dentro del ámbito educativo, se logra constituir una herramienta que puede
ser aplicada en el medio educativo o ser implementadas en futuras
investigaciones.
La factibilidad para el desarrollo de la investigación, estuvo garantizada por
tratarse de un recurso que fue conformado por el investigador a partir de su propio
esfuerzo, además, la realización de las experiencias practicas, se logró asegurar
por el uso de los equipos de la institución y la colaboración de los estudiantes. Así
mismo, la selección del tema de la trigonometría, además de encontrarse inmerso
en las posibilidad de trabajo señaladas para la enseñanza de la matemática,
representa una de las situaciones complejas de trabajo para el docente en su
intención de aprendizaje para con los estudiantes, esto permitió conducirlo como
elemento de reto para el investigador el cual se desempeña como docente y logra
29
vivenciar las dificultades señaladas.
4. DELIMITACIÓN DE LA INVESTIGACIÓN
La presente investigación se realizó en la Institución Educativa Luis Giraldo,
en Colombia. Los datos fueron suministrados por los alumnos del primer periodo
del año escolar 2012 y parte del segundo. La misma estuvo orientada a analizar el
efecto del b-learning como estrategia didáctica para el aprendizaje de la
trigonometría. Para el logro de este propósito se logro disponer de un soporte
teórico conformado por autores como: Argyris y Schön (1978), Huerta (2008),
Marzano y otros, (1992), UNESCO (2000), Valiathan P (2002), Monterrey (2004),
Montserrat B (2008) entre otros.
CAPITULO II
30
MARCO TEÓRICO
El presente capítulo presenta a continuación, una serie de investigaciones
que debido a la similitud de los temas tratados en relación a las variables
estudiadas, han servido de referencia al desarrollo del presente estudio,
permitiendo disponer de una serie de ventajas y facilidades, dentro de las cuales
se destacan el uso de teorías específicas, la instrumentación de estrategias
investigativas y todas aquellas que permitieron responder a los planteamientos de
trabajo.
1. ANTECEDENTES DE LA INVESTIGACIÓN
De acuerdo con la revisión minuciosa realizada a diferentes trabajos de
investigación, para establecer la relación que existe con el presente estudio, se
han tomado como base informativa las siguientes investigaciones, las cuales
permitieron el desarrollo del trabajo investigativo como un medio de referencia el
cual facilitó diversas posibilidades y apoyo.
En el caso de Sánchez (2010), su trabajo se enmarca dentro de la línea de
apoyo tecnológico al docente. Su propósito fundamental fue proponer estrategias
didácticas empleando las TIC dirigida a los profesores del área de trigonometría
de Educación Media. El estudio se orientó en los principios del aprendizaje
significativo y de las estrategias didácticas. En virtud de los resultados obtenidos y
el contraste de la información, se evidenció que la estrategia didáctica utilizada por
la mayoría de los profesores es la exposición. Por lo tanto, se recomienda el uso
de las estrategias didácticas apoyadas con las TIC, lo que justifica la propuesta
dirigida a las instituciones participantes en la investigación
Para el caso de Hernández (2011), su investigación tuvo el propósito de
determinar la efectividad del uso de estrategias de aprendizaje mediadas por las
31
Tecnologías de la Información y la Comunicación para el desarrollo del
razonamiento matemático de los estudiantes de 4to año. El tipo de investigación
fue descriptiva, comparativa y evaluativa, con un diseño cuasi-experimental y de
campo.
Para la recolección de datos se aplicó una prueba de conocimiento a todos
los estudiantes demostrando su homogeneidad, luego se aplicaron estrategias de
aprendizaje mediadas por las TIC y se empleó de nuevo la prueba de
conocimiento al grupo control y al experimental comparándose los resultados a
través de la t de Student.
A partir de los resultados y al comparar el nivel de razonamiento matemático
en ambos grupos, se concluyó que por medio de los resultados presentados el uso
de las estrategias de aprendizaje mediadas por las TIC son efectivas para el
desarrollo del razonamiento matemático.
Se recomendó tratar siempre de incluir dentro de las planificaciones de los
contenidos, estrategias de aprendizaje mediadas por las TIC ya que estimula en
los estudiantes el razonamiento matemático, la argumentación y la demostración
de problemas trigonométricos. A partir de la revisión del antecedente se establece
como aporte las teorías dispuestas para el caso de las estrategias basadas en el
uso de las TIC en cuanto al aprendizaje de las matemáticas.
En cuanto al trabajo de Figueiredo (2010), el cual fue un estudio
comparativo realizado con alumnos del décimo al duodécimo año de enseñanza
secundaria a través de la aplicación de diferentes metodologías. El estudio trató
de la obtención de diferentes tipos de representaciones de la estructura cognitiva
de los alumnos en lo referente a los conceptos asociados al estudio de la
Trigonometría, de modo que se identificaron y compararon los conceptos más
importantes y se estudió su relación y evolución, a lo largo de un periodo de
cursos escolares, utilizando diferentes métodos de recogida, de representación y
32
de análisis de datos. Pretendió, además, ampliar el abanico de metodologías
frecuente y tradicionalmente utilizadas, a través de la aplicación de la Teoría de
los Conceptos Nucleares.
Se adoptó un tipo de investigación por encuesta, con un diseño por cohortes,
dado que la recogida de datos implicó a participantes de diferentes grupos de
edad en un determinado periodo de tiempo.
Participaron en este estudio 399 alumnos de siete escuelas del distrito de
Beja (Portugal), que realizaron tres pruebas, con base en 11 conceptos
trigonométricos previamente seleccionados, efectuadas en el orden siguiente: (1)
Primera prueba de Puntuación de Proximidad Conceptual, en el programa KNOT;
(2) Prueba de Ordenación de Tarjetas; (3) Segunda prueba de Puntuación de
Proximidad Conceptual, en el programa KNOT.
A partir del análisis de los datos, se verificó que, con las diferentes técnicas
utilizadas, los conceptos que destacan en la estructura cognitiva de los alumnos
fueron por lo general los mismos, por lo que se valida un método que combina
distintas técnicas de recogida y representación de datos.
En lo concerniente a las repercusiones para la enseñanza, se destacó que
las técnicas utilizadas proporcionan informaciones sobre los conocimientos previos
de los alumnos, lo que sirve como evaluación diagnóstica sobre sus conocimientos
previos. Se comprobó que el concepto de círculo trigonométrico, a pesar de
aparecer en los manuales escolares, no está integrado en la estructura cognitiva
de los alumnos de esta edad.
Los conceptos que más se destacan son aquellos que están más ligados al
Teorema de Pitágoras, adquiridos en años anteriores de escolaridad. Por otra
parte, los conceptos más frecuentemente utilizados en la resolución de problemas
concretos destacan como los más importantes en la estructura cognitiva, y de este
33
modo se confirma la importancia de las actividades prácticas en la enseñanza y
aprendizaje de la Trigonometría. Como aporte del estudio se tiene las teorías que
permitieron contextualizar la variable de estudio para el proceso de enseñanza y
aprendizaje las cuales se dispusieron para concretar el aspecto teórico del
presente estudio.
En el caso de Vílchez (2010), su trabajo responde a un intento de dar
solución al problema del bajo rendimiento académico en el aprendizaje de las
Funciones Trigonométricas de alumnos del quinto grado de secundaria de la
localidad de Huánuco.
El problema identificado para el trabajo, resulta de un diagnóstico real de
elementos básicos del proceso educativo: centro educativo, alumnos, docentes,
planes y programas curriculares, textos escolares y materiales didácticos; luego,
se identifican las causas del bajo nivel de aprendizaje de la matemática por parte
de los alumnos, como son: la limitada dedicación de los docentes a su actividad, la
escasa bibliografía y textos con contenidos y presentación didáctica inapropiada.
En respuesta al problema descrito se elaboró un Módulo Didáctico para la
enseñanza de las Funciones Trigonométricas a partir de la circunferencia unitaria
en el plano cartesiano; formulándose la hipótesis de que su implementación y
desarrollo en el proceso de enseñanza, permite un aprendizaje más significativo.
La elaboración y desarrollo del Modelo de Enseñanza Personalizada a través del
Módulo Didáctico se sustentó en un marco teórico de temas relacionados con el
proceso enseñanza-aprendizaje de la matemática, que se apoyó en el desarrollo
de los conceptos fundamentales de educación, materiales y medios didácticos,
referido al aprendizaje de las funciones trigonométricas a través de la enseñanza
modular personalizada.
El proceso experimental se realizó con dos secciones, uno como grupo
experimental que trabajaron con el Módulo Didáctico y el grupo de control que
34
trabajaron en forma tradicional, seleccionados por el historial académico del grado
anterior y de rendimientos homogéneos, iniciándose el trabajo de campo con una
prueba de requisitos y se concluyó con una prueba de salida.
Con la elaboración y desarrollo de la enseñanza modular se obtuvo aportes,
como: las Funciones Trigonométricas a partir de puntos en la circunferencia
unitaria del plano cartesiano y considerando conocimientos previos de geometría y
álgebra elementales, es una alternativa a la enseñanza usual de la trigonometría
como razones entre los lados de un triángulo rectángulo, donde algunos
conceptos, propiedades, representaciones gráficas, resultan insuficientes y poco
consistentes.
Además se tiene un material de trabajo que permite la interacción directa
profesor y alumno, facilitando el desarrollo de capacidades de intuición, de
abstracción y de razonamiento, relacionando con situaciones reales y con
aplicaciones
en
la
solución
de
problemas,
propiciando
el
aprendizaje
personalizado, poniéndose en práctica los procedimientos activos para el
aprendizaje, paradigmas de la educación actual. El aporte de este antecedente
radica en la manera como se logró desarrollar un estudio de orden
cuasiexperimental, el cual permitió observar los criterios de trabajo que fueron
adoptados para el presente trabajo.
Marcano de Nava, (2011), por su parte realizó un estudio que tuvo como
propósito la definición y valoración de una estrategia de enseñanza aprendizaje de
la estadística, basada en competencias, que tomó en consideración dos aspectos:
i) aprovechamiento de las TIC y sus aplicaciones en la modalidad de estudios no
presenciales, ii) el uso de software estadístico con la múltiples ventajas, entre
otras, minimizar el error personal en los cálculos manuales y enfocar el estudio de
esta asignatura hacia la interpretación de los resultados para convertirla en una
herramienta metodológica en la interpretación de fenómenos sociales dejando
atrás las tareas de cálculo matemático.
35
En ese sentido se propuso el diseño de la Estrategia Blended - learning o BLearning (BL) para la enseñanza - aprendizaje de la estadística. El estudio se
centró en describir las competencias del tutor virtual y del estudiante para asumir
un curso a distancia basado en las tics, y así construir el perfil de estos actores
centrado en dichas competencias, tanto para el tutor virtual en la administración de
la asignatura estadística como las del estudiante para abordar un curso de
estadística a distancia con aplicaciones de paquetes estadísticos.
El estudio se calificó como Proyecto Factible con un nivel explicativo de
profundidad, de manera que se realizó un ensayo de la estrategia y se valoró
mediante los docentes observadores a los cuales se les aplicó un instrumento tipo
encuesta para emitir su juicio. Se aplicaron inicialmente tres instrumentos para
determinar la factibilidad del estudio, dos para la determinación de las
competencias existentes entre los figurantes del proceso y finalmente uno de
valoración del ensayo, sometidos a sus respectivos procesos de validación.
Las teorías que fundamentaron el estudio fueron: las estrategias de
enseñanza aprendizaje, modalidades de estudio, las competencias, las Tics y el
BL. Los resultados indicaron que la Estrategia BL es factible de aplicar y las
competencias que se generaron fueron pertinentes y efectivas tanto para los
estudiantes como para el nuevo rol de tutor virtual del docente de estadística.
Como aporte derivado del estudio, se tiene la revisión de la metodología de
estudio utilizada para de esta manera lograr la conformación del instrumento
dispuesto en el presente estudio.
2. BASES TEÓRICAS
Se presentan a continuación los contenidos teóricos de la investigación que
permitirán el sustento del trabajo, estos provienen de autores y especialistas en la
temática de las estrategias didácticas y el uso del B-Learning, los cuales por su
actualización y valor servirán para confrontar los resultados obtenidos con los
criterios manifestados por estos, logrando de esta manera un criterio ante los
36
hechos registrados.
2.1. Niveles de Aprendizaje
Si bien el aprendizaje es el proceso de adquisición de conocimientos,
habilidades, valores y actitudes, posibilitado mediante el estudio, la enseñanza o la
experiencia, el mismo, puede ser entendido a partir de diversas posturas, lo cual
implica que existen diferentes teorías vinculadas al hecho de aprender. El proceso
fundamental en el aprendizaje es la imitación (la repetición de un proceso
observado, que implica tiempo, espacio, habilidades y otros recursos). De esta
forma, los niños aprenden las tareas básicas necesarias para subsistir y
desarrollarse en una comunidad.
Según Montserrat (2008), el aprendizaje humano se define como el cambio
relativamente invariable de la conducta de una persona a partir del resultado de la
experiencia. Este cambio es conseguido tras el establecimiento de una asociación
entre un estímulo y su correspondiente respuesta. La capacidad de aprender no
es exclusiva de la especie humana, aunque en este se constituyó como un factor
el cual supera a la habilidad común de las ramas de la evolución más similares.
Gracias al desarrollo del aprendizaje, los humanos han logrado alcanzar una cierta
independencia de su entorno ecológico y hasta pueden cambiarlo de acuerdo a
sus necesidades.
Con respecto al Nivel de Aprendizaje, dicho concepto hace referencia al
grado de radicalidad y profundidad del aprendizaje experimentado por un
individuo. Argyris y Schön (1978, citados por Huerta 2008), distinguen entre
aprendizaje en bucle simple (superficial) y en bucle doble (profundo). Estos
autores consideran, que el aprendizaje implica una reestructuración de la teoría de
la acción. Dicha reestructuración puede ser más o menos profunda y radical,
dando como resultado un nivel de aprendizaje diferente; aprendizaje en bucle
simple o en bucle doble.
37
Es así como el aprendizaje en bucle simple (superficial), se produce cuando
los individuos responden en función a la información que poseen por experiencias
pasadas; por lo tanto, el mismo se comporta de manera muy sencilla o simple, en
esto es determinante el hecho que el tiempo transcurrido haya logrado diluir en
alguna medida lo aprendido, sin embargo, es una medida que le permite lograr
una orientación posterior.
El aprendizaje superficial se da cuando el alumno es capaz de reproducir el
contenido cuando se requiera, cuando manifiesta un desconocimiento de
principios o modelos de orientación y cuando adquiere conocimientos en función
de las pruebas en conjunto con la aceptación pasiva de ideas e información.
Se expone en los trabajos de Entwistle (1981), Ramsdem (1992) y Biggs
(1993) (citados por Fasce 2002), en esta estrategia el aprendiz memoriza la
información como hechos aislados, sin conexión con experiencias previas o con el
contexto general. El objetivo central es retener datos para aprobar la evaluación.
En el aprendizaje superficial sólo se requiere un nivel bajo de habilidad cognitiva,
principalmente orientado a “conocer”. Ello explica el rápido olvido de la materia
estudiada al poco tiempo de haber rendido las evaluaciones.
De igual manera estos autores plantea que existen factores que promueven
estrategias de aprendizaje superficial en los cuales se encuentran: la enseñanza
centrada en el docente, la sobrecarga de información, las tareas fuera de los
objetivos del programa, el currículo orientado a las asignaturas, carente de
integración, el incluir innovaciones metodológicas sin contexto pedagógico,
además de la sobrecarga de tareas convencionales, así como las evaluaciones
inadecuadas, es decir fuera de objetivos, son relación a los métodos de
enseñanza, carentes de objetividad, poco confiables y de baja exigencia cognitiva.
Además Argyris y Schön (1978, citados por Huerta 2008), consideran un
38
nivel de aprendizaje más elevado, al que denominan aprendizaje en bucle doble
(profundo), se corresponde con aquellos de mayor arraigo, mediante el
establecimiento prioridades y ponderaciones efectivas que le permiten mantenerse
en condiciones de dominio para una actividad o desempeño.
El
aprendizaje profundo es cuando el alumno tiene la intención de
desarrollar la comprensión personal, cuando asocia ideas aplicando principios
integradores de los contenidos, cuando
elabora sus propias conclusiones de
acuerdo a lo estudiado, cuando hace una interacción activa del contenido, sobre
todo al relacionar nuevas ideas con conocimientos y experiencias ya adquiridos.
Las destrezas que se desarrollan en este tipo de aprendizaje están referidas a la
interpretación, aplicación, al análisis, a la síntesis, al inferir, a la capacidad de
evaluar y por supuesto en predecir.
Según los estudios de Entwistle (1981), Ramsdem (1992) y Biggs (1993)
(citados por Fasce 2002),el aprendizaje profundo, se caracteriza por incorporar el
análisis crítico de nuevas ideas, las cuales son integradas al conocimiento previo
sobre el tema, favoreciendo con ello su comprensión y su retención en el largo
plazo de tal modo que pueden, más tarde, ser utilizadas en la solución de
problemas en contextos diferentes; el aprendizaje profundo promueve la
comprensión y la aplicación de los aprendizajes.
Para los citados autores, existen una serie de factores que promueven el
aprendizaje profundo, dentro de los cuales se destacan: Dependientes del
ambiente de aprendizaje, en estos son considerados la confiabilidad en el nivel de
calificación, la facultad generadora de ambiente flexible, cordial, apoyador, la
claridad de objetivos y metas, los programas motivadores, relevantes para el
conocimiento, un apropiado clima social y académico.
De igual manera se presentan aquellas que son dependientes del docente
como el adoptar una conducta “andragógica” (participando como facilitador y guía)
39
en vez de “pedagógica” (centrada en la entrega de información), facilitar
retroalimentación positiva, poder establecer metas realistas, de acuerdo a cada
nivel de enseñanza y en base a contenidos nucleares, utilizar metodologías
participativas, propiciar la interacción entre estudiantes (proyectos grupales),
promover la enseñanza directa de habilidades y competencias clínicas.
Así mismo, son consideradas las dependientes del currículo, en las cuales se
ubican el poder establecer contenidos esenciales evitando la sobrecarga de
información, el diseñar modelos de currículo integrados, el lograr incorporar
metodologías centradas en el estudiante, así como desarrollar instrumentos y
métodos de evaluación en concordancia con las metodologías y los objetivos.
Para Vega (2007), el conocimiento se habilita para reproducir la información
que se adquirió o para demostrar una habilidad para ejecutar un procedimiento,
sin embargo, la comprensión profunda es algo que va más allá del conocimiento,
establece dominarlo, transformarlo, utilizarlo para resolver problemas reales. Por
ello, se demuestra un aprendizaje profundo cuando se tiene la capacidad de
realizar una variedad de acciones mentales con un tópico, tales como dar
explicaciones, mostrar evidencias y ejemplos, generalizar, aplicar a situaciones
nuevas, establecer analogías, representar ese conocimiento de una forma
diferente, usarlo para resolver problemas de la vida cotidiana, avanzar en el
conocimiento estableciendo relaciones inusuales.
Schmeck, por su parte, (1981 citado por Vega 2007), habla de aprendizaje
profundo, elaborativo y superficial.
Los estudiantes que tienen un estilo de
aprendizaje profundo invierten más tiempo pensando y menos repitiendo.
Clasifican, comparan, contrastan, analizan y sintetizan información de distintas
fuentes. En contraste, Klausmeier (1990), quien participa en un campo reciente de
investigación, como es el de los estudios sobre las diferencias de procesamiento
de la información entre los denominados expertos y novatos en algún campo del
conocimiento, señala que los primeros organizan el conocimiento en forma de
40
redes estructuradas y no como datos aislados como es la tendencia que muestran
los novatos.
También aportan a la conceptualización básica del aprendizaje profundo, la
línea de los programas de enseñanza de destrezas intelectuales infundidas en los
contenidos del curriculum Swartz y Parks, (1994), Perkms y Swartz, (1989) y muy
especialmente Marzano y otros, (1992 citados por Vega 2007) quienes postulan,
en su modelo de las dimensiones del aprendizaje, la existencia de procesos y
destrezas cognitivas, propias de la profundización, extensión y uso significativo del
conocimiento.
La comprensión profunda implica profundizar y extender el conocimiento. Se
profundiza identificando los temas relacionados al interior de la disciplina y se
amplía estableciendo las conexiones con otras disciplinas y con la vida diaria. La
profundización lleva al expertizaje en una temática, en cambio, la extensión
permite relacionar el conocimiento con el resto de la cultura, haciéndolo cada vez
más significativo para las personas.
Cuando un estudiante sabe algo, puede reproducir ese conocimiento o
desarrollar cierta destreza. Sin embargo, como se ha señalado, la comprensión
profunda va más allá del conocimiento. La comprensión profunda significa que la
información que se está procesando tenga sentido para el aprendiz, en otras
palabras, que pueda relacionarla con alguna experiencia previa para darle
significado. pueda identificar la clase a la que pertenece, pueda usarla
activamente en su vida personal.
Cada aprendizaje exige un cierto nivel de procesamiento. Por ejemplo,
responder verdaderos y falsos, resolver ejercicios de matemáticas del texto y otros
similares, tienen su importancia, pero no corresponden a lo que estamos llamando
aprendizajes profundos. El problema radica en que si se revisan las actividades
que los niños hacen en la escuela y las tareas para la casa, 1a mayoría de ellas
41
pertenecen al grupo que sólo exige un procesamiento superficial. Es necesario
invertir tiempo
en
aprender profundamente. Aprender profundamente significa
participar activamente y creativamente en el aprendizaje.
Lampert (1994 citado por Vega 2007), destaca dos componentes del
aprendizaje profundo, que resultan enormemente interesantes para ilustrar el tipo
de actividades que se realizan en una situación de aprendizaje profundo: un
componente individual, mediante el cual el sujeto conecta lo nuevo con el
conocimiento anterior y le da sentido y, un componente social, que involucra la
comunicación de sus ideas a los demás. Tanto los estudios provenientes de la
psicología, como la práctica docente indican consistentemente que el esfuerzo por
comunicar las propias ideas a los demás mejora la propia comprensión.
Ahora bien, la comunicación que se menciona, tiene una característica
especial, es decir, debe asegurar que lo que se está verbalizando está siendo
comprendido por los demás. De ahí que sea necesario hacer la diferencia entre
decir y comunicar. En una interacción educativa esto resulta válido tanto para el
profesor, quien tiene la oportunidad de modelar esta conducta frente a los
estudiantes y de paso, asegurarse de que los alumnos están comprendiendo,
como para los alumnos, quienes con esta modalidad contribuyen al logro de dos
objetivos: mejorar su propia comprensión y colaborar con la construcción del
aprendizaje de sus compañeros.
La interacción anteriormente descrita cambia el modelo típico de diálogo
que se observa frecuentemente en la sala de clase. El profesor pregunta, el
alumno responde, generalmente tratando de reproducir la información y el profesor
da un juicio sobre la respuesta. Allí termina el diálogo.
En un contexto de aprendizaje profundo este es sólo el comienzo del diálogo.
El profesor debe indagar cuál es el proceso intelectual que el alumno siguió para
responder, solicitándole nuevamente que lo explicite frente a sus compañeros.
42
Como esa respuesta no está en ningún libro, el estudiante se ve obligado a
recurrir a su propio vocabulario y comienza a independizarse del texto o deja de
repetir las palabras del profesor. Estas estrategias para suscitar la metacognición,
permiten, además de los beneficios señalados más arriba, que el alumno
reflexione no sólo frente al contenido que está aprendiendo, sino sobre su propio
pensamiento, es decir, sobre sus propios recursos para aprender autónomamente
Los diálogos entre profesor y estudiantes, al estilo de los descritos, necesitan
un ambiente específico que es necesario preparar: es necesario crear normas
sociales que promuevan el respeto por las ideas de los demás, se necesita
además un clima de orden y de seguridad y eso no se consigue de un día para
otro. Marzano y otros, (1992 citados por Vega 2007).
La enseñanza para el aprendizaje profundo solicita al estudiante que asuma
importantes responsabilidades en materias que habitualmente él no participa. Por
ejemplo se le pide que formule criterios de evaluación o que monitoree el
funcionamiento de los criterios que se han establecido. El logro de la comprensión
y el aprendizaje profundos implica una retroalimentación permanente, paso por
paso, el establecimiento de criterios y estándares cualitativos que permitan
comprender las características de las metas que se persiguen.
Relacionando este elemento
con el propósito de la investigación, se ha
concretado que la dimensión de estudio es el nivel de aprendizaje, por tal motivo,
se logró disponer de dos categorías formuladas en base a las alternativas de
respuesta, las cuales caracterizaron en un aprendizaje de orden superficial y otro
profundo, esto, según un intervalo definido entre los valores de 0 y 1
respectivamente lo cual asigna a la condición de error ante la presentación de una
interrogante al valor “0”, mientras en el caso de acertar se asigna el valor “1”.
2.2. El B-Learning.
A juicio de Brennan (2004), una idea clave es la de selección de los medios
adecuados para cada necesidad educativa. En términos de formación en la
43
empresa, Brennan, al tiempo que señala que el término tiene diferentes
significados para diferentes personas, como “cualquier posible combinación de un
amplio abanico de medios para el aprendizaje diseñados para resolver problemas
específicos”
Al respecto, el Blended Learning (BL) posee distintos significados, pero el
más ampliamente aceptado es entenderlo como aquel diseño docente en el que
tecnologías de uso presencial (físico) y no presencial (virtual) se combinan con
objeto de optimizar el proceso de aprendizaje. Un aspecto a destacar del BL es
que se centra en los procesos de aprendizaje, herencia del peso que la Psicología
del Aprendizaje ha tenido en el mundo anglosajón, por contraste con la Didáctica
del ámbito latino. Así el concepto recibe otras denominaciones más centradas en
la acción del diseñador o docente, como “educación flexible” (Salinas, 2002),
semipresencial (Bartolomé, 2001) o modelo híbrido (Marsh, 2003).
De igual manera, el B-Learning (formación combinada, del inglés blended
learning) consiste en un proceso docente semipresencial; esto significa que un
curso dictado en este formato incluirá tanto clases presenciales como actividades
de e-learning. Este modelo de formación hace uso de las ventajas de la formación
100% on-line y la formación presencial, combinándolas en un solo tipo de
formación que agiliza la labor tanto del formador como del alumno. El diseño
instruccional del programa académico para el que se ha decidido adoptar una
modalidad B-Learning deberá incluir tanto actividades on-line como presenciales,
pedagógicamente estructuradas, de modo que se facilite lograr el aprendizaje
buscado.
En inglés, significa “Aprendizaje Mezclado”, y se refiere a una modalidad
educativa que utiliza las más avanzadas tecnologías de información y
comunicación (TIC) a través de plataformas virtuales en Internet, en donde se
llevan a cabo los procesos formativos de los cursos escolares, combinados con
sesiones presenciales intensivas de asesoría académica, de carácter opcional y al
44
menos, una vez a la semana.
Según Valiathan (2002), se expresa que el b-learning implica una
combinación de una variedad medios de entrega (sin tecnología - presenciales y
basados en tecnología- en línea), variedad de eventos de aprendizaje (trabajo a su
propio paso, individual y colaborativo, basado en grupos), y apoyo electrónico de
desempeño (instrucción) y gestión de conocimiento (información), los cuales
permite clasificar los modelos de b-learning en tres categorías: modelo basado en
las habilidades, modelo basado en las actitudes. Las ventajas que se suelen
atribuir a esta modalidad de aprendizaje son la unión de las dos modalidades que
combina:
Las que se atribuyen al e-learning: la reducción de costes, acarreados
habitualmente por el desplazamiento, alojamiento, etc., la eliminación de barreras
espaciales y la flexibilidad temporal, ya que para llevar a cabo gran parte de las
actividades del curso no es necesario que todos los participantes coincidan en un
mismo lugar y tiempo. Y las de la formación presencial: interacción física, lo cual
tiene una incidencia notable en la motivación de los participantes, facilita el
establecimiento de vínculos, y ofrece la posibilidad de realizar actividades algo
más complicadas de realizar de manera puramente virtual.
Así mismo, Valiathan (2002), considera que es la combinación de múltiples
acercamientos al aprendizaje. El B-Learning puede ser logrado a través del uso de
recursos virtuales y físicos, “mezclados”. Un ejemplo de esto podría ser la
combinación de materiales basados en la tecnología y sesiones cara a cara, juntos
para lograr una enseñanza eficaz. En el sentido estricto, b-Learning puede ser
cualquier ocasión en que un instructor combine dos métodos para dar
indicaciones. Sin embargo, el sentido más profundo trata de llegar a los
estudiantes de la presente generación de la manera más apropiada. Así, un mejor
ejemplo podría ser el usar técnicas activas de aprendizaje en el salón de clases
físico, agregando una presencia virtual en una web social. Blended Learning es un
45
término que representa un gran cambio en la estrategia de enseñanza.
2.2.1. Teorías del Aprendizaje en B-Learning
Para Bartolomé (2004), se presentan una serie de teorías las cuales están
relacionadas con el proceso derivado en el B-learning, por lo que se considera de
utilidad describirlas a continuación:
Conductismo:
A
través
de
multimedia
de
ejercitación
y
práctica,
presentaciones visuales con continuo feed-back.
Cognitivismo: presentaciones de información, software que ayuda al
estudiante a explorar, web.
Humanismo: atención a diferencias individuales y destrezas para el trabajo
colaborativo.
Y el constructivismo como el proceso mental del individuo, que se desarrolla
de manera interna conforme el individuo obtiene información e interactúa con su
entorno. Está marcada la tendencia centrada hacia el aprendizaje del estudiante
pero: ¿Cuál es la mejor teoría a utilizar? Depende del conocimiento a adquirir,
¿Cuál herramienta facilita mejor esa adquisición? y ¿Cómo hacer un seguimiento
más personalizado del proceso de aprendizaje? Está claro que lo más importante
es que el estudiante no es un objeto sino el sujeto del aprendizaje.
Estas teorías han de tenerse en cuenta en un Aprendizaje Combinado en
Blended Learning donde se deben poner en conjunto las potencialidades de las
estrategias y didácticas presenciales con las del aprendizaje en línea.
Según el criterio de Sosa y col. (2005), los sistemas b-learning, basados en
el uso de las tecnologías Web como apoyo a la formación presencial, se adaptan
perfectamente al modelo basado en la solución de problemas, cuyo fin último no
46
es otro que el del conocimiento constructivista, por ello podemos considerar que
este sistema de formación mediada, fija su eje central en el aprendizaje por
iniciativa del alumno, definiéndose como un proceso de indagación, análisis,
búsqueda y organización de la información orientado a la resolución de las
cuestiones, problemas propuestos en la asignatura con el fin de demostrar y
desarrollar destrezas para dicho fin.
Demostrando cómo la motivación del alumno, algo muy cuestionado y puesto
en tela de juicio en otras teorías pedagógicas, es incentivada, ampliada y como no
forma parte del desarrollo mismo de la disciplina, erigiéndose como un valor
añadido. El aprendizaje basado en Problemas reales no es un sistema fácil de
implementar, sobre todo si hablamos de áreas disciplinares tales como es el
aprendizaje de lenguajes de programación, área de disciplina orientada a la
enseñanza magistral y la explicación de su desarrollo de forma presencial.
Desde esta premisa se ha de partir del concepto de cambio de roles por
parte del docente, el cual pasará a ser un guía tutor más que el instructor directo
de los alumnos, así como dicho rol se verá modificado para con los alumnos, los
cuales han de adaptarse al nuevo horizonte formativo, centrándose en dos
perspectivas
Disponer de un gran margen de conocimientos y materiales con el fin de que
los alumnos puedan trasladarse desde un nivel medio bajo a un nivel extremo de
dificultad, indicativo claro de una mejora en el desarrollo de diversas experiencias,
estilos de aprendizaje, preferencias individuales y diferentes niveles de
conocimiento.
Este sistema de aprendizaje inteligente, se centra en el estudiante, la
coherencia y compatibilidad de los conocimientos para con el alumno. Los
sistemas basados en el modelo b-learning, apoyo de la formación presencial en
aulas virtuales, se caracterizan por la flexibilidad e interactividad que facilitan los
47
recursos de información y las herramientas comunicativas / interactivas (chat,
correo-e, foros de discusión, weblogs, sistemas de mensajería instantánea), lo
cual permite superar obstáculos que en el desarrollo de trabajos en grupo y
búsqueda de respuestas y soluciones conjuntas entre los alumnos propios de los
sistemas presenciales son más que latente.
2.2.2. Elementos del B-Learning
Para Bartolomé (2004), existen una serie de elementos que deben estar
considerados para el momento del diseño del B- Learning, dentro de los cuales se
destacan:
a.
Recursos del Blended Learning
Según Bartolomé (2004), las sesiones presenciales: son el aprovechamiento
del encuentro cara a cara en las que se permitan la interacción profesor-alumno.
Es toda la labor de orientación e introducción a un conocimiento por parte del
profesor al alumno, con los recursos facilitados en el aula y que permitan la mejor
forma de llegar a la incorporación del conocimiento, estudiante-estudiante; es
decir, potenciar el intercambio de opiniones, el sustentar posiciones y argumentar
situaciones, y saber confrontar su conocimiento significativo con el adquirido,
soportar la crítica y socializar sus nuevos aprendizajes, sus gustos, expectativas,
intereses, motivaciones y metas.
b. Actividades independientes:
Para Bartolomé (2004), se ha de fortalecer el aprendizaje autónomo. Es el
estudiante quien en forma independiente realiza su propia formación con base en
textos impresos, material digital en CD, videos, material multimedial, animaciones,
simulaciones, tutoriales, páginas de Internet u otra mediación pedagógica.
c. Prácticas:
48
Según el criterio de Bartolomé (2004), es desarrollar sesiones prácticas
apoyadas por el profesor en sesiones presenciales en las que el estudiante pueda
practicar el viejo concepto de aprendo practicando, tener contacto directo con una
experiencia real y que ésta sirva como afianzamiento del conocimiento adquirido.
Igualmente desarrollar esas sesiones de práctica con simulaciones y tutoriales.
d. Herramientas de comunicación:
Según Bartolomé (2004), utilizar los elementos tecnológicos que favorezcan
la comunicación permanente entre los actores del proceso profesor-estudiante
tales como: el correo electrónico, los foros, chats, las listas de distribución, los
correos de grupo, las webquest y los blog.
e. Estrategias de evaluación:
Para Bartolomé (2004), no sólo se debe centrar el proceso de evaluación en
emitir un valor cuantitativo sino que se debe potenciar el desarrollo de modelos de
evaluación que faciliten el seguimiento y retroalimentación de cada una de las
actividades que el alumno adelanta.
f. Contenidos virtualizados:
Tener contenidos que se puedan mediar por tecnología para aprovechar
todas sus bondades, y que estén en estrecha relación con lo que se va a transmitir
al alumno, a las expectativas de los alumnos, a los recursos de máquina o
conexión de los alumnos.
A los fines del presente estudio, estos elementos citados por Bartolomé
(2004), resultan de utilidad en la conformación del recurso con el cual se pretende
concretar la estrategia didáctica en línea para el aprendizaje de la trigonometría
49
por ello su consideración es vital de manera que se logre un producto apegado al
criterio técnico y una experiencia de validez científica así como objetiva.
2.2.3. El tutor en Blended Learning
Dentro de las referencias establecidas por Bartolomé (2004), sobre la
condición del tutor en la experiencia de B- Learning se encuentran las siguientes:
a. Académica/Pedagógica:
Para Bartolomé (2004), el tutor es un facilitador de todos los conocimientos
que forman parte directa o indirectamente del curso. Para tal efecto, debe generar
mecanismos pedagógicos dinámicos, en concordancia con la flexibilidad que
ofrece la tecnología. Así mismo, debe diseñar y desarrollar materiales interactivos
adaptados a la tecnología que se va a usar y que faciliten el estudio
independiente. De igual manera comprender la filosofía de la educación a
distancia mediada por la tecnología. Adaptar las estrategias de entrega de la
instrucción a la situación de distancia.
b. Técnica:
Según Bartolomé (2004), el tutor debe fomentar la transparencia de la
tecnología para que los estudiantes centren su atención en el curso y no se dejen
distraer por las posibles complicaciones de los aparatos y los programas
informáticos o herramientas multimediales u otros.
Así mismo, entrenarse y
practicar el uso de los sistemas informáticos y de telecomunicaciones.
c. Organizativa:
Por otra parte, Bartolomé (2004), opina que el tutor debe preparar la agenda
del curso y, sobre todo, las diferentes interacciones tutor alumno, alumno-alumno,
50
alumno-otros expertos. Además, incitar a los estudiantes para que amplíen y
desarrollen los argumentos, evaluar los logros de los estudiantes, descubrir sus
actitudes y percepciones.
d. Social:
Bartolomé (2004), explica que el tutor tiene la obligación de crear un
ambiente amigable en la clase presencial y que inciten a utilizar la tecnología a fin
de fomentar la cohesión del grupo. De igual manera es necesario ayudar a los
estudiantes a trabajar juntos en un proyecto común, así mismo, mantener la
comunicación con el estudiante con respeto, atención y sin críticas. Además, dar
la bienvenida a los estudiantes que participan en el curso en red.
Estos son aspectos vitales que deben estar presentes en el desarrollo y
ejecución de experiencias formativas basada en el uso del B-Learnig, razón por la
cual han sido dispuestas en función a los objetivos de la investigación donde se
propone a este recurso como una estrategia de trabajo centrada en el aprendizaje
de la trigonometría.
2.2.4. El estudiante en Blended Learning.
Así mismo, para Bartolomé (2004), el estudiante que se encuentra
relacionado con la experiencia de formación en el uso del B- Learning, ha de estar
inmerso en una serie de situaciones de las cuales se destacan:
Debe ser flexible, es decir, debe tener facilidad para adaptarse a nuevas
formas de aprendizaje poco afines a los esquemas formativos tradicionales.
Poseer competencias técnicas en el manejo y uso de las tecnologías, así
como una actitud favorable hacia las mismas.
51
Participar de manera activa en los procesos de enseñanza-aprendizaje.
Gestor de su propio aprendizaje.
Planificador y organizador de su tiempo (sin dejar que todo el trabajo se
acumule para el final).
Tener una actitud abierta a la colaboración y realización de trabajos en grupo
aportando sus ideas y conocimientos al grupo (aprender socialmente).
Participar activamente en el foro, chat y las actividades propuestas.
2.2.5. Ventajas del Blended Learning
En la consideración de Bello (2007), se tienen como ventajas en la utilización
de esta herramienta las siguientes consideraciones:
Flexibilidad: El permitir actividades asincrónicas, posibilita que el estudiante
avance a su ritmo, lea y relea los contenidos colocados en la plataforma, de tal
forma que sea él quien defina cuando está listo para apropiarse de otros
contenidos.
Movilidad: Se eliminan las barreras territoriales y de tiempo.
Ampliación de cobertura: Como consecuencia de lo anterior, se puede llegar
y atender un mayor número de estudiantes.
Eficacia: dado que es el mismo estudiante quien dirige su aprendizaje, es
predecible que ese aprendizaje sea significativo.
Ahorro en costos: al disminuir la presencialidad, se optimiza el uso del tiempo
y se disminuye el costo de los desplazamientos, aún teniendo que pagar los
costos de conexión a la red.
52
Diversidad de presentación de contenidos: dado la posibilidad de “colgar”
información diversa en la plataforma, permite que los estudiantes se apropien del
conocimiento según sus propias preferencias, es decir, leyendo (presentaciones y
documentos), viendo (videos) y haciendo (simulaciones).
La información y actividades diseñadas en la
plataforma son fácilmente
actualizables.
Interacción: Si bien las plataformas educativas tienen herramientas de
comunicación bien definida (chat, foros) y con bondades reconocidas, también es
cierto que en algunas oportunidades es necesario interactuar con los tutores de
manera presencial, esta modalidad permite lograr ese objetivo.
Para Bello (2007), se destaca el hecho que el alumno es quien debe dirigir su
propio aprendizaje y el tutor quien le muestra la ruta para ello. En el B-learning, la
información está en el entorno, en los contenidos, en los compañeros e incluso en
el facilitador. Tiene la característica de que el conocimiento lo construye el
interesado con base a sus intereses, preferencias y necesidades.
2.2.6. Desventajas del Blended Learning
Sobre este particular, Bartolomé (2004), considera que dentro de las posibles
desventajas de esta herramienta se encuentra el poder ampliar la brecha digital,
social y económica al dejar por fuera algunos actores participantes en este nuevo
modelo. Asi mismo, no conocer o desarrollar estrategias por parte de la Institución
o los tutores que busquen favorecer la motivación de los alumnos y que estén
acorde a sus edades, gustos e intereses.
De igual manera plantea que existe una brecha amplia entre tutores y
alumnos que dificulta el introducirse en el Blended Learning, así mismo otro de los
53
problemas lo representa el integrar a todos los participantes en la combinación de
los dos escenarios es una tarea bien compleja. Todo ello a la par de que la amplia
oferta de aprendizaje digital y su diferencia generan dudas e incertidumbres a los
actores participantes en estos escenarios del Blended Learning.
Otro de los aspectos destacados por Bartolomé (2004), establece que
muchos de las ofertas BL no tienen registros ni cuentan con reconocimientos ante
las autoridades competentes. Además, romper esquemas tradicionales no es fácil
y las instituciones de Educación Superior no están dispuestas a dar espera a estos
cambios. Razón por la cual es necesario que los actores desarrollen rápidamente
competencias tecnológicas y de trabajo colaborativo pero algunos apenas las
llegan a conocer.
2.2.7. Blended Learning en Colombia
Para los autores Valenzuela y col. (2002), plantean que en Colombia el
Blended Learning tiene su propia evolución en diferentes instituciones. Cada
institución de acuerdo con sus recursos económicos, directores o decanos de
facultades
de
educación
virtual
o
a
distancia,
expectativas,
intereses,
competencias o por moda. Es el caso de la Universidad Javeriana, quien creyó
que e-learning era la mayor panacea y se involucraron en proyectos e-learning sin
experiencia siquiera en programas a distancia, con costos muy elevados, con
participantes poco experimentados.
Otras como la Universidad Nacional quienes iniciaron involucrando la
Informática Educativa en los procesos académicos presencial y a distancia, ha
sido así como
un paso a paso en el trasegar de la incorporación de las
tecnologías. Otras Instituciones como la Universidad de Pamplona en Santander,
la San Buenaventura de Bogotá y la Universidad Cooperativa que han sido
exitosas en el proceso de Incorporación de TIC y de Ambientes Virtuales de
Aprendizaje ya ofrecen programas de formación Pre gradual y Post gradual en
Blended Learning totalmente certificados por el Ministerio de Educación Nacional,
54
puesto que, lo consideran como una herramienta que brinda una formación que
potencia las mediaciones pedagógicas y lo que busca es realizar el aprendizaje en
forma diferente pero no porque se aprenda más con los modelos tradicionales, lo
que se busca es llegar directamente a los estudiantes quienes están muy atentos
a recibir conocimiento y con herramientas motivacionales.
2.2.8. Recursos para el Blended Learning.
Si la clave del Blended learning es la selección de los recursos más
adecuados en cada acción de aprendizaje, el estudio de estos recursos, sus
funcionalidades y posibilidades es la clave del modelo. ¿Pero qué recursos
introducir? Evidentemente, podemos elegir entre todos los recursos del eLearning.
Sin embargo aquí adopta una especial importancia la comparación entre los
recursos presenciales y no presenciales. Así Marsh indica cómo se mejoran
situaciones de aprendizaje mediante diferentes técnicas según la experiencia de
diferentes instituciones (Marsh, 2003). Es interesante constatar cómo se "mezclan"
técnicas presenciales y no presenciales, con más o menos presencia de aparatos,
en función de los objetivos. Notar que estas no hacen referencia a técnicas
utilizadas todas al mismo tiempo sino a diferentes experiencias.
Las universidades y en general todo el sistema educativo debe preparar a
ciudadanos en una sociedad en la que el acceso a la información, y la toma de
decisiones se convierten en los elementos distintivos de la educación de calidad.
Nuevos obstáculos se presentan entre las clases sociales, ricos y pobres digitales,
pero nuevamente el objetivo de la educación es deshacer esas dificultades. Tanto
el e-learning como el blended learning son modelos de aprendizaje en los que el
estudiante tiene que desarrollar habilidades tan importantes para su vida futura en
esta sociedad.
Para Silva (2011), el B-Learning se trata de un método que pretende integrar
las nuevas tecnologías en las clases presenciales y sacar el máximo provecho de
55
ellas fuera del aula. De esta manera se espera que las tecnologías se incorporen
de manera paulatina y así la enseñanza virtual también pueda hacer lo propio en
un curso de modalidad semipresencial. En definitiva, es la fusión de parte de la
modalidad tradicional y de la modalidad del electronic learning, de modo que
mejoraríamos el aprendizaje del educando empleando la suma de medios
tecnológicos y físicos en el proceso educativo.
Figura 1
Diagrama del B-Learning
Fuente : Silva (2011)
Las dos imágenes muestran dos formas distintas en las que se ha
entendido e implementando el concepto de b-learning. En el primer caso es la
suma de elementos provenientes de los ambientes de trabajo presencial y virtual,
esta suma debe entenderse como elementos independiente que no interactúan
entre ellos, es el caso de todas aquellas experiencias en las que se desarrollan, en
los espacios presenciales, unas actividades que no tienen posteriormente
continuidad en el espacio virtual e igual situación sucede con aquellas que se
desarrollan en el espacio virtual, podríamos decir son actividades que nacen y se
desarrollan en uno de los dos ambientes y la clase por tanto es la colección o
suma de ellas.
3. SISTEMA DE VARIABLES
56
Variable Independiente
3.1. Definición Nominal
Estrategia didáctica b-learning
3.2. Definición Conceptual
El B-Learning (formación combinada, del inglés blended learning) consiste en
un proceso docente semipresencial; esto significa que un curso dictado en este
formato incluirá tanto clases presenciales como actividades de e-learning.
(Salinas, 2002),
3.3. Definición Operacional.
Forma de instrumentar el proceso de aprendizaje, a través de la mezcla
entre clases magistrales, como los encuentros cara a cara y practicas; con clases
en línea como aprendizaje autónomo, herramientas de comunicación, practicas en
línea y lecturas de contenidos virtuales.
Variable dependiente
3.3. Definición Nominal
Nivel de aprendizaje
3.4. Definición Conceptual
Grado de radicalidad y profundidad del aprendizaje experimentado por un
individuo. Argyris y Schön (1978, citados por Huerta 2008)
3.3. Definición Operacional
57
Categorización del aprendizaje alcanzado por los estudiantes de la
Institución Educativa “Luis Giraldo”, el cual puede ser: superficial, si los resultados
oscilan entre 0 y 0,5 y profundo si los resultados oscilan entre 0,51 y 1 según el
baremo descrito en el capitulo tres.
4. SISTEMA DE HIPÓTESIS
H1: Si se utiliza la estrategia didáctica B-Learning entonces el aprendizaje de la
trigonometría en los alumnos de la Institución Educativa
“Luis Giraldo” de
Colombia, será de nivel profundo.
H0: Si se utiliza un la estrategia didáctica B-Learning entonces el aprendizaje de la
trigonometría en los alumnos de la Institución Educativa
Colombia será de nivel superficial.
“Luis Giraldo” de
58
Cuadro 1
Operacionalización de la Variable
Objetivo General: Analizar el efecto de la estrategia didáctica b-learning para el
aprendizaje de la trigonometría en la Institución Educativa “Luis Giraldo”.
Variable
Dimensión
Indicador
Ítem
Encuentro cara a cara.
Clases magistrales
Prácticas.
Aprendizaje autónomo.
Herramienta
Clases en línea
de
comunicación.
Prácticas.
Estrategia didáctica
b-learning
Contenidos virtuales.
Características
de
los
triángulos.
Clasificación
Contenido matemático
de
los
triángulos.
El teorema de Pitágoras.
Uso
de
las
razones
trigonométricas.
13, 15, 16, 17
Bajo nivel cognitivo
Superficial
Memorización
de
información como hechos
aislados
Olvido
rápido
aprendido
Aprendizaje de la
trigonometría
de
2, 4, 12
1, 5, 6, 7, 8, 9,10
lo
Saber hacer en contexto
3, 11,14
13, 15, 16, 17
Incorporación del análisis
crítico a ideas nuevas
2, 4, 12
Capacidad de evaluar y de
predecir
1, 5, 6, 7, 8, 9,10
Profundo
Comprensión y aplicación
de los aprendizajes
3, 11,14
Cálculo de t de Student a través del estudio de las medias aritméticas.
Fuente: Brito (2012)
En el caso en que el estudiante responda acertadamente hasta el 50% de
los ítems, su categoría será superficial, si es mayor el número de aciertos, su
categoría será profunda.
59
CAPITULO III
MARCO METODOLÓGICO
En este capítulo se describen los procedimientos que se utilizaron para
abordar el problema planteado, para ello, se hace referencia al tipo y diseño de
investigación, población y muestra seleccionada, técnica e instrumento para la
recolección de los datos, procesamiento estadístico de la información y la
dinámica seguida para la realización del estudio.
1. TIPO DE INVESTIGACIÓN
Según el tipo de investigación, el presente estudio es explicativo, de acuerdo
a los criterios de Hernández y col. (2006), son aquellos que van más allá de la
descripción de conceptos o fenómenos o del establecimiento de relaciones entre
conceptos; es decir, están dirigidos a responder por las causas de los eventos y
fenómenos físicos o sociales. Como su nombre lo indica, su interés se centra en
explicar por qué ocurre un fenómeno y en qué condiciones se manifiesta, o por
qué se relacionan dos o más variables. Asumiendo el criterio antes descrito, la
presente investigación se consideró como explicativa, debido a que la necesidad
de conocer el nivel de aprendizaje que se logro mediante el uso de la estrategia
didáctica b-learning, permitió concretar las relaciones existentes para el uso del
mismo, en función a los resultados obtenidos en el momento de la aplicación de la
prueba de conocimientos.
En otras palabras la investigación evaluativa permite estimar la efectividad de
uno o varios programas, propuestas, planes de acción o diseños, los cuales han
sido aplicados anteriormente con la intención de resolver o modificar una situación
determinada. La investigación evaluativa se usa para la toma de decisiones, las
preguntas surgen del programa a evaluar, la hipótesis común de la evaluación es
que el programa esté logrando lo que se propuso hacer. Tomando en
60
consideración anterior, el presente estudio es de tipo evaluativo, ya que se orientó
a conocer el efecto de la estrategia didáctica en línea para el aprendizaje de la
trigonometría a partir de evaluaciones realizadas.
En este contexto metodológico, el estudio se clasifica según su método como
una investigación descriptiva, coincidiéndose con Méndez (2003, p. 118) “porque
identifica características del universo investigado” (p.137). Del mismo modo,
Tamayo y Tamayo (2001, p. 54), establece que la investigación descriptiva
“trabaja sobre realidades de hecho y su características fundamental es
presentarnos una interpretación correcta”. Esta comprende la descripción, registro,
análisis e interpretación de la naturaleza actual y la composición o procesos de los
fenómenos. Basado en la referida consideración descriptiva, esta investigación
presentara las características más importantes en función al comportamiento de
las estrategias en línea para el aprendizaje de la trigonometría.
De igual manera bajo el criterio de Parra (2003), también se considera como
una investigación prospectiva, la cual es aquella que se ejecuta después de una
cuidadosa planificación por parte del investigador, orientándose hacia la
verificación de hipótesis o el logro de ciertos objetivos previamente determinado.
Por su parte, Chávez (2004), plantea que los estudios prospectivos se inician con
la observación de ciertas causas presumibles y avanza longitudinalmente en el
tiempo a fin de observar su consecuencia y por lo tanto obedecen a una cuidadosa
planificación.
Al respecto, la presente investigación logra ser tipificada como prospectiva,
debido a que la misma logró ser ejecutada en función a las previsiones
establecidas por el investigador, el cual estableció el momento más propicio para
cumplir con lo programado en su planificación, logrando de esta manera un
ordenamiento para el logro de los objetivos.
2. DISEÑO DE INVESTIGACIÓN
61
El diseño de la investigación es cuasiexperimental, en este sentido, de
Hernández y col. (2006), señalan que los sujetos del experimento no son
asignados al azar a los grupos, ni emparejados, por cuanto, los mismos ya están
formados antes del experimento, son grupos intactos.
Tal situación se presenta en esta investigación, donde se trabajará con dos
grupos, el grupo control y el experimental, a los cuales se les aplicará una pre
prueba, para comprobar la homogeneidad de los grupos y una post prueba, antes
de iniciar el estudio y después de finalizar el mismo, con el propósito de conocer el
efecto del b-learning como estrategia didáctica para el aprendizaje de la
trigonometría en la Institución Educativa
“Luis Giraldo”. Tomando en
consideración, lo antes expuesto en el diseño cuasiexperimental, no se cumple el
principio de asignación aleatoria de los sujetos a los grupos. Se estudian grupos
intactos, es decir los grupos no son seleccionados al azar.
Dadas las características del estudio se tipifica como de campo sobre la cual
Bavaresco (2001), indica que estas son investigaciones realizadas en el propio
sitio donde se encuentra el objeto de estudio. Permitiendo de esta manera el
conocimiento más a fondo del problema por parte del investigador y pudiendo
manejar los datos con más seguridad.
Del mismo modo según de Hernández y col. (2006), consideran que esta
investigación consiste en el análisis sistemático de un determinado problema con
el objeto de describirlo, explicar sus causas y efectos, comprender su naturaleza y
elementos que lo conforman, o predecir su ocurrencia. Sobre este particular la
recolección de la información se realizara en la institución de manera directa.
Es transaccional descriptiva de acuerdo con la evolución del fenómeno, de
Hernández y col. (2006), consideran el estudio Transaccional-Descriptivo;
caracterizados por describir las variables en su ambiente natural y en un momento
dado, los cuales tienen como objetivo indagar los valores en que se manifiestan
62
una o más variables.
Atendiendo a estas consideraciones, la presente
investigación se consideró transaccional-descriptiva, debido a la aplicación del
instrumento se realizó en un momento único que no amerito indagatorias
continuas.
Cuadro 2
Notación del diseño de investigación
GRUPO
PRE-TEST
B-LEARNING
POST-TEST
EXPERIMENTAL
O1
X
O2
CONTROL
O1
O2
3. POBLACIÓN Y MUESTRA.
Población
La población es la totalidad del fenómeno a estudiar, donde poseen una
característica común. En este aspecto, Hernández y col. (2006), para definir la
población menciona que es el universo o conjunto de todos
los casos que
concuerdan con determinadas especificaciones. Considerando a Parra (2003),
define, población es el conjunto integrado por todas las mediciones u
observaciones del universo de interés en la investigación. Por lo tanto pueden
definirse varias poblaciones en un solo universo, tantos como características a
medir.
Debe además indicarse que, cuando no es posible asignar al azar a los
sujetos de
los grupos que recibirán tratamiento, se seleccionan grupos con
características semejantes, en este caso la población los estudiantes de la
Institución Educativa “Luis Giraldo”. El muestreo fue intencional, el cual según
Arias (1999), es un procedimiento que permite seleccionar los
casos
característicos de la población limitando la muestra a estos casos. Se utiliza en
situaciones en las que la población es muy variable y consecuentemente la
63
muestra es muy pequeña. En este caso se recurrió a las dos secciones de décimo
grado, es decir, cuarto año en Venezuela que son las que contemplan en su plan
de estudios el aprendizaje de la Trigonometría, cuyo aprendizaje es el objeto de
este trabajo. Sus edades oscilan entre 15 y 17 años,
Cuadro 3
Característica de la Muestra
Institución
Grupo Control
Educativa
“Luis Giraldo”
30
Total
30
Fuente. Estadística de la institución (2012).
Grupo Experimental
Total
30
30
60
60
4. TÉCNICA E INSTRUMENTO PARA LA RECOLECCIÓN DE DATOS
Para recopilar la información y tener un conocimiento preciso de la realidad
estudiada en el nivel de aprendizaje
prueba como
de la trigonometría, se elaboró una pre
instrumento tipo prueba de conocimiento para realizar un
diagnóstico, orientadas a los indicadores estudiados según sus dimensiones. A
ambos grupos se les administro la prueba simultáneamente, luego el grupo
experimental recibió el tratamiento con las estrategias didácticas en línea para el
aprendizaje de la trigonometría y el grupo de control no lo recibirá pero dispuso de
la clase magistral para manejar los contenidos dispuestos en la temática.
En este sentido, Cortez (2008), refiere que la prueba de conocimientos
puede ser orales, escritas o de ejecución, para esto el evaluado debe manejar
nociones o conocimientos específicos relacionados directamente con el tema
sobre el cual hace referencia la consulta en el contenido de la misma. Para los
efectos de este estudio fue dispuesta de la
pre prueba y la post prueba
conformada por 17 items, ambas fueron el mismo instrumento, (ver anexo 2), el
cual se elaboró siguiendo los criterios de una prueba de conocimiento como se
dijo anteriormente, constituido por ítems sobre conocimientos previos y sobre el
64
contenido que se desarrolló, estos se conformaron por una portada, hoja de
presentación e instrucciones y el conjunto de ítems con alternativas de respuestas
cerradas.
5. VALIDEZ DEL INSTRUMENTO
El instrumento por ser el medio material que se emplea para recoger y
almacenar la información, fue sometido a los procesos de validez y confiabilidad.
La validez es una de las pruebas de gran importancia y relevancia debido a que de
esta forma se comprueba si las variables, dimensiones e indicadores son medidos
por el cuestionario, en busca de la adecuación o exactitud suficiente y satisfacer
los indicadores de las preguntas.
Para llevar a cabo la validación de contenido del instrumento de medición, se
tomó en cuenta el juicio de especialistas del tema a investigar para comprobar si el
conjunto de preguntas por el cual está conformado el instrumento eran
representativas de toda la población de ítems, que cubrirían los objetivos de
estudio.
Para ello se elaboró un formato de validación cuyo propósito fue registrar la
pertinencia de los ítems con los indicadores y las dimensiones de la variable, así
como el estilo y la redacción de los mismos. (ver anexo 1) Una vez finalizado el
proceso se lograron una serie de recomendaciones sobre la presentación de los
ítems logrando de esta manera adecuarlo con el señalamiento de los expertos y
dando como resultado una segunda versión del instrumento la cual se considerará
como definitiva (ver anexo 2). Las observaciones estuvieron relacionadas con
aspectos de redacción y presentación de algunos ítems, para concretarlos en un
lenguaje más acorde al nivel en el cual se consideró utilizarlo, además, se planteó
la necesidad e eliminar tres ítems los cuales a juicio de los validadores ya se
encontraban consultados de manera suficientes en el instrumento presentado.
65
Cuadro 4
Validadores
Nombre y
Apellidos
Profesión
Darwin
Alberto Ingeniero
Jiménez Ochoa
sistemas
Nivel académico
de Magister
en
matemáticas
mención docencia
Jampier
López Ingeniero
Magister
en
Montenegro
Electrónico
matemáticas
mención docencia
Jhonny
Antonio Licenciado en Magister
en
Rivera Vergel
matemáticas y matemáticas
física
aplicada
Candidato a doctor
en
ciencias
humanas
Saúl
Enrique Licenciado en Magister
en
Vides Gómez
matemáticas y matemáticas
física
aplicada
Candidato a doctor
en
ciencias
humanas
Fuente: Brito (2012)
Institución
Institución Educativa
las Flores
Institución Educativa
Rodolfo
Castro
Castro
Institución Educativa
Técnico
Industrial
Pedro
Castro
Monsalvo
Universidad popular
del cesar
Por otra parte, la confiabilidad es conceptualizada por Hernández y col.
(2006), como el nivel de coherencia entre los resultados de diferentes aplicaciones
de un instrumento bajo características similares. Generalmente este nivel se
expresa en un coeficiente numérico obtenido al aplicar la prueba generalmente a
una muestra piloto. Para calcularlo se dispuso de 15 alumnos, pertenecientes a la
institución motivo de estudio, que no formó parte del experimento, aplicándose la
fórmula de Kuder-Richardson, dado que las preguntas fueron valoradas
dicotómicamente es decir, correctas o incorrectas lo que determinó la confiabilidad
del instrumento.
66
Kr20= variación de las cuentas de la prueba.
N = a un número total de ítems en la prueba
Pi = es la proporción de respuestas correctas al ítem I.
QI = proporción de respuestas incorrectas al ítem I.
Una vez concreta la prueba, la misma fue procesada y generó un valor de
0.95, lo cual determinó ser trata de un instrumento confiable para su aplicación.
6. TÉCNICAS DE ANÁLISIS DE LA INFORMACIÓN
Se analizó la relación entre los grupos, lo cual permitió aceptar o negar la
hipótesis general, para esto se empleará un estadístico inferencial, tanto para la
pre prueba como para la post prueba, con los ítems ya validados. El tratamiento
estadístico que se utilizó para el estudio es de tipo inferencial, por cuanto, se
recolectaron los datos a través de las pruebas que se aplicaron a los dos grupos, a
través del software SPSS en su versión 17, el cual determinó la distribución de
frecuencias absolutas, relativas y porcentajes de la información recolectada, las
cuales se presentaron en tablas y gráficos respectivamente.
De esta manera, se estableció una visión clara de los resultados a fin de
precisar la efectividad para ello se aplicó la estadística descriptiva con el cálculo
de las frecuencias absolutas y relativas, la desviación estándar y las medias. Se
aplicó la t de Student para comprobar la homogeneidad de los grupos y para
determinar si hubo diferencias significativas en los grupos después del tratamiento.
En la necesidad de establecer el comportamiento de las dimensiones del
estudio relacionadas con la variable aprendizaje, se considero necesario disponer
de un baremo de valoración, tomando en cuenta que las respuestas ofrecidas
estarían valoradas con “0” para el caso de considerarlas erradas o equivocadas, y
con un valor de “1” para el logro de acierto, en vista de ello, se presenta una
distribución de intervalos para dar ubicación a las categorías estudiadas como son
67
el nivel de aprendizaje superficial y el profundo respectivamente. Este intervalo
permitió ubicar el valor de la media aritmética de cada uno de los indicadores para
de esta forma establecer su comportamiento.
Cuadro 5
Baremo clasificación nivel de aprendizaje
Indicadores
Características de
los triángulos
Semejanza de
triángulos
El teorema de
Pitagoras
Uso de las razones
trigonométricas
Fuente: Brito (2012)
No. De ítems
4
Nivel superficial
1y2
Nivel profundo
3y4
3
1
2y3
3
1
2y3
7
1, 2, y 3
4, 5, 6 y 7
En este orden de ideas, hay que aclarar que el nivel de aprendizaje
superficial oscila entre el rango de valores con respecto a las medias entre (0 y
0,5) mientras el nivel de aprendizaje profundo entre (0,51 y 1).
7. PROCEDIMIENTO DE LA INVESTIGACIÓN.
El proceso de investigación fue iniciado al considerar una serie de problemas
que ameritaban alternativas de intervención y búsqueda de soluciones factibles;
esto en base a que toda investigación, parte de una metodología, la cual implica
seguir una serie de pasos para obtener los resultados en base a lo buscado; por
ello se procedió de la siguiente manera:
Para el caso de la presente investigación la misma se orientó en el efecto del
b-learning como estrategia didáctica para el aprendizaje de la trigonometría en la
Institución Educativa “Luis Giraldo” en Colombia, esto en función a la búsqueda
de una alternativa para la mejora del aprendizaje, por lo tanto a partir de una
experiencia cuasiexperimental, será necesario conformar dos grupos de trabajo y
como acción inicial, diagnosticar los conocimiento que estos manejaban sobre la
68
referida temática.
Esta necesidad implicó el desarrollo de un instrumento que a manera de
prueba de conocimientos permitió tal diagnosis en los estudiantes, sin distinguir
que grupo se encontraban
los mismos. Esta prueba se generó en base a la
operacionalización de la variable de estudio y las dimensiones establecidas según
el tema seleccionado. Una vez consolidada la misma, se aplicó a un grupo de 60
alumnos, el cual se dividió en dos grupos de 30 y 30 cada uno de manera
aleatoria, denominándose uno grupo control y otro grupo experimental.
Finalizado el diagnostico, se consideró como experiencia de enseñanza en
función al aprendizaje, disponer de la clase magistral para llevar el tema
seleccionado al grupo control, es decir la trigonometría, basándose en las
estrategias metodológicas y actividades sugeridas para que el educando adquiera
un conocimiento claro a partir de la experiencia dentro del aula. Para esto, se
utilizaron explicaciones, ejercicios, y al final de la clase los alumnos se organizaron
en equipo para elaborar un trabajo escrito sobre la explicación de la clase. En el
caso del grupo experimental, se le aplicó el uso del b-learning con el mismo tema
asignado al grupo control.
Una vez finalizada la clase para el grupo control y el uso del b-learning para
el experimental se aplicó una postprueba para medir el nivel de conocimiento de
ambos grupos en estudio. Basándose en el análisis de la estadística y tablas con
los índices porcentuales de la respuesta para cada ítems fue posible generar las
medias aritméticas que facilitaran el cálculo de la t de Student, de manera que fue
posible establecer las diferencias que cada uno de los grupos desde la medición
inicial como la final y de esta manera concretar el efecto del B-Learning como
estrategia didáctica para el aprendizaje de la trigonometría en la Institución
Educativa “Luis Giraldo”.
8.
ESTRATEGIA DIDÁCTICA EN LÍNEA PARA EL APRENDIZAJE DE
LA TRIGONOMETRÍA.
69
En relación a la implementación de la estrategia didáctica basada en el uso
del b-learning, es importante destacar que la misma, permite que dicho recurso
sea utilizado en dos ambientes o escenarios de trabajo, por lo cual se describe a
continuación la forma como este se caracterizo al momento de su aplicación de
acuerdo a los propósitos planteados en el estudio.
Dentro del ambiente de la clase magistral, el docente estuvo en la posibilidad
de explicar a los estudiantes sobre el recurso comprometido, es decir el b-learning,
permitiendo que las experiencias en el manejo de tecnologías de los participantes
estuvieran alineadas con la especificación del medio presentado en los equipos de
computación dispuestos en el aula. Seguido de esto, dio referencia de las ventajas
y campo de trabajo que permitiría el uso del b-learning, además de establecer el
propósito desde la perspectiva didáctica.
Luego se continuo con el desarrollo de las actividades, en combinación con
el factor de acompañamiento para responder a las dudas o necesidades
planteadas, de esta forma
el resto de las actividades planificadas para el
segmento de la trigonometría relacionadas con los aspectos: características de
los triángulos, clasificación de los triángulos, el teorema de Pitágoras y el uso de
las razones trigonométricas respectivamente.
Dentro de las explicaciones ofrecidas por el docente en la primera
oportunidad de trabajo con el uso del b-learning, también se les dio a los
estudiantes la respetiva inducción para el manejo del recurso en línea, para ello,
se les asigno una clave como usuario a cada uno para de esta manera lograr un
control de la actividad que se les asignaría, esta situación permitió un nivel de
interacción fundamentado para lograr conocer en precisión todo el manejo del
recurso considerado para estos alumnos como innovador y de interés para
generar una experiencia transformadora.
70
Cuadro 6
Programación de los momentos de actuación para el desarrollo de la clase
con el uso de la estrategia didáctica b-learning para el aprendizaje de la
trigonometría
Uso de la estrategia didáctica Blearning
Fase de Inicio
ACTIVIDADES
Introducción de la actividad
Ilustración de
desarrollar
los
I. H
1/2
contenidos
a
1/2
Identificación del recurso de apoyo
2
Descripción y explicación del menú
de trabajo de la estrategia didáctica
b-learning
1
Fase intermedia
Utilización de la estrategia por parte
de los estudiantes a través del uso
del computador.
Elementos de apoyo
•
Contenido teórico, Videos explicativos.
Contenido
ilustración.
teórico,
Ejemplos
Contenido teórico, Actividad
Ejercicios, Demostración.
Flash ilustrador teórico y ejemplo.
Características de los triángulos.
2
Clasificación de los triángulos.
2
•
El teorema de Pitágoras.
4
•
El
uso
de
trigonométricas.
de •
practica,
las
razones
6
Asesoría en línea continua
Fase final o cierre
Generación de preguntas y respuestas
Asignación de actividades en línea
Aplicación de prueba de conocimientos.
Fuente: Brito (2012).
71
Hay que tener presente algunas consideraciones generales en cuanto al
tiempo, puesto que las horas de trabajo en Colombia son de 60 minutos y otras
consideraciones con respecto a la herramienta o recurso que se creó para el
grupo experimental las cuales se mencionan a continuación:
El recurso contó con 57 ejercicios relacionados con la temática abordada,
en las que el estudiante podía resolverlos en el momento que deseara. Estos
sirvieron solo como ejercitación puesto que, las pruebas como tal se efectuaron de
forma presencial.
Las asesorías fueron permanentes, ya que, dentro de las actividades
propuestas en el recurso, se dispuso de foros para resolver inquietudes y dudas,
acerca de los temas vistos.
Los estudiantes trabajaron con guías de clases para tener una mejor
orientación en lo que le correspondía realizar; las cuales contemplaban tema,
tiempo, objetivo y desarrollo de la actividad. Esta ultima describía pasa a paso lo
que de debían efectuar.
En el indicador “el teorema de Pitágoras”, se trabajaron dos tipos de
actividades, una en la que el estudiante podía observar su demostración en el
recurso, puesto que esta se había realizado con ayuda de la herramienta
Geogebra, de tal forma que los alumnos podían manipularla, es decir, agrandarla
o encogerla pero siempre se cumpliría su definición independiente al tamaño que
la colocaran; a su vez tendrían que realizar su demostración manualmente, solo
con la ayuda de una tijera ya que, debían recortar una figura que correspondía a
dicha demostración, de manera que las figuras recortadas de los dos catetos
tendrían que superponerlas sobre la hipotenusa.
Para el desarrollo de la estragia b-learning se implementó un (LMS) sistema
gestor de aprendizaje de uso libre, “DOKEOS” para educación y educadores, que
permite introducir contenidos dinámicos como los apples que genera GeoGebra
72
los cuales son parte fundamental de la propuesta, a su vez permite utilizar
elementos multimedia tales como audios, videos, imágenes, flash, entre otros;
adaptados a los contenidos y objetivos de la estrategia de aprendizaje propuesta
en esta investigación.
Hay que tener claro que esta plataforma libre se utilizará solo como
herramienta de enlace entre lo visto en la clase presencial y la estrategia didáctica
de aprendizaje en linea creada para este proceso. Puesto que es en este software
donde se cargaron los recursos empleados. Con el propósito de generar una
estrategia didáctica basada en el uso del B-Learning y orientada para favorecer el
aprendizaje de la trigonometría en la Institución Educativa
“Luis Giraldo”, el
investigador desarrollo tal recurso del cual se describen las pantallas principales
de trabajo que el mismo posee. Este constituyo elemento clave de trabajo para
generar la experiencia de aprendizaje en el grupo experimental.
Figura 2
Pantalla Principal del recurso
73
Figura 3
Modo de ejercitación
Figura 4
Modo de ejercitación
74
Figura 5
Demostración grafica
Figura 6
Ilustración de áreas
75
Figura 7
Ejercicio de trabajo
76
CAPITULO IV
RESULTADOS DE LA INVESTIGACIÓN
En este capítulo fueron plasmados los datos recogidos a través del
instrumento aplicado en esta investigación. La información obtenida y utilizada
para analizar el tema de estudio se logró identificar y medir a través de frecuencias
absolutas, porcentuales. Estos resultados fueron analizados en forma explicativa
mediante el diseño de tablas de doble entrada (frecuencia y porcentaje), de las
cuales se presentó el estudio y la interpretación de la variable para definir las
características y todos los aspectos relacionados con la investigación.
En razón a que el estudio dispuso de dos grupos para el desarrollo de la
investigación, se presentan inicialmente los resultados correspondientes al grupo
control es decir el que recibió clase magistral, posteriormente se presentan los
resultados del grupo experimental con el cual fue practicada la estrategia didáctica
en línea para el aprendizaje de la trigonometría, de igual forma los dos
corresponden a la aplicación de pre-test y pos-test respectivamente, para cada
uno de lo cual fue generado un gráfico que ilustra porcentualmente el
comportamiento de las alternativas de respuesta, al igual que la ilustración sobre
la media y la categoría lograda.
77
Objetivo Específico: Diagnosticar el nivel de aprendizaje sobre trigonometría que
poseen los alumnos de la Institución Educativa Luis Giraldo
Grupo Control
Pretest
Tabla 1
Indicador: Características de los triángulos
Correctos
Incorrectos
Ítems
FA
FR
FA
FR
13
9
30,00
21
70,00
15
7
23,33
23
76,67
16
8
26,67
22
73,33
17
5
16,67
25
83,33
Total
29
24,17
91
75,83
0,24
Categoría
Superficial
Media aritmética
Fuente: Brito (2012)
Grafico 1
Características de los triángulos
Fuente: Brito (2012)
78
Para el caso del indicador características de los triángulos, los resultados
muestran en el ítem 13, relacionado con “La suma de los ángulos internos de un
triangulo rectángulo debe ser 360°” que el 70% de los estudiantes contesto de
manera incorrecta a diferencia del 30% quienes lo hacen de manera correcta.
Para el caso del ítem 15 que establece “la hipotenusa es el lado más corto en un
triangulo rectángulo”, el 76.66% contestó de manera incorrecta y el 23.33% lo
realizó correctamente. En cuanto al ítem 16, “En un triangulo rectángulo el lado
que se opone al ángulo recto recibe el nombre de cateto y los otros dos lados se
llaman hipotenusa” un 73.33%, contestó de manera incorrecta a diferencia del
26.67% que lo acertó correctamente.
Así mismo, para el ítem 17 “Como todo triangulo rectángulo posee un ángulo
recto, para encontrar sus elemento basta con conocer la medida de uno de los
dos ángulos agudos y de un lado, o la longitud de los dos lados” un 83.33% de los
estudiantes contestaron de manera incorrecta, solo el 16.67% lo realizó
correctamente. Del mismo modo, la media aritmética del indicador fue de 0.24 lo
cual la ubica en la categoría superficial según el baremo establecido, y expresa
que el tipo de aprendizaje que predomina es superficial.
Tabla 2
Indicador: Clasificación de los triángulos
Correctos
Incorrectos
Ítems
FA
FR
FA
FR
2
10
33,33
20
66,67
4
8
26,67
22
73,33
12
8
26,67
22
73,33
Total
26
28,89
64
71,11
Media aritmética
0,28
Categoría
Superficial
Fuente: Brito (2012)
79
Grafico 2
Indicador: Clasificación de los triángulos
Fuente: Brito (2012)
Se determinó en los resultados correspondientes al indicador Clasificación de
los triángulos, que para el ítem 2 “Un triángulo rectángulo escaleno posee”, el
66.67% contestó de manera incorrecta, solo el 33.33% lo realizó de manera
correcta. En el ítem 4, “Corresponde a un triangulo rectángulo isósceles” el
73.33%
contestó
de
manera
incorrecta,
además
el
26.67%
lo
acertó
correctamente. Mientras en el ítem 12 “Los triángulos rectángulos se clasifican en
isósceles y escalenos” el 73.33% contestó de manera incorrecta, además el
26.67% lo estableció correctamente. Del mismo modo, la media aritmética del
indicador fue de 0.28 lo cual la ubica en la categoría superficial según el baremo
establecido, además establece que el tipo de aprendizaje predominante es
superficial.
Tabla 3
Indicador: El uso de las razones trigonométricas
Correctos
Incorrectos
FA
FR
FA
FR
Ítems
8
26,67
22
73,33
1
10
33,33
20
66,67
5
8
26,67
22
73,33
6
10
33,33
20
66,67
7
11
36,67
19
63,33
8
10
33,33
20
66,67
9
7
23,33
23
76,67
10
64
30,48
146
69,52
Total
0,30
Superficial
Media aritmética
Categoría
Fuente: Brito (2012)
80
Grafico 3
Indicador: El uso de las razones trigonométricas
Fuente: Brito (2012)
En cuanto a los resultados del indicador uso de las razones trigonométricas,
específicamente en el ítem 1 “Equivale a
3 ” el 73.33% contestó de manera
incorrecta, solo el 26.67% lo acertó de manera correcta. Con relación al ítem 5
“Razón entre el cateto adyacente y el cateto opuesto” un 66.67% contestó de
forma incorrecta, y el 33.33% lo realizó de manera correcta. Para el caso del ítem
6 “Lado perpendicular usado para definir coseno de un ángulo” el 73.33% contestó
de manera incorrecta, solo el 26.67% lo acertó de manera correcta. Con relación
al ítem 7 “Razón entre la hipotenusa y el cateto adyacente”, un 66.67% contestó
de forma incorrecta, y el 33.33% lo realizó de manera correcta.
En el caso del item 8 “En el triángulo rectángulo ACB de la figura, se tiene
que c=5 cm y b= 3cm.
no es verdad que” un 63.33% contestó de manera
incorrecta, solo el 36.67% acertó su respuesta. Con respecto al ítem 9 “En el
triángulo ACB, rectángulo en C, el valor de tan A + tan B , en función de los lados
es” un 66.67% contestó de forma incorrecta, y el 33.33% lo realizó de manera
correcta. De acuerdo al ítem 10 “Encuentra la altura del árbol de la figura adjunta
sabiendo que tan B =” el 76.67% contesto de manera incorrecta a diferencia del
23.33% quienes acertaron con su respuesta. Del mismo modo, la media aritmética
del indicador fue de 0.30 lo cual la ubica en la categoría superficial según el
81
baremo establecido, además establece que el tipo de aprendizaje predominante
es superficial.
Tabla 4
Indicador: El teorema de Pitágoras
Correctos
Incorrectos
Ítems
FA
FR
FA
FR
3
8
26,67
22
73,33
11
7
23,33
23
76,67
14
9
30,00
21
70,00
Total
24
26,67
66
73,33
Media aritmética
0,27
Categoría
Superficial
Fuente: Brito (2012)
Grafico 4
El teorema de Pitágoras
Fuente: Brito (2012)
En cuanto a los resultados de la tabla 4 y grafico 4, sobre el del Indicador:
teorema de Pitágoras, del cual el item 3 “Los dos lados que conforman el ángulo
recto son llamados” evidencia que un 73.33% contestó de manera incorrecta a
diferencia del 26.67% que lo efectuó correctamente. Para el ítem 11 “El triángulo
82
de la figura es rectángulo en Q. si r = 6 cm y q = 10. Entonces QR mide”, se
estableció que un 76.67% de los estudiantes contestaron de manera incorrecta a
diferencia de lo establecido por el 23.33% quienes acertaron la respuesta.
Así mismo, en el ítem 14 “El teorema de Pitágoras se utiliza para la solución
de todo tipo de triángulos (rectángulos y oblicuángulos)” el 70% de los estudiantes
respondieron de manera incorrecta, solo el 30% logró acertar con su respuesta.
Del mismo modo, la media aritmética del indicador fue de 0.27 lo cual la ubica en
la categoría superficial según el baremo establecido, además establece que el tipo
de aprendizaje predominante es superficial.
Grupo Experimental
Tabla 5
Indicador: Características de los triángulos
Correctos
Incorrectos
FA
FR
FA
FR
Ítems
9
30,00
21
70,00
13
6
20,00
24
80,00
15
9
30,00
21
70,00
16
5
16,67
25
83,33
17
29
24,17
91
75,83
Total
0,24
Superficial
Media aritmética
Categoría
Fuente: Brito (2012)
Grafico 5
Características de los triángulos
Fuente: Brito (2012)
83
En cuanto al indicador características de los triángulos, los resultados
muestran en el ítem 13, relacionado con “La suma de los ángulos internos de un
triangulo rectángulo debe ser 360°” que el 70% de los estudiantes contesto de
manera incorrecta a diferencia del 30% quienes logran la manera correcta. Para el
caso del ítem 15 que establece “la hipotenusa es el lado más corto en un triangulo
rectángulo”, el 80% contestó de manera incorrecta y el 20% lo realizó
correctamente. En cuanto al ítem 16, “En un triangulo rectángulo el lado que se
opone al ángulo recto recibe el nombre de cateto y los otros dos lados se llaman
hipotenusa” un 70%, contestó de manera incorrecta a diferencia del 30% que lo
acertó correctamente.
Así mismo, para el ítem 17 “Como todo triangulo rectángulo posee un ángulo
recto, para encontrar sus elemento basta con conocer la medida de uno de los
dos ángulos agudos y de un lado, o la longitud de los dos lados” un 83.33% de los
estudiantes contestaron de manera incorrecta, solo el 16.67% lo realizo
correctamente. Del mismo modo, la media aritmética del indicador fue de 0.24 lo
cual la ubica en la categoría superficial según el baremo establecido y expresa
que el tipo de aprendizaje que predomina es superficial.
Tabla 6
Indicador: Clasificación de los triángulos
Correctos
Incorrectos
Ítems
FA
FR
FA
FR
2
12
40,00
18
60,00
4
7
23,33
23
76,67
12
8
23,33
23
76,67
Total
26
28,89
64
71,11
Media aritmética
Fuente: Brito (2012)
0,28
Categoría
Superficial
84
Grafico 6
Clasificación de los triángulos
Fuente: Brito (2012)
Se determinó en los resultados correspondientes al indicador Clasificación de
los triángulos, que para el ítem 2 “Un triángulo rectángulo escaleno posee”, el 60%
contestó de manera incorrecta, solo el 40% lo realizó de manera correcta. Para el
caso del ítem 4, “Corresponde a un triangulo rectángulo isósceles” el 76.67%
contestó de manera incorrecta, además el 23.33% lo acertó correctamente.
Mientras en el ítem 12 “Los triángulos rectángulos se clasifican en isósceles y
escalenos” el 76.67% contestó de manera incorrecta, además el 23.33% lo acertó
correctamente. Del mismo modo, la media aritmética del indicador fue de 0.28, lo
cual la ubica en la categoría superficial según el baremo establecido, además
establece que el tipo de aprendizaje predominante es superficial.
Tabla 7
Indicador: El uso de las razones trigonométricas
Correctos
Incorrectos
FA
FR
FA
FR
Ítems
10
33,33
20
66,67
1
10
33,33
20
66,67
5
9
30,00
21
70,00
6
16
53,33
14
46,67
7
11
36,67
19
63,33
8
8
26,67
22
73,33
9
9
30,00
21
70,00
10
73
34,76
137
65,24
Total
0,35
Superficial
Media aritmética
Categoría
Fuente: Brito (2012)
85
Grafico 7
El uso de las razones trigonométricas
Fuente: Brito (2012)
En cuanto a los resultados del indicador uso de las razones trigonométricas,
específicamente en el ítem 1 “Equivale a
3 ” el 66.67% contestó de manera
incorrecta, solo el 33.33% lo acertó de manera correcta. Con relación al ítem 5
“Razón entre el cateto adyacente y el cateto opuesto” un 66.67% contestó de
forma incorrecta, y el 33.33% lo realizó de manera correcta. Para el caso del ítem
6 “Lado perpendicular usado para definir coseno de un ángulo” el 70% contestó de
manera incorrecta, solo el 30% lo acertó de manera correcta. Con relación al ítem
7 “Razón entre la hipotenusa y el cateto adyacente”, un 46.67% contestó de forma
incorrecta, y el 53.33% lo realizó de manera correcta.
En el caso del item 8 “En el triángulo rectángulo ACB de la figura, se tiene
que c=5 cm y b= 3cm.
no es verdad que” un 63.33% contestó de manera
incorrecta, solo el 36.67% acertó su respuesta. Con respecto al ítem 9 “En el
triángulo ACB, rectángulo en C, el valor de tan A + tan B, en función de los lados
es” un 73.33% contestó de forma incorrecta, y el 26.67% lo realizó de manera
correcta. De acuerdo al ítem 10 “Encuentra la altura del árbol de la figura adjunta
sabiendo que tan B =” el 70% contesto de manera incorrecta a diferencia del 30%
quienes acertaron con su respuesta. Del mismo modo, la media aritmética del
indicador fue de 0.34 lo cual la ubica en la categoría superficial según el baremo
86
establecido, además establece que el tipo de conocimiento predominante es
superficial.
Tabla 8
Indicador: El teorema de Pitágoras
Correctos
Incorrectos
Ítems
FA
FR
FA
FR
3
7
23,33
23
76,67
11
13
43,33
17
56,67
14
12
40,00
18
60,00
Total
32
35,56
58
64,44
Media aritmética
0,36
Categoría
Superficial
Fuente: Brito (2012)
Grafico 8
El teorema de Pitágoras
Fuente: Brito (2012)
En cuanto a los resultados de la tabla 8 y grafico 8, sobre el del Indicador:
teorema de Pitágoras, del cual el item 3 “Los dos lados que conforman el ángulo
recto son llamados” evidencia que un 76.67% contestó de manera incorrecta a
87
diferencia del 23.33% que lo efectuó correctamente. Para el ítem 11 “El
triángulo
de la figura es rectángulo en Q. si r = 6 cm y q = 10. Entonces QR mide”, se
estableció que un 56.67% de los estudiantes contestaron de manera incorrecta a
diferencia de lo establecido por el 43.33% quienes acertaron la respuesta.
Así mismo, en el ítem 14 “El teorema de Pitágoras se utiliza para la solución
de todo tipo de triángulos (rectángulos y oblicuángulos)” el 60% de los estudiantes
respondieron de manera incorrecta, solo el 40% logró acertar con su respuesta.
Del mismo modo, la media aritmética del indicador fue de 0.35 lo cual la ubica en
la categoría superficial según el baremo establecido, además establece que el tipo
de aprendizaje predominante es superficial.
A continuación se muestra un cuadro que compara las medias obtenidas en
el pre test. Para tener una mejor visualización de las mismas.
Cuadro 7
Cuadro comparativo de las medias del pre test
Grupo control
Grupo
Experimental
Media
Media
Características de los
triángulos
0,24
0,24
Clasificación de los
triángulos
0,24
0,28
El
teorema
Pitagoras
0,26
0,35
El uso de las razones
trigonométricas
0,3
0,34
Media Aritmética
0,26
0,30
Superficial
Superficial
Indicador
Categoría
de
88
De la aplicación del paquete estadístico SPSS se obtuvieron los siguientes
resultados:
Tabla 9
Medias Obtenidas de la aplicación de la prueba de Pre-test
Estadísticos de grupo
GRUPOS
N
Media
Desviación típ.
Error típ. de la
media
RESULTADOS
PRUEBA PRETETS
EXPERIMENTAL
30
5,3667
1,73172
,31617
CONTROL
30
4,7667
1,69550
,30955
Fuente: Brito. (2012).
En este caso se puede observar una aproximación, de igualdad entre las
medias obtenidas de acuerdo con la tabla 9, de igual manera pasa con las
desviaciones y errores típicos de la media. Esto bien puede suponer que no
existan diferencias significativas entre las medias, por lo que se puede pensar en
un comportamiento homogéneo aparentemente, sin embargo esta sospecha se
puede verificar o simplemente aclarar con la aplicación de la prueba t- student,
contemplada en los resultados contenidos en el siguiente cuadro.
Tabla 10
Resultados arrojados de la aplicación de la prueba de Pre-test
(prueba T – student para muestras independientes)
Prueba de muestras independientes
Prueba de
Levene para
la igualdad de
varianzas
F
Sig.
Se han
asumido
varianzas
RESULTADOSP
iguales
RUEBA
No se han
PRETETS
asumido
varianzas
iguales
Fuente: Brito. (2012).
,220
,640
Prueba T para la igualdad de medias
T
1,356
1,356
Gl
58
57,974
Sig.
(bilateral)
Diferencia
de medias
,180
,60000
,180
,60000
Error típ.
de la
diferencia
,44248
,44248
95% Intervalo de
confianza para la
diferencia
Inferior Superior
-,28571
-,28572
1,48571
1,48572
89
Dado que se obtuvo un sig bilateral de 0,180, es decir, sig > α luego se
acepta la hipótesis nula siendo: 0,180 > 0.05. En consecuencia se puede afirmar
que no existen diferencias significativas entre las calificaciones obtenidas por los
estudiantes durante la aplicación de la prueba de pre-test en consecuencia se
puede concluir que los grupos en estudio son homogéneos.
Objetivo especifico: Determinar el nivel de aprendizaje sobre trigonometría en
los alumnos que recibieron clase magistral de la Institución Educativa
“Luis
Giraldo”.
Grupo Control
Postest
Ítems
13
15
16
17
Total
Tabla 11
Indicador: Características de los triángulos
Correctos
Incorrectos
FA
FR
FA
14
46,67
16
8
26,67
22
16
53,33
14
12
40,00
18
50
41,67
70
Media aritmética
Fuente: Brito (2012)
0,41
Categoría
Grafico 9
Características de los triángulos
Fuente: Brito (2012)
FR
53,33
73,33
46,67
60,00
58,33
Superficial
90
En cuanto al indicador características de los triángulos, los resultados
muestran en el ítem 13, relacionado con “La suma de los ángulos internos de un
triangulo rectángulo debe ser 360°” que el 53.33% de los estudiantes contestó de
manera incorrecta a diferencia del 46.67% quienes logran la manera correcta.
Para el caso del ítem 15 que establece “la hipotenusa es el lado más corto en un
triangulo rectángulo”, el 73.33% contestó de manera incorrecta y el 26.67% lo
realizó correctamente. En cuanto al ítem 16, “En un triangulo rectángulo el lado
que se opone al ángulo recto recibe el nombre de cateto y los otros dos lados se
llaman hipotenusa” un 46.67%, contestó de manera incorrecta a diferencia del
53.33% que lo acertó correctamente.
Así mismo, para el ítem 17 “Como todo triangulo rectángulo posee un ángulo
recto, para encontrar sus elemento basta con conocer la medida de uno de los
dos ángulos agudos y de un lado, o la longitud de los dos lados” un 60% de los
estudiantes
contestaron de manera incorrecta, solo el 40% lo realizo
correctamente. Del mismo modo, la media aritmética del indicador fue de 0.41 lo
cual la ubica en la categoría superficial según el baremo establecido y expreso
que el tipo de aprendizaje que predomina es superficial.
Tabla 12
Indicador: Clasificación de los triángulos
Correctos
Incorrectos
Ítems
FA
FR
FA
FR
2
17
56,67
13
43,33
4
11
36,67
19
63,33
12
7
23,33
23
76,67
Total
35
38,89
55
61,11
0,38
Categoría
Superficial
Media aritmética
Fuente: Brito (2012)
91
Grafico 10
Clasificación de los triángulos
Fuente: Brito (2012)
Establecen los resultados correspondientes al indicador Clasificación de los
triángulos, que para el ítem 2 “Un triángulo rectángulo escaleno posee”, el 56.67%
contestó de manera correcta, solo el 43.33% lo realizó de manera incorrecta. Para
el caso del ítem 4, “Corresponde a un triangulo rectángulo isósceles” el 63.33%
contestó de manera incorrecta, además el 36.67% lo acertó correctamente.
Mientras en el ítem 12 “Los triángulos rectángulos se clasifican en isósceles y
escalenos” el 76.67% contestó de manera incorrecta, además el 23.33% lo acertó
correctamente. Del mismo modo, la media aritmética del indicador fue de 0.38 lo
cual la ubica en la categoría superficial según el baremo establecido, además
establece que el tipo de aprendizaje predominante es superficial.
Tabla 13
Indicador: El uso de las razones trigonométricas
Correctos
Incorrectos
FA
FR
FA
FR
Ítems
13
43,33
17
56,67
1
10
33,33
20
66,67
5
15
50,00
15
50,00
6
15
50,00
15
50,00
7
14
46,67
16
53,33
8
8
26,67
22
73,33
9
13
43,33
17
56,67
10
88
41,90
122
58,10
Total
0,34
Superficial
Media aritmética
Categoría
Fuente: Brito (2012)
92
Grafico 11
El uso de las razones trigonométricas
Fuente: Brito (2012)
En cuanto a los resultados del indicador uso de las razones trigonométricas,
específicamente en el ítem 1 “Equivale a
3 ” el 56.67% contestó de manera
incorrecta, solo el 43.33% lo acertó de manera correcta. Con relación al ítem 5
“Razón entre el cateto adyacente y el cateto opuesto” un 66.67% contestó de
forma incorrecta, y el 33.33% lo realizó de manera correcta. Para el caso del ítem
6 “Lado perpendicular usado para definir coseno de un ángulo” el 66.67% contestó
de manera incorrecta, solo el 33.33% lo acertó de manera correcta. Con relación
al ítem 7 “Razón entre la hipotenusa y el cateto adyacente”, un 50% contestó de
forma incorrecta, y el 50% lo realizó de manera correcta.
En el caso del item 8 “En el triángulo rectángulo ACB de la figura, se tiene
que c=5 cm y b= 3cm.
no es verdad que” un 53.33% contestó de manera
incorrecta, solo el 46.67% acertó su respuesta. Con respecto al ítem 9 “En el
triángulo ACB, rectángulo en C, el valor de tan A + tan B, en función de los lados
es” un 73.33% contestó de forma incorrecta, y el 26.67% lo realizó de manera
correcta.
De acuerdo al ítem 10 “Encuentra la altura del árbol de la figura adjunta
sabiendo que tan B =” el 56.67% contesto de manera incorrecta a diferencia del
43.33% quienes acertaron con su respuesta. Del mismo modo, la media aritmética
93
del indicador fue de 0.34 lo cual la ubica en la categoría superficial según el
baremo establecido, además establece que el tipo de aprendizaje predominante
es superficial.
Tabla 14
Indicador: El teorema de Pitágoras
Correctos
Incorrectos
Ítems
FA
FR
FA
FR
3
14
46,67
16
53,33
11
12
40,00
18
60,00
14
14
46,67
16
53,33
Total
40
44,44
50
55,56
Media aritmética
0,44
Categoría
Superficial
Fuente: Brito (2012)
Grafico 12
El teorema de Pitágoras
Fuente: Brito (2012)
En cuanto a los resultados de la tabla 14 y grafico 12, sobre el del Indicador:
teorema de Pitágoras, del cual el item 3 “Los dos lados que conforman el ángulo
recto son llamados” evidencia que un 53.33% contestó de manera incorrecta a
diferencia del 46.67% que lo efectuó correctamente. Para el ítem 11 “El triángulo
de la figura es rectángulo en Q. si r = 6 cm y q = 10. Entonces QR mide”, se
estableció que un 60% de los estudiantes contestaron de manera incorrecta a
diferencia de lo establecido por el 40% quienes acertaron la respuesta.
Así mismo, en el ítem 14 “El teorema de Pitágoras se utiliza para la solución
de todo tipo de triángulos (rectángulos y oblicuángulos)” el 53.33% de los
94
estudiantes respondieron de manera incorrecta, solo el 46.67% logró acertar con
su respuesta. Del mismo modo, la media aritmética del indicador fue de 0.44 lo
cual la ubica en la categoría superficial según el baremo establecido, además
establece que el tipo de aprendizaje predominante es superficial.
Objetivo Específico: Determinar el nivel de aprendizaje sobre trigonometría en
los alumnos que utilizaron b-learning en la Institución Educativa “Luis Giraldo”.
Grupo Experimental.
Postest
Tabla 15
Indicador: Características de los triángulos
Correctos
Incorrectos
FA
FR
FA
FR
Ítems
25
83,33
5
16,67
13
15
50,00
15
50,00
15
16
53,33
14
46,67
16
16
53,33
14
46,67
17
72
60,00
48
40,00
Total
0,6
Profundo
Media aritmética
Categoría
Fuente: Brito (2012)
Grafico 13
Características de los triángulos
Fuente: Brito (2012)
95
En cuanto al indicador características de los triángulos, los resultados
muestran en el ítem 13, relacionado con “La suma de los ángulos internos de un
triangulo rectángulo debe ser 360°” que el 83.33% de los estudiantes contesto de
manera correcta a diferencia del 16.67% quienes logran la manera correcta. Para
el caso del ítem 15 que establece “la hipotenusa es el lado más corto en un
triangulo rectángulo”, el 50% contestó de manera incorrecta y el 50% lo realizó
correctamente. En cuanto al ítem 16, “En un triangulo rectángulo el lado que se
opone al ángulo recto recibe el nombre de cateto y los otros dos lados se llaman
hipotenusa” un 53.33%, contestó de manera incorrecta a diferencia del 46.67%
que lo acertó correctamente.
Así mismo, para el ítem 17 “Como todo triangulo rectángulo posee un ángulo
recto, para encontrar sus elemento basta con conocer la medida de uno de los
dos ángulos agudos y de un lado, o la longitud de los dos lados” un 53.33% de los
estudiantes contestaron de manera correcta, solo el 46.67% lo realizó
incorrectamente.
Del mismo modo, la media aritmética del indicador fue de 0.6 lo
cual la ubica en la categoría superficial según el baremo establecido y expreso
que el tipo de aprendizaje que predomina es profundo.
Tabla 16
Indicador: Clasificación de los triángulos
Correctos
Incorrectos
Ítems
FA
FR
FA
FR
2
18
60,00
12
40,00
4
14
46,67
16
53,33
12
23
76,67
7
23,33
Total
55
61,11
35
38,89
Media aritmética
Fuente: Brito (2012)
0,61
Categoría
Profundo
96
Grafico 14
Clasificación de los triángulos
Fuente: Brito (2012)
Establecen los resultados correspondientes al indicador Clasificación de los
triángulos, que para el ítem 2 “Un triángulo rectángulo escaleno posee”, el 60%
contestó de manera correcta, solo el 40% lo realizó de manera incorrecta. Para el
caso del ítem 4, “Corresponde a un triangulo rectángulo isósceles” el 53.33%
contestó de manera incorrecta, además el 46.67% lo acertó correctamente.
Mientras en el ítem 12 “Los triángulos rectángulos se clasifican en isósceles y
escalenos” el 76.67% contestó de manera incorrecta, además el 23.33% lo acertó
correctamente. Del mismo modo, la media aritmética del indicador fue de 0.61 lo
cual la ubica en la categoría superficial según el baremo establecido, además
establece que el tipo de aprendizaje predominante es profundo.
Tabla 17
Indicador: El uso de las razones trigonométricas
FA
Ítems
15
1
17
5
13
6
22
7
21
8
22
9
23
10
133
Total
Media aritmética
Fuente: Brito (2012)
Correctos
FR
50,00
56,67
43,33
73,33
70,00
73,33
76,67
63,33
0,64
Incorrectos
FA
FR
15
50,00
13
43,33
17
56,67
8
26,67
9
30,00
8
26,67
7
23,33
77
36,67
Profundo
Categoría
97
Grafico 15
El uso de las razones trigonométricas
Fuente: Brito (2012)
En cuanto a los resultados del indicador uso de las razones trigonométricas,
específicamente en el ítem 1 “Equivale a
3 ” el 50 % contestó de manera
correcta, solo el 50% lo acertó de manera incorrecta. Con relación al ítem 5
“Razón entre el cateto adyacente y el cateto opuesto” un 56.67% contestó de
forma correcta, y el 43.33% lo realizó de manera incorrecta. Para el caso del ítem
6 “Lado perpendicular usado para definir coseno de un ángulo” el 56.67% contestó
de manera incorrecta, solo el 43.33% lo acertó de manera correcta. Con relación
al ítem 7 “Razón entre la hipotenusa y el cateto adyacente”, un 73.33% contestó
de forma correcta, y el 26.67% lo realizó de manera incorrecta.
En el caso del item 8 “En el triángulo rectángulo ACB de la figura, se tiene
que c=5 cm y b= 3cm. no es verdad que” un 70% contestó de manera correcta,
solo el 30% acertó su respuesta. Con respecto al ítem 9 “En el triángulo ACB,
rectángulo en C, el valor de tan A + tan B, en función de los lados es” un 73.33%
contestó de forma correcta, y el 26.67% lo realizó de manera incorrecta. De
acuerdo al ítem 10 “Encuentra la altura del árbol de la figura adjunta sabiendo que
tan B =” el 76.67% contesto de manera correcta a diferencia del 23.33% quienes
no acertaron con su respuesta. Del mismo modo, la media aritmética del indicador
98
fue de 0.64 lo cual la ubica en la categoría profundo según el baremo establecido,
además establece que el tipo de aprendizaje predominante es profundo.
Tabla 18
Indicador: El teorema de Pitágoras
Correctos
Incorrectos
Ítems
FA
FR
FA
FR
3
12
40,00
18
60,00
11
26
86,67
4
13,33
14
22
73,33
8
26,67
Total
60
66,67
30
33,33
0,66
Categoría
Profundo
Media aritmética
Fuente: Brito (2012)
Grafico 16
El teorema de Pitágoras
Fuente: Brito (2012)
En cuanto a los resultados de la tabla 18 y grafico 16, sobre el del Indicador:
teorema de Pitágoras, del cual el item 3 “Los dos lados que conforman el ángulo
recto son llamados” evidencia que un 60% contestó de manera incorrecta a
diferencia del 40% que lo efectuó correctamente. Para el ítem 11 “El triángulo de
la figura es rectángulo en Q. si r = 6 cm y q = 10. Entonces QR mide”, se
estableció que un 86.67% de los estudiantes contestaron de manera correcta a
diferencia de lo establecido por el 13.33% quienes no acertaron la respuesta.
99
El cuarto y último objetivo propuesto en esta investigación consistió en:
“Comparar el nivel de aprendizaje sobre trigonometría en los alumnos que
utilizaron la clase magistral y el B-Learning
en la Institución Educativa
Luis
Giraldo antes y después del tratamiento”. En este caso se tomaron en cuenta los
resultados obtenidos de la aplicación de la prueba de Pos-test. Del procesamiento
de los resultados arrojados de la aplicación del Programa SPSS, se obtuvieron los
siguientes resultados:
A continuación se muestra un cuadro que compara las medias obtenidas en
el post test. Para tener una mejor visualización de las mismas.
Cuadro 8
Cuadro comparativo de las medias del pre test
Indicador
Media
Media
Características de los
triángulos
0,24
0,24
Clasificación de los
triángulos
0,24
0,28
El
teorema
Pitágoras
0,26
0,35
El uso de las razones
trigonométricas
0,3
0,34
Media Aritmética
0,26
0,3
Superficial
Superficial
Categoría
de
100
Tabla 19
Medias Obtenidas de la aplicación de la prueba de Post-test.
Estadísticos de grupo
GRUPOS
RESULTADOS
N
Media
Desviación típ.
Error típ. de la
media
EXPERIMENTAL
30
10,6667
2,20240
,40210
CONTROL
30
7,1000
1,97135
,35992
Fuente: Brito (2012)
De la tabla 19 se observa que las diferencias de los promedios en el
puntajes alcanzados por los grupo experimental y control es significativo debido a
−
−
que fueron de X = 10,6667 puntos y X = 7,1000 puntos, respectivamente.
Con la finalidad de verificar los resultados anteriores se aplicó la prueba t
para muestras independientes para determinar las diferencias entre las medias de
cada grupo, resultando lo siguiente:
Tabla 20.
Resultados arrojados de la aplicación de la prueba de Post-test.
(Prueba T – student para muestras independientes)
RESULTADO
S
Se han
sumido
varianzas
iguales
No se han
asumido
varianzas
iguales
Prueba de muestras independientes
Prueba de
Prueba T para la igualdad de medias
Levene para la
igualdad de
varianzas
F
Sig.
t
Gl
Sig.
Diferencia
Error típ.
95% Intervalo de
(bilateral de medias
de la
confianza para la
)
diferencia
diferencia
Inferior
Superior
,784
,380 6,609
58
,000
3,56667
,53965
2,48643
4,64690
6,609 57,302
,000
3,56667
,53965
2,48615
4,64718
Fuente: Brito (2012)
Considerando los resultados arrojados de los promedios de ambos grupos
mediante la aplicación del programa SPSS, específicamente lo relacionado a la
prueba de diferencias de medias para muestras independientes se puede apreciar
101
que se obtuvo un sig bilateral de 0.000, es decir, sig < α. Y en consecuencia se
rechaza la hipótesis nula, lo cual lleva a la aceptación de la hipótesis alternativa,
por lo que se puede concluir que: Si se utiliza la estrategia didáctica B-Learning
entonces el aprendizaje de la trigonometría en los alumnos de la Institución
Educativa “Luis Giraldo” de Colombia, mejorará.
DISCUSIÓN DE LOS RESULTADOS
Una vez establecidos los resultados de la investigación, se hace necesaria la
respectiva discusión tomando como referencia la presentación de los objetivos
específicos destinados para el estudio. En este sentido, para el caso de
Diagnosticar el nivel de aprendizaje sobre trigonometría que poseen los alumnos
de la Institución Educativa Luis Giraldo, la realidad estableció que los mismos se
ubicaron en una categoría que les define como superficial.
Esta situación evidenciada en los dos grupos conformados para el estudio,
puesto que, revelaron coincidencia con los criterios referidos por Argyris y Schön
(1978, citados por Huerta 2008), quienes establecen que los individuos podrán
responder en función a la disponibilidad de información derivadas de las
experiencias pasadas, por lo cual, lo estudiantes de dichos grupos, al no haber
sido expuestos a ningún tipo de experiencia de formación o enseñanza, acudieron
a la información que poseen de situaciones anteriores que les relacionaron con los
temas de la trigonometría.
Es importante también destacar, que la situación presentada con el
conocimiento superficial, en estos grupos de trabajo, determinó una relación
directa con los trabajos de Entwistle (1981), Ramsdem (1992) y Biggs (1993)
(citados por Fasce 2002), debido a que en otro momento en el cual fueron
provistos de la información o la lograron adquirir en esfuerzo propio, solo
alcanzaron a memorizar hechos aislados y ante la falta de conexión con
experiencias recientes, no estuvieron en capacidad de retener datos, tal como lo
102
demuestran los índices y promedios de la
indagatoria en cada uno de los
indicadores.
Es así mismo propicio destacar, que de acuerdo a las consideraciones que
caracterizan al estudio, el comportamiento de los grupos que conforman la
muestra poblacional de trabajo, se evidenciaron como homogéneos, lo cual es una
condición específica para el desarrollo del cuasiexperimento, donde la posibilidad
de manipular a los mismos queda descartada ya que estos provienen de
secciones de estudio en el nivel en el cual se ubican dentro de la institución.
Para el caso especifico del objetivo que plantea Determinar el nivel de
aprendizaje sobre trigonometría en los alumnos del grupo control que recibieron
clase magistral de la Institución Educativa “Luis Giraldo”, la realidad que muestran
los resultados señala que los mismos se ubicaron según el estudio en una
categoría superficial, aun cuando estuvieron ante una experiencia de formación
como es el de la clase magistral.
Tales resultados, estarían en concordancia con el planteamiento de Entwistle
(1981), Ramsdem (1992) y Biggs (1993) (citados por Fasce 2002), debido a que el
ambiente de clase magistral, en su mayoría se caracteriza por el hecho que la
actividad de enseñanza, en este caso sobre la trigonometría, estuvo centrada en
el docente, sin la intervención o apoyo de algún medio o recurso tecnológico, esto
les determina a una sobrecarga de información para el caso de los estudiantes,
así mismo, este ambiente no promueve innovaciones metodológicas lo cual puede
representar una sobrecarga de tareas convencionales, como el tomar dictado,
copiar desde la pizarra.
De igual manera, la producción de un ambiente poco innovador, sin
alternativas de cambio puede estar incidiendo en la motivación de los estudiantes,
aun cuando algunos de los casos estudiados muestran cambios dispersos que al
ser considerados dentro del procesamiento estadístico, no produce movilidad
tangible para ser considerada como significativa. No puede negarse que la
103
disertación de la clase magistral ha venido estableciendo exigencias al docente,
las cuales pueden estarse generando, pero carecen de efectividad por la falta de
un verdadero proceso de diagnosis que oriente al docente a través de las
necesidades del estudiante.
Para el caso del objetivo destinado a Determinar el nivel de aprendizaje
sobre trigonometría en los alumnos del grupo experimental que utilizaron BLearning
en la Institución Educativa
“Luis Giraldo”, la realidad estableció un
cambio significativo en el desempeño de estos estudiantes, debido a que la
categoría alcanzada fue de aprendizaje profundo. A partir de esta realidad se
determinan las siguientes consideraciones.
De acuerdo a los resultados obtenidos por los estudiantes que lograron
disponer del uso del b-learning como medio de apoyo para el aprendizaje de la
trigonometría, su desempeño logra ser considerado como profundo debido a las
dos alternativa de trabajo que se lograron con el uso del citado medio, es decir, su
utilización orientada en el aula a través de la inducción ofrecida por el docente, así
como del correcto acompañamiento que se genero en las sesiones que
permitieron disertar los contenidos, y a su vez, la manera auto asistida que el
estudiante logró en el momento de acceder al mismo, a través de internet.
Estos dos escenarios constituyeron una condición la cual se relaciona con el
criterio de Argyris y Schön (1978, citados por Huerta 2008), quienes argumentan
que el alumno, para el logro de un aprendizaje profundo, debe estar orientado al
logro de la comprensión personal, por lo cual asocia ideas, aplica principios
integradores de los contenidos, mas aun cuando en esta oportunidad se logró
tanto en el aula como en su trabajo individual en línea. Así mismo, tales
condiciones habrían de permitir a los estudiantes construir sus propias
conclusiones de acuerdo a lo estudiado, al
relacionar nuevas ideas con
conocimientos y experiencias ya adquiridas, lo cuales estaban en un nivel
104
superficial.
Así mismo, durante la aplicación del recurso en su formato presencial, se
consiguió coincidencia con el planteamiento de Argyris y Schön (1978, citados por
Huerta 2008), estos consideran que el docente para el favorecimiento del
aprendizaje profundo el adoptar una condición de facilitador y guía a la vez que les
facilita la disposición de información. De igual manera, refieren los autores citados
que se logra por parte del docente una retroalimentación positiva, es decir un
intercambio de percepciones sobre el recurso y su utilidad, esto les permite
establecer metas realistas, de acuerdo al nivel de enseñanza, así como el manejo
de los contenidos más importantes, de igual manera les permite disponer de
metodologías con carácter participativo lo cual agrega un cambio de impacto para
propiciar el sentido cooperativo y colaborativo entre los estudiantes.
A su vez, estos resultados del grupo experimental, resultan coincidentes con
los planteamientos de Schmeck, (1981 citado por Vega 2007), el cual establece
que en el aprendizaje profundo, los estudiantes logran un estilo de en el cual
invierten más tiempo pensando y menos repitiendo, así mismo, clasifican,
comparan, contrastan, analizan y sintetizan información de distintas fuentes. Esto
se conjuga con las capacidades desarrolladas en el b-learning donde los cuatro
aspectos desarrollados en su contenido, le facilitaron múltiples medios como
contenidos, videos, ejemplos prácticos, y aplicaciones interactivas, donde todas
las alternativas de aprendizaje en su contexto son ejecutadas por los estudiantes
interesados en dominar el tema.
De igual manera se establece una relación de los resultados con el postulado
de Marzano y otros, (1992 citados por Vega 2007), quienes argumentan que el
aprendizaje profundo, establece que la información procesada tiene sentido para
el estudiante, es decir, pueda relacionarla con alguna experiencia previa para
lograr darle significado. identificar la temática a la que pertenece y luego usarla
activamente en su desempeño.
105
En cuanto al objetivo destinado a Comparar el nivel de aprendizaje sobre
trigonometría en los alumnos que utilizaron la clase magistral y el B-Learning en
la Institución Educativa “Luis Giraldo antes y después del tratamiento”, antes y
después del tratamiento. Para el primero de los casos, es decir la comparación
con los grupos de trabajo en el nivel de pretest, mediante el uso del software
SPSS, se comprobó la ausencia de diferencias significativas en estos grupos,
además el cálculo de la t de student refiere con precisión
aceptar la hipótesis
nula siendo debido a que los resultados reflejan que 0,180 > 0.05 y por lo tanto se
avala el criterio de este estadístico inferencial.
Para un según momento en el cual se comparan los grupos, que recibieron la
clase magistral y los estudiantes que dispusieron del b-learning, inicialmente la
media aritmética de estos señala que el grupo control se ubico dentro de una
categoría superficial de aprendizaje en comparación al experimental que logró una
condición profunda. Esto se logro corroborar con el uso del SPSS, quien revela a
su vez un índice superior para el grupo experimental sobre el grupo control. Así
mismo, en la determinación de la t de student mediante el uso del software antes
mencionado lo cual determino un sig bilateral de 0.000, es decir, sig < α.
106
CONCLUSIONES
Una vez presentados, analizados y discutidos los resultados del estudio, a
partir de esa información se emiten las siguientes conclusiones:
- Derivadas del primer objetivo específico orientado a diagnosticar el nivel de
aprendizaje sobre trigonometría que poseen los alumnos del grupo experimental y
el grupo control de la Institución Educativa “Luis Giraldo”, se concluye lo siguiente:
Los alumnos tanto del grupo control como experimental
previo a la
realización de la experiencia obtuvieron notas muy similares que reflejaron un nivel
de conocimientos superficiales sobre los tópicos a trabajar en la unidad temática
referida a la trigonometría, no encontrándose diferencias estadísticamente
significativas entre los valores promedios obtenidos por ambos
grupos. El
resultado se encuentra justificado en razón a que para ese momento, los
estudiantes solo disponen de información que proviene de experiencias de
aprendizaje distantes del momento de la aplicación de la prueba, por esto, su
capacidad de responder al compromiso de la prueba de conocimientos fue
limitada, expresando homogeneidad en los grupos.
Con respecto al segundo objetivo encaminado a determinar el nivel de
aprendizaje sobre trigonometría en los alumnos del grupo control que recibieron
clase magistral de la Institución Educativa “Luis Giraldo”, se concluye lo siguiente:
Los alumnos del grupo control una vez finalizada la aplicación de la clase
magistral, obtuvieron un promedio que permite considerar que su aprendizaje de
los conceptos trigonométricos puede considerarse como superficiales. Las
situaciones que caracterizan el ambiente de trabajo en la clase magistral,
determinan monotonía, falta de innovación, circunstancias de bajo interés para los
estudiantes donde es complejo activar la motivación y participación de los mismos
en acciones de emprendimiento para el logra del aprendizaje. Se destaca además
que esta actividad no estableció ningún tipo de apoyo con recursos que fuesen
107
distintos a los utilizados en este formato de trabajo en el aula, por lo cual no se
identifican elementos de cambio.
- Deducidas del tercer objetivo específico enfocado a determinar el nivel de
aprendizaje sobre trigonometría en los alumnos del grupo experimental que
utilizaron B-Learning en la Institución Educativa “Luis Giraldo”, se concluye lo
siguiente:
Los alumnos del grupo experimental una vez finalizada la aplicación de la
estrategia de intervención utilizando la estrategia de B-Learnig, obtuvieron un
promedio que permite considerar que su aprendizaje de los conceptos
trigonométricos pueden considerarse como profundos. La realidad lograda por el
grupo experimental es mucho mas aventajada, que el grupo control, debido a que
las experiencias en las que estuvieron inmersos con los escenarios presenciales,
asistidos con el acompañamiento
del docente en un rol de facilitador
fundamentaron un cambio de la modalidad cotidiana, por otra parte, el uso de las
tecnologías y recursos de aplicación, logra una mayor motivación en los
estudiantes.
- Referidas al cuarto objetivo específico enfocado a comparar el nivel de
aprendizaje sobre trigonometría en los alumnos que utilizaron la clase magistral y
el b-learning
en la Institución Educativa
“Luis Giraldo” antes y después del
tratamiento, se concluye lo siguiente:
A diferencia de los alumnos del grupo control que mantuvieron una baja
calificación en la prueba de conocimientos al finalizar la experiencia, los
estudiantes del grupo experimental obtuvieron notas más altas, lo cual implicó
modificar su cualificación inicial de Superficial al de Profundo. También se
determinaron
diferencias
estadísticamente
promedios obtenidos por ambos
significativas
entre
los
valores
grupos. Sin embargo, algunos de los casos
estudiados en el grupo control, mostraron un cambio, el cual siendo evidente
108
desde los promedios y las calificaciones logradas, no logran impactar en las
estadísticas para considerarlo como un hecho significativo.
Por consiguiente, se acepta la hipótesis de la investigación y se rechaza la
hipótesis nula, concluyendo que la estrategia didáctica b-learning permite generar
un aprendizaje profundo.
En función al objetivo general, este estudio permitió concluir que el proceso
de aprendizaje de la trigonometría, es favorecido con la utilización de herramientas
tecnológicas, dado que tiende a superar las dificultades presentadas por los
estudiantes en dicha área; resultando efectiva la estrategia didáctica b-learning al
utilizarla como recurso didáctico en el refuerzo y nivelación de los temas
planteados.
Además se observó la incentiva que genera la estrategia al trabajo individual,
permitiendo la aplicación inmediata de lo aprendido, generando así una alta
motivación en los estudiantes.
RECOMENDACIONES
A partir de las conclusiones obtenidas en este trabajo se formulan las
siguientes recomendaciones:
- Informar a la Dirección de la Institución Educativa “Luis Giraldo”, resultados
de este estudio, y en especial a los profesores de la asignatura, para generar
espacios de discusión sobre el tema, así como para motivarlos a realizar nuevas
investigaciones
y aplicar otras estrategias diferentes a la clase tradicional,
orientadas a la capitalización de la motivación e interés de los estudiantes para el
aprendizaje de la Trigonometría.
109
- Continuar realizando investigaciones dentro de este campo para profundizar
en el estudio de diferentes estrategias pedagógicas para fomentar el aprendizaje
bajo un enfoque didáctico basado en las TIC y en especial en el B-Learning en
diferentes escenarios educativos, así como en diferentes niveles y contenidos.
- Realizar talleres de actualización para los docentes, en los cuales se revise
y analice el currículo desde una perspectiva holística e integradora, para de esta
manera fortalecer las competencias didácticas de éstos y fomentar el mayor uso
de estrategias de enseñanza basadas en las Tecnologías de la Información y las
Comunicaciones.
- Auspiciar en los alumnos la participación activa en la clase, estimulando el
intercambio de conocimientos y experiencias personales, reformulando así lo
enseñado en un determinado tema o materia en función de un saber mas
complejo e integral; es decir, con las otras asignaturas y con la vida misma.
- Estimular
a los docentes del área
para la aplicación de estrategias
pedagógicas diversas, como complemento de la clase expositiva tradicional, ya
que las mismas constituyen
un aporte valioso para la generación de un
aprendizaje mucho más satisfactorio y significativo para los estudiantes.
- Reforzar en los docentes de esta asignatura la necesidad de evitar las
rutinas para que las clases sean lo más participativas posible, de forma tal que
favorezcan el apropiamiento de los saberes por parte de los estudiantes de
acuerdo al ritmo individual y a las características de cada etapa de su desarrollo
físico y mental. En este sentido, se sugiere aplicar con frecuencia prácticas de
autoevaluación, formular preguntas informativas, formativas y sobre todo
transformativas.
- Fomentar entre el personal docente la creación de una red informativa
referente al uso de estrategias innovadoras basadas en el uso de las TIC, para
propiciar el aprendizaje significativo en los estudiantes, con lo cual se contribuiría
110
a elevar la calidad del acto educativo sobre todo en el área de la Matemática, con
la finalidad de fortalecer las competencias analíticas y críticas de los estudiantes
como constructores de su propio aprendizaje.
- Replicar el estudio en otras asignaturas, para comparar resultados y de esta
manera tener criterios empíricos para la implantación de clases bajo el formato
estratégico del B-Learning.
111
REFERENCIAS BIBLIOGRÁFICAS
Acosta, A María. (2010) Efecto de un programa de gimnasia cerebral en el
conocimiento de la trigonometría en alumnos de 4to. año de diversificado
Tesis Magister en Psicología Educacional). Universidad Rafael Urdaneta,
Post-Grado e Investigación. Maracaibo.
Acosta, William. (2002) Diseño de Cursos Virtuales. Venezuela
Adell, Jordi. (2002). World Wide Web: Un Sistema Hipermedia Distribuido Para La
Docencia Universitaria. En Blázquez, F., Cabero, J. y Loscertales, F.
(Coord.). (1994). Nuevas tecnologías de la Información y la Comunicación
para la Educación. Sevilla: Ediciones Alfar, págs. 114-121.
http://tecnologiaedu.us.es/bibliovir/pdf/14.pdf
Altuve Omar (2009), Análisis de los procesos de enseñanza a grupo de
instituciones pertenecientes al Departamento de la Guaji.ra
Amador, Martha; Dorado, Carolina. 2000. “Estrategias, funciones e interacciones
en un entorno virtual de aprendizaje a distancia”. XII Congreso Nacional y I
Iberoamericano de Pedagogía "Hacia el tercer milenio: cambio educativo y
educación
para
el
cambio"
Madrid.
URL:
http://dewey.uab.es/paplicada/professors/profess/amadsep.htm#entorno
Argyris, Chris y Schön, Donald. (1974). La aplicabilidad de la organización: Teoría
de la Acción. Chicago: The Dryden Press.
Arias Fidias. (1999), Metodología de la investigación. Venezuela
Editorial Espíteme.
Caracas
Ayres Frank (1999) Trigonometría, 2da. Edición, México: Ediciones McGraw-Hill
Bartolomé, Antonio. (2004) Blended learning. Conceptos básicos. Universidad de
Barcelona, Disponible en <http://www.sav.us.es/pixelbit/marcoabj23.htm
Bavaresco Aura Marina. (2001), Proceso Metodológico en la Investigación : Cómo
hacer un Diseño de Investigación. Edition: 2a. ed. rev.Type: Book
Bello León Darío (2007), Experiencia Modalidad b-learning curso de Muestreo e
inferencia estadística del programa Gerencia en Sistemas de información
en Salud. Facultad Nacional de Salud Pública- U de A. Octubre 2007.
Brennan, McCracken (2004) “Blended Learning and Business Change”. Chief
Learning Officer Magazine.
Cabero, Jesus. (2004). La función tutorial en la teleformación. En Martínez, F. y
Prendes, M. P. (coordinadores) Nuevas tecnologías y Educación. Madrid:
112
Pearson Prentice Hall. (páginas 129-143)
Chávez Nilda (2004), Introducción a la Investigación Educativa. Maracaibo.
Venezuela.
Díaz, Frida y otros (2002). Estrategias docentes para un aprendizaje significativo.
(2da edición). McGraw Hill. México.
Figueiredo Ana (2010) Estructura cognitiva y conceptos nucleares en la
enseñanza/aprendizaje de la trigonometría: estudio comparativo realizado
con alumnos del 10. º al 12. º año de enseñanza secundaria a través de la
aplicación de diferentes metodologías. En la Universidad de Extremadura
España.
Gallego Armando y Salvador Erasmo (2007), Fundamentación de las estrategias
didácticas aplicadas a las matemáticas. Universidad Autónoma de México.
Hernández Guanipa, Maria
(2011) Efectividad del uso de estrategias de
aprendizaje mediadas por las TIC para el desarrollo del razonamiento
matemático. Trabajo de Grado (MSc. en Informática Educativa) Universidad
Dr. Rafael Belloso Chacín, Decanato de Investigación y Postgrado,
Maestría en Informática Educativa, Maracaibo.
Hernández, Roberto; Fernández-Collado, Carlos; Pilar Baptista, Lucio (2006),
Metodología de la investigación. Editorial Mac Graw Hill. México.
Huerta, Ramiro (2008), El aprendizaje en sus formas. Colombia Editorial Océano
Instituto Tecnológico y de Estudios Superiores de Monterrey (2004), Proceso para
el desarrollo de estrategias en el aula.
Labori, Barbara (2008), Estrategias educativas para el uso de las nuevas
tecnologias de la Informacion y comunicación. Instituto Superior Politécnico
“José Antonio Echeverría”,Universidad del País Vasco
Leff, James. (2002). Profs of large classes engage in dialogue: Faculty forum
addresses
teaching
practices.
En
Cornell
Daily
Sun.Com,
http://www.cornelldailysun.com/articles/4231/
Llorente, Mª Carmen & Cabero, Julio (2008). La formación semipresencial a través
de redes telemáticas (blended learning). Mataró: DaVinci.
Llorente, Mª Carmen (2009). Formación semipresencial apoyada en la Red
(blended learning). Diseño de acciones para el aprendizaje.Se villa:
Eduforma.
Marcano De Nava, Yeanny (2010) Estrategia B - Learning para la enseñanza -
113
aprendizaje de la estadística basada en competencias. Notas de tesis Tesis
Doctoral (Doct. en Ciencias de la Educación)--Universidad Dr. Rafael
Belloso Chacín, Decanato de Investigación y Postgrado, Doctorado en
Ciencias de la Educación, Maracaibo.
Marsh, George (2003) “Blended Instruction: Adapting Conventional Instruction for
Large Classes”. En Online Journal of Distance Learning Administration, (VI),
Number
IV,
Winter
2003.
Disponible
en
http://www.westga.edu/~distance/ojdla/winter64/marsh64.htm
Martín Oswald (2009), Aprendizaje significativo de las definiciones de seno,
coseno y Tangente de un ángulo agudo. México. Universidad Pedagógica
Nacional
Mason, Robin. & Rennie, Frank. (2006). E-learning. The Key Concepts.New York:
Routledge
Méndez Carlos (2003), Metodología de la investigación. Segunda Edición.
Ediciones COE.
Montserrat Pastor (2008), Aprendizaje Humano: Aplicaciones del biofeedback y
usos en investigación. UNED
Muraro Alberto (2005) Currículo y especificaciones pedagógicas. Ediciones
Norma. México.
Murphy, Peter (2003). La estrategia híbrida: Mezcla cara a cara con la enseñanza
virtual para mejorar los cursos de gran sección. University of California
Regents. Teaching, Learning, and Technology Center.
Negroponte, Nicholas (1996). Conferencia inaugural en el MILIA 96.
Parra Maria (2005), Fundamentos Epistemológicos, Metodológicos y Teóricos que
Sustentan un Modelo de Investigación Cualitativa en las Ciencias Sociales.
Tesis presentada a las Facultades de Ciencias Sociales y Filosofía y
Humanidades de la Universidad de Chile para optar al grado de Doctora en
Filosofía con Mención en Epistemología de las Ciencias Sociales. Santiago.
Pascual, María del Pilar. (2003). El Blended learning reduce el ahorro de la
formación on-line pero gana en calidad. Educaweb, 69. 6 de octubre de
2003.http://www.educaweb.com/esp/servicios/monografico/formacionvirtual/
1181108.asp
Pérez, Enrique (2009) El modelo educativo necesario. Chile Fundación Arturo
Sanz.
Pincas, Anita (2003). Los cambios graduales y simple para incorporar las TIC en el
114
aula. En elearningeuropea.info.
Sosa Sánchez-Cortés, A. García Manso J. Sánchez Allende, , P. Moreno Díaz y A.
J Reinoso Peinado (2005) B-Learning y Teoría del Aprendizaje
Constructivista en lasDisciplinas Informáticas: Un esquema de ejemplo a
aplicar. UNIVERSIDAD ALFONSO X EL SABIO. Avd de la Universidad Nº
1, 28691, Villanueva de la Cañada, Madrid. España
Salinas, Jose (2002) “Modelos flexibles como respuesta de las universidades a la
sociedad de la información” Acción Pedagógica, v.11, no.1.
Salmon, Gilly. (2000) E-Moderating: The Key to Teaching and Learning Online.
London: Kogan Page.
Sánchez, Andrés
(2010) Estrategia didáctica para el aprendizaje de los
contenidos de trigonometría Nota de Tesis: Trabajo de Grado (Msc. en
Informática Educativa) Universidad Dr. Rafael Belloso Chacín, Decanato de
Investigación y Postgrado, empleando las TICs. Maestria en Informática
Educativa, Maracaibo.
Santiago Oscar (2008), Estrategias de enseñanza y aprendizaje con medios y
tecnología, Madrid. Centro de estudios TECNOEDUCATIVOS.
Silva Juan. (2011) Diseño y moderación de entornos virtuales de aprendizaje.
Barcelona. España. Editorial UOC.
Tamayo y Tamayo Mario. (2001), El Proceso de la investigación científica. Editorial
Limusa.
Tomei, Lawrence (2003). Desafíos de la Enseñanza con la tecnología a través del
currículo: problemas y soluciones. London: Information Science Puyblishin.
Turpo Gebera, Orlando. (2008). Análisis y perspectivas de la modalidad blended
learning en el sistema universitario iberoamericano. Tesis para optar al
grado de Dr. Universidad de Salamanca, España.
UNESCO (2001) Problemas actuales de la enseñanza aprendizaje de la
matemática. Oficina Internacional de Educación. Santiago de Chile:
OREALC
Valenzuela, Jesus; Zúñiga, Mª E; Iriarte, Po; Palant M, Rojas A, Hormazábal J
(2002). “Hacia la Universidad Global: La inserción de las tecnologías de
información y comunicación en la educación superior”, Ediciones UTEM,
Valiathan Purnima (2002). Blended learning models. http://www.astd.org/
Vílchez, José Manuel (2010) Modelo de enseñanza modular personalizada de las
funciones trigonométricas en el quinto grado de educación secundaria. En
115
la Universidad de Extremadura España.
Young, Jhon (2002). 'Hybrid' teaching seeks to end the divide between traditional
and online instruction. En The Chronicle of Higher Education.
http://chronicle.com/free/v48/i28/28a03301.htm
116
ANEXOS
117
ANEXO A
118
REPÚBLICA BOLIVARIANA DE VENEZUELA
UNIVERSIDAD DEL ZULIA
FACULTAD DE HUMANIDADES
DIVISIÓN DE ESTUDIOS PARA GRADUADOS
MAESTRÍA EN MATEMÀTICA. MENCIÒN DOCENCIA
PRE-TEST
La Presente prueba es parte de una investigación, cuya finalidad es la de
introducir una estrategia didáctica en línea para el aprendizaje de la trigonometría.
Dada la importancia y lo valioso de la información a suministrar para la
implantación de esta nueva estrategia, es que te solicitamos la absoluta
concentración y precisión en tus respuestas.
Prueba de Conocimientos
Datos Personales
Apellidos: _______________________
D.I.: _______________
Nombres: ____________________
Curso: ____________
Fecha: _____________
Instrucciones
•
•
•
•
•
•
•
Lee cuidadosamente cada ítem o proposición que se presenta
La prueba consta de tres partes
Comienza por la parte y el ítem que sea más fácil a tu comprensión
No contestes al azar
Para llegar a la solución de cada pregunta, se recomienda razonar y
comprobar el resultado.
Escribe en letra legible.
Recuerda ser preciso en los Cálculos y simplificar
I PARTE: Pareamiento.
A continuación se presentan dos columnas, la columna A y la columna B;
relaciona cada frase con la palabra clave correcta.
COLUMNA A
COLUMNA B
FRASES
PALABRAS CLABES
1. Equivale a
3/ 2
( )
2. Razón entre el cateto adyacente y
la hipotenusa
( )
3. El valor es 1 / 2
( )
4. Razón entre el cateto Opuesto y el
cateto adyacente
( )
5. Corresponde a
2/2
b. Secante de un ángulo
c. Cotangente de un ángulo
d. Tangente de 60°
( )
6. Razón entre el cateto adyacente y
el cateto opuesto
( )
7. Lado perpendicular usado para
definir coseno de un ángulo ( )
8. Razón entre la hipotenusa y el
cateto adyacente
( )
9. Razón inversa a la secante
a. Coseno de 45°
( )
10. Razón entre la hipotenusa y el
cateto opuesto
( )
e. Cateto adyacente
f. Seno de un ángulo
g. Cosecante de un ángulo
h. Coseno de un ángulo
i. Tangente de un ángulo
j. Seno de 30°
II PARTE:
Selección simple.
A continuación se presentan vanas preguntas y cada una de ellas con varias
Posibles respuestas. Marca con una X la respuesta correcta.
1. En el triángulo rectángulo ACB de la figura, se tiene que c=5 cm y b= 3cm. no
es verdad que:
B
a)
b)
c)
d)
cos A = 0,6
cos B = 0,8
tan A = 1,11
cosec A = 1,25
c
a
a
a
C
b
A
2. En el triángulo ACB, rectángulo en C, el valor de tan A + tan B , en función de
los lados es:
A
C
a.
b.
c.
B
e.
c
ab
a
b
c2
c
ab
ab
bc
ac
3. Cuál de los siguientes valores no puede corresponder a sen (α)
3
2
2
a)
b) 0,9
c) 0,6
d)
e)
3
2
2
d.
2
4. Encuentra la altura del árbol de la figura adjunta sabiendo que tg β =
1
4
a) 8 m
b) 24 m
c) (8/3) m
d) (3/8) m
e) 6 m
h
β
24m
III PARTE: Verdadero o falso
Decide cual de las siguientes proposiciones son verdaderas y cuales son falsas.
1. Los triángulos rectángulos se clasifican en isósceles y escalenos………..... ( )
2. La suma de los ángulos internos de un triangulo rectángulo debe ser 360°.. ( )
3. El teorema de Pitágoras solo se utiliza para la solución de triángulos
rectángulos………………………………………………………………………… ( )
4. la hipotenusa es el lado más corto en un triangulo rectángulo……………….. ( )
5. En un triangulo rectángulo el lado que se opone al ángulo recto recibe el
nombre de cateto y los otros dos lados se llaman hipotenusa………………. ( )
6. Como todo triangulo rectángulo posee un ángulo recto, para encontrar sus
elemento basta con conocer la medida de uno de los dos ángulos agudos y de
un lado, o la longitud de los dos lados…………………………………………... ( )
ANEXO B
REPÚBLICA BOLIVARIANA DE VENEZUELA
UNIVERSIDAD DEL ZULIA
FACULTAD DE HUMANIDADES Y EDUCACIÓN
DIVISIÓN DE ESTUDIOS PARA GRADUADOS
MAESTRÍA EN MATEMÁTICA, MENCIÓN DOCENCIA
ESTRATEGIA DIDÁCTICA EN LÍNEA PARA EL APRENDIZAJE DE
LA TRIGONOMETRÍA
INSTRUMENTO
AUTOR: Jhordan Brito
ESTRATEGIA DIDÁCTICA EN LÍNEA PARA EL APRENDIZAJE DE LA
TRIGONOMETRÍA
La Presente prueba es parte de una investigación, cuya finalidad es la de
introducir una estrategia didáctica en línea para el aprendizaje de la trigonometría.
Dada la importancia y lo valioso de la información a suministrar para la
implantación de esta nueva estrategia, es que te solicitamos la absoluta
concentración y precisión en tus respuestas.
Prueba de Conocimientos
Datos Personales
Apellidos: _______________________
D.I.: _______________
Nombres: ____________________
Curso: ____________
Fecha: _____________
Instrucciones
•
•
•
•
•
•
•
Lee cuidadosamente cada ítem o proposición que se presenta
La prueba consta de tres partes
Comienza por la parte y el ítem que sea más fácil a tu comprensión
No contestes al azar
Para llegar a la solución de cada pregunta, se recomienda razonar y
comprobar el resultado.
Escribe en letra legible.
Recuerda ser preciso en los Cálculos y simplificar
I PARTE: Pareamiento.
A continuación se presentan dos columnas, la columna A y la columna B;
relaciona cada frase con la palabra clave correcta.
COLUMNA A
COLUMNA B
FRASES
PALABRAS CLAVES
11. Equivale a
3
( )
12. Un triángulo rectángulo escaleno
posee
( )
13. Los dos lados que conforman el
ángulo recto son llamados
( )
14. Corresponde a un
rectángulo isósceles
triangulo
( )
k. Dos lados
desigual
iguales
y
el
otro
l. Secante de un ángulo
m. Cotangente de un ángulo
n. Tangente de 60°
o. Cateto adyacente
15. Razón entre el cateto adyacente y
el cateto opuesto
( )
p. Un ángulo recto, y todos sus lados
y ángulos son diferentes
16. Lado perpendicular usado para
definir coseno de un ángulo ( )
q. Catetos
17. Razón entre la hipotenusa y el
cateto adyacente
( )
II PARTE:
Selección simple.
A continuación se presentan diversas preguntas y cada una de ellas con varias
Posibles respuestas. Marca con una X la respuesta correcta.
8. En el triángulo rectángulo ACB de la figura, se tiene que c=5 cm y b= 3cm. no es
verdad que:
e)
f)
g)
h)
i)
cos A = 0,6
cos B = 0,8
tan A = 1,11
csc A = 1,25
sec A = 1,66
9. En el triángulo ACB, rectángulo en C, el valor de tan A + tan B , en función de los
lados es:
a.
c
ab
b. ab
c
c.
a2
bc
d.
b2
ac
e.
c2
ab
10. Encuentra la altura del árbol de la figura adjunta sabiendo que tan B =
c) 8 m
d) 24 m
e)
8 m
3
f)
3 m
8
g)
6m
24 m
1
4
11. El triángulo de la figura es rectángulo en Q. si r = 6 cm y q = 10. Entonces QR
mide:
a) 2 3 cm
c) 2 cm
b)
d)
64
3
2
cm
cm
e) 6 cm
III PARTE: Verdadero o falso
Decide cual de las siguientes proposiciones son verdaderas y cuales son falsas.
12. Los triángulos rectángulos se clasifican en isósceles y escalenos……….......... ( )
13. La suma de los ángulos internos de un triangulo rectángulo debe ser 360°….. ( )
14. El teorema de Pitágoras se utiliza para la solución de todo tipo de triángulos
(rectángulos y oblicuángulos)……………………………………………………….. ( )
15. la hipotenusa es el lado más corto en un triangulo rectángulo……………………. ( )
16. En un triangulo rectángulo el lado que se opone al ángulo recto recibe el nombre de
cateto y los otros dos lados se llaman hipotenusa……………………………....... ( )
17. Como todo triangulo rectángulo posee un ángulo recto, para encontrar sus
elemento basta con conocer la medida de uno de los dos ángulos agudos y de un
lado, o la longitud de los dos lados…………………………………………........... ( )
REPÚBLICA BOLIVARIANA DE VENEZUELA
UNIVERSIDAD DEL ZULIA
FACULTAD DE HUMANIDADES Y EDUCACIÓN
DIVISIÓN DE ESTUDIOS PARA GRADUADOS
MAESTRÍA EN MATEMÁTICA, MENCIÓN DOCENCIA
ESTRATEGIA DIDÁCTICA EN LÍNEA PARA EL APRENDIZAJE DE LA
TRIGONOMETRÍA
Trabajo de Grado presentado como requisito para optar al grado de Magister
Scientiarum en Matemática Mención Docencia
Autor: Jhordan Brito
Tutor: Carmen Logreira
Valledupar, Abril de 2012
Valledupar, Abril de 2012
CIUDADANO (A): Jhonny Rivera Vergel
Ciudad.-
Reciban un cordial saludo.
Usted ha sido seleccionado como Juez Experto para evaluar la Validez de
Contenido del
cuestionario: ESTRATEGIA DIDÁCTICA EN LÍNEA PARA EL
APRENDIZAJE DE LA TRIGONOMETRÍA para ello se le anexa a la presente los
instrumentos indicados los cuales deben ser evaluados en su:
• Pertinencia,
• Orden de las preguntas y
• Redacción, según su juicio de acuerdo con los criterios que aparecen en el
formato anexo.
Seguro de su atención, gracias
_________________________
Jhordan Brito
Valledupar, Abril de 2012
CIUDADANO (A): Darwin Jimenez
Ciudad.-
Reciban un cordial saludo.
Usted ha sido seleccionado como Juez Experto para evaluar la Validez de
Contenido del
cuestionario: ESTRATEGIA DIDÁCTICA EN LÍNEA PARA EL
APRENDIZAJE DE LA TRIGONOMETRÍA para ello se le anexa a la presente los
instrumentos indicados los cuales deben ser evaluados en su:
• Pertinencia,
• Orden de las preguntas y
• Redacción, según su juicio de acuerdo con los criterios que aparecen en el
formato anexo.
Seguro de su atención, gracias
_________________________
Jhordan Brito
Valledupar, Abril de 2012
CIUDADANO (A): Jampier Lopez Montenegro
Ciudad.-
Reciban un cordial saludo.
Usted ha sido seleccionado como Juez Experto para evaluar la Validez de
Contenido del
cuestionario: ESTRATEGIA DIDÁCTICA EN LÍNEA PARA EL
APRENDIZAJE DE LA TRIGONOMETRÍA para ello se le anexa a la presente los
instrumentos indicados los cuales deben ser evaluados en su:
• Pertinencia,
• Orden de las preguntas y
• Redacción, según su juicio de acuerdo con los criterios que aparecen en el
formato anexo.
Seguro de su atención, gracias
_________________________
Jhordan Brito
Valledupar, Abril de 2012
CIUDADANO (A): Saul Vides
Ciudad.-
Reciban un cordial saludo.
Usted ha sido seleccionado como Juez Experto para evaluar la Validez de
Contenido del
cuestionario: ESTRATEGIA DIDÁCTICA EN LÍNEA PARA EL
APRENDIZAJE DE LA TRIGONOMETRÍA para ello se le anexa a la presente los
instrumentos indicados los cuales deben ser evaluados en su:
• Pertinencia,
• Orden de las preguntas y
• Redacción, según su juicio de acuerdo con los criterios que aparecen en el
formato anexo.
Seguro de su atención, gracias
_________________________
Jhordan Brito
1. IDENTIFICACIÓN DEL EXPERTO:
Nombre y Apellido: ______________________________________________________
______________________________________________________________________
Institución donde trabaja: _________________________________________________
Título de Pregrado: ______________________________________________________
Institución donde lo obtuvo______________________________Año_______________
Título de Postgrado: _____________________________________________________
Institución donde lo obtuvo: _______________________________________________
__________________________________________________ Año: _______________
Título de Doctorado: _____________________________________________________
_____________________________________________________________________
2. TÍTULO DE LA INVESTIGACIÓN:
Estrategia didáctica en línea para el aprendizaje de la trigonometría
3. OBJETIVOS DE LA INVESTIGACIÓN:
Objetivo general
Analizar el efecto de la estrategia didáctica B-Learning para el aprendizaje de la
trigonometría en la Institución Educativa “Luis Giraldo”.
Objetivos específicos
•
Diagnosticar el nivel de aprendizaje sobre trigonometría que poseen los alumnos del
grupo control y del grupo experimental de la Institución Educativa Luis Giraldo.
•
Determinar el nivel de aprendizaje sobre trigonometría en los alumnos del grupo
control que recibieron clase magistral de la Institución Educativa “Luis Giraldo”.
•
Determinar el nivel de aprendizaje sobre trigonometría en los alumnos del grupo
experimental que utilizaron B-Learning en la Institución Educativa “Luis Giraldo”.
•
Comparar el nivel de aprendizaje sobre trigonometría en los alumnos que utilizaron
la clase magistral y el B-Learning en la Institución Educativa “Luis Giraldo”, antes y
después del tratamiento.
4. SISTEMA DE VARIABLES
Variable Independiente
Definición Nominal: Estrategia didáctica b-learning
Definición Conceptual:
El B-Learning (formación combinada, del inglés blended learning) consiste en un
proceso docente semipresencial; esto significa que un curso dictado en este formato
incluirá tanto clases presenciales como actividades de e-learning. (Salinas, 2002),
Definición Operacional:
Es la instrumentación de una herramienta de carácter virtual, orientada a
fortalecer los procesos de enseñanza y aprendizaje, el cual puede ser un apoyo al
docente cuando se integra a la actividad en el aula, y por otra parte puede ser un medio
en línea en la ocasión de su acceso como un espacio de trabajo presente en la red
para el cual se establece una ruta y coordinación de ingreso.
Variable dependiente
Definición Nominal: Aprendizaje de la trigonometría
Definición Conceptual:
El aprendizaje se define como el cambio relativamente invariable de la conducta
de una persona a partir del resultado de la experiencia, siendo para el caso especifico el
relacionado con la trigonometría en función a la utilización del B-learnig. (Montserrat
2008).
Definición Operacional:
Nivel de aprendizaje alcanzado por los estudiantes de la Institución Educativa
“Luis Giraldo”. en la prueba de aprovechamiento sobre trigonometría, elaborada por el
investigador para tal fin, cuyas dimensiones e indicadores se presentan en la respectiva
tabla de operacionalización.
SISTEMA DE HIPÓTESIS
H1: Si se utiliza la estrategia didáctica B-Learning entonces el aprendizaje de la
trigonometría en los alumnos de la Institución Educativa “Luis Giraldo” de Colombia,
mejorará.
H0: Si se utiliza un la estrategia didáctica B-Learning entonces el aprendizaje de la
trigonometría en los alumnos de la Institución Educativa “Luis Giraldo” de Colombia, no
cambiará.
OBJETIVO GENERAL: Analizar el efecto de una estrategia didáctica b-learning para el aprendizaje de la trigonometría en la Institución Educativa
Luis Giraldo
OBJETIVOS ESPECÍFICO: Diagnosticar el nivel de aprendizaje sobre trigonometría que poseen los alumnos del grupo experimental y el grupo
control de la Institución Educativa Luis Giraldo
Determinar el nivel de aprendizaje sobre trigonometría en los alumnos del grupo control que recibieron clase magistral de la Institución Educativa
Luis Giraldo
Determinar el nivel de aprendizaje sobre trigonometría en los alumnos del grupo experimental que utilizaron b-learning en la Institución Educativa
Luis Giraldo
Comparar el nivel de aprendizaje sobre trigonometría en los alumnos que utilizaron la clase magistral y el b-learning en la Institución Educativa Luis
Giraldo
Independiente: Estrategia didáctica b-learning
VARIABLES:
Dependiente: Aprendizaje de la trigonometría
DIMENSIÓN
Nivel de
aprendizaje
INDICADORES
Ítems
Características de los triángulos
13, 15, 16, 17
Clasificación de los triángulos
2, 4, 12
El uso de las razones trigonométricas
1, 5, 6, 7, 8, 9, 10
El teorema de Pitágoras
3, 11, 14
Objetivos
variables
indicador
redacción
p
p
p
A
NP
NP
NP
I
OBJETIVO GENERAL: Analizar el efecto de una estrategia didáctica b-learning para el aprendizaje de la trigonometría en la
Institución Educativa Luis Giraldo.
Variable
Dimensión
Indicador
Ítem
Encuentro cara a cara
Clases magistrales
Practicas
Estrategia didáctica blearning
Aprendizaje autónomo
Herramienta de comunicación
Clases en línea
Practicas
Contenidos virtuales
Características de los triángulos.
13, 15, 16, 17
Clasificación de los triángulos.
2, 4, 12
Aprendizaje
trigonometría
de
la
Nivel de aprendizaje superficial y profundo
El uso de las razones trigonométricas.
El teorema de Pitágoras.
1, 5, 6, 7, 8, 9,10
3, 11,14
Cálculo de t de Student a través del estudio de las medias aritméticas.
1. JUICIO DEL EXPERTO:
En líneas generales, considera que los indicadores de la variable están inmersos
en su contenido teórico en forma:
_____ Suficiente
_____ Medianamente suficiente
_____ Insuficiente
Observaciones:_________________________________________________________
_____________________________________________________
Considera
que
las
preguntas
del
cuestionario
miden
los
indicadores
seleccionados para la variable de manera:
_____ Suficiente
_____ Medianamente suficiente
_____ Insuficiente
Observaciones:_________________________________________________________
_____________________________________________________
El instrumento diseñado mide las variables de manera:
_____ Suficiente
_____ Medianamente suficiente
_____ Insuficiente
Observaciones:_________________________________________________________
_____________________________________________________________________
Según su juicio, el instrumento diseñado es: _______________________________
_____________________________________________________________________
Firma: ________________________
CONSTANCIA DE JUICIO DEL EXPERTO
Yo_____________________________________, titular de la Cédula de Identidad Nº
____________________ certifico que realicé el juicio de experto a los cuestionarios
diseñados por Jhordan Brito,; cuyo tema de estudio se titula: ESTRATEGIA DIDÁCTICA
EN LÍNEA PARA EL APRENDIZAJE DE LA TRIGONOMETRÍA.
Firma: _______________________________
Fecha: _______________________________
Descargar