SUMA DE NÚMEROS BINARIOS Tabla de sumar de números binarios Suma consecutiva de números binarios de 1 en 1 hasta completar 10 Suma de dos números binarios Sean los números binarios 00102 y 01102 Primer paso De la misma forma que hacemos cuando sumamos números del sistema decimal, esta operación matemática la comenzamos a realizar de derecha a izquierda, comenzando por los últimos dígitos de ambos sumandos, como en el siguiente ejemplo: En la tabla de suma de números binarios podemos comprobar que 0 + 0 = 0 Segundo paso Se suman los siguientes dígitos 1 + 1 = 10 (según la tabla), se escribe el “0” y se acarrea o lleva un “1”. Por tanto, el “0” correspondiente a tercera posición de izquierda a derecha del primer sumando, adquiere ahora el valor “1”. Tercer paso Al haber tomado el “0” de la tercera posición el valor “1”, tendremos que sumar 1 + 1 = 10. De nuevo acarreamos o llevamos un “1”, que tendremos que pasar a la cuarta posición del sumando. Cuarto paso El valor “1” que toma el dígito “0” de la cuarta posición lo sumamos al dígito “0” del sumando de abajo. De acuerdo con la tabla tenemos que 1+ 0 = 1. El resultado final de la suma de los dos números binarios será: 1 0 0 0. Multiplicación binaria La multiplicación en binario es más fácil que en cualquier otro sistema de numeración. Como los factores de la multiplicación sólo pueden ser CEROS o UNOS, el producto sólo puede ser CERO o UNO. En otras palabras, las tablas de multiplicar del cero y del uno son muy fáciles de aprender: x 0 1 0 0 0 1 0 1 En un ordenador, sin embargo, la operación de multiplicar se realiza mediante sumas repetidas. Eso crea algunos problemas en la programación porque cada suma de dos UNOS origina un arrastre, que se resuelven contando el número de UNOS y de arrastres en cada columna. Si el número de UNOS es par, la suma es un CERO y si es impar, un UNO. Luego, para determinar los arrastres a la posición superior, se cuentan las parejas de UNOS. Veamos, por ejemplo, una multiplicación: Para comprobar que el resultado es correcto, convertimos los factores y el resultado al sistema decimal: 3349 * 13 = 43537 ¡correcto! Ejercicio 5: Haz las siguientes multiplicaciones binarias. Al terminar, comprueba los resultados haciendo las multiplicaciones en el sistema decimal: 10110101000101 x 1011 10100001111011 x 10011 Resta de números binarios El algoritmo de la resta en sistema binario es el mismo que en el sistema decimal. Pero conviene repasar la operación de restar en decimal para comprender la operación binaria, que es más sencilla. Los términos que intervienen en la resta se llaman minuendo, sustraendo y diferencia. Las restas básicas 0 - 0, 1 - 0 y 1 - 1 son evidentes: 0-0=0 1-0=1 1-1=0 0 - 1 = 1 (se transforma en 10 - 1 = 1) (en sistema decimal equivale a 2 - 1 = 1) La resta 0 - 1 se resuelve igual que en el sistema decimal, tomando una unidad prestada de la posición siguiente: 0 - 1 = 1 y me llevo 1, lo que equivale a decir en el sistema decimal, 2 - 1 = 1. Ejemplos 10001 11011001 -01010 -10101011 —————— ————————— 00111 00101110 En sistema decimal sería: 17 - 10 = 7 y 217 - 171 = 46. Para simplificar las restas y reducir la posibilidad de cometer errores hay varios métodos: Dividir los números largos en grupos. En el siguiente ejemplo, vemos cómo se divide una resta larga en tres restas cortas: 100110011101 1001 1001 1101 -010101110010 -0101 -0111 -0010 ————— ————— ————— 0100 0010 1011 ————————————— 010000101011 = Utilizando el complemento a dos (C2). La resta de dos números binarios puede obtenerse sumando al minuendo el «complemento a dos» del sustraendo. Ejemplo La siguiente resta, 91 - 46 = 45, en binario es: 1011011 -0101110 1011011 el C2 de 0101110 es 1010010 +1010010 ———————— ———————— 0101101 10101101 En el resultado nos sobra un bit, que se desborda por la izquierda. Pero, como el número resultante no puede ser más largo que el minuendo, el bit sobrante se desprecia. Un último ejemplo: vamos a restar 219 - 23 = 196, directamente y utilizando el complemento a dos: 11011011 -00010111 11011011 el C2 de 00010111 es 11101001 +11101001 ————————— ————————— 11000100 111000100 Y, despreciando el bit que se desborda por la izquierda, llegamos al resultado correcto: 11000100 en binario, 196 en decimal. Utilizando el complemento a uno. La resta de dos números binarios puede obtenerse sumando al minuendo el complemento a uno del sustraendo y a su vez sumarle el bit que se desborda.