3 - D KINEMATICS r = r (t ) ] [ HOW THINGS MOVE : ←→ 3 - D KINEMATICS × 3 1 - D KINEMATICS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ao = ( 0 , − g , 0 PROJECTILE MOTION (v vo = o cos φ , v o sin φ , 0 ) g t2 y = − 2 x = v o cos φ t ; y = 0 or → t = 0 t = vy = 0 → { x (t ) , y (t ) 0, 0, 0 ) + v o sin φ t 2 v o sin φ g = τ : Time of Flight ymax } → v o2 sin 2 φ τ ≡ H = y = 2g 2 y = y ( x) : sin φ g x − x2 2 2 cos φ 2 vo cos φ Parabola ( 2 v o2 sin φ cos φ R ≡ x ( τ ) = v o cos φ τ = g Range : y = ro = ; ) ≠ → Orbit ( Trajectory ) x y = tan φ x 1 − R Ellipse ! ? * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Plane Polar Coordinates : x = r cos φ r = y = r sin φ φ = tan −1 y x r = R : CIRCULAR MOTION : Uniform Circular Motion : o ( a = − R ωo2 = R rˆ o − sin ωot , cos ωot , 0 ) ( cos ω t , sin ω t , 0 ) o a = − ω02 r r = R φ = ωo t ( cos ω t , sin ω t , 0 ) v = R ωo Constant φ φ r = R ; , x2 + y2 a ⊥ v v = ω0 R o ≡ v vˆ = R ωo vˆ ≡ a aˆ = − R ωo2 rˆ , r ⊥ v , v2 a = ω R = R , 2 0 a ↑↓ r - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - General Circular Motion : φ = φ (t ) , ω (t ) r = R ( cos φ v = Rω ( d φ (t ) d ω (t ) d 2 φ (t ) ≡ , α (t ) ≡ = dt dt dt 2 , sin φ , 0 ) = R rˆ ) ≡ v vˆ = R ω vˆ , sin φ , 0 ) + R α ( − sin φ − sin φ , cos φ , 0 a = − R ω2 ( cos φ = a aˆ = − R ω 2 rˆ + R α vˆ a = R ω + α 4 2 ; aˆ = −ω 2 rˆ + α vˆ ω4 + α 2 , cos φ , 0 )