ITESO INGENIERIA FINANCIERA PROYECTO ANUALIDADES VALOR DEL DINERO EN LOS NEGOCIOS PROF. HECTOR VIDARURRI MARTES 25 DE OCTUBRE 2011 LUIS ALEJANDRO CELIS GAXIOLA ANGEL RODRIGO OVIEDO TORRES MARCO ALEJANDRO OLARTE SALDANA ¿Doy o no doy enganche? Deseas comprar un automóvil a crédito que cuesta $267,400 de contado, siendo la tasa de interés del 14.5% anual capitalizable cada mes. ¿Cuál de estas tres opciones escogerías, desde el punto de vista estrictamente económico, y por qué? I. II. III. Pagar 30% de enganche y el resto se liquida en 36 mensualidades. Pagar 10% de enganche y el resto se liquida en 36 mensualidades. No se paga enganche y el auto se liquida en 36 mensualidades SOLUCION: Formulas: 1 − (1 + 𝑖)𝑛 𝑃=𝐴∗ 𝑖 (1 + 𝑖)𝑛 − 1 𝐹 =𝐴∗ 𝑖 Respuesta: Elegiría la opción I porque en esta tenemos que nos piden un enganche del 30% el total que tendríamos que pagar seria $368,653.2177 y es con el que se pagaría menos. I.- Con un 30% de enganche se pagaría $368,653.2177 Se obtiene el valor de “A” para saber la anualidad 0.145 36 12 ) 187,180 = 𝐴 ∗ 0.145 12 187,180 𝐴= 29.05205114 1 − (1 + 𝐴 = $6,442.918576 Se obtiene el monto total de cuánto costaría el auto 0.145 (1 + 12 )86 − 1 𝐹 = 6,442.918576 ∗ 0.145 12 𝐹 = $288,433.2177 II.- Con un 10% de enganche se pagaría: $397,582.7085 0.145 1 − (1 + 12 )86 240,660 = 𝐴 ∗ . 145 12 𝐴 = 8,283.752487 145 (1+. 12 )86 − 1 𝐹 = 8,283.752487 ∗ . 145 12 𝐹 = 370,842.7085 𝐹 = 370 842.7085 + 26 ,740 = 397,582.7085 III.- Sin pagar enganche y liquidarlo todo en 36 mensualidades se pagaría $412,047.4538: 0.145 1 − (1 + 12 )86 267,400 = 𝐴 ∗ . 145 12 267,400 =𝐴 29.05205114 𝐴 = 9,204.169395 . 145 (1 + 12 )86 − 1 𝐹 = 9,204.169395 ∗ . 145 12 𝐹 = 412,047.4538 ¿Cuál es el ahorro? La gerencia de una empresa de vestuario está estudiando una propuesta que le hace una empresa consultora para introducir un nuevo método para dar entrenamiento a operadores sin experiencia en máquinas de coser. Los consultores afirman que su programa producirá ahorros de 7 ,000 dólares por año sobre el periodo de vida propuesto, que es de 5 años. Los costos inmediatos para poner en marcha el programa son de 12 ,000 dólares. Los gastos anuales de entrenamiento serán de 4 ,000 dólares. La empresa utiliza una tasa de interés del 6% anual para comparación de costos. ¿Justifica los ahorros que se supone se lograrán, el gasto de contratar a los consultores en entrenamiento? SOLUCIÓN: 12,000 4,000 4,000 4,000 4,000 4,000 (FF)|-------------|--------------|--------------|--------------|--------------| 0 1 2 3 4 5 12 ,000 + 4 ,000 ∗ con descuento) P = 11 ,000 ∗ descuento). 1−(1+0.06)−5 0.06 1−(1+0.06)−5 0.06 = $28 ,849.45514 (Valor presente: costo del entrenamiento = $46 ,336.00164 (Valor presente: costo del entrenamiento sin El ahorro total será de = $46 ,336.00164 − $28 ,849.45514 = $17,486.55 Tasa de Interés ¿Qué tasa de interés nominal capitalizable cada mes hará que los siguientes flujos de efectivo sean equivalentes? $20,000 $50,000 |-------------|-------------|-------------|-------- … --------|-------------| 0 1 2 3 11 12 meses A A A A A A A A A A A A |------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| 0 1 2 3 4 5 6 7 8 9 10 11 12 meses Donde A = $5,698.28 SOLUCION: Formula: 𝑃=𝐴∗ 1 − (1 + 𝑖)𝑛 𝑖 Se sustituyen los valores de P, A y n, en donde P= Capital, A= anualidad y n= tiempo 𝑖 1 − (1 + 12)−12 20 ,000 = 5 ,698.28 ∗ 𝑖 12 Debido a que el despeje de i no es posible, recurrimos al apoyo de una calculadora financiera, obteniendo así el resultado de: i=322.1992643% capitalizable cada mes.