silabo logico matematica 2015

Anuncio
SUBDIRECCIÓN ACADÉMICA
SÍLABO DESARROLLADO
DE LÓGICO - MATEMÁTICA
PROGRAMA REGULAR
“LA LÓGICA NO GOBIERNA EL
COMPORTAMIENTO HUMANO”
2014
SÍLABO
LÓGICO-MATEMÁTICA
(PROCESO REGULAR)
I.
II.
DATOS GENERALES
EJE CURRICULAR
:
Formación General
AREA EDUCATIVA
:
Formación Científica Básica
AREA COGNITIVA
:
Ciencias Lógico - Matemáticas
AÑO DE ESTUDIO
:
PRIMER AÑO
HORAS SEMESTRALES
:
72 horas académicas
HORAS SEMANALES
:
04
CRÉDITOS
:
3.5
PERIODO ACADEMICO
:
I Semestre
SUMILLA
La Asignatura de Lógica Matemática forma parte del Área de Formación
Científica Básica del Currículo de Estudios de las Escuelas Técnico - Superiores
de la Policía Nacional del Perú, siendo de naturaleza instrumental y de carácter
teórico – práctico, cuyo propósito es desarrollar en el alumno los contenidos
básicos, organizados en cuatro unidades de aprendizaje: Lógica Proposicional,
Teoría de Conjuntos, Matemática Financiera y Estadística Descriptiva.
III. OBJETIVOS
A. OBJETIVO GENERAL
Fortalecer las capacidades de comunicación y de pensamiento lógicomatemático en los alumnos a partir de materiales educativos que
contextualicen su práctica profesional- área de administración y
ciencias policiales-, que contribuyan a ejercitar, desarrollar y poner a
punto sus competencias lógico matemática. Desarrollar en los alumnos
habilidades que permitan traducir problemas de la vida real- área de
administración y ciencias policiales- al lenguaje lógico-matemático
(comunicación matemática).
B. OBJETIVOS ESPECÍFICOS
1. Reconocer problemas de la vida real, vinculados a su quehacer
profesional: administración y ciencias policiales, susceptibles de ser
representados traducidas, formalizadas u operables en lenguaje
lógico o lenguaje matemático o representación estadística.
2. Fortalecer las capacidades de pensar ordenadamente, razonar,
argumentar, cuantificar, efectuar mediciones, interpretar situaciones
del área de la administración y ciencias policiales, comunicarse
usando
el
lenguaje
lógico-matemático,
modelar
situaciones
problemáticas, interpretar el lenguaje formal y simbólico, resolver
problemas.
3. Promover la producción de soluciones lógicas-matemáticas a las
situaciones problemáticas vinculadas al quehacer profesional:
administración y ciencias policiales, como vía tendiente a posibilitar
la toma de decisiones que permitan operar con seguridad sobre las
dimensiones que comprenda cada situación problemática, ya sea
singular, particular o general.
IV.
CONTENIDOS
I UNIDAD
LÓGICA PROPOSICIONAL
SESIÓN 1
PRIMERA
SEMANA
(04 hrs)
COMPETENCIA
Desarrolla conceptos y procedimientos
de manera lógica y coherente, utilizando
el lenguaje proposicional.
 Reconoce, describe,
expresa, clasifica y
proposiciones.
analiza,
formaliza
Presentación de la asignatura.
Prueba de Entrada.
LÓGICA PROPOSICIONAL
 Valora los conocimientos de la lógica
 Enunciado, Proposición.
proposicional como herramienta
 Proposición atómica, molecular.
para analizar, interpretar y traducir
 Variables proposicionales.
hechos, situaciones o problemas, de
 Conectivos lógicos:
la vida real, del área de la
 Expresiones de la lengua española
administración y ciencias policiales,
equivalentes a los conectivos lógicos.
al
lenguaje
de
la
lógica
Proposiciones en lenguaje natural u
proposicional, con la finalidad de
ordinario traducirlas al lenguaje lógico
resolver situaciones o problemas.
proposicional (Formalización o
simbolización de proposiciones).
 Identifica, analiza, compara y aplica
los valores de verdad de los
SESIÓN 2
SEGUNDA
diferentes conectivos lógicos.
 Valores de verdad para las

Clasifica las tablas de verdad según
SEMANA
proposiciones moleculares o tablas de
la naturaleza de su matriz de verdad.
verdad de los conectivos lógicos.
(04 hrs)
Caracteriza la ley lógica.
 Tabla de verdad: tautológica,
 Aplica
con
propiedad
los
contradictoria, contingente.
fundamentos y principios de la
 La equivalencia y la implicación.
lógica proposicional en la solución
de diversos problemas.
SESIÓN 3
TERCERA
SEMANA
(04 hrs)





Razonamiento Deductivo.
Las Argumentaciones
Reglas de Inferencia
Leyes Lógicas: Modus
PonendoPonens, Modus
TollendoTollens, Modus Tollendo
Ponens, Silogismo Hipotético, Dilema
Constructivo, Dilema Destructivo,
Dilema Simple.
Problemas lógicos sobre
razonamientos deductivos
II UNIDAD
TEORÍA DE CONJUNTOS
SESIÓN 4

CUARTA
SEMANA
(04hrs)

 Elabora razonamientos deductivos
utilizando las reglas lógicas.
 Describe el esquema o estructura
de las leyes lógicas.
 Maneja las reglas y principios de la
lógica proposicional para analizar la
validez o invalidez de las inferencias.
 Utiliza el razonamiento deductivo en
la formulación de hipótesis y en su
respectiva comprobación.
Infiere conclusiones válidas haciendo
uso de las reglas de inferencia,
principios lógicos y del análisis.
COMPETENCIA
Resuelve problemas aplicando conceptos
y las operaciones entre conjuntos,
muestra solidaridad y colaboración con
sus compañeros.
 Conoce y comprende los conceptos
básicos de la teoría de conjuntos.
Noción de conjunto. Conceptos no
definidos de la teoría de
conjuntos: elemento, relación de  Expresa de manera verbal y grafica
el concepto de conjunto
pertenencia. Determinación de

Determina
un
conjunto
por
conjuntos:
Extensión
y
extensión y comprensión.
comprensión.
 Demuestra
alto
sentido
de
Cardinal de un conjunto.
responsabilidad,
colaboración,
Representación de conjuntos
participación y de compromiso con
mediante diagramas de Venn su formación personal y profesional.
Euler
 Participa de manera activa, dialoga,
pregunta, analiza, sintetiza, investiga.
SESIÓN 5

QUINTA
SEMANA

(04 hrs)


Clases de conjuntos: Vacío,
unitario, finito, infinito, universal,
conjunto potencia.
Relaciones entre conjuntos:
inclusión, igualdad, disjuntos.
Operaciones entre conjuntos:
Unión, intersección, diferencia y
complemento, diferencia
simétrica,
Problemas de conjuntos.
 Conoce y comprende las clases,
relaciones y operaciones
con
conjuntos.
 Interpreta y grafica las clases y
operaciones de conjuntos.
 Aplica las propiedades y operaciones
entre conjuntos para resolver
situaciones problemáticas.
 Relaciona las operaciones entre
conjuntos con las operaciones
lógicas.
 Interpreta enunciados y ejecuta
estrategias para resolver problemas
con conjuntos.
SESIÓN 6
SEXTA

SEMANA
(04 hrs)

2° Taller: Teoría de conjuntos:
Problemas de cardinalidad de
conjuntos. Problemas de
operaciones entre conjuntos.
(3 horas)
Evaluación: 1 hora
III UNIDAD
RELACIONES Y FUNCIONES
SESIÓN 7
RELACIONES BINARIAS
 Producto cartesiano
SEPTIMA
 Par ordenado
 Igualdad de pares ordenados
SEMANA
 Definición de producto cartesiano
(04hrs)
 Representación
grafica
del
producto cartesiano
 Resuelve problemas relacionados
con la cordialidad, clases, relaciones
y operaciones entre conjuntos.
 Propone y resuelve situaciones
problemáticas
relacionados con
conjuntos y que le sirvan como
herramienta para hacer relaciones
con hechos de la vida real.
COMPETENCIA
Analiza y encuentra las reglas de
correspondencia de las relaciones y
determina su dominio y rango, grafica
las relaciones. Analiza y determina el
grafico de una función.
 Realiza operaciones aplicando la
igualdad de pares ordenados
 Halla el producto cartesiano de
dos conjuntos
 Determina la diagonal del
producto cartesiano.
 Representa en el producto
cartesiano de diferentes
maneras.
SESIÓN 8
OCTAVA


SEMANA
(04 hrs)



NOVENA
Dominio y rango de una relación
Representación grafica de las
relaciones: diagrama sagital,
matriz binaria, grafico cartesiano
Relación inversa
Relaciones definidas en un
conjunto: relación reflexiva,
simétrica, anti simétrica, y
transitiva
Relación de equivalencia, clases de
equivalencia, conjunto cociente
SESIÓN 9
FUNCIONES
 Función, definición, dominio y
SEMANA
rango.
 Clasificación de funciones:
(04 hrs)
inyectiva, suryectiva y biyectiva.
 Grafico de una función.
 Funciones especiales:
constante, identidad, raíz
cuadrada
DECIMA
SEMANA
(04 hrs)
SESIÓN 10





Función lineal
Función cuadrática
Función valor absoluto
Composición de funciones
Algebra de funciones: Adición,
Diferencia, Multiplicación y
División
 Determina el dominio y rango de
una relación
 Representa la relación de
diferentes maneras
 Determina la relación universal
de una relación dada
 Ubica adecuadamente los pares
ordenados en un sistema de ejes
coordenados
 Grafica en el plano relaciones de
RxR
 Identifica una función como caso
particular de una relación binaria
 Conoce y emplea la notación
propia de las funciones.
 Distingue y determina los
conceptos básicos de funciones.
 Distingue tipos de funciones
 Grafica una función lineal,
cuadrática y valor absoluto
identificando las características
de cada una de ellas.
 Opera la composición de
funciones determinadas.
 Aplica las diversas operaciones
con funciones.
IV UNIDAD
ESTADÍSTICA DESCRIPTIVA
SESIÓN 11
DECIMA
PRIMERA
SEMANA
(04hrs)




Estadística descriptiva
Concepto
Medidas de tendencia central
para datos agrupados y no
agrupados
Tabla de frecuencia para datos
agrupados y no agrupados
COMPETENCIA
Describe e interpreta las propiedades de
estadística descriptiva en problemas
reales. Participa activamente en forma
individual y grupal.
 Identifica
conceptos
de
estadística.
 Infiere datos sobre medidas
tendencia central para datos
agrupados y no agrupados
 Reconoce la tabla de frecuencia
para datos agrupados y no
agrupados.
 Evalúa problemas propuestos
sobre tablas.
SESIÓN 12
DECIMA

Lectura e interpretación de tablas
y gráficos para datos agrupados y
no agrupados.

Varianza, desviación estándar.
SEGUNDA
SEMANA
(04hrs)
DECIMA
TERCERA
SEMANA
(04hrs)
 Describe
la
Lectura
e
interpretación de tablas y
gráficos para datos agrupados y
no agrupados.
 Reconoce varianza, desviación
estándar.
 Resuelve
propuestos
sobre
tablas y gráficos.
SESIÓN 13

Taller de estadística
 Resuelve ejercicios propuesto
sobre estadística descriptiva.
COMPETENCIA
V UNIDAD
Aplica propiedades en situaciones reales
de su entorno utilizando las matemática
MATEMÁTICA FINANCIERA
financiera
Es perseverante para resolver problemas
propuestos sobre matemática financiera
 Identifica y compara razones.
SESIÓN 14
 Reconoce razones aritméticas y
geométricas.
RAZONES Y PROPORCIONES

Infiere datos sobre razones.
 Razón: Definición y Clases de razón
 Resuelve problemas relacionados
DECIMA
 Proporción: Definiciones y Clases
sobre razones.
de proporción
CUARTA
 Infiere datos sobre proporciones.
 Ejercicios propuestos.
 Identifica los conceptos sobre los
SEMANA
promedios.
(04hrs) PROMEDIOS
 Reconoce
los
promedios
 Concepto
importantes.
 Promedios importantes
 Infiere
datos
sobre
los
promedios.
 Propiedad de los promedios.
 Resuelve problemas propuestos
 Ejercicios propuestos.
sobre promedios.
SESIÓN 15
DECIMA
REGLA DE TRES SIMPLE Y COMPUESTA:
 Concepto.
QUINTA
 Regla de tres simple directa
SEMANA
 Regla de tres simple inversa
(04hrs)
 Regla de tres compuesta.
 Regla de compañía.
 Ejercicios propuestos.
 Identifica el concepto de la regla
de tres simple.
 Infiere datos sobre la regla de
tres simple directa e inversa.
 Reconoce la regla de tres
compuesta.
 Resuelve problemas aplicando
regla de compañía.
 Reconoce la regla de compañía
SESIÓN 16
DECIMA
REGLA DE INTERÉS
 Concepto
SEXTA
 Elementos de la regla de interés.
SEMANA
 Clases de interés
(04hrs)
 Ejercicios propuestos.
 Identifica los elementos de la
regla de interés.
 Reconoce la clasificación de regla
de interés.
 Evalúa problemas propuestos
sobre regla de interés.
PROCEDIMIENTOS DIDÁCTICOS
A. Enseñar de manera efectiva la matemática, es decir, enseñar la matemática que los
alumnos requieran conocer, comprender, aprender, para utilizarla como
herramienta o instrumento en la solución de problemas o toma de decisiones.
Construir el conocimiento matemático de manera activa y participativa, sea
individual o en equipo, a partir de la experiencia y conocimiento previo. Desarrollar
procesos de razonamiento y procesos algorítmicos, usando la comunicación lógicomatemática. La interacción docente – alumno debe ser fluida.
B. El desarrollo de las unidades académicas de lógico-matemática estarán orientadas a
fortalecer y desarrollar competencias básicas en lógica proposicional, teoría de
conjuntos, matemática financiera y estadística descriptiva. Estos temas son
fundamentales en la formación policial profesional: administración y ciencias
policiales, para que su desempeño sea eficiente y eficaz como autoridad, que
representa el cumplimiento de la ley, el orden y la seguridad en toda la República.
C. Se promoverá la práctica permanente e intensiva de los contenidos mediante la
realización de Talleres, en los que se facilitará la exposición de los conocimientos
adquiridos.
VI. EQUIPOS Y MATERIALES
El docente para el desarrollo de la asignatura empleará los siguientes equipos y
materiales:
A. EQUIPOS
Retroproyector, video grabadora, computador, proyector multimedia.
B. MATERIALES
Para el desarrollo temático se utilizarán ayudas audiovisuales, fuentes de
información; así como Hoja de Práctica para los Talleres. Proveerá Separatas a
los educandos, así como transparencias o videos para reforzar las técnicas de
enseñanza.
VII. EVALUACIÓN
La asistencia a las sesiones teóricas es obligatoria en un 70% y a los Talleres en el
90%, en caso contrario de no existir justificación alguna por la Sub Dirección
Académica de la ETS PNP, el Alumno (a) desaprobará la asignatura.
El proceso de evaluación del aprendizaje será permanente, comprenderá:
A. Evaluación Diagnóstica o de Entrada para valorar el nivel de conocimiento de la
asignatura.
B. Evaluación Formativa Interactiva, en relación a la participación activa del
Alumno (a) en el aula. El promedio de las intervenciones orales constituirá Nota
de Paso Oral.
C. Evaluación Formativa o de Proceso para comprobar el rendimiento académico,
pronosticar posibilidades de desarrollo de los Alumnos (a) y reorientar la
metodología, para lo cual se aplicará:
1. Prácticas Calificadas
2. Dos exámenes escritos parciales (8º y 15º semana), enmarcados en los
modelos de las Pruebas que son propias de la naturaleza de la Asignatura.
D. Evaluación Sumativa para comprobar el nivel de desarrollo cognitivo, reflexivo y
del pensamiento lógico, para lo cual se aplicará un examen final (18º semana),
de similar característica empleada en los exámenes parciales.
E. El Promedio General se calculará en concordancia con las disposiciones
establecidas en el Manual de Régimen de Educación de las Escuelas de
Formación de la PNP y con la naturaleza de la asignatura, conforme se detalla a
continuación:
Promedio General:
PG = (PEP (3) + PO (1) + TA (2) +EF (4) ) /10
PEP
PO
TA
EF
VIII.
=
=
=
=
Promedio de Exámenes Parciales
Paso Oral
Promedio de Prácticas Calificadas
Examen Final
BIBLIOGRAFÍA BÁSICA
A. LÓGICA PROPOSICIONAL
Obra: Lógica simbólica y elementos de metodología de la ciencia.- Autor:
Alicia Gianella Salama. Editorial “Ateneo” Buenos Aires.
B. CONJUNTOS
Obra: Introducción a la teoría de conjuntos.-Autor: LiaOubiña. Editorial
Universitaria de Buenos Aires.
C. MATEMÁTICA FINANCIERA
Obra: Aritmética. Editorial Lumbreras.
D. ESTADÍSTICA DESCRIPTIVA.
Obra: Estadística descriptiva para economistas y administradores de
empresas.- Autor:Stephen p. Shao. Editorial Herrero Hermanos.- México.
Descargar