ИЗВОД ФУНКЦИЈЕ ТАБЛИЦА ИЗВОДА ЕЛЕМЕНТАРНИХ ФУНКЦИЈА 1. y = c 2. y = x y′ = 0 y′ = 1 3. y = x y′ = 4. y = x n y ′ = n ⋅ x n−1 12. y = ctg x 5. y = a x y ′ = a x ln a 13. y = arcsin x 6. y = e x y′ = e x 7. y = log a x y′ = 8. y = ln x 9. y = sin x 10. y = cos x 1 2 x 1 x ln a 1 y′ = x 11. y = tg x 14. y = arccos x 15. y = arctg x 16. y = arcctg x y′ = − y ′ = cos x y ′ = − sin x 1 y′ = cos 2 x 1 y′ = − sin 2 x 1 y′ = 1− x2 1 1− x2 1 1+ x2 1 y′ = − 1+ x2 y′ = ПРАВИЛА: Ако функције u (x ) и v (x ) имају изводе у тачки x , тада важи: (c ⋅ u )′ = c ⋅ (u )′ c − konstanta (u ± v )′ = u ′ ± v ′ (u ⋅ v )′ = u ′ ⋅ v + u ⋅ v ′ ′ u u ′ ⋅ v − u ⋅ v′ = v2 v 1 ИЗВОД ЗБИРА И РАЗЛИКЕ 1. y = 5 y ′ = 0 y ′ = 4 ⋅ x 4 −1 = 4 ⋅ x 3 2. y = x 4 ′ ′ 3. y = 3 ⋅ x 5 y ′ = (3) ⋅ x 5 + 3 ⋅ x 5 = 0 ⋅ x 5 + 3 ⋅ 5 ⋅ x 5−1 = 15 x 4 ( ) ( )′ = 3 ⋅ 5 ⋅ x 5 или краће y ′ = 3 ⋅ x 4. y = 4 ⋅ x 8 5−1 = 15 x 4 y ′ = 4 ⋅ 8 ⋅ x 8−1 = 32 x 7 5. y = 2 x 4 − x 3 + 4 x − 2 y ′ = 2 ⋅ 4 ⋅ x 4−1 − 3 ⋅ x 3−1 + 4 ⋅ 1 − 0 = 8 x 3 − 3 x 2 + 4 6. y = 1 3 3 2 1 x + x −x− 3 4 10 7. y = 1 2 3 + − x2 x3 x4 y′ = 1 3 3 ⋅ 3 x 3−1 + ⋅ 2 x 2−1 − 1 − 0 = x 2 + x − 1 3 4 2 Функцију можемо написати у облику y = x −2 + 2 x −3 − 3x −4 y ′ = −2 x − 2−1 + 2 ⋅ (− 3)x −3−1 − 3 ⋅ (− 4 )x − 4−1 = −2 x −3 − 6 x − 4 + 12 x −5 = − 2 6 12 − + x3 x 4 x5 8. y = 2 x − 33 x 2 + 44 x 3 Функцију можемо написати у облику 1 2 2 3 y = 2 x − 3x + 4 x 3 4 2 2 1 3 1 2 −1 2 3 −1 3 4 −1 ′ y = 2 ⋅ x − 3⋅ x + 4 ⋅ x = 2 3 4 1 1 1 − − − 1 2 3 1 2 3 3 2 = x − 2 x + 3x 4 = 1 − 1 + 1 = −3 +4 x x x x2 x3 x4 9. y = 1 − 3 1 x + 2x x Функцију можемо написати у облику y = 1− 1 x = 1− x − 1 3 + 2x 1+ 1 2 = 1− x 1 − 1 3 + 2x 3 1 3 1 2 + 2x ⋅ x = 3 2 4 1 3 −1 1 − 1 1 1 − −1 y′ = 0 − − x 3 + 2 ⋅ x 2 = x 3 + 3x 2 = 4 + 3 x = +3 x 4 3 2 3 3 3 x 3x 3 3 ИЗВОД ПРОИЗВОДА ДВЕ ФУНКЦИЈЕ ( ) 1. y = 2 x 2 + 4 x − 3 ⋅ (3x − 2) ′ ′ y ′ = 2 x 2 + 4 x − 3 ⋅ (3x − 2) + 2 x 2 + 4 x − 3 ⋅ (3x − 2) = ( ) ( ) ( ) = (4 x + 4 − 0) ⋅ (3 x − 2 ) + 2 x 2 + 4 x − 3 ⋅ (3 − 0 ) = = 12 x 2 − 8 x + 12 x − 8 + 6 x 2 + 12 x − 9 = 18 x 2 + 16 x − 17 2. y = e x x 2 ′ ′ y′ = e x x 2 + e x x 2 = e x x 2 + e x ⋅ 2 x = xe x ( x + 2) ( ) ( ) 3. y = y = (x − 1)e x ′ ′ y ′ = (x − 1) e x + (x − 1) e x = (1 − 0 )e x + (x − 1)e x = e x + xe x − e x = xe x ( ) 4. y = x ln x y ′ = ( x )′ ln x + 1 1 ′ x (ln x ) = ln x + x x 2 x 5. y = sin x ⋅ cos x ′ ′ y′ = (sin x ) ⋅ cos x + sin x ⋅ (cos x ) = = cos x ⋅ cos x = sin x ⋅ (− sin x ) = cos 2 x − sin 2 x 6. y = x 2 cos x ′ ′ y ′ = x 2 cos x + x 2 (cos x ) = 2 x cos x + x 2 (− sin x ) = x(2 cos x − x sin x ) ( ) 7. y = x 3 sin x ′ ′ y ′ = x 3 sin x + x 3 (sin x ) = 3 x 2 sin x + x 3 cos x = x 2 (3 sin x + x cos x ) ( ) 4 ИЗВОД КОЛИЧНИКА ДВЕ ФУНКЦИЈЕ 1. y = 5 − 3x 5 + 2x ′ ′ ( 5 − 3 x ) (5 + 2 x ) − (5 − 3 x )(5 + 2 x ) y′ = (5 + 2 x )2 = − 15 − 6 x − 10 + 6 x (5 + 2 x )2 = = (0 − 3)(5 + 2 x ) − (5 − 3x )(0 + 2) = (5 + 2 x )2 − 25 (5 + 2 x )2 x2 −1 2. y = 2 x +1 ′ ′ ( 2 x − 0) x 2 + 1 − x 2 − 1 (2 x + 0) x2 −1 x2 +1 − x2 −1 x2 +1 = = y′ = 2 2 2 2 x +1 x +1 ( )( ) ( ( = )( ) 2x 3 + 2x − 2x 3 + 2x 3. y = (x 2 ) +1 2 ) ( ) ( ( = ) ) 4x (x 2 ) +1 2 ln x x 1 ⋅ x − ln x ⋅1 ( ln x ) ( x ) − (ln x )( x ) 1 − ln x x ′ y = = = x2 x2 x2 ′ ′ 5 4. y = 1 + ln x 1 − ln x ′ y′ = ′ (1 + ln x ) (1 − ln x ) − (1 + ln x )(1 − ln x ) (1 − ln x )2 1 1 0 + (1 − ln x ) − (1 + ln x )1 − x x = = (1 − ln x )2 2 1 1 1 1 − ln x + + ln x 2 x x x = x x = = (1 − ln x )2 (1 − ln x )2 x(1 − ln x ) ex 5. y = x +1 ′ ′ e x ( x + 1) − e x ( x + 1) e x ( x + 1) − e x (1 + 0 ) xe x + e x − e x xe x = = = y′ = (x + 1)2 (x + 1)2 (x + 1)2 (x + 1)2 ( ) ( ) sin x 1 + cos x ′ ′ ( sin x ) (1 + cos x ) − (sin x )(1 + cos x ) cos x(1 + cos x ) − sin x(0 − sin x ) = = y′ = 2 2 (1 + cos x ) (1 + cos x ) 6. y = cos x + cos 2 x + sin 2 x cos x + 1 1 = = = 2 2 (1 + cos x ) (1 + cos x ) 1 + cos x 7. y = 1 − cos x sin x ′ ′ ( (0 − (− sin x ))sin x − (1 − cos x ) cos x = 1 − cos x ) sin x − (1 − cos x )(sin x ) = y′ = sin 2 x sin 2 x sin x ⋅ sin x − cos x + cos 2 x sin 2 x − cos x + cos 2 x 1 − cos x 1 − cos x = = = = = sin 2 x sin 2 x sin 2 x 1 − cos 2 x 1 − cos x 1 = = (1 − cos x )(1 + cos x ) 1 + cos x 6 ИЗВОД СЛОЖЕНЕ ФУНКЦИЈЕ Сложена функција облика y = f (φ (x )) може се написати преко посредне функције u = φ (x ) , тј. може се написати у облику y = f (u ) . Ова функција има извод који се одређује на следећи начин: y ′x = y u′ ⋅ u ′x односно y ′( x ) = f ′(u ) ⋅ u ′( x ) y = f (u ) по променљивој u ( y ′ ) , па се затим он помножи са изводом посредне функције u = φ ( x ) по Значи прво се одреди извод основне функције u променљивој x (u ′x ) . З А Д А Ц И: 1. y = sin x ⇒ y = u , u = sin x y ′ = ( u )′ ⋅ u ′ = 2 1u ⋅ (sin x )′ = 2 x 1 sin x ⋅ cos x = cos x 2 sin x 2. y = 1 − x 2 ′ 1 − 2x x 1 ( y′ = ⋅ 1− x2 = =− 0 − 2x) = 2 1− x2 2 1− x2 2 1− x2 1− x2 ( ) 3. y = x 2 − 2 x y′ = 1 2 x 2 − 2x (x 2 ′ − 2x = ) 1 2 x 2 − 2x (2 x − 2) = 2(x − 1) 2 x 2 − 2x = x −1 x 2 − 2x 7 4. y = (4 + 3x ) 3 ⇒ y = (4 + 3 x ) 2 2 3 1 2 2 (4 + 3x ) 3 −1 ⋅ (4 + 3x )′ = 2 (4 + 3x )− 3 ⋅ (0 + 3) = 3 3 2 2 3 = ⋅ = 1 3 4 + 3x 3(4 + 3x ) 3 y′ = x2 − x+2 5. y = e y′ = e x 2 − x+2 (x 2 2 2 ′ − x + 2 = e x − x + 2 (2 x − 1 + 0) = (2 x − 1)e x − x + 2 ) 6. y = e 3 x +1 ′ y ′ = e 3 x +1 (3 x + 1) = e 3 x +1 (3 + 0 ) = 3e 3 x +1 7. y = e x 2 2 ( )′ = e y′ = e x x 2 x2 ⋅ 2 x = 2 xe x 2 8. y = a 5 x ′ y′ = a 5 x ⋅ ln a ⋅ (5 x ) = a 5 x ⋅ ln a ⋅ 5 ( ) 12. y = ln 1 + x 2 1 1 2x 2 ′ ( ) y′ = ⋅ 1 + x = ⋅ 0 + 2 x = 1+ x2 1+ x2 1+ x2 ( ) 8 ( ) 9. y = ln x 2 + 2 x + 3 ′ 1 1 (2 x + 2 + 0) = 2 2 x + 2 y′ = 2 x2 + 2x + 3 = 2 x + 2x + 3 x + 2x + 3 x + 2x + 3 ( ( 10. y = ln 2 x 2 + 5 y′ = ) ) ′ 1 1 4x 2 ( ) 2 x + 5 = 2 ⋅ 2 x + 0 = 2x2 + 5 2x2 + 5 2x2 + 5 ( ) 11. y = sin 7 x ′ y′ = 7 sin 6 x ⋅ (sin x ) = 7 sin 6 x ⋅ cos x 12. y = cos 3 x ′ y′ = 3 cos 2 x ⋅ (cos x ) = 3 cos 2 x ⋅ (− sin x ) = −3 cos 2 x ⋅ sin x 13. y = cos x 3 ′ y′ = − sin x 3 ⋅ x 3 = − sin x 3 ⋅ 3x 2 = −3x 2 sin x 3 ( ) 14. y = ctg x 3 1 3x 2 3 ′ y′ = − 2 3 ⋅ x = − 2 3 sin x sin x ( ) 15. y = tg x 4 1 1 4x3 4 ′ 3 y′ = ⋅ x = ⋅ 4x = cos 2 x 4 cos 2 x 4 cos 2 x 4 ( ) 9 16. y = sin 2 x ′ y′ = cos 2 x ⋅ (2 x ) = cos 2 x ⋅ 2 = 2 cos 2 x 17. y = sin 2 3 x ′ ′ y ′ = 2 sin 3 x ⋅ (sin 3 x ) = 2 sin 3 x ⋅ cos 3 x ⋅ (3 x ) = = 2 sin 3 x ⋅ cos 3 x ⋅ 3 = 6 sin 3 x ⋅ cos 3 x ( ) ′ 1 1 1 ( 1+ x) = ⋅ 0 + = (1 + x )⋅ ln 2 2 x x )⋅ ln 2 18. y = log 2 1 + x y′ = = (1 + 1 1 ⋅ 1 + x ⋅ ln 2 2 x ( ) ( 19. y = ln 1 + e 2 x ) 1 1 1 2e 2 x ′ 2x ′ 2x 2x y′ = ⋅ 1+ e = ⋅ e ⋅2 = ⋅ 0 + e ⋅ (2 x ) = 1 + e2 x 1 + e2 x 1 + e2 x 1 + e2 x ( ) ( ) 20. y = x 2 e ax ′ ′ ′ y′ = x 2 e ax + x 2 e ax = 2 xe ax + x 2 e ax ⋅ (ax ) = ( ) ( ) ( = 2 xe ax + x 2 e ax ⋅ a = e ax 2 x + ax 2 ) 10 21. y = 3− x 3+ x ′ ′ ′ ( 1 3− x 1 3 − x ) (3 + x ) − (3 − x )(3 + x ) ⋅ ⋅ = y′ = = 2 ( 3 + x) 3− x 3+ x 3− x 2 2 3+ x 3+ x (0 − 1)(3 + x ) − (3 − x )(0 + 1) = 1 ⋅ = 2 ( 3 + x) 3− x 2 3+ x −3− x −3+ x −6 1 1 = ⋅ = ⋅ = 2 2 ( 3 + x) 3− x 3 − x (3 + x ) 2 2 3+ x 3+ x −3 −3 = = = 3 3− x 4 − + ( 3 )( 3 ) x x ⋅ (3 + x ) 3+ x −3 −3 = = (3 − x )(3 + x )(3 + x )2 (3 + x ) 9 − x 2 ′ ′ 1 − sin x 1 1 1 − sin x = ⋅ ⋅ ⋅ y′ = = 1 − sin x 1 + sin x 1 − sin x 1 − sin x 1 + sin x 2 1 + sin x 1 + sin x 1 + sin x ′ ′ ( 1 − sin x) (1 + sin x) − (1 − sin x)(1 + sin x) 1 1 = = ⋅ ⋅ 2 ( 1 − sin x 1 + sin x) 1 − sin x 2 1 + sin x 1 + sin x (0 − cosx)(1 + sin x) − (1 − sin x)(0 + cosx) = 1 ⋅ = 1 − sin x (1 + sin x)2 2⋅ 1 + sin x − cosx − 2 cosx − cosx − cosx sin x − cosx + sin x cosx 1 1 = = ⋅ = ⋅ = 2 2 1 − sin x (1 + sin x) (1 − sin x)(1 + sin x) 1 − sin x ( ) x + 1 sin 2⋅ 2⋅ 1 + sin x 1 + sin x − cosx − cosx 1 = = =− 2 2 cosx 1 − sin x cos x 1 − sin x 22. y = ln 1 + sin x 1 11 ИЗВОД ИНВЕРЗНИХ ТРИГОНОМЕТРИЈСКИХ ФУНКЦИЈА x 2 1. y = arcsin ′ 1 1 x ⋅ = ⋅ = y′ = 2 x2 2 x 2 1 − 1− 4 2 1 1 2. y = arcsin 4 − x2 4 ⋅ 1 = 2 1 4 −x2 2 ⋅ 1 = 2 1 4 −x 2 1 x ′ ′ ′ ( 1 1 1) ⋅ x − 1 ⋅ ( x ) ⋅ = ⋅ = y′ = 2 2 x x 1 1 1− 2 1− x x 1 −1 1 = ⋅ 2 =− x2 −1 x x x2 −1 1 0 ⋅ x − 1⋅1 = 2 2 x x −1 x2 1 ⋅ x ( ) 3. y = arcsin x 2 − 1 y′ = 1 ( 2 ) 1− x −1 = 2x 2x 2 − x 4 2 = ′ ⋅ x2 −1 = ( ) ( ( 4 2 ) 1 − x − 2x + 1 2x x2 2 − x2 1 ) = 2x x 2 − x2 = ⋅ (2 x − 0) = 2x 4 2 = 1 − x + 2x − 1 2 2 − x2 12 4. y = arctg 1 x ′ 1 1 y′ = = ⋅ 2 1 x 1+ 1 1+ x2 x 1 5. y = arctg 1 1 1 1 ⋅− 2 = 2 ⋅− 2 = − 2 x +1 x x +1 x x2 1+ x 1− x ′ ′ ′ ( 1 + x ) (1 − x ) − (1 + x )(1 − x ) 1 1+ x y′ = ⋅ ⋅ = = 2 2 2 − x 1 (1 − x ) (1 + x ) 1+ x 1+ 1+ 2 (1 − x ) 1− x (0 + 1)(1 − x ) − (1 + x )(0 − 1) = 1 = ⋅ (1 − x )2 + (1 + x )2 (1 − x )2 1 (1 − x )2 = 1 ⋅ (1 − x + 1 + x ) = 1 − 2x + x + 1 + 2x + x 2 2 1 1 = ⋅ = = 2 2 1+ x2 1+ x2 2 + 2x 2 2 ( ) 13