INSTITUTO NACIONAL TECNOLÓGICO DIRECCIÓN GENERAL DE FORMACIÓN PROFESIONAL DEPARTAMENTO DE CURRICULUM Manual para el participante Transformadores Monofásicos ESPECIALIDAD: ELECTRICIDAD Instructor: Roberto José Oviedo Díaz Diciembre, 2008 INSTITUTO NACIONAL TECNOLÓGICO (INATEC) DIRECCIÓN DE FORMACIÓN PROFESIONAL Unidad de competencia: • Instalador de Transformadores. Elementos de competencia: • • • Redes Eléctricas Transformadores monofásicos Transformadores trifásicos Diciembre, 2008 ÍNDICE INTRODUCCIÓN .................................................................................................... 1 OBJETIVO GENERAL............................................................................................. 1 OBJETIVOS ESPECIFICOS ................................................................................... 1 RECOMENDACIONES GENERALES..................................................................... 2 UNIDAD I MANTENIMIENTO DE TRANSFORMADORES MONOFASICOS Y AUTOTRANSFORMADORES................................................................................. 3 1. Conceptos básicos .............................................................................................. 3 1.1-Magnetismo ....................................................................................................... 3 1.2-Electromagnetismo............................................................................................ 4 1.3- Campo Magnético. ........................................................................................... 4 1.4- Ley de polaridad ............................................................................................... 4 1.5- Inducción Magnética ........................................................................................ 4 1.6- Ley de lenz ....................................................................................................... 5 2. Principios de Funcionamiento de los transformadores ........................................ 5 2.1- Concepto .......................................................................................................... 5 2.2- Símbolo ............................................................................................................ 6 2.3- Estructura y funcionamiento: ............................................................................ 6 2.4- Tipos de núcleos .............................................................................................. 6 3. Clasificación de los transformadores monofásicos.............................................. 7 3.1- De intensidad ................................................................................................... 7 4- Auto Transformador ............................................................................................ 9 5-. Calculo de transformadores ............................................................................. 10 5.1-Numero de espiras .......................................................................................... 10 5.2-Relación de Transformación ........................................................................... 12 5.3-Rendimiento del transformador ....................................................................... 12 6- Mantenimiento técnico a transformadores ....................................................... 13 6.1-Prueba de corto circuito en el transformador .................................................. 13 6.2- Técnicas de verificación de transformadores monofásicos ............................ 14 6.3-Trabajos de Mantenimiento general de campo a los transformadores ............ 14 7 Pruebas para el mantenimiento a los transformadores ...................................... 15 7.1- Las pruebas preliminares. .............................................................................. 15 7.2 Las llamadas pruebas intermedias. ................................................................. 16 7.3 Las pruebas finales. ........................................................................................ 16 8-Descripción de algunas pruebas a transformadores Monofasicos ..................... 17 8.1-Pruebas al aceite............................................................................................. 17 8.1.1-Prueba de rigidez dieléctrica del aceite. ....................................................... 17 8.2-Prueba de resistencia de aislamiento.............................................................. 18 8.3- Medición de la resistencia de los devanados. ................................................ 21 8.4-Prueba de polaridad. ....................................................................................... 21 8.5-- Prueba de relación de transformación. ......................................................... 24 EJERCICIOS DE AUTO EVALUACIÓN ................................................................ 25 UNIDAD II: INSTALACION DE TRANSFORMADORES MONOFASICOS ........... 26 1- Conceptos Introductorios .................................................................................. 26 1.1- Transmisión.................................................................................................... 26 1.2-Subestaciones................................................................................................. 26 1.3- Subtransmision .............................................................................................. 26 1.4 -Distribucion .................................................................................................... 27 2.1- Tipo convencional de poste............................................................................ 28 2.2-Transformador autoprotegido: ......................................................................... 29 2.3- Transformador autoprotegido trifásicos .......................................................... 30 2.4-Transformador autoprotegido para bancos de secundarios. ........................... 30 3-Tipos de instalaciones de transformadores Monofasicos ................................... 31 3.1. Instalación de los transformadores en los postes ........................................... 31 3.2- Otros tipos de instalaciones de transformadores ........................................... 33 3.3-Transformadores sobre base de concreto....................................................... 33 4- Normas para instalación de transformadores monofasicos............................... 34 4.1- Transformadores de distribución monofasica tipo pedestal ........................... 34 4.2- Datos de la placa característica ..................................................................... 34 EJERCICIOS DE AUTO EVALUACIÓN ................................................................ 35 GLOSARIO............................................................................................................ 36 BIBLIOGRAFIA ..................................................................................................... 37 INTRODUCCIÓN El manual del participante “TRANSFORMADORES MONOFASICOS” pretende que los estudiantes a través de su desarrollo adquieran las competencias, para comprobar, e instalar maquinas eléctricas estáticas utilizando los equipos, herramientas, técnicas y normas correspondientes. El manual contempla tres unidades modulares, presentadas en orden lógico que significa que inicia con los elementos más sencillos hasta llegar a los más complejos. El manual del participante esta basado en sus módulos y normas técnicos respectivas y corresponde a la unidad de competencia “INSTALADOR DE TRANSFORMADORES” de la especialidad de técnico en electricidad. Se recomienda realizar las actividades y los ejercicios de auto evaluación para alcanzar el dominio de la competencia: Instalador de transformadores, para lograr los objetivos planteados, es necesario que los(as) y las participantes tengan en cuenta el principio de funcionamiento de las maquinas eléctricas estaticas para proceder a su comprobación e instalación utilizando las normas de seguridad establecidas y el uso adecuado de las herramientas. OBJETIVO GENERAL Instalar y dar mantenimiento a transformadores monofásicos de distribución en media y baja tensión, haciendo uso de las herramientas y equipos adecuados, tomando en cuenta las normas técnicas de construcción y medidas de seguridad OBJETIVOS ESPECIFICOS 1. Identificar correctamente componentes de transformadores monofásicos sin omitir ningún paso. Ø Ø Ø Ø Ø Calcular correcta-mente valores nominales de transformadores monofásicos, utilizando fórmulas Comprobar correctamente magnitudes eléctricas en transformadores monofásicos según datos técnicos. Ejecutar correctamente proceso operativo del mantenimiento a transformadores monofásicos y auto transformadores. Instalar transformadores monofásicos de distribución, tomando en cuenta normas técnicas y de seguridad. Clasificar correctamente tipos de redes de alimentación, analizando sus características. 1 RECOMENDACIONES GENERALES Para iniciar el estudio del manual, debe estar claro que siempre su dedicación y esfuerzo le permitirá adquirir la Unidad de competencia a la cual responde el Módulo Formativo de Transformadores Monofasicos. • Al iniciar el estudio de los temas que contiene el manual debe estar claro que su dedicación y esfuerzo le permitirá adquirir la competencia a la cual responde el Módulo formativo. • Al comenzar un tema debe recomendaciones generales. leer detenidamente los objetivos y • Trate de comprender las ideas y analícelas detenidamente para comprender objetivamente los ejercicios de auto evaluación. • Consulte siempre a su docente, cuando necesite alguna aclaración. • Amplíe sus conocimientos con la bibliografía indicada u otros textos que estén a su alcance. • A medida que avance en el estudio de los temas, vaya recopilando sus inquietudes o dudas sobre éstos, para solicitar aclaración durante las sesiones de clase. • Resuelva responsablemente los ejercicios de auto evaluación. 2 UNIDAD I MANTENIMIENTO DE TRANSFORMADORES MONOFASICOS Y AUTOTRANSFORMADORES 1. Conceptos básicos 1.1-Magnetismo El magnetismo, es uno de los aspectos del electromagnetismo, que es una de las fuerzas fundamentales de la naturaleza. Las fuerzas magnéticas son producidas por el movimiento de partículas cargadas, como por ejemplo electrones, lo que indica la estrecha relación entre la electricidad y el magnetismo. El marco que aúna ambas fuerzas se denomina teoría electromagnética. La manifestación más conocida del magnetismo es la fuerza de atracción o repulsión que actúa entre los materiales magnéticos como el hierro. Sin embargo, en toda la materia se pueden observar efectos más sutiles del magnetismo. Recientemente, estos efectos han proporcionado claves importantes para comprender la estructura atómica de la materia. • Características del Magnetismo: Aunque hay una estrecha relación entre la electricidad y el magnetismo, ambas fuerzas son totalmente diferentes. Para que interactúen debe de haber un movimiento en alguna de ellas. Se sabe que el electrón tiene una carga electrostática que aplica una fuerza hacia el centro del electrón, y también se sabe que los electrones tienen un campo magnético a su alrededor debido a su rotación orbital. En el momento en que se encuentren van a formar un campo electromagnético por ser perpendiculares entre sí. Los únicos materiales magnéticos naturalmente son el Hierro, Níquel y Cobalto. Si los responsables del magnetismo son los electrones entonces nos preguntamos por qué no son todas las sustancias Magnéticas entonces. Esto se debe a que en los átomos con electrones de spin opuesto tienden a formar parejas que anulan mutuamente su magnetismo. Los materiales naturalmente magnéticos reciben el nombre de “ferromagnéticos” pues se comportan como el Hierro, en lo que se refiere al magnetismo. Estos materiales no siempre se comportan como imanes, esto se debe a que las moléculas están dispersas y sin alinear, por lo que cada una sigue una dirección al azar; cuando estas moléculas están alineadas las fuerzas magnéticas se suman, en este momento decimos que un material está “magnetizado”. Todos los imanes tienen una polaridad en sus extremos, que reciben el nombre de “Norte” y “Sur”(N y S, respectivamente). El extremo Norte de un imán se determina suspendiendo un imán en un cordel para que apunte al Norte magnético. Esto se debe a que la tierra tiene un campo magnético pues tiene una rotación del mismo modo que los electrones. 3 Los imanes presentan atracción y repulsión del mismo modo que las cargas, donde polos opuestos se atraen y polos semejantes se repelen. 1.2-Electromagnetismo El movimiento de la aguja de una brújula en las proximidades de un conductor por el que circula una corriente indica la presencia de un campo magnético alrededor del conductor. Cuando dos conductores paralelos son recorridos cada uno por una corriente, los conductores se atraen si ambas corrientes fluyen en el mismo sentido y se repelen cuando fluyen en sentidos opuestos. El campo magnético creado por la corriente que fluye en una espira de alambre es tal que si se suspende la espira cerca de la Tierra se comporta como un imán o una brújula, y oscila hasta que la espira forma un ángulo recto con la línea que une los dos polos magnéticos terrestres. Cuando un conductor se mueve de forma que atraviesa las líneas de fuerza de un campo magnético, este campo actúa sobre los electrones libres del conductor desplazándolos y creando una diferencia de potencial y un flujo de corriente en el mismo. Se produce el mismo efecto si el campo magnético es estacionario y el cable se mueve que si el campo se mueve y el cable permanece estacionario. 1.3- Campo Magnético. Los campos magnéticos influyen sobre los materiales magnéticos y sobre las partículas cargadas en movimiento. En términos generales, cuando una partícula cargada se desplaza a través de un campo magnético, experimenta una fuerza que forma ángulos rectos con la velocidad de la partícula y con la dirección del campo. Como la fuerza siempre es perpendicular a la velocidad, las partículas se mueven en trayectorias curvas. 1.4- Ley de polaridad Las polaridades reciben el nombre de norte y sur. Las leyes de atracción y repulsión que se aplican al magnetismo son las mismas que las de las cargas eléctricas excepto que se usan los conceptos de polaridades de N y S en lugar de positivo y negativo. Las leyes son: polos semejantes se repelen y polos distintos se atraen 1.5- Inducción Magnética La línea de campo de un imán puede discurrir con mayor o menor densidad. Por ejemplo la densidad de las líneas de campo disminuye al aumentar la distancia al imán o ala bobina. La magnitud física que permite cuantificar este efecto es la densidad de flujo magnético o inducción magnética. Su unidad de medida es el tesla. 4 La inducción magnética indica la densidad del flujo magnético en un determinado punto. 1.6- Ley de lenz Cuando una corriente empieza a circular por un conductor, (figura 1) se genera un campo magnético que parte del conductor. Este campo atraviesa el propio conductor e induce en él una corriente en sentido opuesto a la corriente que lo causó. En un cable recto este efecto es muy pequeño, pero si el cable se arrolla para formar una bobina, el efecto se amplía ya que los campos generados por cada espira de la bobina cortan las espiras vecinas e inducen también una corriente en ellas. 2. Principios de Funcionamiento de los transformadores Para poder comprender el funcionamiento de un transformador se examinará el de construcción más elemental. 2.1- Concepto Es un circuito magnético simple, constituido por dos columnas y dos culatas, en el que han sido arrollados dos circuitos eléctricos. 5 2.2- Símbolo Figura. 2 símbolos del transformador 2.3- Estructura y funcionamiento: - Uno, Esta constituido por una bobina de N1 espiras, es conectado a la fuente de corriente alterna y recibe el nombre de primario. - Otro constituido por un bobinado de N2 espiras, permite conectar a sus bornes un circuito eléctrico de utilización (la carga) y recibe el nombre de secundario. Al alimentar el bobinado primario con una fuente de voltaje alterno, por él (el bobinado) circulará una corriente eléctrica alterna (I1), que produce una fuerza magnetomotriz que causa que se establezca un flujo de líneas de fuerza alterno 1) en el circuito magnético del transformador 2.4- Tipos de núcleos Existen 2 tipos de núcleos fundamentales de estructura del transformador ellos son el tipo núcleo y el tipo acorazado, los cuales se detallan a continuación. Tipo núcleo Este tipo de núcleo se representa en la (Figura 3), indicando el corte A-1 la sección transversal que se designa con S (cm2). Este núcleo no es macizo, sino que esta formado por un paquete de chapas superpuestas, y aisladas eléctricamente entre sí. Para colocarlas y poder ubicar el bobinado terminado alrededor del núcleo, se construyen cortadas, colocando alternadamente una sección U con una sección I. La capa siguiente superior cambia la posición I con respecto a la U. Figura 3. Vista y corte de un núcleo tipo núcleo El aislamiento entre chapas se consigue con barnices especiales, con papel de seda, o simplemente oxidando las chapas con un chorro de vapor. 6 Tipo acorazado Este tipo de núcleo es más perfecto, pues se reduce la dispersión, se representa en la (Figura 4), en vistas. Obsérvese que las líneas de fuerza de la parte central, alrededor de la cual se colocan las bobinas se bifurcan abajo y arriba hacia los 2 costados, de manera que todo el contorno exterior del núcleo puede tener la mitad de la parte central. Esto vale para las 2 ramas laterales como también para las 2 cabezas. Para armar el núcleo acorazado también se lo construye en trozos, unos en forma de E y otros en forma de I, y se colocan alternados, para evitar que las juntas coincidan. Núcleo tipo acorazado con indicación de la longitud magnética media. Figura 4. El hecho que los núcleos sean hechos en dos trozos, hace que aparezcan juntas donde los filos del hierro no coinciden perfectamente, quedando una pequeña luz que llamaremos entrehierro. Obsérvese que en el tipo núcleo hay dos entrehierros en el recorrido de las fuerzas, y que el acorazado también, porque los dos laterales son atravesados por la mitad de líneas cada uno. 3. Clasificación de los transformadores monofásicos Los transformadores se clasifican en: Ø Ø Ø De intensidad De tensión Auto transformadores 3.1- De intensidad Los transformadores de intensidad se conectan con su primario intercalado en la línea, o sea, «en serie» con la misma. Dicho primario queda recorrido pues por la plena intensidad de la línea. Las marcas de los bornes identifican: Los arrollamientos primario y secundario Las secciones de cada arrollamiento, cuando estén divididos en secciones Las polaridades relativas de los arrollamientos y de las secciones de los arrollamientos la toma intermedias, si existen. 7 Por razones de seguridad, se conecta siempre a tierra uno de los bornes de cada uno de los secundarios, por ejemplo: S1 si hay un solo secundario o bien el 1S1 y el 2S1 si hay dos secundarios. Las marcas de los bornes de los transformadores de intensidad están indicadas en la figura 5 Figura 5 Transformador de Intensidad De Tensión Se denomina transformador a una maquina que permite aumentar o disminuir el voltaje o tensión en un círculo eléctrico de corriente alterna, manteniendo la frecuencia. La potencia que ingresa al equipo, en el caso de un transformador ideal, esto es, sin perdidas, es igual a la que se obtiene a la salida. Las maquinas reales presentan un pequeño porcentaje de perdidas, dependiendo de su diseño, tamaño, etc. 1. Los transformadores de tensión (figura 6) se conectan a la línea en derivación (como un transformador de potencia. Su primario está sometido pues a la plena tensión de la línea. Presentamos los esquemas del transformador monofásico con bornes primarios( figura 6.1) y transformador monofásico con arrollamientos del secundarios múltiples (figura 6.2) Los TT para conexión entre fases tienen dos bornes (polos) primarios aislados. Los previstos para conexión entre fase y masa (tierra), tienen un solo borne primario aislado. El otro borne no precisa estar aislado ya que es el que se conecta a tierra. 8 Figura 6 De transformador de Tensión 4- Auto Transformador El primario y el secundario del transformador están conectados en serie, constituyendo un bobinado único. Pesa menos y es más barato que un transformador y por ello se emplea habitualmente para convertir 220V a 125V y viceversa y en otras aplicaciones similares (figura 7) Tiene el inconveniente de no proporcionar aislamiento galvánico entre el primario y el secundario. Figura 7 Del Auto transformador 9 5-. Calculo de transformadores Aprovechando la inducción variable producida por una corriente Alterna es posible mediante un transformador (Figura 8). Cambiar el valor de la tensión sin una perdida importante de energía. El transformador consiste en una laminación (la mas común es de hierro con silicio) con una forma de E para el núcleo principal y de I para cerrar el circuito magnético El espesor es de 0.5 mm y se apilan en forma entrelazada para formar el núcleo. La forma de armado mediante chapas y no macizo reduce las perdidas por calentamiento llamada perdidas por corrientes parásitas. Si la superficie de cada chapa esta aislada con barniz oxido o papel el beneficio aumenta. El primer paso para su cálculo es conocer el consumo del o los bobinados secundarios y luego con ese calculo el consumo reflejado en el primario Tomemos E =12 voltios a I = 50 amperios W = E x I = 12 x 50 = 600 W Si las tensiones son mas se aplica el mismo método y se suman los consumos Sumemos un 20% para el valor del primario 1.2 x 600 = 720 W consumo primario La sección del núcleo se calcula S = 1,1 x ^ W = 1.1 x ^ 720 = 26.8 cm2 Figura 8. Sección del núcleo de un transformador 5.1-Numero de espiras Es decir la sección central del núcleo (amarillo) debe tener mínimo 26,8 cm2 Ya definimos el núcleo podemos ahora calcular las vueltas del primario y secundario Espiras por vuelta = 22500 / F x B x S = 22500 / 50 x 9 x 26.8 = 1.86 VPV F = frecuencia (50) B = Kilogauss (9) S = Medida calculada de la rama C del transformador VPV = vueltas por voltio El calculo anterior nos da los voltios por vuelta para el primario y secundario Si alimentamos el trafo con 220 voltios tenemos 10 N = 220 x 1.86 = 409 vueltas Veamos los Amper que circulan por el primario El consumo del primario es I = W/E = 720 / 220 =3.2 Amp Se toma como corriente normal 3 Amper por mm2 de sección del alambre El secundario de 12 voltios es N =12 x 1.86 = 22 vueltas sección del alambre del primario = 3.2 / 3 Amp = 1.1 mm2 Para el secundario = 50 / 3 = 17 mm2 Tenemos la sección del alambre del primario y del secundario veamos el diámetro El diámetro para el primario = 1,2 mm de diámetro Para el secundario = 4.8 mm de diámetro Con los cálculos comprobamos si entra el alambre de las dos bobinas mas el aislante entre capas El primario lleva 409 vueltas de 1,2 mm de diámetro El secundario 22 vueltas de 4.8 mm de diámetro El largo del carrete que va en la laminación es de 155 mm entran 155/1.2 = 129 vueltas Por capa y son necesarias 409/129 = 3,14 capas (4) Considerando que se pierdan vueltas de bobinar en cada capa tomamos 4 capas que con el aislante suman 4 * 1,2 = 3.4 mm 4 capas de aislante de 0.1 mm = 0.4 mm total 3.8 mm Entre primario y secundario se dan 3 vueltas de aislante = 0.3 mm El secundario ocupa 22 vueltas por 4,8 mm de diámetro = 105 mm es decir una capa mas de 4.8 mm mas 0.2 de dos capas de aislante = 5 mm Total = 3.8 + 0.3 + 5 = 9.1 mm digamos 10 mm tenemos 45 en C luego entra Sobre el carrete de plástico se inicia el bobinado cruzando el alambre forrado en un espagueti y bobinando sobre el en sentido contrario, de esta forma el alambre inicial queda rígido Al final de cada capa de alambre se cuenta la cantidad y se bobina una tira de aislante prespan de 0.1 mm en el mismo sentido del alambre La bobina se continua retrocediendo sobre el bobinado anterior aislado por el prespan Se va a arroyar el papel las vueltas van a salir separadas o superpuestas pero con un poco de practica es fácil Terminada la bobina se introducen las chapas E de la laminación una de derecha a izquierda y otra de izquierda a derecha Una vez finalizada la carga de las secciones E se para el transformador y se introducen las tiras I Se pueden colocar hasta 3 chapas por vez de cada lado para ahorrar tiempo Todo el conjunto se barniza con barniz de secado al aire y ya esta listo. 11 5.2-Relación de Transformación N=n1/n2 N=I1/I2 N=V1/V2 El bobinado principal de un transformador monofásico tiene 1000 espiral esta conectada a una red de 220 el bobinado secundario tiene 50 espiral determinar la relación de transformación y la tension en los bordes del bobinado secundario. N=N1/N2 = 1,000 ESPIRAL/ 50 ESPIRAL =20 RELACION V2=V1/N =220V/20 ESPIRAL = 11 TENSION Una pistola de soldar de 220 V y 0.7 amp. En el primero tiene 650 espiral y 3 espiral en el secundario ¿Cuál sera el voltaje en el segundo? Y ¿Cuál sera la corriente en el secundario? N=650/3=216.6 V2=220/216v=1.01v I2=0.7*216=151.16 AMP. 5.3-Rendimiento del transformador Los transformadores pierden energía 1. perdidas en el cobre (potencia perdida en el cobre) p=I2 R 2. perdidas en el hierro (potencia perdida en el hierro) hay 2 A. perdida por corriente de foulcault B. perdida por histéresis, son derivadas del magnetismo remanente que es el magnetismo que permanece en el circuito magnético, en el hierro después que se retira el magnetismo pen = psal n= rendimiento =n= psal/pen pen= potencia de entrada psal=potencia de salida pp= pp cu+ pp fe Un transformador de 220 v a 24v consume una potencia de 60 watt las perdidas en el hierro son 5 watt y en el cobre 7 watt ¿encontrar el rendimiento y la potencia de salida? PP= PP FE+ PP CU PP=5W +7W PP = 12W PSAL=60W PSAL =48W N=48/60 N=0.8% 12 6- Mantenimiento técnico a transformadores 6.1-Prueba de corto circuito en el transformador El voltaje aplicado (Vc) es regulado y se varía como se indicó antes, hasta que circule la prueba de corto circuito consiste en cerrar o poner en corto circuito, es decir, con una conexión de resistencia despreciable, las terminales de uno de los devanados y alimentar el otro con un voltaje reducido (de un valor reducido de tensión que representa un pequeño porcentaje del voltaje del devanado por alimentar, de tal forma, que en los devanados circulen las corrientes nominales. En estas condiciones se miden las corrientes nominales y la potencia absorbida. Debido a que la tensión aplicada es pequeña en comparación con la tensión nominal, las pérdidas en vacío o en el núcleo se pueden considerar como despreciables, de manera que toda la potencia absorbida es debida a las pérdidas por efecto joule en los devanados primario y secundario. Diagrama para la prueba de cortocircuito de un transformador monofasico. Vatimetro que indica la potencia de pérdidas por efecto de circulación de las corrientes en los devanados primario y secundario. Conexión de corto circuito entre las terminales del devanado. Voltaje de alimentación de valor reducido, de manera que se hagan circular las corrientes I1, I2 de valor nominal en cada devanado. Corriente de plena carga en el primario. De los valores medidos se obtiene “la impedancia total” del transformador como: Donde: I1 Vcc = = Corriente nominal primaria. Voltaje de corto circuito aplicado en la prueba. Zt = Impedancia total interna referida a devanado primario. Esta impedancia se conoce también como impedancia equivalente del transformador. 13 6.2- Técnicas de verificación de transformadores monofásicos Ø Verificar el estado de flojedad en los conductores Ø Verificar su impedancia (de bobinas primarias y secundaria) Ø Aplicar código de colores Ø Verificación de voltaje (que su voltaje sea el adecuado a su conexión) Ø Que el barniz de las bobinas no sea oscuro (por recalentamiento) Ø Depende del tipo de transformador a utilizar Para los de potencia Ø Revisar el nivel de aceite y su calidad Ø Revisión de las borneras que no posea corrosión Ø Determinar Polaridad en un transformador si es aditiva o sustractiva Ø Medición de la resistencia de aislamiento Ø Prueba de relación de transformación Ø Determinación del desplazamiento de fase de los grupos de bobinas Ø Determinación de las características del aislamiento Ø Prueba del aislamiento por voltaje aplicado Ø Prueba para la determinación de las pérdidas en vacío y en corto circuito (determinación de impedancia) Ø Prueba del aislamiento entre espiras por voltaje inducido Ø Medición de la corriente de vacío y la corriente de excitación. 6.3-Trabajos de Mantenimiento general de campo a los transformadores. El transformador por ser una maquina sin partes móviles (estática) requiere de poco mantenimiento, sin embargo se debe realizar cierto tipo de trabajo en ellos, en su instalación o lugar de operación, esto se conoce con el nombre de mantenimiento de campo ya sea del tipo preventivo o correctivo. En forma general los trabajos que se realizan son los siguientes: 1) Maniobras de desconexión y conexión. 14 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) Preparación de equipos de prueba. Desconexión y limpieza. Pruebas del Fp a devanados. Pruebas de resistencia de aislamiento (Megger). Pruebas de corriente de excitación. Prueba de Fp a boquillas. Pruebas de relación de transformación. Prueba de medición o determinación de impedancia. Pruebas al aceite (en su caso). Revisión y limpieza del gabinete de control (en su caso). Eliminación de fugas. Pintura. Mantenimiento al intercambiador de derivaciones (Taps). Pruebas de operación y control. 7 Pruebas para el mantenimiento a los transformadores. Las pruebas se hacen en los transformadores y sus accesorios por distintas razones, durante su fabricación para verificar la condición de sus componentes, durante la entrega, durante su operación como parte del mantenimiento, después de su reparación etc. Algunas de las pruebas que se hacen en los trabajadores se consideran como básicas y algunas otras varían de acuerdo a la condición individual de los transformadores y pueden cambiar de acuerdo al tipo de transformador, por lo que existen distintas formas de clasificación de las pruebas de los transformadores, por ejemplo algunos la clasifican en pruebas en pruebas de alta tensión, también se pueden agrupar como pruebas preliminares, intermedias y de verificación. 7.1- Las pruebas preliminares. Se realiza cuando un transformador se ha puesto fuera de servicio para mantenimiento programado o para revisión programada o bien ha tenido alguna falla. Las pruebas se realizan antes de abrir el transformador y tienen el propósito general de encontrar el tipo y naturaleza de la falla. Las llamadas pruebas preliminares incluyen: 1. Prueba al aceite del transformador. 2. Medición de la resistencia de aislamiento de los devanados. 3. Medición de la resistencia óhmica de los devanados. 4. determinación de las características del aislamiento. 15 7.2 Las llamadas pruebas intermedias. Como su nombre lo indica se realizan durante el transcurso de una reparación o bien en las etapas intermedias de la fabricación, cuando el transformador esta en proceso de armado o bien desarmado (según sea el caso) y el tiempo de pruebas depende del propósito de la reparación o la etapa de fabricación, por lo general se hacen cuando las bobinas no han sido montadas o desmontadas (según sea el caso) y son principalmente las siguientes: 1. Medición de la resistencia de aislamiento de tornillos y herrajes contra el núcleo. 2. Prueba de la resistencia de aislamiento de tornillos y herrajes por voltaje aplicado. 3. Pruebas de las boquillas por medio de voltaje aplicado. Cuando se han desmontado las bobinas durante un trabajo de reparación entonces las pruebas se incrementan. 7.3 Las pruebas finales. Se hacen sobre transformadores terminados de fabricación o armados totalmente después de una reparación e incluyen las siguientes: 1. Prueba al aceite del transformador. 2. Medición de la resistencia de aislamiento. 3. Prueba de relación de transformación. 4. Determinación del desplazamiento de fase de los grupos de bobinas. 5. determinación de las características de aislamiento. 6. Prueba del aislamiento por voltaje aplicado. 7. Prueba para la determinación de las perdidas en vació y en corto circuito (determinación de la impedancia). 8. Prueba del aislamiento entre espiras por voltaje inducido. 9. Medición de la corriente de vació y la corriente de excitación. El orden de las pruebas no es necesariamente el mencionado anteriormente y de hecho existen normas nacionales e internacionales que recomiendan que pruebas y en que orden se deben realizar, así como cuando se debe efectuar, se describirán entre algunas de ellas las más importantes. 16 8-Descripción de algunas pruebas a transformadores Monofasicos 8.1-Pruebas al aceite El aceite de los transformadores se somete por lo general a pruebas de rigidez dieléctricas, pruebas de pérdidas dieléctricas y eventualmente análisis químico. Cuando se trata de pruebas de campo, la condición del aceite se puede determinar por dos pruebas relativamente simples, una que compara el color de la muestra de aceite del transformador bajo prueba, con un conjunto o panel de colores de referencia que dan una indicación de la emulsificación que puede tener lugar. El recipiente en que se toma la muestra debe enjuagar primero con el propio aceite de la muestra y debe ser tomado de la parte inferior del transformador de la válvula de drenaje. Cuando se usa un probador de color, la muestra se debe colocar en tubo de vidrio transparente que se introduce en una parte del probador diseñada para tal fin. Se tiene un pequeño disco que gira y tiene distintos colores de referencia, cuando el color del disco es similar al de la muestra, aparece la designación numérica del color de la muestra de aceite. De hecho esta prueba sirve para verificar el grado de oxidación del aceite y debe marcar 0.5 para aceites nuevos y 5 máximo para aceites usados. 8.1.1-Prueba de rigidez dieléctrica del aceite. Esta prueba se hace en un probador especial denominado “probador de Rigidez Dieléctrica del aceite”.Fig 9 En este caso, la muestra de aceite también se toma de la parte interior del transformador, por medio de la llamada válvula de de drenaje y se vacía en un recipiente denominado “Copa Estándar” que puede ser de porcelana o de vidrio y que tiene una capacidad del orden de ½ litro. En ocasiones el aceite se toma en un recipiente de vidrio y después se vacía a la copa estándar que tiene dos electrodos que pueden ser planos o esféricos y cuyo diámetro y separación esta normalizado de acuerdo al tipo de prueba. El voltaje aplicado entre electrodo se hace por medio de un transformador regulador integrado al propio aparato probador. Después de llenada la copa estándar se debe esperar alrededor de 20 minutos para permitir que se eliminen las burbujas de aire del aceite antes de aplicar el voltaje, el voltaje se aplica energizando el aparato por medio de un switch que previamente se ha conectado a un contacto o fuente de alimentación común y corriente. El voltaje se eleva gradualmente por medio de la perilla o manija del regulador de voltaje, la tensión o voltaje de ruptura se mide por medio de un voltímetro graduado en Kilovoltios. Existen de acuerdo distintos criterios de prueba, pero en general se puede afirmar que se pueden aplicar seis rupturas dieléctricas con intervalos de 10 minutos. La primera no se toma en cuenta y el promedio de las otras cinco se toma como la tensión de ruptura o rigidez dieléctrica. Normalmente la rigidez dieléctrica en los aceites aislantes se debe comprobar en la forma siguiente: 17 ♦ ♦ ♦ ♦ ♦ Aceites degradados y contaminados De 10 a 28 Kv. Aceites carbonizados no degradados De 28 a 33 Kv. Aceites nuevos sin desgasificar De 33 a 40 Kv. Aceite nuevo desgasificado De 40 a 50 Kv. Aceite regenerado De 50 a 60 Kv. Los valores anteriores se refieren a valores de prueba de acuerdo a los electrodos de 25,4mm de diámetro con una separación de 2,54mm la tensión de ruptura debe ser de cuando menos 25Kv en aceites usados y 35Kv en aceites nuevos. Cuando se usan electrodos de discos semiesféricos con separación de 1.016mm la tensión de ruptura mínima en aceites usados es de 20Kv y de 30Kv mínimo en aceites nuevos. Figura 9 8.2-Prueba de resistencia de aislamiento. Esta prueba solo sirve para verificar la calidad del aislamiento en los transformadores, también permite verificar el grado de humedad y en ocasiones defectos severos en el aislamiento. La resistencia de aislamiento Fig 10 se mide por medio de un aparato conocido como Megger. El Megger Fig 12 consiste de una fuente de alimentación en corriente directa y un sistema de medición, la fuente es un pequeño generador que se puede accionar en forma manual o eléctricamente, el voltaje en terminales de un megger varia de acuerdo al fabricante y así se trata de accionamiento manual o eléctrico, pero en general se puede encontrar en forma comercial megger de 250 voltios, de 1000 voltios y 2500 voltios, la escala del instrumento esta graduada para leer resistencia de aislamiento en el rango de 0 a 10000 Megaohm. 18 Figura 10 La resistencia de aislamiento de un transformador se mide entre los devanados conectados todos entre si, Fig 11 contra el tanque conectado a tierra y entre cada devanado y el tanque, con el resto de los devanados conectados a tierra. Para un transformador de dos devanados se deben tomar las siguientes medidas: ♦ Entre el devanado de alto voltaje y el tanque con el devanado de bajo voltaje conectado a tierra. ♦ Entre los devanados de alto voltaje y bajo voltaje conectados entre si, con el tanque. Estas mediciones se pueden expresar en forma sintetizada como: ♦ Alto voltaje Vs Tanque + bajo voltaje a tierra. ♦ Bajo voltaje Vs Tanque + alto voltaje a tierra. ♦ Alto voltaje +bajo voltaje Vs Tanque a tierra. Cuando se trata de transformadores con tres devanados las mediciones que se deben efectuar son las siguientes: 19 ♦ Alto voltaje (primario)Vs Tanque con los devanados de bajo voltaje (secundario) y medio Voltaje (terciario) a tierra. ♦ Medio voltaje (terciario) Vs Tanque con los devanados de alto voltaje y bajo voltaje a tierra. ♦ Bajo voltaje /secundario Vs Tanque con los devanados de alto voltaje y medio voltaje a tierra. ♦ Alto voltaje y medio voltaje juntos Vs Tanque con el devanado de bajo voltaje a tierra. ♦ Alto voltaje+ medio voltaje+bajo voltaje Vs Tanque. Figura 11 Figura 12 20 Para determinar el valor mínimo a aceptar de resistencia de aislamiento consiste en multiplicar los KV de fase por 25 para saber el valor mínimo de 20 0C o bien se puede aceptar 1000 MEGOHMS a 20 0C para voltajes superiores a 69 KV aplicados durante un minuto la otra regla establece que el valor mínimo de resistencia de aislamiento debe ser de 1 MEGOHOMS por cada 1000 voltios de prueba. 8.3- Medición de la resistencia de los devanados. Esta prueba se hace para medir la resistencia de cada devanado y de esta manera verificar el calculo de las perdidas por efecto JOULE así como la componente caída de voltaje por resistencia y la elevación de temperatura bajo carga, otro aspecto que revela esta prueba es la verificación de que las conexiones internas están hechas correctamente. Para efectuar estas mediciones, se hace uso de una fuente de corriente directa con voltímetros y amperímetros de rangos apropiados, durante la prueba de debe tomar la medición de la temperatura por medio de termómetros o termopares, como medida de precaución para evitar riesgos por voltajes inducidos, se debe poner en corto circuito el devanado al que no se efectúa la medición. La resistencia de cada devanado se obtiene por simple aplicación de la Ley de OHM (R=E/I), es decir, dividiendo el voltaje aplicado entre la corriente que circula. Las mediciones obtenidas para todas las fases y pasos de control adoptados no deben diferir entre si mas del 2%, se debe tomar en consideración las correcciones por temperatura. 8.4-Prueba de polaridad. Estas pruebas se realizan para determinar (cuando es necesario) como se encuentran devanadas unas con respecto a otras las bobinas de un transformador de modo que la “dirección” del voltaje secundario se puede conocer cuando se conecten en paralelo los transformadores o bien formando bancos polifásicos, en general las terminales se marcan del lado de alto voltaje como H1, H2, H3 leyendo del lado derecho hacia el izquierdo, en el lado de bajo voltaje con letras X1, X2 etc. Leyendo del lado izquierdo hacia el derecho para polaridad sustractiva y de derecha a izquierda para polaridad aditiva. Para determinar cuando un transformador posee polaridad aditiva o sustractiva, se conecta al devanado de alto voltaje una fuente de corriente alterna Eg y entre los devanados adyacentes de alto voltaje y bajo voltaje se conecta un puente P, se conecta a un voltímetro Ex entre las otras dos terminales adyacentes y otro voltímetro Ep se conecta a través del devanado de alta tensión. Figura 13 21 Si la lectura de Ex da un valor inferior a Ep se dice que la polaridad es sustractiva y las terminales H1 y X1 están adyacentes. Si la lectura de Ex da un valor superior a la del voltímetro Ep se dice que la polaridad es aditiva lo que significa que las terminales H1 y X1 se encuentran opuestas diagonalmente. Figura 13 Figura 13 Con esta prueba de polaridad, el puente P Figura 14 conecta efectivamente al voltaje secundario es en serie con el voltaje primario Ep, en consecuencia Es o se suma o se resta a Ep, en otras palabras: ♦ Ex= Ep + Es para polaridad aditiva. ♦ Ex= Ep - Es para polaridad sustractiva. 22 Figura 14 23 8.5-- Prueba de relación de transformación. La relación de transformación de un transformador Figura 15 es la relación de voltajes del devanado de alto voltaje al devanado de bajo voltaje para transformadores de dos devanados. Cuando hay más de dos devanados, existen varias relaciones de transformación, todas medidas con respecto al devanado de alto voltaje, los distintos voltajes que tiene un transformador se indican normalmente en la placa característica del transformador. Se puede emplear en general dos métodos para determinar la relación de transformación. Usando voltímetros conectados a los devanados de alto voltaje y bajo voltaje, por este procedimiento se fija un valor de voltaje en el devanado de alto voltaje del transformador, tomando la lectura correspondiente a ese voltaje en el devanado secundario. Para compensar errores es conveniente intercambiar los voltímetros, el procedimiento se repite para varios valores de voltaje, para transformadores trifásicos se usa una fuente de alimentación trifásica y se admite una tolerancia de +1%. Figura 15 24 EJERCICIOS DE AUTO EVALUACIÓN Después del estudio de la unidad I, te sugiero que realices los siguientes ejercicios de auto evaluación, lo que permitirá fortalecer tus conocimientos. I. Responda la siguiente pregunta. 1. ¿Mencione la diferencia entre magnetismo y electromagnetismo? 2. ¿Cómo se clasifican los transformadores monofasicos? 3. ¿Explique la técnica de verificación de los transformadores monofasico? 4. ¿Cómo esta constituido el auto transformador? 5. Un transformador de 220 v a 12 v consume una potencia de 30 w , las perdidas en el hierro son de 8 w y en el cobre de 6 w ¿encontrar el rendimiento y la potencia de salida? 6-¿Como se clasifica las pruebas a los transformadores monofasicos? 7- ¿Aun transformador se le hará la prueba de voltaje al devanado de alto voltaje que componentes necesitaría `para efectuar la conexión para la prueba? 8- ¿Mencione el mantenimiento de campo en el lugar de operación? 25 UNIDAD II: INSTALACION DE TRANSFORMADORES MONOFASICOS 1- Conceptos Introductorios 1.1- Transmisión La interconexión de las diferentes plantas generadoras que forman un sistema de energía se realiza por medio de las líneas de transmisión y los voltajes más elevados del sistema corresponden a este nivel. La función más importante de las líneas de transmisión es efectuar el intercambio de potencia o de asistencia mutua entre las diversas regiones del sistema. Por lo general se genera entre los 6 y 20 KV, 138KV, 230 KV, 400 KV. 500KV, 750 KV. Actualmente a nivel mundial se estudian líneas de transmisión con niveles de voltaje arriba de los 1000 KV. Se transmite actualmente la energía desde sus fuentes de generación a 230 KV y 138 KV 60 HZ con voltajes de subtransmisión de 69 KV. El Sistema Interconectado Nacional cuenta con un total de 1836 kilómetros de líneas de transmisión. 1.2-Subestaciones. Las instalaciones llamadas subestaciones son plantas transformadoras que se encuentran junto a las centrales generadoras (Subestación elevadora) y en la periferia de las diversas zonas de consumo (Subestación reductora), enlazadas entre ellas por la Red de Transporte. 1.3- Subtransmision Los circuitos de Subtransmisión (Fig. 16) nacen generalmente en una subestación de transmisión y distribuyen la energía a los consumidores mayores y a las subestaciones de distribución en un área geográfica limitada. Su alimentación es por un solo extremo y opera independiente de otros sistemas de subtransmisión. 26 Fig. 16 Circuito típico de sub transmisión 1.4 -Distribucion El sistema de distribución tiene una función similar a la de la subtransmisión y es el último eslabón de la cadena para hacer llegar la energía hasta los consumidores más pequeños. El sistema de distribución se divide en dos: Primarios y Secundarios. La distribución primaria recibe la energía de la subestación de distribución y en su recorrido la transmite directamente a los consumidores medianos (talleres, Comercios, etc.) o a los consumidores pequeños (residencias) a través de la distribución secundaria. Los voltajes usados en Nicaragua en la distribución primaria son: 13.8 KV y 24. KV de los secundarios de las subestaciones conectadas en estrella con el neutro sólidamente aterrado. El neutro está conectado a la red de tierra de la subestación y corre simultáneamente con las tres fases formando un sistema de cuatro hilos. Los circuitos tienen longitudes de varios kilómetros y sobre todo los circuitos rurales se diferencia de los circuitos urbanos por la longitud que alcanzan, unos 15 kilómetros y más. Los transformadores de distribución por lo general son monofásicos y tienen capacidades de 1.5 KVA hasta 100 KVA, colocándose los mismos en los postes de los circuitos. 27 Fig. 17 Estructura de un sistema electromagnético unifilar Dando como consecuencia una pobre calidad de servicio. 2. Tipos de transformadores. 2.1- Tipo convencional de poste: Los transformadores de este tipo (figura. 18) constan de núcleo y bobinas montados, de manera segura, en un tanque cargado con aceite; llevan hacia fuera las terminales necesarias que pasan a través de bujes apropiados. Fig 18 28 Los bujes de alto voltaje pueden ser dos, pero lo más común es usar un solo buje además de una Terminal de tierra en la pared del tanque conectada al extremo de tierra del devanado de alto voltaje para usarse en circuitos de varias tierras. El tipo convencional incluye solo la estructura básica del transformador sin equipo de protección alguna. La protección deseada por sobre voltaje, sobrecarga y cortocircuito se obtiene usando apartarrayos e interrupciones primarias de fusibles montados separadamente en el poste o en la cruceta muy cerca del transformador. La interrupción primaria del fusible proporciona un medio para detectar a simple vista los fusibles quemados en el sistema primario, y sirve también para sacar el transformador de la línea de alto voltaje, ya sea manual, cuando así se desee, o automáticamente en el caso de falla interna de las bobinas. 2.2-Transformador autoprotegido: el transformador autoprotegido (figura.19) tiene un cortocircuito secundario de protección por sobrecarga y cortocircuito, controlado térmicamente y montado en su interior; un eslabón protector de montaje interno conectado en serie con el devanado de alto voltaje para desconectar el transformador de la línea en caso de falla interna de las bobinas, y uno o más apartarrayos montados en forma integral en el exterior del tanque para protección por sobrevoltaje. En caso todos estos transformadores, excepto algunos con capacidad de 5KVA, el cortocircuito opera una lámpara de señal cuando se llega a una temperatura de devanado predeterminada, a manera de advertencia antes del disparo. Si no se atiende la señal y el cortocircuito dispara, puede restablecerse este y restaurarse la, carga por medio de una asa externa . Es común que esto se logre con el ajuste normal del cortocircuito, pero si la carga se a sostenido por un tiempo prolongado tal que haya permitido al aceite alcanzar una temperatura elevada, el cortacircuito podrá dispararse de nuevo en breve o podrá ser imposible restablecerlo par que permanezca cerrado. En tales casos, puede ajustarse la temperatura de disparo por medio de una asa externa auxiliar de control para que pueda volverse a cerrar el cortocircuito por la emergencia hasta que pueda instalarse un transformador más grande. Fig 19 29 2.3- Transformador autoprotegido trifásicos. Estos transformadores son similares a las unidades monofásicas, con la excepción de que emplea un cortocircuito de tres polos. El cortacircuito está dispuesto de manera que abra los tres polos en caso de una sobrecarga seria o de falla en alguna de las fases. (Figura 20) Fig 20 2.4-Transformador autoprotegido para bancos de secundarios. Esta en otra variante en la que se proporcionan los transformadores con los dos cortacircuitos secundarios paras seccionar los circuitos de bajo voltaje, confinar la salida de operación únicamente a la sección averiada o sobrecargada y dejar toda la capacidad del transformador disponible para alimentar las secciones restantes. Estos también se hacen para unidades monofásicas y trifásicas. Transformadores de distribución del “tipo estación”: estos transformadores tienen, por lo general, capacidad para 250,333 ó 500KVA. En la figura 21 se ilustra un transformador de distribución del tipo de poste/estación. Para la distribución a redes de bajo voltaje de c.a. en áreas de alta densidad de carga, hay transformadores de red disponibles Fig 21 en capacidades aún mayores. 30 3-Tipos de instalaciones de transformadores Monofasicos 3.1. Instalación de los transformadores en los postes. Los transformadores se instalan en los postes en la forma siguiente: los de 100KVA y menores se sujetan directamente con pernos al poste y los de tamaño de 167 a 500KVA tienen zapatas de soporte sujetas al transformador diseñadas para atornillarse a placas adaptadoras para su montaje directo en los postes o para colgarse de crucetas por medio de suspensores de acero que están sujetos con firmeza al propio transformador. Los bancos de tres transformadores monofásicos se cuelgan juntos de fuertes brazos dobles, por lo común ubicados en una posición baja en el poste o bien, de un soporte “agrupador” que los espacia entorno al poste. Tres o más transformadores de 167KVA y mayores se instalan en una plataforma soportada por dos juegos de postes que se encuentran separados por una distancia de 10 a 15 pies.. A menudo la estructura de la plataforma de los transformadores se coloca sobre las propiedades de los consumidores, para reducir la distancia que deben recorrer los circuitos secundarios y evitar la congestión de postes en la vía pública. Transformadores para sistemas de distribución subterráneos. Como están instalando más circuitos de distribución subterráneo, se han desarrollado transformadores especiales para dichos sistemas. El tipo de uso más extendido es el transformador montado en base, así llamado por estar diseñado para instalarse sobre la superficie de una loza de concreto o sobre una base. En la fig.22 se muestra un transformador típico. Las diferencias esenciales respecto a los transformadores del tipo de poste se tienen únicamente en la disposición mecánica. Fig 22 31 1.- Una caja rectangular dividida en dos compartimientos. 2._Un compartimiento que contiene el conjunto convencional de núcleo-bobinas. 3.-Un segundo compartimiento para terminaciones y conexiones de los cables. Los conductores de cable primario están conectados por medio de conectores de enchufe para la conexión y desconexión de la carga. Los conductores del secundario van, por lo general, atornillados a terminales de buje. 4.-Tienen fusibles de varias clases que van en un portafusibles colocado en un pozo que está al lado del tanque, de manera que pueda secarse del mismo. Otro arreglo de transformador está diseñado para funcionar en un bóveda subterránea (figura 23 ). Fig 23 32 Este se parece más a un transformador del tipo de poste, pero normalmente se fabrica con un tanque de acero resistente a la corrosión, conectores de enchufe en el primario y una elevación de la temperatura en aire libre de solo 55 C y dejar margen para la temperatura ambiente más alta que pueda realmente existir dentro de una bóveda. 3.2- Otros tipos de instalaciones de transformadores. Los transformadores se instalan en bóveda debajo de las calles, en cajas de registro en plataformas al nivel del suelo, debajo de la superficie del piso, dentro de edificios o se entierran directamente cuando se emplea la construcción subterránea. Cuando se instalan dentro de edificios, en donde la posibilidad de que queden sumergidos en agua es remota, se usan transformadores y cortacircuitos del tipo aéreo o para interiores. La s bóvedas para transformadores dentro de un edificio se construyen a prueba de incendio, excepto cuando esos transformadores son del tipo seco o están llenos con líquido no inflamable. 3.3-Transformadores sobre base de concreto Básicamente, es transformador de distribución, con la diferencia que va encerrado en un gabinete y montado sobre una base de concreto con facilidad para la entrada y la salida de conductores. Este tipo de instalaciones ha variado en el tamaño del gabinete, es decir, los fabricantes en competencia han reducido el volumen de los transformadores con el propósito de hacerlo más atractivo a la vista. Un transformador para instalaciones subterráneas residenciales se diferencia de uno aéreo, entre otras cosas, en que el equipo de protección y los desconectores forman parte integral del conjunto de transformadores y equipos. Es decir los fusibles y desconectores de entrada y salida son parte del transformador, esto cumple tanto en los pad mounted como los sumergibles. Los transformadores pad mounted presentan sus partes de alto voltaje accesible al operador, pero existen unidades con las partes de alto voltaje blindadas y con conexión a tierra. La protección eléctrica de estos transformadores consisten en pararrayos y fusibles. Un aditamento muy importante son los indicadores de fallas. Hay varios tipos pero su principal operación es el mismo. Actúan cuando circula por el cable en el cual están instalados una corriente superior a su ajuste. Esta corriente, bastante grande, solo es posible que se produzca bajo condiciones de cortocircuito en el cable primario. La indicación puede consistir en el encendido de una señal luminosa que indica que ha habido un cortocircuito. Finalmente podemos citar algunas ventajas de los transformadores comerciales (TCS) frente los montajes en túneles, a saber: A.- Se requieren tanquillas de menor dimensión. 33 B.- Unidades más compactas. C.- Bajo mantenimiento. D.- Rápida instalación. E.- Mayor seguridad. 4- Normas para instalación de transformadores monofasicos 4.1- Transformadores de distribución monofasica tipo pedestal Según normas CADAFE los transformadores de distribución monofásicos tipo pedestal debe cumplir las siguientes normas: .-Los transformadores con capacidad nominal contínuas en KVA, basadas en una elevación máxima de 65 C promedio en los devanados, plena carga:15,25 y 50KVA. .-Clase de aislamiento de 15KVA. .-Impedancia no mayor del 3%. .-Polaridad Aditiva. .-Derivaciones: ±2.5% y ±5% del voltaje nominal primario. .-Los fusibles deberán estar coordinados entre si para brindar el rango completo de protección. El fusible limitador operará solo en caso de fallas internas en el transformador. .-La cubierta de los transformadores tipo pedestal está integrada por un módulo donde se encuentra el tanque del transformador y el otro módulo donde de encuentran las conexiones, los cuales formarán un conjunto integrado. .-La unidad no presentará bordes, salientes ni aristas agudas o cortantes. No tendrá tuercas ni elementos de fijación que sean removibles externamente. .-Será construida a prueba de intrusos. .-El fabricante deberá presentar certificados de pruebas de la menos del 10% de los transformadores a adquirir. 4.2- Datos de la placa característica .- La placa característica será metálica e inoxidable fijada al fondo del compartimiento de conexiones. Tendrá la siguiente información en español: -Tipo de transformador(pedestal) -Nombre del fabricante. -Número de serial. -Año de fabricación. -Número de fases. -Frecuencia. -Capacidad (KVA). -Voltaje nominal primario(Voltios). -Voltaje nominal secundario(Voltios). -Voltaje nominal en cada derivación (Voltios). -Nivel básico de aislamiento-BIL(KV) -Aumento promedio de temperatura en devanados( C). -Temperatura ambiente promedio diaria (40 C). -Impedancia (%) -Peso total aproximado (Kg) 34 EJERCICIOS DE AUTO EVALUACIÓN Después del estudio de la unidad II, te sugiero que realices los siguientes ejercicios de auto evaluación, lo que permitirá fortalecer tus conocimientos. I. Responda la siguiente pregunta. 1. ¿Qué es sistema de distribución? 2. ¿Cómo se clasifican los transformadores monofasicos? 3. ¿Mencione los tipos de transformadores de acuerdo a sus instalación? 4. ¿Qué es un transformador autoprotegido? 5. Explique los pasos para instalar un transformador monofasico en los postes? 6-¿Explique los pasos para instalar un banco de tres transformadores monofasicos? 7- ¿Explique los pasos para instalar transformadores sobre base de concreto? 8- ¿Cuáles son las normas para instalar transformadores de distribución monofasico tipo pedestal? 35 GLOSARIO Corto circuito: Se produce por el contacto repentino de dos o más conductores de corriente o una línea de corriente y un conductor a tierra. Zonas rurales Constituidas por pequeños núcleos de población en edificación continua de una sola altura o edificación discontinua. En estas zonas existen grandes distancias entre núcleos de población y la densidad de carga es baja. Zonas urbanas Constituidas por un núcleo de población en edificación continua en su casco urbano pudiendo tener en el centro varias alturas. La densidad de carga en estos casos es alta. Las zonas urbanas pueden a su vez subdividirse en grandes y pequeños núcleos urbanos. Zonas aisladas Son las zonas no integradas al Sistema Interconectado Nacional. Racimos Son agrupamientos de transformadores monofásicos de distribución que comparten un elemento de protección y maniobra. Red de distribución: Conjunto de líneas eléctricas conectadas entre sí y que tienen por objeto hacer llegar la energía eléctrica a los consumidores. Sistema eléctrico: Conjunto de instalaciones eléctricas destinadas a la producción, transporte, conversión o transformación y la distribución de energía eléctrica. Corriente alterna (c.a.): En este caso, las cargas eléctricas circulan siempre en la misma dirección del punto de mayor potencial al de menor potencial. Eficiencia: La eficiencia o rendimiento de un Transformador eléctrico es una medida de su habilidad para convertir la potencia eléctrica que toma de la línea en potencia mecánica útil. Se expresa usualmente en por ciento de la relación de la potencia mecánica entre la potencia eléctrica, esto es: 36 BIBLIOGRAFIA -Motores Universales. Ministerio De Educación Superior. Instituto Universitario De Tecnología Caripito. Venezuela. 2004. -Quispe O., Enrique C. Motores Eléctricos de Alta Eficiencia. Universidad Autónoma de Occidente. Cali, Colombia. http://energia ycomputacion.univalle.edu.co/edicion21/21art2.pdf -El ABC de las maquinas eléctricas Tomo I, II,III. Gilberto Enrique Harper. -Editorial Noriega LIMUSA. -Maquinas de corriente continua, Gilberto Enrique Harper. Editorial Noriega LIMUSA, MEXICO § Manual de prevención de riesgos laborales. § HAYT, William H. y KEMMERLY, Back E. Análisis de circuitos en Ingeniería. 4ed. México: McGraw-Hill, 1990. § MELGUIZO, Samuel. Instalaciones Eléctricas. 3ed. Medellín: Centro Publicaciones U. Nal-Medellín. 1987. § INFORME FENOSA). Ricardo Fernández G. Criterios de Arquitectura de Red Área Caribe ( UNIÓN 37