INSTITUTO POLITECNICO NACIONAL. ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA. “IMPLEMENTACION DE UN SISTEMA ELECTRONICO DIGITAL PARA MEDIR LA VELOCIDAD Y DIRECCION DEL VIENTO” TESINA QUE PARA OBTENER EL TITULO DE INGENIERO EN AERONAUTICA PRESENTAN: VALVERDE FLORES MARCO ANTONIO. SANDOVAL GONZALEZ JESUS ALBERTO. ASESORES M. EN C. JORGE SANDOVAL LEZAMA. M. EN C. FELIPE GONZALEZ LEON. México D.F., febrero de 2015 I II IMPLEMENTACION DE UN SISTEMA ELECTRONICO DIGITAL PARA MEDIR LA VELOCIDAD Y DIRECCION DEL VIENTO. Que para obtener el titulo de Ingeniero en Aeronáutica presentan: Valverde Flores Marco Antonio. Sandoval González Jesús Alberto. RESUMEN. El desarrollo de las operaciones aéreas depende básicamente, de las facilidades otorgadas por las autoridades aeronáuticas en cada aeródromo, y específicamente para el despegue y aterrizaje que representan los factores más críticos en una operación es necesario conocer las variables climáticas persistentes en el momento, como son la temperatura, la humedad relativa, la presión, la velocidad y dirección del viento, por lo que es necesario contar con el equipo correspondiente para el conocimiento de tales parámetros; desafortunadamente en ese rubro nuestra dependencia de tecnología extranjera es total, tanto para la adquisición, como para el mantenimiento de los equipos, misma que representa elevados costos; ya que hasta la fecha ninguna empresa nacional ha tomado en sus manos tal responsabilidad, por lo que resulta imperante la necesidad de implementar un sistema electrónico digital eficaz y económico, desarrollado con tecnología nacional, que cubra esa necesidad. 1 OBJETIVO. Se ha implementado un sistema electrónico para medir variables climáticas como son: la velocidad y dirección del viento , estas variables son sensadas a través de fotodetectores convirtiendo los valores analógicos de la velocidad de giro y la posición de las veletas en palabras digitales de 4 bits las cuales después de ser procesadas mediante lógica digital TTL serán desplegadas en pantallas digitales de 7 segmentos con valores digitalizados con una resolución para el caso del anemómetro de 1 m/s y en el caso de la veleta de 10 grados. La medición precisa de variables climáticas, examen cuidadoso de los fenómenos que producen dichos cambios y del modelo matemático que los representa. La interpretación más adecuada será aquella que presente una variación lineal con respecto al parámetro que se toma como base, de no ser así debe buscarse la linealización de parámetros. La interpretación de las variables ayudará al especialista en el campo de la meteorología a predecir cual será el estado climático en un tiempo posterior. 2 INDICE GENERAL. PAGINA. RESUMEN. 1 OBJETIVO. 2 CAPITULO 1. FAMILIAS LOGICAS DE CIRCUITOS INTEGRADOS. 7 8-11 1.1. INTRODUCCION. 1.2. FAMILIAS LOGICAS DIGITALES IC 11-16 1.3. LOGICAS POSITIVA Y NEGATIVA 16-27 1.4. CARACTERISTICAS DE LAS FAMILIAS LOGICAS IC 27-30 1.5. LA COMPUERTA AND. 30-32 1.6. LA COMPUERTA OR. 32-35 1.7. LA COMPUERTA NOT. 36-37 1.8. CIRCUITOS INTEGRADOS DIGITALES. 37-39 40 2. DIODOS. 2.1. EL SIMBOLO ELECTRICO. 41 2.2. LA CURVA DEL DIODO. 41 2.3. LA ZONA DIRECTA. 41 2.3.1. Tensión umbral. 41 2.3.2. Dispositivo no lineal. 42 2.3.3. Resistencia interna. 42 2.3.4. Máxima corriente continúa con polarización 43 directa. 2.3.5. Disipación máxima de potencia. 43-44 2.4. LA ZONA INVERSA. 44 2.5. EL DIODO IDEAL. 44 3 CAPITULO. PAGINA. 3. DISPOSITIVOS OPTOELECTRONICOS 45 3.1. DIODO EMISOR DE LUZ. 46-47 3.2. FOTODIODO 47-48 3.3. OPTOACOPLADOR. 48-50 4. CONVERSOR ANALOGICO DIGITAL. 51-53 4.1. RESOLUCION Y EXACTITUD DEL A/D 53-54 4.2. TIEMPO DE CONVERSION tc. 54-55 5. CONVERSION DE DIGITAL A ANALOGICO. 56-58 5.1. VALORES DE ENTRADA. 58-59 5.2. RESOLUCION (TAMAÑO DE ETAPA) 59-60 5.3. CODIGO DE ENTRADA BCD. 60 5.4. DAC MULTIPLICATIVOS. 61 5.5. ESPECIFICACIONES DAC. 5.6. APLICACIONES DAC 6. SENSORES DE POSICION. 61-62 63 64 6.1. POTENCIOMETRO ANGULAR. 65 6.2. ENCODERS. 66 6.2.1. Encoders incrementales. 67-69 6.2.2. Encoders absolutos. 70-73 7. CONTADORES Y REGISTROS. 7.1. CONTADORES ASINCRONOS (DE RIZO). 7.1.1. Número MOD. 7.1.2. División de frecuencias. 74 75 75 76-77 7.2. CONTADORES CON NUMEROS MOD < 2N. 77-79 7.3. CONTADORES ASINCRONOS CI (IC). 79-81 4 CAPITULO. PAGINA. 7.4. CONTADORES ASINCRONOS DESCENDENTES. 81-83 7.5. DEMORA EN LA PROPAGACION DE CONTADORES DE 83-85 ONDAS. 7.6. DECODIFICACION DE UN CONTADOR. 85-86 7.6.1. Decodificación alta-activa. 86 7.6.2. Decodificación del contador BCD. 87 7.7. CONTADORES BCD CON TRANSMISION EN CASCADA. 87-89 7.8. CONTADORES DE REGISTROS DE CAMBIOS. 89-90 7.8.1. Contador en forma de anillo. 8. INSTRUMENTOS DE MEDICION. 90-92 93 8.1. INTRODUCCION. 94 8.2. VELOCIDAD DEL VIENTO. 8.3. ANEMOMETROS ROTATIVOS DE CUBETAS. 97 8.4. ANEMOMETROS CON PALETAS DE ORIENTACIÓN Y 97 95-96 HELICES CON MONTURA FIJA. 8.5. TRANSDUCTORES DE VELOCIDAD DEL VIENTO. 8.6. DIRECCION DEL VIENTO. 98-100 100 8.6.1. Paletas de viento. 100-101 8.6.2. Anemómetros de hélice con montura fija. 102 8.6.3. Transductores de dirección del viento. 102 8.6.4. Ubicación y exposición de los instrumentos de 103-104 medición del viento. 8.7. DESEMPEÑO DEL SISTEMA. 8.7.1. 8.8. 105 Exactitud del sistema. CARACTERISTICAS DE LAS 105-106 RESPUESTAS DE LOS 107-108 SENSORES METEOROLOGICOS IN SITU. 5 CAPITULO. 9. DESARROLLO DEL PROYECTO. PAGINA. 109 9.1. ANEMOMETRO. 110-117 9.2. FUNCIONAMIENTO DEL ANEMOMETRO. 118-123 9.3. VELETA. 123-132 9.4. FUNCIONAMIENTO DE LA VELETA. 133-137 10. CONCLUSIONES. GLOSARIO DE ABREVIATURAS. ANEXOS. BIBLIOGRAFIA. 138 139 140-189 190 6 1. FAMILIAS LOGICAS DE CIRCUITOS INTEGRADOS. 7 1.1. INTRODUCCION Los circuitos digitales en forma invariable se construyen con circuitos integrados. Un circuito integrado (abreviado IC) es un cristal semiconductor pequeño de silicio, llamado pastilla, que contiene componentes eléctricos como transistores, diodos, resistores y capacitores. Los diversos componentes están interconectados dentro de la pastilla para formar un circuito electrónico. La pastilla se monta en un paquete de metal o plástico y se sueldan conexiones a las clavijas externas para formar el IC. Los circuitos integrados difieren de otros circuitos electrónicos compuestos de componentes desprendibles en que los componentes, individuales de un IC no pueden separarse o desconectarse y el circuito en el interior del paquete es accesible sólo a través de las clavijas externas. Los circuitos ¡integrados se obtienen en dos tipos de paquetes: el paquete plano y el paquete dual en línea (DIP) como se muestra en la Fig. 1.1. FIGURA 1.1. PAQUETE DE CIRCUITOS INTEGRADOS. 8 El paquete dual en línea es el tipo de mayor uso debido a su precio bajo y fácil instalación en tableros para conexionar circuitos. La envolvente del paquete IC se hace de plástico o cerámica. La mayoría de los paquetes tienen tamaño estándar y el número de clavijas varía desde 8 a 64. Cada IC tiene una denominación numérica impresa en la superficie del paquete para su identificación. Cada vendedor publica un libro o catálogo con ¡información que proporciona los datos necesarios que conciernen a los diversos productos. El tamaño de los paquetes IC es muy pequeño. Por ejemplo: cuatro compuertas AND están encerradas dentro de un paquete dual en línea de 14 clavijas con dimensiones de 20 X 8 X 3 milímetros. Un microprocesador entero se encuentra dentro de un paquete dual en línea de 40 clavijas con dimensiones de 50 X I5 X 4 milímetros. Aparte de una reducción sustancial en tamaño, los IC ofrecen otras ventajas y beneficios en comparación con los circuitos electrónicos hechos de componentes discretos. El costo de los IC es muy bajo, lo que los hace económicos para su utilización. Su consumo reducido de potencia hace que el sistema digital tenga una operación más económica. Tiene una alta confiabilidad contra fallas de modo que el sistema digital necesita menos reparaciones. La velocidad de operación es más alta, lo cual los hace adecuados para operaciones de alta velocidad. 9 El uso de los IC reduce el número de conexiones de alambrado externas, debido a que muchas de las conexiones están en el interior del paquete. Debido a todas estas ventajas, los sistemas digitales siempre se construyen con circuitos integrados. Los circuitos integrados se clasifican en dos categorías generales, lineales y digitales. Los IC lineales operan con señales continuas para proporcionar funciones electrónicas como amplificadores y comparadores de voltaje. Los circuitos integrados digitales operan con señales binarias y están hechos de compuertas digitales interconectadas. Aquí el interés se centra sólo en los circuitos integrados digitales. Conforme ha mejorado la tecnología de los IC, el número de compuertas que pueden colocarse dentro de una sola pastilla de silicio ha aumentado en forma considerable. La diferenciación entre los IC que tienen unas cuantas compuertas internas y los que tienen decenas o cientos de compuertas; se hace por una referencia acostumbrada de que un paquete es un dispositivo de pequeña, mediana o gran escala de integración. Varias compuertas lógicas en un solo paquete hacen un dispositivo con integración a pequeña escala (SSI). Para calificar como un dispositivo de integración a media escala (MSI), el IC debe realizar una función lógica completa y tener una complejidad de 10 a 100 compuertas. Un dispositivo de integración a gran escala (LSI) lleva a cabo una función lógica con más de 100 compuertas. 10 También hay dispositivos de integración a muy alta escala (VLSI) que contienen miles de compuertas en una sola pastilla. Muchos de los diagramas de circuitos digitales que se consideran en este capitulo se muestran en detalle hasta las compuertas individuales y sus conexiones. Dichos diagramas son útiles para demostrar la construcción lógica de una función particular. Sin embargo, debe tenerse en cuenta que en la práctica, la función puede obtenerse por un dispositivo MSI o LSI, y el usuario tiene acceso a las entradas y salidas externas pero no a las entradas y salidas de las compuertas intermedias. Por ejemplo un diseñador que desea incorporar un registro en su sistema es más probable que escoja una función de esta clase de un circuito MSI disponible, en lugar de diseñarlo con circuitos digitales individuales como puede mostrarse en un diagrama. 1.2. FAMILIAS LOGICAS DIGITALES IC Se estableció que los circuitos digitales se construyen en forma invariable con IC. Las compuertas digitales IC se clasifican no sólo por su operación lógica, sino también por la familia de circuitos lógicos a las cuales pertenecen. Cada familia lógica tiene su propio circuito electrónico básico con el cual se desarrollan circuitos y funciones digitales más complejos. El circuito básico de cada familia es una compuerta NAND o bien una compuerta NOR. Los componentes electrónicos que se emplean en la construcción del circuito básico por lo general se utilizan para nombrar la familla lógica. 11 En el comercio se han introducido muchas familias lógicas diferentes de IC digitales. Las que han alcanzado un amplio uso popular se listan a continuación. TTL Lógica de transistor-transistor ECL Lógica de emisor acoplado MOS Semiconductor de óxido metálico CMOS Semiconductor complementario de óxido metálico I2 L Lógica de inyección integrada La lógica TTL tiene una lista extensa de funciones digitales y hoy día es la familia lógica más popular. La lógica ECL se utiliza en sistemas que requieren operaciones de alta velocidad. Las MOS e /2 L se usan en circuitos que requieren alta densidad de componentes y la CMOS se emplea en sistemas que necesitan bajo consumo de potencia. Debido a la alta densidad con la cual pueden fabricarse los transistores en MOS e IL, estas dos familias son las que más se utilizan para las funciones LSI. Las otras tres familias, TTL, ECL, y CMOS, tienen dispositivos LSI y también un gran número de dispositivos MSI y SSI. Los dispositivos SSI son los que incluyen un pequeño número de compuertas o flip-flops en un paquete IC. 12 El límite del número de circuitos en los dispositivos SSI es el número de clavijas en el paquete. Por ejemplo:, un paquete de 14 clavijas puede acomodar sólo cuatro compuertas de dos entradas, debido a que cada compuerta requiere tres clavijas externas, dos para cada una de las entradas y una para la salida, con un total de 12 clavijas. Las dos clavijas restantes se necesitan para suministrar potencia a los circuitos. Algunos circuitos típicos SSI se muestran en la Fig. 1.2. Cada IC se encapsula un paquete de 14 o 16 clavijas. Las clavijas se numeran a lo largo de los dos lados del paquete y especifican las conexiones que pueden hacerse. 13 FIGURA 1.2 EJEMPLOS DE ALGUNAS COMPUERTAS LOGICAS. 14 Las compuertas dibujadas dentro de los IC son sólo para información y no pueden verse debido a que el paquete IC real aparece como se muestra en la Figura 1.1. Los IC de la familia TTL por lo común se distinguen por designaciones numéricas como las series 5400 y 7400. La primera tiene amplios márgenes de temperatura de operación, adecuados para uso militar y, la segunda tiene márgenes más reducidos de temperatura, adecuados para uso industrial. La designación numérica de la serie 7400 significa que los paquetes IC están numerados como 7400, 7401, 7402, etc. Algunos proveedores ponen a la disposición IC de la familia TTL con denominaciones numéricas diferentes, como las series 9000 u 8000. En la Figura 1.2a se muestran dos circuitos TTL SSI. La serie 7404 proporciona seis (hexa) inversores en un paquete. La serie 7400 proporciona cuatro (cuádruple) puertas NAND de dos entradas. Las terminales marcadas Vcc y GND son las clavijas de suministro de potencia que requieren un voltaje de 5 volts para la operación apropiada. El tipo más común de ECL se designa como la serie 10000. En la Fig. 1.2b se muestran dos circuitos ECL. La serie 10102 proporciona compuertas NOR de dos entradas. Una compuerta ECL puede tener dos salidas, una para la función NOR y otra para la función 0 (clavija 9 del 10102IC). El 10107 proporciona tres compuertas excluyentes OR. 15 Aquí hay de nuevo dos salidas para cada compuerta; la otra salida de la función excluyente NOR o de equivalencia. Las compuertas ECL tienen tres terminales para suministro de potencia. VCC1 y VCC2 por lo común se conectan a tierra y VEE a un suministro de - 5.2 volt. Los circuitos CMOS de la serie 4000 se muestran en la Fig. 1.2c Sólo pueden acomodarse en el 4002 dos compuertas NOR de cuatro entradas, debido a la limitación de clavijas. El tipo 4059 proporciona seis compuertas buffer. Ambos ICS tienen dos terminales sin uso marcadas NC (no conexión). La terminal marcada Vss requiere un voltaje en el suministro de potencia de 3 a 15 volts, en tanto Vss por lo común se conecta a tierra. 1.3. LOGICAS POSITIVA Y NEGATIVA La señal binaria en la entrada o salida de cualquier compuerta puede tener uno de dos valores, excepto durante la transición. Un valor de la señal representa la lógica 1 y el otro, la lógica 0. Ya que se asignan dos valores de señal a dos valores lógicos, existen dos diferentes asignaciones de señales a lógica. Debido al principio de dualidad de álgebra booleana, un intercambio en la asignación del valor de señal resulta en el implante de una función dual. Considérense los dos valores de una señal binaria tal como se muestra en la Fig. 1.3 un valor debe ser más alto que el otro, ya que los dos valores deben ser diferentes con objeto de distinguir entre ellos. 16 Se designa el nivel alto por H y el nivel bajo por L. Hay dos elecciones para la asignación del valor de lógica. La elección del nivel alto H para que represente la lógica 1, como se muestra en la Fig. 1.3a, define un sistema de lógica positiva. La elección del nivel bajo L para representar la lógica 1, como se muestra en la Fig. 1.3b, define un sistema de lógica negativa. Los términos positiva y negativa algunas veces pueden ser engañosos, ya que ambas señales de valor pueden ser positivas o negativas. No es la polaridad de la señal la que determina el tipo de lógica, sino más bien la asignación de valores lógicos de acuerdo con las amplitudes relativas de las señales. FIGURA 1.3 ASIGNACION DE AMPLITUD Y TIPO DE SEÑAL LOGICA. Las hojas de datos de los circuitos integrados definen las funciones digitales no en términos de la lógica 0, sino más bien en términos de los niveles H y L. Se deja al usuario decidir la asignación de una lógica positiva o negativa. Los voltajes de alto nivel y bajo nivel para las tres familias lógicas digitales IC se listan en la Tabla 1.1. 17 En cada familia, hay unos márgenes de valores de voltaje que el circuito reconocerá como nivel alto o bajo. El valor típico es el que más se encuentra por lo común. En la tabla también se listan los requisitos del suministro de voltaje para cada familia como una referencia. Tipo de familia IC Voltaje de suministro (V) TTL ECL CMOS Lógica positiva: Lógica negativa: VCC = 5 VEE = -5.2 VDD = 3 - 10 Alto nivel de (V) Márgenes 2.4 – 5 -0.95 - -0.7 VDD voltaje típico 3.5 -0.8 VDD Lógica 1 0 Bajo nivel de voltaje Márgenes 0 - -0.4 -1.9 - -1.6 0 – 0.5 típico 0.2 -1.8 0 Lógica 1 Lógica 0 Lógica TABLA No 1.1 NIVELES DE H Y L EN LAS FAMILIAS LOGICAS IC. La familia TTL tiene valores típicos de H =3.5 volts y L = 0.2 volts. La familia ECL tiene dos valores negativos, con H = -0.8 volts y L = -1.8 volts. Obsérvese que aunque ambos niveles son negativos, el más elevado es -0.8. Las compuertas CMOS pueden usar un voltaje de suministro VDD en cualquier parte entre 3 y 1 5 volts: en forma típica, utilizan ya sea 5 o 10 volts. Los valores de seña! en las CMOS son de una función del voltaje de suministro con H = VDD Y L = 0 volts. Las asignaciones de polaridad para lógica positiva y negativa también se indican en la tabla. 18 A la luz de esta exposición, es necesario justificar los símbolos lógicos usados para los IC que se listan en la Fig. 1-1.Tómese, por ejemplo, una de las compuertas del IC 7400. Esta compuerta se muestra en forma de diagrama de bloques en la Fig. 1.3.1.(b). La tabla de verdad del fabricante para esta compuerta dada en una hoja de datos se muestra en la Fig. 1.3.1(a). En esta tabla se especifica el comportamiento físico de la compuerta, con H de 3.5 volts en forma típica y L de 0.2 volts. Esta compuerta física puede funcionar ya sea como compuerta NAND o NOR, dependiendo de la asignación de polaridad. 19 FIGURA 1.3.1 DEMOSTRACION DE LA LOGICA POSITIVA Y NEGATIVA. En la tabla de verdad de !a Fig. 1.3.1(c) se supone la asignación de lógica positiva con H = 1 y L = 0. Al verificar esta tabla de verdad en la Fig.1.3.1, se reconoce como una compuerta NAND. El símbolo gráfico para una compuerta NAND de lógica positiva se muestra en la Fig. 1.3.1 (b) y es similar a la que se adoptó con anterioridad. Ahora considérese la asignación de lógica negativa a esta compuerta física con L = 1 y H = 0. El resultado es la tabla de verdad que se muestra en la Fig. 1.3.1 (e). 20 Puede reconocerse que esta tabla representa la función NOR aún cuando sus entradas están listadas hacia atrás. El símbolo gráfico para una compuerta NOR de lógica negativa se muestra en la Fig. 1.3.1 (f). El pequeño triángulo en los alambres de entrada y salida designan un indicador de polaridad. La presencia de este indicador de polaridad a lo largo de una terminal indica que se asigna una lógica negativa a la terminal. Por tanto, la misma compuerta física puede funcionar ya sea como una NAND de lógica positiva o como una NOR de lógica negativa. De manera semejante, es posible mostrar que una NOR de lógica positiva es la misma compuerta física que una NAND de lógica negativa. La misma relación es válida entre las compuertas AND y OR o entre las compuertas excluyente-OR y equivalencia. En cualquier caso, si se supone lógica negativa en cualquier terminal de entrada o salida, es necesario incluir el símbolo del triángulo ¡indicador de polaridad junto a la terminal. La conversión de lógica positiva en lógica negativa y viceversa es en esencia una operación que cambia los 1 en 0 y los 0 en 1, tanto en las entradas como en las salidas de una computadora. Ya que esta operación produce el dual de una función, el cambio de todas las terminales de una polaridad a la otra resulta en tomar la dual de la función. El resultado de esta conversión es que todas las operaciones AND se convierten en operación OR (o símbolos gráficos) y viceversa. 21 Además, no debe olvidarse incluir el indicador de polaridad en los símbolos gráficos cuando se supone lógica negativa. El pequeño triángulo que representa un indicador de polaridad y el pequeño círculo que representa una complementación tienen efectos similares pero diferente significados. Por tanto, puede reemplazarse uno por otro, pero la interpretación es diferente. Un círculo seguido por un triángulo, como en la Figura 1.3.1(f), representa una complementación seguida por un indicador de polaridad de lógica negativa. Los dos se cancelan uno a otro y ambos pueden eliminarse. Pero si se eliminan ambos, entonces las entradas y salidas de la compuerta representarán polaridades diferentes. Las características de las familias IC de lógica digital por lo común se comparan por el análisis de circuito de la compuerta, básica en cada familia. Los parámetros más importantes que se evalúan y comparan con la salida en abanico (multiplicidad de conexiones en la salida), disipación de potencia, retardo de propagación y margen de ruido. El abanico de salida especifica el número de cargas estándar que pueden impulsar la salida de una compuerta sin menoscabar su operación normal. Una carga estándar por lo común se define como la cantidad de corriente necesaria por una entrada de otra compuerta en la misma familia IC. Algunas veces el término cargado se usa en lugar de abanico de salida. 22 Este término se deriva del hecho de que la salida de una compuerta puede suministrar una cantidad limitada de corriente, arriba de la cual cesa su operación apropiada y se dice que está sobrecargada. La salida de una compuerta por lo general se conecta a las entradas de otras compuertas similares. Cada entrada consume una cierta cantidad de potencia de la entrada de la compuerta, de modo que cada conexión adicional se agrega a la carga de la compuerta. Las "reglas de carga" por lo común se listan para una familia de circuitos digitales estándar. Estas reglas especifican la máxima cantidad de carga permitida para cada salida de cada circuito. El exceder la carga máxima especificada puede causar un mal funcionamiento debido a que el circuito no puede suministrar !a potencia demandada de él. El abanico de salida es el número máximo de entradas (a otros circuitos) que pueden conectarse a la salida de una compuerta y se expresa por un número. Las capacidades del abanico de salida de una compuerta pueden considerarse cuando se simplifican las funciones booleanas. Debe tenerse cuidado de no desarrollar expresiones que resulten en una compuerta sobrecargada. Los amplificadores no ¡inversores o buffer algunas veces se emplean para proporcionar capacidades adicionales de impulsión para cargas pesadas. La disipación de potencia es la potencia suministrada requerida para operar la compuerta. Este parámetro se expresa en miliwatts (Mw.) y representa la potencia real disipada en la compuerta. 23 El número que representa este parámetro no incluye la potencia suministrada por otra compuerta; más bien, representa la potencia suministrada a la compuerta por el suministro de potencia. Un IC con cuatro compuertas requerirá, de su suministro de potencia, cuatro veces la potencia disipada por cada compuerta. En un sistema dado, puede haber muchos IC y, la potencia requerida por cada IC debe considerarse. La disipación total de potencia en un sistema es la suma total de la potencia disipada en todos los IC. El retardo de propagación es el retardo de tiempo de transición promedio para que una señal se propague desde la entrada a la salida cuando la señal binaria cambia el valor. Las señales a través de una compuerta toman cierta cantidad de tiempo para propagarse desde las entradas a la salida. Este intervalo de tiempo se define como el retardo de propagación de la compuerta. El retardo de propagación se expresa en nanosegundos (ns) y, un ns es igual a 109 de un segundo. 24 FIGURA No. 1.3.2 COMPUERTAS LOGICAS DIGITALES. Las señales que viajan de las entradas de un circuito digital a sus salidas pasan a través de las compuertas es el retardo total de propagación del circuito. 25 Cuando la velocidad de operación es importante, cada compuerta debe tener un pequeño retardo de propagación y el circuito digital debe tener un número mínimo de compuertas en serie entre las entradas y las salidas. En la mayoría de los circuitos digitales las señales de entrada se aplican en forma simultánea a más de una compuerta. Todas las compuertas que reciben sus entradas exclusivamente desde las entradas externas, constituyen el primer nivel lógico del circuito. Las compuertas que reciben cuando menos una entrada de una salida de una compuerta del primer nivel lógico se considera que están en el segundo nivel lógico, y en forma semejante, para el tercer nivel y los más altos. El retardo total de propagación del circuito es igual al retardo de propagación de una compuerta multiplicado por el número de niveles lógicos en el circuito. Luego, una reducción en el número de niveles lógicos produce una reducción del retardo de señal y en circuitos más rápido. La reducción del retardo de propagación en los circuitos puede ser más importante que la reducción en el número total de compuertas s¡ la velocidad de operación es un factor principal. El margen de ruido es el máximo voltaje de ruido añadido a la señal de entrada de un circuito digital que no causa un cambio indeseable en la salida del circuito. Hay dos tipos de ruido que considerar: el ruido CC es causado por una deriva en los niveles de voltaje de una señal. El ruido CA es un pulso aleatorio que puede crearse por otras señales de interrupción. 26 Por eso, el ruido es un término que se utiliza para denominar una señal indeseable que está superpuesta sobre la señal normal de operación. La capacidad de los circuitos para operar en forma confiable en un ambiente de ruido es importante en muchas aplicaciones. El margen de ruido se expresa en volts (V) y representa la señal de ruido máximo que puede tolerarse por la compuerta. 1.4. CARACTERISTICAS DE LAS FAMILIAS LOGICAS IC El circuito básico de la familia lógica TTL es la compuerta NAND. Hay muchas versiones de la TTL y tres de ellas se citan en la Taba 1.4. En esta tabla se dan las características generales de las familias lógicas IC. Los valores que se listan son representativos en una base de comparación. Para cualquier familia o versión, los valores pueden tener cierta variación. La compuerta estándar TTL fue la primera versión de la familia TTL. Conforme progresó la tecnología, se agregaron mejoras adicionales. La TTL Schottky es una última mejora que reduce el retardo de propagación, pero resulta en un aumento de la disipación de potencia. La versión TTL Schottky de baja potencia sacrifica cierta velocidad para reducir la disipación de potencia. Tiene el mismo retardo de propagación que la TTL estándar, pero la disipación de potencia se reduce en forma considerable. El abanico de salida de la TTL estándar es 10, pero la versión Schottky de baja potencia tiene un abanico de salida de 20. 27 Bajo ciertas condiciones las otras versiones también pueden tener un abanico de salida de 20. El margen de ruido es menor que 0.4, con un valor típico de 1 V. El circuito básico de la familia ECL es la compuerta NOR. La ventaja especial de las compuertas ECL es su bajo retardo de propagación. Algunas versiones ECL pueden tener un retardo de propagación tan bajo como 0.5 ns. La disipación de potencia en las compuertas ECL es comparativamente alta y el margen de ruido bajo. Estos dos parámetros imponen una desventaja cuando se elige la ECL sobre las otras familias lógicas. Sin embargo, debido a su bajo retardo de propagación, la ECL ofrece la velocidad más alta entre todas tas famillas y es la elección final para sistemas muy rápidos. El circuito más bajo de la CMOS es el inversor por el cual ambas compuertas NAND y NOR pueden construirse. La ventaja especial del CMOS es su disipación de potencia en extremo baja. Bajo condiciones estáticas, la disipación de potencia de la compuerta CMOS es despreciable, con promedios de cerca de 10nw. Cuando la señal de la compuerta cambia de estado, hay una disipación dinámica de potencia que es proporcional a la frecuencia a la cual se ejerce el circuito. El número que se lista en la tabla es un valor típico de la disipación dinámica de potencia en las compuertas CMOS. Una desventaja principal de la compuerta CMOS es su alto retardo de propagación. 28 Esto significa que no es práctica para utilizarse en sistemas que requieren operaciones a alta velocidad. Los parámetros característicos de la compuerta CMOS dependen del voltaje de suministro de potencia DD que se use. La disipación de potencia aumenta conforme aumenta el voltaje de suministro. El retardo de propagación disminuye con el incremento en el voltaje de suministro, y el margen de ruido se estima que es alrededor del 40% del valor del voltaje de suministro. Familia Lógica Abanico de IC salida Disipación de Potencia (mW) Retardo de propagación (ns) Margen de ruido (V) Estándar TTL 10 10 10 0.4 Schottky TTL 10 22 3 0.4 Schottky TTL 20 2 10 0.4 ECL 25 25 2 0.2 CMOS 0.50 0.1 25 3 Baja potencia TABLA 1.4. CARACTERISTICAS PRINCIPALES DE LAS DIFERENTES FAMILIAS. Las compuertas lógicas operan con números binarios. Por esta razón, a las compuertas lógicas serán altos o bajos. En este capitulo un alto voltaje significara un 1 binario y un bajo voltaje se significara un 0 binario. Recordar que las compuertas lógicas son circuitos electrónicos. Estos circuitos electrónicos responderán a altos voltajes (llamados “1” –unos-) o bajo voltaje (tierra) (llamados “0” ceros-). 29 Todos los sistemas digitales se construyen usando solo 3 compuertas lógicas básicas. A estas compuertas lógicas se les conoce como la compuerta and, la compuerta or y la compuerta not. En este capitulo se trata con estas importantes compuertas lógicas básicas. 1.5. LA COMPUERTA AND. La compuerta and se le llama la compuerta “todo o nada”. El esquema de la figura 1.5a muestra la idea de la compuerta and. encenderá solo cuando cerrados. ambos interruptores En la figura 1.5b La lámpara (y) se de entrada (a y b) están se muestran todas las posibles combinaciones para los interruptores a y b. A la tabla en esta figura se le llama tabla verdadera. La tabla de verdad muestra que la salida (y) es habilitada solo cuando ambas entradas estén cerradas. B A Y + - FIGURA 1.5a CIRCUITO AND USANDO CONMUTADORES 30 CONMUTADORES DE ENTRADA. B ABIERTO ABIERTO CERRADO CERRADO LUZ DE SALIDA A Y ABIERTO SALIDA ABIERTA CERRADO NO NO NO SI FIGURA 1.5b. ENTRADAS SALIDAS “0”= BAJO VOLTAJE “1”= ALTO VOLTAJE B 0 0 1 1 A 0 1 0 1 Y 0 0 0 1 E N T R A D A A Y B El álgebra boleana es una forma de lógica simbólica que muestra como operan los circuitos lógicos. Una expresión boleana es un “método taquigráfico” de mostrar lo que sucede en un circuito lógico. La expresión boleana para el circuito de la figura 1.5 es: AB=Y Esta expresión boleana se lee como A y B igual a la salida y. Algunas veces el punto (.) no se emplea en la expresión boleana, así que la expresión boleana para la compuerta and de dos entradas seria: AB = Y 31 S A L I D A Esta expresión boleana se lee A y B igual a la salida Representa la función lógica y. El punto (.) and en álgebra boleana, no la multiplicación como en el álgebra regular. Las leyes del álgebra boleana gobiernan la operación de las compuertas and, las leyes formales para la función and son: A0=0 A1=0 A =A A A = 0 Esta barra sobre la variable significa no A o el opuesto de A. 1.6. LA COMPUERTA OR. A la compuerta or se le llama compuerta de “cualquiera o todo “. El esquema de la figura 1.6 muestra la idea de la compuerta or. La lámpara (y) se encenderá cuando cualquier interruptor A o B este cerrado. La lámpara también se encenderá cuando los dos interruptores A y B estén cerrados. La lámpara (y) no se encenderá cuando ambos interruptores se encuentran abiertos, en la figura 1.6 La tabla de verdad muestra en detalle la función or del circuito de interruptor y lámpara. FIGURA 1.6 COMPUERTA OR 32 La salida del circuito or estará habilitada cuando alguno o todos de los interruptores este cerrado. El símbolo lógico convencional para la compuerta or se muestra en la figura 1.6.1, la compuerta or tiene diferente forma. La compuerta or tiene dos entradas, llamadas A y B. A la salida se le llama Y. La expresión boleana “taquigráfica” para esta función or está dada por A + B = Y. Nótese que el signo (+) significa or en álgebra boleana. La expresión (A + B = Y) se lee como A or B igual a la salida Y. El signo mas no significa suma como en el álgebra regular. FIGURA 1.6.1 SIMBOLO DE LA COMPUERTA OR La tabla de verdad para la compuerta or de dos entradas se muestra en la tabla 1.6 Las variables de entrada (A y B) se muestran a la izquierda. La salida resultante se muestra en la columna de la derecha de la tabla. 33 CONMUTADORES SALIDA DE ENTRADA LUMINOSA. B A ENTRADAS Y ABIERTO ABIERTO NO ABIERTO CERRADO SI CERRADO ABIERTO SI CERRADO CERRADO SI SALIDA B A Y 0 0 1 1 0 1 0 1 0 1 1 1 0 = BAJO VOLTAJE FIG.3.8b 1 = ALTO VOLTAJE TABLA DE VERDAD PARA OR. TABLA 1.6. La compuerta or es habilitada (la salida es 1) cada vez que aparece un 1 en alguna o todas las entradas. Igual que anteriormente, un 0 se define como bajo voltaje (tierra). Un 1 en la tabla de verdad representa alto voltaje (+5v). La expresión boleana para una compuerta or de tres entradas esta en la figura 1.6.2 La expresión se lee A or B or C igual a al salida Y. De nuevo, el signo más, significa a la función or. A+B+C =Y FIGURA 1.6.2 EXPRESION BOOLEANA DE TRES VARIABLES En la figura 1.6.2 se ve el símbolo lógico para una compuerta or de tres entradas. 34 Las entradas A, B y C se muestran a la izquierda del símbolo. La salida y se muestra ala derecha del símbolo or. Este símbolo representa algún circuito que realiza la función or. FIGURA 1.6.3 COMPUERTA OR DE TRES ENTRADAS En la figura 1.6.4 se muestra una tabla de verdad para la compuerta lógica or de tres entradas. Las variables (A, B, C) se muestran a la izquierda de la tabla. La salida (Y) se representa en la columna de la derecha. Cada vez que aparezca un 1 en cualquier entrada, la salida será 1. FIGURA 1.6.4 TABLA DE VERDAD PARA LA COMPUERTA OR 35 1.7. LA COMPUERTA NOT. A la compuerta not también se le conoce como inversor. La compuerta not, o inversor, es una compuerta no usual. solamente una entrada La compuerta not y una salida. En la figura 1.7 a tiene se muestra el símbolo lógico para el inversor o compuerta not. FIGURA 1.7 COMPUERTA NOT. El proceso de la inversión es simple. La figura 1.7 b muestra la tabla de verdad para la compuerta not. La entrada es cambiada por su opuesto. Si la entrada es 0, la compuerta not dará su complemento u opuesto que es 1. Si la entrada en la compuerta not es 1, el circuito dará 0. Esta inversión, significa la misma cosa. La expresión boleana para la inversión se muestra en la figura 1.7 c la expresión A = A se lee como A es igual a la salida no A. La barra sobre la A significa complemento de A. La figura 1.7 d ilustra lo que sucedería si se usaran dos inversores. 36 Las expresiones booleanas están escritas sobre las líneas que se encuentran entre los inversores. La entrada A, es invertida A (no A). Ā se invierte de nuevo para dar a (no no A). La a doblemente invertida (A) es igual a la a original, como se muestra en la figura 1.7 d. En la región sombreada bajo los inversores, un bit 0 es la entrada. El bit 0 es complementado a 1. El bit 1 es complementado nuevamente a 0. Cuando una señal digital pasa a través de dos inversores, recupera su forma original. Las leyes del álgebra-booleana gobiernan las acciones del inversor o compuerta not. Las leyes formales del álgebra booleana para la compuerta not son como sigue. Ō=1 SI A = 1 ENTONCES Ā = 0 SI A = 0 ENTONCES Ā = 1 Ā=A 1.8. CIRCUITOS INTEGRADOS DIGITALES En el capitulo anterior se presentaron las diversas familias lógicas digitales IC. En este capítulo se presentan los circuitos electrónicos básicos en cada familia lógica digital IC y se analiza su operación eléctrica. Las familias lógicas digitales IC que se consideran aquí son: RTL Lógica de resistor-transistor DTL Lógica diodo-transistor I2L Lógica integrada-inyección 37 TTL Lógica transistor-transistor ECL Lógica emisor-acoplado MOS Semiconductor metal-óxido CMOS Semiconductor metal-óxido complementario Las primeras dos, RTL y DTL, tienen sólo importancia histórica ya que rara vez se usan en los nuevos diseños. La RTL fue la primera familia comercial de uso extenso. Se incluye aquí porque representa un punto de partida útil para explicar la operación básica de las compuertas digitales. Los circuitos DTL han sido reemplazados en forma gradual por los TTL. De hecho, la compuerta TTL es una modificación de la compuerta DTL. La operación de la compuerta TTL será más fácil de entender después de que se exponga la compuerta DTL. Estas familias tienen un gran número de circuitos SSI, al igual que circuitos MSI y LSI. Las familias I2L y MOS tienen mucho uso para construir funciones LSI. El circuito básico en cada familia lógica digital IC es ya sea una compuerta NAND o NOR, El circuito básico es el bloque primario de construcción mediante el cual se obtienen funciones más complejas. Un seguro RS se construye mediante dos compuertas NAND o dos NOR conectadas lomo a lomo. Se obtiene un flip-flop maestro-esclavo mediante la interconexión de cerca de diez compuertas básicas. Se obtiene un registro mediante la interconexión de flip-flops y compuertas básicas. Cada familia lógica IC tiene disponible un catálogo de paquetes de circuitos integrados que proporcionan las diversas funciones lógicas digitales. 38 Las diferencias entre las funciones lógicas disponibles para cada familia lógica no radican mucho en la función que logran sino en las características de la compuerta básica mediante la cual se ha -construido la función. Las compuertas NAND y NOR en forma usual se definen por las funciones booleanas que implementen en términos de variables binarias. Cuando se analizan como circuitos electrónicos, es más conveniente investigar sus relaciones de entrada-salida en términos de dos niveles de voltaje; un nivel alto (H) y un nivel bajo (L) (véase la Fig. 1.3). Las variables binarias toman los valores 1 y 0. Cuando se adopta la lógica positiva, al nivel alto de voltaje se asigna el valor binario de 1, y al nivel bajo de voltaje un valor binario 0. 39 2. DIODOS. 40 2.1. EL SIMBOLO ELECTRICO. Algunos dispositivos electrónicos son lineales: es decir, su corriente es directamente proporcional a su tensión. La razón por la cual se les llama lineales es que la representación de la corriente en función de la tensión es una línea recta. Un diodo es diferente. Debido a la barrera de potencial existente, no se comporta como lo hace una resistencia, la representación de la corriente en función de la tensión para un diodo es una curva y por lo tanto no es lineal. 2.2. LA CURVA DEL DIODO. Cuando un fabricante diseña un diodo para convertir corriente alterna en corriente continua, el diodo recibe el nombre de diodo rectificador. Una de sus aplicaciones principales de halla en las fuentes de alimentación, circuitos que convierten la tensión alterna de la red en tensión continua. 2.3. LA ZONA DIRECTA. 2.3.1. Tensión umbral. La tensión para la que la corriente empieza a aumentar rápidamente se llama tensión umbral del diodo. Para un diodo de silicio, la tensión umbral puede aproximarse a la barrera de potencial, aproximadamente 0.7 V. Un diodo de germanio, por otra parte tiene una tensión umbral de aproximadamente 0.3 V. 41 2.3.2. Dispositivo no lineal. Un diodo es un dispositivo no lineal. Por debajo de 0.7 V, por el diodo circula muy poca corriente. Por encima de los 0.7 V, la corriente aumenta rápidamente. Este efecto es muy diferente al que se da en una resistencia en la que la corriente aumenta en proporción directa a la tensión. La razón de que el diodo sea diferente es que este tiene una barrera de potencial producida en su zona de deplexión. 2.3.3. Resistencia interna. Para tensiones mayores que la tensión umbral, la corriente del diodo aumenta rápidamente. Esto quiere decir que aumentos pequeños en la tensión del diodo originaran grandes aumentos en su corriente. La causa es la siguiente: después de superada la barrera de potencial, lo único que se opone a la corriente es la resistencia de las zonas p y n. A la suma de estas resistencias se le llama resistencia interna del diodo. O sea, rB = rP + rN El valor de la resistencia interna depende del nivel de dopado y del tamaño de las zonas p y n. Normalmente, la resistencia interna de los diodos rectificadores es menor de 1 ohm. 42 2.3.4. Máxima corriente continúa con polarización directa. Si la corriente en un diodo es demasiado grande, el calor excesivo destruirá el diodo. Basta acercarse al valor del calor máximo, aun cuando no se alcance, para acortar la vida del diodo y degradar otras propiedades. Por esta razón, la hoja de características que proporcionan los fabricantes especifica la corriente máxima que un Diodo puede soportar sin peligro de acortar su vida o degradar sus propiedades. La corriente máxima con polarización directa es una de las limitaciones dadas en una hoja de características. Esta corriente puede aparecer como IF (máx.), I0, etc., dependiendo del fabricante. Por ejemplo un 1N456 tiene una corriente máxima de 135 mA. Este dato significa que puede conducir con seguridad un a corriente continua con polarización directa igual a 135 mA. 2.3.5. Disipación máxima de potencia. La disipación máxima de potencia esta estrechamente relacionada con la máxima corriente continua con polarización directa. Como sucede con una resistencia, un diodo tiene una limitación de potencia. Esta indica cuanta potencia puede disipar el diodo sin peligro de acortar su vida ni degradar sus propiedades. Cuando la corriente es continua, el producto de la tensión en el diodo y la corriente en el diodo es igual a la potencia disipada por este. 43 Con diodos rectificadores, normalmente no se emplea la limitación máxima de potencia, ya que toda la información acerca de la destrucción (por calor) del diodo ya está contenida en el límite máximo de corriente. 2.4. LA ZONA INVERSA. Cuando un diodo se polariza en inverso, fluye una pequeña corriente de fugas. Midiendo la tensión y la corriente del diodo puede trazarse la curva para la polarización inversa. La corriente del diodo es muy pequeña para todas las tensiones inversas menores que la tensión de ruptura. En la ruptura la corriente aumenta rápidamente con pequeños incrementos de tensión. 2.5. EL DIODO IDEAL. Un diodo rectificador conduce bien en la zona directa y se conduce mal en la zona inversa. En teoría un diodo rectificador se comporta como un conductor perfecto (resistencia cero) cuando tiene polarización directa, y la hace como un aislante perfecto (resistencia infinita) cuando tiene polarización inversa. Un interruptor tiene resistencia cero al estar cerrado, y resistencia infinita al estar abierto. Por tanto un diodo ideal actúa como un interruptor que se cierra al tener polarización directa y se abre con polarización inversa. 44 3. DISPOSITIVOS OPTOELECTRONICOS. 45 La optoelectronica es la tecnología que combina la óptica con la electrónica. Este sugestivo campo incluye muchos dispositivos basados en la acción de una unión pn. Ejemplos de dispositivos optoeléctronicos son los diodos emisores de luz (LED), los fotodiodos, los optoacopladores, etcétera. 3.1. DIODO EMISOR DE LUZ. En un LED con polarización directa los electrones libres atraviesan la unión y caen en los huecos. Como caen de niveles energéticos altos a niveles energéticos bajos, emiten energía. En los diodos normales esta energía se disipa en forma de luz. Los LED han sustituido a las lámparas incandescentes en muchas aplicaciones por su baja tensión, su larga vida y su gran rapidez de conmutación. FIGURA 3.1 DIODO EMISOR DE LUZ 46 Los diodos normales están hechos de silicio, un material opaco que obstruye el paso de luz. Los LED son diferentes. Empleando elementos como el galio, el arsénico y el fósforo, un fabricante puede producir LED que radien luz roja, verde, amarilla, azul, naranja o infrarroja (Invisible). Los LED que producen radiación visible son útiles en los instrumentos, las calculadoras, etc. Los LED de luz infrarroja tienen aplicaciones en sistemas de alarma antirrobos y otras áreas en las que se requiera luz invisible. En la mayor parte de los LED disponibles comercialmente, la caída de tensión típica es de 1.5 a 2.5 V para corrientes que fluctúan entre 10 y 50 mA. El valor exacto de la caída de tensión depende de la corriente del LED, el color, la tolerancia, etc. 3.2. FOTODIODO. Uno de los componentes de la corriente inversa en un diodo es el flujo de portadores minoritarios. La existencia de estos portadores se debe a que la energía térmica esta continuamente desligando electrones de valencia de sus orbitas, produciendo durante este proceso electrones libres y huecos. El tiempo de vida de los portadores minoritarios es corto, pero mientras existen pueden contribuir a la corriente inversa. 47 FIGURA 3.2 FOTODIODO. Cuando la energía luminosa se proyecta sobre una unión pn, puede desligar electrones de valencia. Cuanta más luz incida sobre la unión, mayor será la corriente inversa en el diodo. Un fotodiodo es un diodo cuya sensibilidad a la luz es máxima. En este tipo de diodos, una ventana permite que la luz pase por el encapsulado hasta la unión. La luz incidente produce electrones libres y huecos. Cuanto más intensa sea la luz, mayor será el número de portadores minoritarios y mayor será la corriente inversa. 3.3. OPTOACOPLADOR. Un optoacoplador (llamado también optoaislador o aislador acoplado opticamente) combina un LED y un fotodiodo en un solo encapsulado. La figura 3.3 muestra un optoacoplador. Tiene un LED en el lado de entrada y un fotodiodo en el lado de la salida. La tensión de la fuente a la izquierda y la resistencia en serie establecen una corriente en el LED. 48 Luego, la luz proveniente del LED incide sobre el fotodiodo, lo que genera una corriente inversa en el circuito de salida. Esta corriente inversa produce una tensión en la resistencia de salida. La tensión de salida, es igual a la tensión de la fuente menos la tensión en la resistencia. FIGURA 3.3. OPTOACOPLADOR. Si la tensión de entrada varía, la cantidad de luz también lo hará. Esto significa que la tensión de salida cambia de acuerdo con la tensión de entrada. Por ello, la combinación de un LED y un fotodiodo recibe el nombre de optoacoplador. El dispositivo puede acoplar una señal de entrada con el circuito de salida. La ventaja fundamental de un optoacoplador es el aislamiento electrónico entre los circuitos de entrada y de salida. Mediante el optoacoplador, el único contacto que hay entre la entrada y la salida es un haz de luz. Por esta causa, es posible tener una resistencia de aislamiento entre los dos circuitos del orden de miles de miliohms. 49 Los aislamientos como éste son útiles en aplicaciones de alta tensión en las que los potenciales de los dos circuitos pueden diferir en varios miles de voltios. 50 4. CONVERSOR ANALOGICO DIGITAL. 51 Un convertidor A/D toma un voltaje de entrada analógico y después de cierto tiempo produce un código de salida digital que representa la entrada analógica. El proceso de conversión A/D es generalmente más complejo y largo que el proceso D/A, y se han creado y utilizado muchos métodos. Varios tipos importantes de ADC utilizan un convertidor D/A como parte de sus circuitos. La oportunidad para realizar la operación es ofrecida por la señal del cronometro de entrada. La unidad de control contiene los circuitos lógicos para generar la secuencia de operaciones adecuada en respuesta al comando “INICIO”, el cual inicia el proceso de conversión. El comparador tiene dos entradas analógicas y una salida digital que intercambia estados. Según que entrada analógica sea mayor. FIGURA 4.1 CONVERTIDOR ANALOGICO DIGITAL. 52 4.1. RESOLUCION Y EXACTITUD DEL A/D. La resolución del convertidor D/A es igual a la resolución del convertidor D/A, el voltaje de salida VA’ del D/A es una onda en escalinata que asciende en etapas discretas hasta que excede de VA. En consecuencia, VA’ es un valor aproximado de VA y lo más que puede esperarse es que VA’ este dentro de 10 mV de VA si la resolución es 10 mV. Podría pensarse que la resolución es un error inherente que a menudo se conoce como error de cuantización. Este error de cuantización, que se puede reducir incrementando el número de bits en el contador y convertidor D/A, algunas veces se especifica como un error de + 1 LSB, lo cual indica que el resultado podría ser erróneo debido al tamaño de etapa finito (distinto de cero). Observando esto desde un punto de vista diferente, la entrada V A puede tomar un número infinito de valores de 0 V a F.S. Sin embargo, el valor aproximado VA’ puede tomar solamente un número finito de valores discretos. Esto significa que un pequeño intervalo de valores de VA tendrá la misma representación digital. Como sucede en el convertidor D/A, la exactitud no se relaciona con la resolución sino que depende de la exactitud de las componentes del circuito, como el comparador, las resistencias de precisión y amplificadores de nivel del convertidor D/A, las fuentes de referencia etc. 53 Una especificación de error de 0.01% F.S. indica que el resultado del convertidor A/D puede alejarse por 0.01 % de F:S., debido a la incidencia de componentes no ideales. Este error aparece además del error debido a la resolución. Estas dos fuentes de error son generalmente del mismo orden de magnitud para un ADC determinado. 4.2. TIEMPO DE CONVERSION tc. En el convertidor con rampa digital, el contador empieza en cero y cuenta hasta VA’ VA .Con claridad, luego, el tiempo que se lleve completar la conversión dependerá del valor de VA. Un valor mayor de VA requerirá más etapas antes de que el voltaje de escalinata exceda de VA. El tiempo máximo de conversión ocurre cuando VA es ligeramente menor que la escala completa, de manera que la escalinata tiene que llegar a la etapa de escala completa a fin de que VA’VA. En consecuencia se tiene Tc (max) = 2N – 1 ciclos de cronómetro Algunas veces se especifica el tiempo promedio de conversión; es la mitad del tiempo máximo de conversión. t c ( prom) t C (máx) 2 N 1 ciclos de cronómetro 2 54 La desventaja principal del método de la rampa digital es que el tiempo de conversión se duplica esencialmente por cada bit que se agrega al contador, de manera que la resolución puede ser mejorada solamente con un tc mayor o mas largo. Esto hace de este tipo de ADC inadecuado para aplicaciones donde tienen que efectuarse conversiones A/D repetitivas de una señal analógica que cambia rápidamente. Sin embargo, para aplicaciones de baja velocidad la simplicidad relativa del convertidor con rampa digital es una ventaja sobre los ADC de alta velocidad más complejos. 55 5. CONVERSION DE DIGITAL A ANALOGICO. 56 Las dos operaciones E/S relativas al proceso de mayor importancia son la conversión de digital a analógico (D/A) y la conversión de analógico a digital (A/D). Ya que muchos métodos de conversión A/D utilizan el proceso de conversión D/A. Básicamente, la conversión D/A es el proceso de tomar un valor representando en código digital (como binario directo o BCD) y convertirlo en un voltaje o corriente que sea proporcional al valor digital. Este voltaje o corriente es una cantidad analógica, ya que puede tomar diferentes valores de cierto intervalo. La figura 5.1 a muestra el diagrama a bloques de un convertidor D/A común de 4 bits. FIGURA 5.1a CONVERTIDOR DIGITAL ANALOGICO. Las entradas digitales D, C, B y A se derivan generalmente del registro de salida de un sistema digital. 24 = 16 diferentes números binarios representados por estos 4 bits se enlistan en la figura 5.1.b. Por cada número de entrada, el voltaje de salida del convertidor D/A es un valor distinto. 57 De hecho, el voltaje de salida analógico VOUT es igual en volts al número binario. También podría tener dos veces el número binario o algún otro factor de proporcionalidad. La misma idea sería aplicable si la salida del D/A fuera la corriente IOUT. FIGURA 5.1 b CONVERTIDOR D/A DE 4 BITS CON SALIDA DE VOLTAJE. 5.1. VALORES DE ENTRADA. Para el DAC de la figura 5.1 b se observa que cada entrada digital contribuye con una cantidad diferente de salida analógica. Esto se puede apreciar fácilmente si se examinan los dos casos donde sólo una entrada es alta: 58 D C B A VOUT (V) 0 0 0 1 1 0 0 1 0 2 0 1 0 0 4 1 0 0 0 8 A las contribuciones de cada entrada digital se les asignan valores según su posición en el número binario. Por lo tanto, A, que es el LSB, tiene un valor de 1 V, B tiene un valor de 2 V, C de 4 V y D, el MSB, tiene el mayor, 8 V. Los valores se duplican sucesivamente por cada bit, comenzando con el LSB. Por consiguiente, podemos considerar a VOUT como la suma con valor de las entradas digitales. 5.2. RESOLUCION (tamaño de etapa) La resolución de un convertidor D/A se define como la menor variación que puede ocurrir en la salida analógica como resultado de un cambio en la entrada digital. Haciendo referencia de la tabla de la figura 5.1, podemos apreciar que la resolución es 1 V, puesto que VOUT puede variar en no menos que 1 V cuando cambie el código de entrada. La resolución siempre es igual al valor del 59 LSB y también se conoce como tamaño de etapa, ya que es la cantidad V OUT que variará cuando el código de entrada pase de una etapa a la siguiente. La resolución o tamaño de etapa es la dimensión de los saltos en la forma de onda de escalinata. Aunque la resolución puede expresarse como la cantidad de voltaje o corriente por etapa, resulta más útil expresarla como un porcentaje de la salida de escala completa. 5.3. CODIGO DE ENTRADA BCD. Muchos convertidores D/A utilizan un código de entrada BCD donde se emplean grupos de códigos de 4 bits por cada digito decimal. Cada grupo de código de 4 bits puede variar de 0000 a 1001, de manera que las entradas BCD representan cualquier número decimal de 00 a 99. Dentro de cada grupo de código los valores de los diferentes bits se proporcionan igual que el código binario, pero los valores del grupo son diferentes por un factor de 10. 60 FIGURA 5.3 CONVERTIDOR D/A CON CODIGO DE ENTRADA BCD. 5.4. DAC MULTIPLICATIVOS. Muchos DAC requieren una fuente de voltaje de referencia que se usa internamente para ayudar en la generación de la salida analógica. En algunos DAC este voltaje de referencia tiene que ser un valor fijo y exacto a fin de producir una salida exacta. En otros tipos el voltaje de referencia puede en realidad ser variable y aun cambiar polaridades. Este último tipo de DAC se llama DAC multiplicativo ya que la salida analógica es el producto de la entrada binaria y el voltaje de regencia. Un DAC multiplicativo se puede usar para multiplicar un voltaje analógico (VREF) por un valor binario para producir una salida analógica. Algunos DAC multiplicativos permiten que VREF sea de cualquier polaridad de manera que el producto final pueda tener cualquier polaridad. A estos se les llama DAC multiplicativos de dos cuadrantes. Algunos DAC permiten asimismo que la entrada binaria sea de cualquier polaridad utilizando el MSB como un bit del signo. A estos se les llama DAC multiplicativos de cuatro cuadrantes. 5.5. ESPECIFICACIONES DAC. Se dispone de una amplia variedad de DAC como circuitos integrados o bien como paquetes encapsulados auto-contenidos. 61 Uno debe estar familiarizado con las especificaciones más importantes de los fabricantes a fin de evaluar un DAC en una determinada aplicación. Resolución: La resolución porcentual de un DAC depende únicamente del número de bits. Por esta razón, los fabricantes por lo general especifican una resolución de DAC como el número de bits. Un DAC de 10 bits tiene una resolución más sensible (mayor exactitud) que uno de 8 bits. Precisión: Los fabricantes de DAC tienen varias maneras de especificar la precisión o exactitud. Las dos más comunes se les llama error de escala completa y error de linealidad, que normalmente se expresan como un porcentaje de la salida de escala completa del convertidor (% F.S.). El error de escala completa es la máxima desviación de la salida del DAC de su valor estimado (teórico). Tiempo de respuesta: la velocidad de operación de un DAC se especifica como tiempo de respuesta, que es el tiempo que se requiere para que la salida pase de cero a escala completa cuando la entrada binaria cambia de todos los ceros a todos los unos. Los valores comunes del tiempo de respuesta variaran de 50ns a 10 s. En general los DAC con salida de corriente tendrán tiempos de respuesta más breves que aquellos con una salida de voltaje. Voltaje de balance: En teoría, la salida de un DAC será cero volts cuando la entrada binaria es todos los ceros. En la práctica, habrá un voltaje de salida pequeño producido por el error de desbalance del Amp-ab. 62 Este desplazamiento es comúnmente 0.05% F.S. Casi todos los DAC con voltaje tendrán una capacidad de ajuste de balance externo que nos permitirá eliminar el error de desbalance. 5.6. APLICACIONES DAC. Los DAC se utilizan siempre que la salida de un circuito digital tiene que ofrecer un voltaje o corriente analógico para impulsar o activar un dispositivo analógico. Control: La salida digital de una computadora puede convertirse en una señal de control analógica para ajustar la velocidad de un motor, la temperatura de un horno o bien para controlar casi cualquier variable física. Análisis automático: Las computadoras pueden ser programadas para generar las señales analógicas (a través de un DAC) que se necesitan para analizar circuitos analógicos. La respuesta de salida analógica del circuito de prueba normalmente se convertirá en un valor digital por un ADC y se alimentará a la computadora para ser almacenada, exhibida y algunas veces analizada. Control de amplitud digital: Un DAC multiplicativos se puede utilizar para ajustar digitalmente la amplitud de una señal analógica. Recordando que un DAC multiplicativo produce una salida que es el producto de un voltaje de referencia y la entrada binaria. Si el voltaje de referencia es una señal que varía con el tiempo, la salida del DAC seguirá esta señal, pero con un amplitud determinada por el código de 63 entrada binario. Una aplicación normal de esto es el “control de volumen” digital, donde la salida de un circuito o computadora digital puede ajustar la amplitud de una señal de audio. 6. SENSORES DE POSICION. 64 6.1. POTENCIOMETRO ANGULAR. Es un transductor de posición angular, de tipo absoluto y con salida de tipo analógico. Básicamente es una resistencia de hilo bobinado en una pista de material conductor, distribuida a lo largo de un soporte en forma de arco y un cursor solidario a un eje de salida que pueda deslizar sobre dicho conductor. El movimiento del eje arrastra el cursor provocando cambios de resistencia entre éste y los extremos. De esta forma si se alimentan los extremos con una tensión constante Vo aparece en la toma de medida una tensión proporcional al ángulo girado a partir del origen. Interesa que esta variación sea lineal como se representa en la figura 6.1. En cuanto a la respuesta dinámica el potenciómetro es un elemento proporcional sin retardo, pero la frecuencia de funcionamiento suele quedar limitada a 5 Hz por motivos mecánicos. 65 FIGURA 6.1 POTENCIOMETRO ANGULAR. 6.2. ENCODERS. Los encoders son dispositivos formados por un rotor con uno o varios grupos de bandas opacas y translúcidas alternadas y un estator con una serie de captadores ópticos que detectan la presencia o no de banda opaca. Existen dos tipos de encoders, incrementales y absolutos. Los primeros dan un determinado número de impulsos por vuelta y requieren un contador para determinar la posición a partir de un origen de referencia, los absolutos disponen de varias bandas en el rotor ordenadas según un código binario, y los captadores detectan un código digital completo que es único para cada posición del rotor. FIGURA 6.2 ENCODERS. 66 6.2.1. Encoders incrementales. Los encoders incrementales suelen tener una sola banda de marcas repartidas en el disco del rotor y separadas por un paso p. En el estator disponen de dos pares de emisor-receptor ópticos, decalados un número entero de pasos más ¼ de paso. Al girar el rotor genera una señal cuadrada, el decalaje hace que las señales tengan un desfase de ¼ de periodo si el rotor gira en un sentido y de ¾ si gira en el sentido contrario, lo que se utiliza para discriminar el sentido de giro. Un simple sistema lógico permite determinar desplazamientos a partir de un origen, a base de contar impulsos de un canal y determinar el sentido de giro a partir del desfase entre los dos canales. 67 FIGURA 6.2.1 a SEÑAL CUADRADA DE ENCODER INCREMENTAL. Algunos encoders pueden disponer de un canal adicional que genere un pulso por vuelta y la lógica puede dar número de vueltas más fracción de vuelta. FIGURA 6.2.1.b ENCODER INCREMENTAL CON SENSOR. Una desventaja de este tipo de encoders es que necesita un ajuste de origen al iniciar su operación, pues debido a la pérdida de energía no permite guardar la ultima posición registrada en memoria. La resolución del encoder depende del número N de divisiones del rotor, es decir del número de impulsos por revolución, o bien de acuerdo al número de obstrucciones que la luz tenga. No debe confundirse lo que es resolución angular del encoder con la posible resolución de un sistema de 68 medida de coordenadas lineales que dependerá de la desmultiplicación mecánica. Esta resolución también está en función del material del disco, por ejemplo los discos de metal no son apropiados para resoluciones altas ya que se necesitarían demasiadas perforaciones y este se vuelve demasiado frágil para un uso diario. Por esta razón para este tipo de casos se utilizan discos de plástico los cuales son apropiados para altas resoluciones, estos son tratados químicamente para hacer partes opacas según los requerimientos de resolución. Por ejemplo un disco de 100 segmentos tendría una resolución de 3.6°, mientras que uno con 6000 segmentos tendría una resolución de 0.08°. FIGURA 6.2.1.c MODELO DE ENCODER INCREMENTAL. 69 6.2.2. Encoders absolutos. Los encoders absolutos disponen de varias bandas dispuestas en forma de coronas circulares concéntricas, dispuestas de tal forma que en sentido radial el rotor queda dividido en sectores, con combinaciones de opacos y transparentes que siguen un código Gray o binario. FIURA 6.2.2.a MODELOS DE ENCODER ABSOLUTO. 70 En los encoders absolutos, su ventaja más significativa con respecto a los incrementales, es la posibilidad de guardar la posición aún cuando exista un corte o suspensión en la alimentación del sistema. Esto se debe a que se evita que los sistemas de conteo y registro de posiciones estén basados en la alimentación, todo lo contrario al modelo utilizado en los encoders incrementales. FIGURA 6.2.2.b ENCODER ABSOLUTO CON SENSORES. Esto origina la implementación de un sistema basado en un disco perforado de distinta forma y de un sistema emisor detector acoplado a este tipo de discos. El estator dispone de un conjunto emisor-receptor ópticos para cada corona del rotor. El conjunto de información binaria obtenida de los captadores es única para cada posición del rotor y representa su posición absoluta. Se utiliza el código Gray en lugar de un binario clásico porque en 71 cada cambio de sector sólo cambia el estado de una de las bandas, evitando errores por falta de alineación de los captadores. Para un encoder con N bandas, el rotor permite 2N combinaciones, la resolución será 360° entre los 2N sectores, por ejemplo para encoders de 12 y 16 bits se obtiene una resolución angular de 0.0879° y 0.00054° respectivamente. Un ejemplo de encoder absoluto sería el de disco construido en base a círculos concéntricos de perforaciones, dichos círculos están dispuestos de forma que el exterior tiene un arreglo de perforaciones-obstrucciones a una escala de 1:1, mientras que la siguiente tiene el doble de segmentos que el anterior y la tercera tiene el doble de la anterior, de esta forma el primer arreglo tiene intercalado un segmento opaco y uno transparente, el segundo tiene 2 opacos y dos transparentes y el tercero 4 opacos y 4 transparentes, de esta forma el disco tiene 10 circunferencias. La forma del disco, provoca que el sistema emisor-detector de luz se este actualizando constantemente. Para estos dispositivos es necesaria la implementación de un emisor y receptor que corresponda a cada anillo del disco, complicando un poco la conexión eléctrica necesaria. 72 FIGURA 6.2.2.c MODELO DE ENCODER ABSOLUTO EN BASE A CIRCULOS CONCENTRICOS. Una de las ventajas de los encoders absolutos es que se ajustan de tal manera que una revolución completa del encoder es igual a la magnitud máxima del recorrido de la maquina en cuestión. Por ejemplo, si el desplazamiento máximo del motor es de 20 centímetros y la resolución del encoder es de 16 bits, la resolución total será de 20/65536 que equivale a 0.00030 centímetros. Pero si el desplazamiento total fuese mayor, existe una resolución burda y una resolución fina que son capaces de ajustar el encoder de manera que siga teniendo el viaje total de la maquina en una sola revolución del encoder. 73 7. CONTADORES Y REGISTROS. 74 7.1. CONTADORES ASINCRONOS (DE RIZO). La figura 7.1 muestra un circuito contador binario de 4 bits, este tipo de contador, donde cada salida del FF sirve como señal de entrada CLK para el siguiente FF, se conoce como contador asíncrono. Esto se debe a que todos los FF no cambian estados en sincronía exacta con las pulsaciones del cronómetro; solo el FF A responde a las pulsaciones del reloj. El FF B tiene que esperar a que el FF A cambie de estado antes de que se active; el FF C tiene que esperar por el FF B; y así sucesivamente. Así pues, existe un retraso entre las respuestas de cada FF. En los FF modernos está demora puede ser muy corta (comúnmente de 10 a 40 ns), pero en algunos casos, puede ser problemática. Debido a la forma en la cual opera este tipo de contador, también se le conoce comúnmente como contador de rizo. 7.1.1. Número MOD. El contador de la figura 7.1 tiene 16 estados diferentes (del 0000 al 1111). De este modo, se trata de un contador de rizo MOD-16. El número MOD siempre es igual al número de estados por los cuales pasa el contador en cada ciclo completo antes de que se recicle hacia su estado inicial. El número MOD se puede incrementar simplemente agregando mas FF al contador. Es decir, Número MOD = 2N 75 Donde N es el número de biestables conectados en la disposición de la figura 7.1. FIG. 7.1 CONTADOR ASINCRONO DE 4 BITS. 7.1.2. División de frecuencias. En el contador básico cada FF da un a ondiforme de salida, que es exactamente la mitad de la frecuencia de la forma de onda en su entrada CLK. Suponiendo que la señal del cronometro de la figura 7.1 es de 16 kHz. La figura 7.1.1. muestra las formas de onda de salida del FF. 76 La forma de onda en la salida A es un pulso cuadrado de 8 kHz, en la salida B es de 4 kHz, en la salida C es de 2 kHz y en la salida D es de 1 kHz. La salida del FF D tiene una frecuencia igual a la frecuencia original del cronómetro dividida por 16. En términos generales, para cualquier contador la salida del último FF divide la frecuencia de entrada del reloj por el número MOD del contador. FIG. 7.1.1. FORMAS DE ONDADE SALIDA DE UN CONTADOR. 7.2. CONTADORES CON NUMEROS MOD < 2N. El contador de pulsos básico de la figura 7.1 está limitado a números MOD que son iguales a 2N, donde N es el número de biestables. Este valor es en realidad el número MOD máximo que se puede obtener mediante el uso de N biestables. El contador básico puede ser modificado para producir números MOD menores que 2N, permitiendo que el contador omita estados que normalmente son parte de la secuencia de conteo. Uno de los métodos más comunes para lograr esto se ilustra en la figura 7.2 donde se muestra un contador de pulsos de 3 bits. 77 Despreciando la compuerta NAND por un momento se observa que el contador es un contador binario MOD-8 que contará en secuencia de 000 a 111. FIG.7.2 CONTADOR MOD-6. 78 La forma de onda en la salida B contiene una falla o mal funcionamiento ocasionado por la incidencia momentánea del estado 110 antes de la anulación. Esta falla es muy breve y de este modo no producirá ninguna indicación visible en las luces indicadoras o en las exhibiciones numéricas. Sin embargo, podría ocasionar un problema si la salida B se utiliza para conducir otros circuitos externos al contador. La salida C tiene una frecuencia igual a 1/6 de la frecuencia de entrada; este contador MOD-6 ha dividido la frecuencia de entrada por seis. La forma de onda C no es una onda cuadrada simétrica ya que solamente es alta en dos ciclos del cronómetro en tanto que es baja para cuatro ciclos. 7.3. CONTADORES ASINCRONOS CI (IC). Existen varios CI contadores asíncronos TTL y CMOS. Uno de los más populares es el TTL 7493 y su equivalente lógico, el 74293. La figura 7.3 muestra el diagrama lógico para el 7493 tal y como aparece en el manual del fabricante. 79 FIGURA 7.3 CONTADOR ASINCRONO. 1. El 7493 contiene cuatro FF J-K con las salidas Q0, Q1, Q2, Q3, (en vez de A, B, C, D). Cada FF tiene una entrada CP (pulsación del cronómetro), que es simplemente otro nombre de la entrada CLK. Las entradas del cronómetro Q0, y Q1, marcadas como CP0 y CP1, respectivamente, son externamente accesibles. Las barras de inversión sobre estas entradas se utilizan para indicar que actúan como en una transición de alto a bajo. 2. cada FF tiene una entrada DC CLEAR, CD, conectada a la salida de una compuerta NAND de 2 entradas. Las entradas de NAND son MR1 y MR2 , donde MR significa reposición maestra. 80 3. Los FF Q1, Q2, y Q3, están conectados como un contador de pulsos de 3 bits. El FF Q0, no esta conectado a nada en el interior. Esto da la opción de conectar Q0 a Q1, para formar un contador de 4 bits o bien utilizar Q0, por separado. 4. Los FF se disponen en el orden contrario al utilizado en los diagramas de contadores. Esta es una forma equivalente de trazar el circuito contador. 7.4. CONTADOR ASINCRONO DESCENDENTE. Analizando la secuencia de conteo descendente para un contador de 3 bits tenemos: A, B, y C representan los estados de salida del FF cuando el contador recorre su secuencia. El FF A (LSB) cambia estados en cada etapa de la secuencia como se hace en un contador ascendente. El FF B cambia estados cada vez que A pasa de bajo a alto; C cambia estados cada vez que B pasa de bajo a alto. De este modo, en un contador descendente cada FF, excepto el primero, debe articularse cuando el FF anterior pase de bajo a alto. 81 Si los FF tienen entradas CLK que responden a transiciones negativas (de alto a bajo), entonces se puede colocar un inversor en el frente de cada entrada CLK; se puede lograr el mismo efecto conduciendo cada entrada CLK del FF desde la salida invertida del FF anterior; esto se ilustra en la figura 7.4, en relación con un contador descendente MOD-8. FIGURA 7.4. CONTADOR DESCENDENTE MOD-8. Los contadores descendentes no se utilizan tanto como los ascendentes. Su aplicación principal es en situaciones donde debe saberse cuando ha ocurrido un número deseado de pulsaciones de entrada. En estas situaciones el contador descendente se prefija al número deseado y luego se le permite contar hacia abajo cuando se aplican las pulsaciones. 82 Cuando el contador llega al estado cero es detectado por una compuerta lógica cuya salida indica entonces que ha ocurrido el número prefijado de pulsaciones. 7.5. DEMORA EN LA PROPAGACION DE CONTADORES DE ONDAS. Los contadores de rizo son el tipo más simple de contadores binarios, ya que requieren del mínimo número de componentes para producir cierta operación de conteo. Pero presentan una desventaja importante, que es ocasionada por su principio básico de operación. Cada FF es activado por la transición en la salida del FF anterior. Debido al retraso inherente en la propagación de cada FF, esto significa que el segundo FF no responderá sino hasta un tiempo después de que el primer FF reciba una pulsación de entrada; el tercer FF no responderá hasta un tiempo igual a 2 x tpd después de que ocurra la pulsación del cronómetro. El primer conjunto de formas de onda de la figura 7.5.a muestra una situación donde ocurre una pulsación de entrada cada 1000 ns y se supone que cada FF observa un retraso en la propagación de 50 ns. 83 FIG.7.5.a FORMAS DE ONDA DEL CONTADOR DE RIZO DE 3 BITS. La salida del FF A se cambia 50 ns después de la transición descendente de cada pulsación de entrada, la salida C pasa a alto después de un retraso de 150 ns. En este caso, el contador no opera adecuadamente en el sentido que los FF llegan por ultimo a sus estados correctos, lo cual representa el conteo binario. Las formas de onda de la figura 7.5.b muestran lo que sucede si las pulsaciones de entrada ocurren una vez cada 100 ns. Una vez más, cada salida del FF responde 50 ns después de la transición de 1 a 0 en su entrada CLK. De particular interés es la situación después de la transición descendente de la cuarta pulsación de entrada donde la salida C no pasa a alto sino hasta después 150 ns después, que es el mismo tiempo en que la salida A pasa a alto en respuesta a la quinta pulsación de entrada. 84 FIG.7.5.b FORMAS DE ONDA DEL CONTADOR DE RIZO DE 3 BITS. En otras palabras, la condición C = 1, B = A = 0, nunca aparece debido a que la frecuencia de salida es demasiado elevada. Esto podría ocasionar un grave problema si se considera utilizar esta condición para controlar alguna otra operación en un sistema digital. Estos problemas se pueden evitar si el periodo entre las pulsaciones de entrada se hace más largo que la demora total en la propagación del contador. 7.6. DECODIFICACION DE UN CONTADOR. Los contadores digitales se utilizan frecuentemente en aplicaciones donde el conteo representado por los estados de los FF debe determinar o exhibirse de alguna manera. Uno de los medios más simples para exhibir el contenido de un contador comprende la conexión de la salida de cada FF a una pequeña lámpara indicadora. 85 En esta forma los estados de los FF se representan visiblemente por las lámparas y el conteo se puede determinar mentalmente decodificando los estados binarios de las lámparas. El método de la lámpara indicadora se vuelve inconveniente conforme aumenta el tamaño del contador, debido a que es mucho más difícil de decodificar mentalmente los resultados exhibidos. Por esta razón sería preferible desarrollar un medio para decodificar electrónicamente los contenidos de un contador y mostrar los resultados en una forma que fuera inmediatamente reconocible y no requiriera operaciones mentales. Una razón aún más importante de la decodificación electrónica de un contador son las muchas aplicaciones en las cuales los contadores se utilizan para controlar la distribución o secuenciación de operaciones automáticamente sin la intervención humana. 7.6.1. Decodificación ALTA- activa. Un contador MOD-X tiene diferentes estados; cada uno de ellos es un modelo en particular de ceros y unos almacenados en los FF del contador. Un sistema de decodificación es un circuito lógico que genera X diferentes salidas, cada una de las cuales detecta la presencia de cierto estado del contador. Las salidas decodificadoras pueden ser diseñadas para producir un nivel ALTO o uno BAJO cuando ocurra la detección. Un decodificador ALTO-activo produce salidas altas para indicar detección. 86 7.6.2. Decodificación del contador BCD. Un contador BCD tiene 10 estados, los cuales se pueden decodificar utilizando las técnicas que se describieron anteriormente. Los decodificadores BCD ofrecen 10 salidas correspondientes a los dígitos decimales del 0 al 9 representados por los estados del los FF del contador. Estas 10 salidas se pueden usar para controlar 10 lámparas indicadoras para obtener una exhibición visual. Con mayor frecuencia, en vez de utilizar 10 lámparas por separado se utiliza un solo dispositivo de exhibición para visualizar los números decimales del 0 al 9. Este dispositivo denominado tubo nixie, contiene 10 filamentos muy delgados numéricamente perfilados que se agrupan uno arriba del otro. El decodificador BCD controla que filamento está iluminado. Otra clase de exhibiciones decimales contiene siete segmentos pequeños hechos de un material que emite luz cuando se pasa una corriente eléctrica a través de él. Las salidas del decodificador BCD controlan que segmentos están iluminados a fin de producir un modelo que represente uno de los dígitos decimales. 7.7. CONTADORES BCD CON TRANSMISION EN CASCADA. Los contadores BCD se utilizan siempre que se vayan a contar pulsaciones y los resultados se exhiban en forma decimal. Un solo contador BCD puede contar de 0 a 9 y luego regresar a 0. 87 Para contar hasta números decimales mayores, podemos disponer los contadores BCD en forma de cascada como se ilustra en la figura 7.7. , esta disposición opera de la siguiente manera: a. Inicialmente todos los contadores son anulados al estado cero. Así, la exhibición decimal es 000. b. Cuando llegan las pulsaciones de entrada, el contador BCD avanza un conteo por pulsación. Después de que han ocurrido nueve pulsaciones, los contadores BCD de centenas y decenas siguen todavía en cero y el contador de unidades está en 9 (1001 binario). De este modo, la exhibición decimal se lee 009. c. En la décima pulsación de entrada el contador de las unidades se recicla a cero, ocasionando que la salida del FF D vaya de 1 a 0. esta transición de 1 a 0 actúa como la entrada del cronómetro para el contador de las decenas y ocasiona que avance un conteo. Así después de 10 pulsaciones de entrada, la lectura decimal es 010. d. Cuando ocurren otras pulsaciones, el contador avanza un conteo por pulsación y cada vez que el contador de unidades se recicla a cero, avanza al contador de las decenas un conteo. De este modo, después de que han ocurrido 99 pulsaciones de entrada, el contador de las decenas está en 9, al igual que el de las unidades. La lectura decimal es de este modo 099. 88 e. En la pulsación 100 de entrada, el contador de las unidades se recicla a cero, que a su vez ocasiona que el contador de las decenas se recicle a cero. La salida del FF D del contador de las decenas realiza de esta manera una transición de 1 a 0 que actúa como entrada del cronómetro para el contador de las centenas y ocasiona que avance un conteo. Así, después de 100 pulsaciones la lectura decimal es 100. f. Este proceso continúa hasta 999 pulsaciones. En la pulsación 1000, todos los contadores se reciclan a cero. FIG. 7.7. CONTADORES BCD EN CASCADA. 7.8. CONTADORES DE REGISTROS DE CAMBIOS. Los registros de cambios se pueden disponer para formar varios tipos de contadores. Todos los contadores de registros de cambios utilizan retroalimentación, con lo cual la salida del último FF del registro de cambios es, en alguna forma, conectado al primer FF. 89 Los contadores de registros de cambios que se utilizan más ampliamente son el contador en forma de anillo y el contador de Jonson. 7.8.1. Contador en forma de anillo. El contador de registros de cambios más simple es esencialmente un registro de cambios circulante conectado de modo que el último FF desplace su valor al primer FF. Esta disposición se muestra en la figura 7.8.1. utilizando biestables de tipo D. Los FF se conectan de modo que la información se corra de izquierda a derecha y de regreso de Q0 a Q3. En muchos casos solo hay un 1 en el registro y se hace que circule alrededor del registro en tanto se apliquen las pulsaciones del cronómetro. Por esta razón se le denomina contador en formas de anillo. Las formas de onda y la tabla de secuencia de la figura 7.8.1 muestran los diversos estados de los FF cuando se aplican pulsaciones, suponiendo un estado de iniciación de Q3 = 1 y Q2 = Q1 = Q0 = 0. Después de la primera pulsación, el 1 ha pasado de Q3 a Q2 de manera que el contador está en el estado 0100. La segunda pulsación produce el estado 0010 y la tercera pulsación produce el estado 0001. En la cuarta pulsación del cronómetro el estado 1 de Q0 se transfiere a Q3, lo cual produce el estado 1000, que es, desde luego, el estado inicial. Las pulsaciones subsiguientes ocasionan que se repita la secuencia. 90 Este contador funciona como un contador MOD-4, pues tiene cuatro estados distintos antes de repetirse la secuencia. Aunque este circuito no progresa a través de la secuencia binaria de conteo normal, sigue un contador debido a que cada conteo corresponde a un estado en particular de los FF. FIG. 7.8.1. CONTADOR DE ANILLO DE 4 BITS. 91 Los contadores en forma de anillo se pueden construir para cualquier número MOD que se desee; un contador en forma de anillo MOD-N utiliza N biestables conectados en la disposición de la figura 7.8.1. En general, un contador en forma de anillo necesitará más FF que un contador binario para el mismo número MOD; un contador en forma de anillo MOD-8 requiere de ocho FF en tanto que un contador binario MOD-8 necesita solo 3. 92 8. INSTRUMENTOS DE MEDICION. 93 8.1. INTRODUCCION. La meteorología es una ciencia de importancia fundamental, para el complemento de un sinfín de actividades diarias en la vida del hombre; desde la predicción de lluvias para los campos de cultivo, hasta las condiciones climatológicas para los medios de transporte. En el medio aeronáutico, tema principal de este proyecto, el conocimiento de las variables climatológicas imperantes en cada una de las fases del desarrollo de las operaciones aeronáuticas en los aeródromos, es primordial y de suma importancia, ya que del conocimiento de estas, depende la seguridad con la que se lleven a cabo, tanto en operaciones de terminal como durante las rutas. Estas variables climatológicas son la velocidad y dirección del viento, la temperatura, presión barométrica, humedad relativa, etc., y para su conocimiento es necesario contar con los instrumentos y equipos de precisión adecuados para cuantificar cada parámetro. Se dispone de varios sistemas para medir estos parámetros atmosféricos. La elección de los sensores apropiados depende del tipo de aplicación que se les dará a los datos. Además de los sensores, podrán necesitarse otros equipos para el condicionamiento de la señal y la grabación y tal vez, para el registro electrónico de los datos. Para asegurar la recolección de datos representativos, es necesario seguir rigurosos procedimientos de identificación, instalación y mantenimiento de los instrumentos. 94 8.2. VELOCIDAD DEL VIENTO. Si bien el viento es una cantidad vectorial y se puede considerar una variable primaria por naturaleza, por lo general en velocidad (la magnitud del vector) y dirección (la orientación del vector) se consideran variables independientes. La velocidad del viento determina la cantidad de dilución inicial que experimenta una pluma. Por lo tanto, la concentración de contaminantes en una pluma está directamente relacionada con la velocidad del viento. Esta también influye en la altura de la elevación de la pluma después de ser emitida. A medida que la velocidad del viento aumenta, la elevación de la pluma disminuye al ser deformada por el viento. Esto hace que disminuya la altura de la pluma, que se mantiene más cerca del suelo y puede causar un impacto a distancias más cortas a sotavento. Por lo general, la velocidad del viento se usa junto con otras variables para derivar las categorías de la estabilidad atmosférica usadas en las aplicaciones de los modelos de la calidad del aire. Los dos principales tipos de instrumentos usados para medir la velocidad del viento son el anemómetro rotativo de cubeta y el anemómetro de hélice (ilustrado en la figura 8.2). Ambos tipos de anemómetros constan de dos subconjuntos; el sensor y el transductor. 95 Figura 8.2. Dos tipos de anemómetros El sensor es el dispositivo que rota por acción de la fuerza del viento. El transductor es el que genera la señal que se grabará. Un paquete completo de instrumentos también puede incluir un sistema electrónico para captar y grabar las señales electrónicas que genera el transductor. Por ejemplo, es probable que se necesite acondicionar la señal de modo que produzca una cantidad reportable. Para ello se debe usar un acondicionador de señal. Por último, para usar la señal acondicionada, esta deberá ser registrada y/o grabada a través de grabadores y registradores. 96 8.3. ANEMOMETROS ROTATIVOS DE CUBETAS. El anemómetro rotativo de cubetas generalmente consta de tres cubetas cónicas o hemisféricas montadas simétricamente sobre un eje vertical de rotación. La tasa de rotación de las cubetas generalmente es lineal sobre el rango normal de medidas, con una velocidad lineal del viento de aproximadamente 2 a 3 veces la velocidad lineal de un punto en el centro de una cubeta, según sea su ensamblaje. 8.4. ANEMOMETROS CON PALETAS DE ORIENTACION Y HELICES CON MONTURA FIJA. El anemómetro con paletas de orientación (figura 8.4) consta generalmente de una hélice de dos, tres o cuatro paletas radiales que rota sobre un eje de giro horizontal frente al viento. Existen varios anemómetros de hélice que emplean moldes ligeros de plástico o de espuma de poliestireno para que las paletas de la hélice alcancen bajas velocidades umbrales al inicio. Algunos anemómetros de hélice no tienen paletas móviles (véase la figura 8.2). En cambio, para determinar los componentes vectoriales (esto es, la velocidad y la dirección) del viento horizontal se usan hélices ortogonales de montura. Para determinar el componente vertical del viento, se puede emplear una tercera hélice con una montura fija que gira sobre un eje vertical. 97 Figura 8.4. ANEMOMETRO (uvw) CON MONTURA FIJA. 8.5. TRANSDUCTORES DE VELOCIDAD DEL VIENTO. Existen varios mecanismos para convertir la tasa de rotación de las cubetas o hélices en una señal eléctrica adecuada para el registro y/o procesamiento. La selección de un transductor depende de la naturaleza del programa de monitoreo es decir, del grado de sensibilidad requerido y del tipo de registro o lectura de datos que se necesita. Los cuatro transductores más utilizados son: el generador DC, el AC, el contacto eléctrico y el rayo luminoso interrumpido. Muchos tipos de generadores DC y AC de uso frecuente tienen algunas limitaciones para lograr un nivel umbral bajo y respuestas rápidas. Es importante usar instrumentos con bajos niveles umbrales al inicio como los anemómetros que emplean generadores DC miniaturizados. Los transductores con generadores AC eliminan la fricción de la escobilla pero se debe diseñar cuidadosamente el circuito de acondicionamiento de la señal para evitar la 98 alteración de las oscilaciones en la señal de salida que se puede producir ante velocidades bajas del viento. Los transductores de contacto eléctrico se usan para medir el pasaje total del viento (flujo continuo del viento) en lugar de velocidades instantáneas, y se pueden emplear para determinar la velocidad promedio del viento en un determinado período. En general, no se recomienda usar estos dispositivos en los estudios sobre dispersión de contaminantes del aire. El transductor de rayo luminoso interrumpido (troceador de luz) generalmente se usa en aplicaciones de calidad del aire porque presenta menos fricción y, por lo tanto, es más sensible a velocidades menores del viento. Este tipo de transductor usa un eje o disco ranurado, un emisor y un detector de imágenes. El ensamblaje de la cubeta o hélice hace rotar el eje o disco ranurado, con lo que crea un pulso cada vez que la luz pasa a través de una ranura y llega al detector de imágenes. La frecuencia de salida de un generador AC o transductor troceador de luz se puede transmitir a través de un acondicionador de señal y convertirse en una señal analógica para diversos dispositivos de registro, tales como el registrador continuo de banda de papel o de multipuntos, o de un convertidor analógico digital (A/D) a un registro digital con microprocesador. Varios registradores modernos de datos pueden aceptar directamente la señal por el 99 tipo de frecuencia y, de este modo es posible eliminar la necesidad de un acondicionamiento adicional de la señal. El diseño de un programa de monitoreo debe incluir el registro y el procesamiento de datos. 8.6. DIRECCION DEL VIENTO. Por lo general, la dirección del viento se define como la orientación del vector del viento en la horizontal. Para propósitos meteorológicos, la dirección del viento se define como la dirección desde la cual sopla el viento, y se mide en grados en la dirección de las agujas del reloj a partir del norte verdadero. Por ejemplo, un viento del oeste sopla del oeste, a 270° del norte. Un viento del norte sopla desde una dirección de 360°. La dirección del viento determina la del transporte de una pluma emitida. 8.6.1. PALETAS DE VIENTO. El instrumento más común para medir la dirección del viento es la paleta de viento. Las paletas de viento señalan la dirección desde la cual este sopla. Pueden ser de formas y tamaños diferentes: algunas con dos platos juntos en sus aristas directas y dispersas en un ángulo (paletas separadas), otras con un solo platillo plano o una superficie aerodinámica vertical. Por lo general, son de acero inoxidable, aluminio o plástico. 100 Al igual que con los anemómetros, se debe tener cuidado al seleccionar un sensor a fin de asegurar una durabilidad y sensibilidad adecuadas para una determinada aplicación. La figura 8.6.1 muestra ejemplos de paletas de viento. FIGURA 8.6.1 PALETAS DE VIENTO. Los componentes horizontales (azimuth) y verticales (elevación) de la dirección del viento se pueden medir con una paleta bidireccional. Por lo general, esta paleta consta de una aleta anular y dos aletas planas perpendiculares entre sí, contrapesadas y montadas sobre un cardán de modo que cada una puede rotar libremente, tanto en sentido horizontal como vertical. 101 8.6.2. ANEMOMETROS DE HELICE CON MONTURA FIJA. Otro método para medir la dirección horizontal y/o vertical del viento es mediante anemómetros de hélice de montura fija. La dirección horizontal del viento se puede determinar mediante programas de cómputo a partir de los componentes ortogonales de la velocidad del viento. La velocidad vertical también puede ser medida al agregar una tercera hélice montada verticalmente. Este dispositivo generalmente se conoce como anemómetro UVW. 8.6.3. TRANSDUCTORES DE DIRECCION DEL VIENTO. Muchos transductores del tipo conmutador simple se valen del contacto del cepillo para dividir la dirección del viento en 8 ó 16 sectores del compás. Sin embargo, para el estudio de la calidad del aire es mejor usar transductores que provean al menos una resolución de 10° (36 sectores del compás) en la medición de la dirección del viento. Un transductor comúnmente usado para las aplicaciones de los modelos de la calidad del aire es el potenciómetro. El voltaje del potenciómetro varía directamente con la dirección del viento. Un potenciómetro es un resistor variable. Cuando la dirección del viento cambia, el eje de la paleta del viento se mueve y hace que la resistencia del potenciómetro varíe. Esta modificación está directamente relacionada con la dirección del viento. 102 8.6.4. UBICACIÓN Y EXPOSICIÓN DE LOS INSTRUMENTOS DE MEDICION DEL VIENTO. Para obtener datos meteorológicos representativos en los estudios sobre la contaminación del aire es clave la ubicación adecuada de los instrumentos. Estos se deben colocar lejos de obstrucciones que puedan influir en las mediciones. No se debe permitir que consideraciones secundarias, como la accesibilidad y la seguridad, comprometan la calidad de los datos. La altura estándar de exposición de los instrumentos de viento en un terreno abierto es 10 m sobre el suelo. El terreno abierto se define como una área donde la distancia entre el instrumento y cualquier obstrucción (árboles, edificios, etc.) es al menos 10 veces la altura de la obstrucción (véase la figura 8.6.4 a). FIGURA 8.6.4 a CRITERIOS DE DISTANCIA PARA LA UBICACIÓN DE LOS INSTRUMENTOS DE MEDICION DEL VIENTO. 103 En los casos en que las descargas de emisión se producen generalmente sobre 10 m, es probable que se requieran mediciones adicionales del viento en mayores elevaciones. Se deberían establecer alturas adecuadas de medición a partir de cada caso y según la aplicación. Se recomienda, en lo posible, colocar los instrumentos de viento sobre una torre de rejas. Además, se deben ubicar en la parte superior de esta o, si están en un lado de la torre, se deben ubicar en botavaras a una distancia de al menos dos veces el diámetro/diagonal de la torre, extendidas hacia afuera en dirección del viento dominante (véase la figura 8.6.4.b). FIGURA 8.6.4.b UBICACIONES RECOMENDADAS PARA COLOCAR LOS INSTRUMENTOS DE VIENTO. 104 8.7. DESEMPEÑO DEL SISTEMA. En un programa de monitoreo es muy importante monitorear las variables meteorológicas adecuadas, que son representativas de las condiciones de dispersión atmosférica en una determinada ubicación. Así mismo, es importante asegurar un desempeño adecuado del monitoreo para la obtención de datos representativos. La exactitud y las características de las respuestas de los sistemas de monitoreo meteorológico son factores importantes para definir el desempeño del sistema. 8.7.1. Exactitud del sistema. La exactitud del sistema es el monto en que una variable medida se desvía de un valor aceptado como válido o estándar. La exactitud se puede concebir para un componente individual o para el sistema general. Por ejemplo, la exactitud general de un sistema de medición del viento incluye las exactitudes del componente individual de un anemómetro de cubeta o de hélice, circuito electrónico colocado como un condicionador de señal y registrador de datos. El cuadro 8.11.1 enumera valores de exactitud recomendados para los sistemas in situ de monitoreo meteorológico destinados a aplicaciones de estudios de calidad del aire. 105 Están establecidos en función de los valores de exactitud del sistema general, ya que los datos usados en los análisis de calidad del aire son los del sistema de medición. El cuadro 8.11.1 también incluye las resoluciones recomendadas de medición; es decir, los aumentos mínimos visibles. Estas resoluciones son necesarias para mantener los valores recomendados de exactitud. Las especificaciones y resoluciones relativas a la exactitud presentadas en el cuadro 8.11.1 se pueden aplicar al sistema primario de medición (el más recomendable es uno digital basado en un microprocesador). En el caso de los sistemas análogos usados como reservas o backrups, los límites de exactitud recomendados en el cuadro 8.11.1 pueden aumentar en 50%. Las resoluciones de estos sistemas deben ser adecuadas para mantener los valores recomendados de exactitud. Cuadro 8.11.1. VALORES DE EXACTITUD Y RESOLUCIONES RECOMENDADAS PARA EL SISTEMA. 106 8.8. CARACTERISTICAS DE LAS RESPUESTAS DE LOS SENSORES METEOROLOGICOS IN SITU. Las características de las respuestas ayudan a definir la velocidad con la que un instrumento responderá a los cambios de las variables meteorológicas. Es necesario conocer algunas características de las respuestas de los sensores meteorológicos propuestos para los programas de monitoreo in situ a fin de garantizar que los datos recolectados sean apropiados para la aplicación deseada. Las siguientes definiciones se aplican para términos generalmente relacionados con las características de respuesta del instrumento y las propiedades inherentes a los sensores meteorológicos: Calma – Cualquier velocidad promedio del viento por debajo del nivel umbral de inicio de la velocidad del viento o del sensor de dirección, el que sea mayor. Razón de amortiguamiento – El movimiento de una paleta de viento es una oscilación amortiguada y la razón en la que disminuye la amplitud de las oscilaciones sucesivas es independiente de la velocidad del viento. La razón de amortiguamiento es la razón de la oscilación real y la oscilación crítica, que es la medida de una resistencia mecánica de la paleta al movimiento. Distancia de retardo – Es la longitud de una columna de aire que pasa por una paleta de viento tal que esta responderá a 50% de un cambio angular repentino en la dirección del viento. 107 Constante de distancia – La constante de distancia de un sensor es la longitud por donde pasa el fluido requerido para causar una respuesta a un determinado cambio en la velocidad del viento. La constante de distancia es una característica de los anemómetros de cubeta y de hélice (rotativos). Rango – Es un término general usado para identificar los límites de operación de un sensor, dentro del cual muchas veces se especifica la exactitud. Nivel umbral (velocidad inicial) – La velocidad del viento a la que un anemómetro o paleta empieza a trabajar según sus especificaciones. Constante de tiempo – Período requerido para obtener la respuesta de un sensor a un determinado cambio en el parámetro que mide. El cuadro 8.12 enumera las características recomendadas para las respuestas de los sensores con miras a aplicarlas en modelos de regulación. CUADRO 8.12 CARACTERISTICAS RECOMENDADAS DE LAS RESPUESTAS PARA LOS SENSORES METEOROLOGICOS. 108 9. DESARROLLO DEL PROYECTO. 109 9.1. ANEMOMETRO. El anemómetro que proponemos fue pensado para solucionar el problema de medición del viento con un instrumento que fuera de fácil armado, con componentes de fácil adquisición, de bajo costo y con buena precisión. El dispositivo mecánico consiste en un tubo de 2.5 pulgadas de diámetro y 6 de largo, cuenta con 4 rodamientos de ¼ de pulgada acoplados a 2 bases de 2.5 pulgadas de diámetro, el eje consta de una barra de aluminio de ¼ de pulgada de diámetro por 7 pulgadas de longitud; a este eje se encuentran ancladas las copas mediante un acoplador cilíndrico de ¾ de pulgada y 3 varillas de aluminio de 6/32 de pulgada, y por último las copas de latón con un diámetro de 3 pulgadas orientadas en sentido dextrorsum (de izquierda a derecha). Básicamente el instrumento propuesto es un frecuencimetro que al medir el número de vueltas en un segundo mediante la interrupción que produce un encoder de un haz de luz infrarroja, nos proporciona un parámetro proporcional a la velocidad del viento, a esta cantidad la acondicionamos con objeto de que sea presentada en el display la velocidad del viento en las unidades que prefiramos. 110 FOTOGRAFIA 1.-ANEMOMETRO DE COPAS CON DISPOSITIVO ELECTRONICO. Cada hertz es equivalente a un ciclo de una señal en segundos, siendo así si contamos el número de ciclos durante un segundo tendremos la velocidad de rotación que mediante una linealización nos proporciona la velocidad del viento. El modulo básico posee como componentes principales circuitos integrados contadores del tipo 7490 y un monoestable 74123 que contienen tecnología TTL la cual tiene un costo muy bajo en este momento. 111 C.I. 7490 Cada C.I. 7490 contiene un contador divisor por 2 y otro (de 3 etapas, en cascada) divisor por 5. Asociándolos obtenemos un contador divisor por 10 compatible con los niveles TTL. La máxima frecuencia que puede contar es de 16 MHz para el 7490y el 74LS90, según datos del fabricante, lo cual cumple de sobra con los requerimientos de nuestro anemómetro. Nuestro contador tiene como base fip-flops que componen contadores asíncronos encapsulados en el C.I 7490 del cual las terminales marcadas R0 y R9 sirven para iniciar la cuenta con valor de 0 ó 9 respectivamente, según la figura 9.1. En esta figura también presentamos la distribución de terminales y en el anexo “B” la hoja de datos del fabricante. ENTRADAS DE RESET RD(1) RD(2) Rg(1) RD(2) H H L X H H X L X X H H X L X L L X L X L X X L X L L X OD L L H SALIDAS OC OB L L L L L L CUENTA CUENTA CUENTA CUENTA OA L L H 112 FIGURA 9.1 TABLA DE VERDAD DEL 7490 Y DISTRIBUCIÓN DE TERMINALES. La salida Qa es incrementada cuando colocamos un pulso de reloj en la entrada A, mientras que Qb, Qc y Qd son aumentadas cuando pulsamos la entrada B; conectamos así QA en la entrada B para tener las salidas QA, QB, QC Y QD en cuenta de modulo 10 (modulo 2 x modulo 5).Ver hoja de datos en el anexo “B”. 113 FOTOGRAFIA 2.-PLACA IMPRESA CON CONEXIONES DE CIRCUITOS INTEGRADOS. C.I. 74123. El circuito integrado 74123 (anexo “C”) es un monoestable compuesto por dos multivibradores monoestables, que son disparados externamente. Cada uno de los monoestables que componen el 74123 pueden ser disparados con pulsos de subida o descenso, según conectamos las entradas A, B y CLR. Según la tabla de la figura 9.1.1. 114 ENTRADAS CLEAR A L X X H X X H L H L L B X X L SALIDAS Q1 Q2 L H L H L H H H FIGURA 9.1.1 TABLA DE VERDAD DEL 74123. FIGURA 9.1.2 DISTRIBUCION DE TERMINALES DEL 74123. Cada multivibrador monoestable esta compuesto por un flip-flop tipo D que tiene su entrada (D) dependiendo de la combinación de las señales 1A, 1B, CLR1 y 2ª, 2B, CLR2 para los dos monoestables. La duración de los pulsos depende del circuito RC conectado en las terminales Rext/Cext. y está dada por: 0.7 t 0.123 * R * C ….en segundos. R 115 El valor del resistor puede variar entre 5KΩ y 50KΩ, pero no existe restricción en cuanto al valor del capacitor. C.I. 555. Este circuito integrado NE555 es un oscilador de muy alta estabilidad capaz de producir pulsos con un tiempo muy preciso. Operando como monoestable el tiempo de retraso y por lo tanto la frecuencia de operación es controlada por un resistor y un capacitor externos. Cuando opera como oscilador astable, la precisión de la frecuencia y ciclo de trabajo es controlado por dos resistencias y un capacitor externos. En la figura 9.1.3., mostramos el diagrama a bloques de este C.I. y la distribución de terminales y en el anexo “D”presentamos las hojas de datos del fabricante. En la figura 9.1.3 presentamos el diagrama a bloques del circuito propuesto 116 DISPLAY CONTADOR MONOESTABLE SELECCIÓN DE TIEMPO DISPARADOR FIGURA 9.1.3. DIAGRAMA A BLOQUES DEL ANEMOMETRO. DM9368 Este circuito integrado es un decodificador de binario a 7 segmentos que incluye también la circuiteria necesaria para excitar directamente un display con base en led’s con conexión de cátodo común, esto lo hace manteniendo una corriente constante para cada uno de los led’s, este integrado incluye un función de lazo de amarre disponible en la terminal marcada como “latch enable input” la cual nos permite “congelar” la información disponible en el display y actualizarla cada determinado tiempo, esta característica es de mucha utilidad en el circuito del anemómetro como lo veremos mas adelante. En la 117 figura 9.1.4.- presentamos la distribución de terminales de este integrado y la función que cumplen sus terminales. FIGURA 9.1.4. DISTRIBUCION DE TERMINALES DEL DM 9368 9.2. FUNCIONAMIENTO DEL ANEMOMETRO. El disparador resetea la cuenta y dispara el monoestable que generará el pulso de muestra de nuestro circuito. El contador al ser reseteado, comienza a contar el número de pulsos de la señal en la entrada que es igual al número de vueltas que realiza el anemómetro en 1 segundo, al pasar el tiempo definido en el monoestable, el valor de la cuenta aparece en el display y corresponde al número de pulsos dentro de la constante de tiempo seleccionada. En la figura 9.2 presentamos el diagrama eléctrico del circuito el cual será armado en dos placas de circuito impreso separadas para facilitar su montaje. 118 119 FIGURA 9.2 DIAGRAMA ELECTRICO DEL MODULO PRINCIPAL. 120 FIGURA 9.2.1.- DIAGRAMA ELECTRICO DEL MODULO DISPLAY. FIGURA 9.2.2.- DIAGRAMA ELECTRICO DEL MODULO DEL OPTOSWITCH. El circuito disparador constituido por un oscilador astable que tiene como elemento principal el circuito integrado NE555, cuya frecuencia es ajustada a través de un trimpot para obtener el periodo necesario para obtener en el display el valor de la velocidad del viento al escalar el numero de vueltas a las que gira el anemómetro. 121 Cuando el oscilador disparador (NE555) genera un pulso, el contador recomienza y el primer monoestable constituido por la mitad el 74123 es disparado y comienza el cronometraje del tiempo de muestra. La señal que viene del optoswitch el cual es interrumpido por el encoder acoplado al eje del anemómetro pasa por una pequeña protección contra picos y tensiones negativas , compuesta por un resistor (R6) y un diodo zener (D1). FOTOGRAFIA 3.- MONTAJE DEL ENCODER CON EL OPTOSWITCH 122 En seguida va a excitar el primer contador correspondiente a la unidad. Cada vez que este contador “transborda” (llega a 9, su valor máximo, y vuelve a cero), el segundo contador, de la decena, es aumentado ya que los dos contadores están conectados en cascada. Mientras se hace la cuenta el primer monoestable está disparado y permanecerá así hasta que transcurra el tiempo programado para el pulso. Cuando esto ocurre, el primer monoestable vuelve a su estado de reposo y dispara el segundo monoestable, que acciona por un intervalo de tiempo muy pequeño el latch del decodificador de display (pata 3 del C.I. DM9368), así actualiza su valor para el de la cuenta actual y completa un ciclo de medición. El circuito permanecerá en reposo hasta que un nuevo pulso sea generado por el oscilador disparador (C.I. NE 555) con lo que reinicia todo el proceso. FOTOGRAFIA 4.-DISPLAY DIGITAL DEL ANEMOMETRO DE COPAS. 123 En la figura 9.2.3.- mostramos la placa de circuito impreso en la cual se montara este aparato. FIGURA 9.2.3.- PLACA DE CIRCUITO IMPRESO PARA EL MODULO PRINCIPAL. FIGURA 9.2.4.- PLACA DE CIRCUITO IMPRESO PARA EL MODULO DE DISPLAY. 124 FIGURA 9.2.5.- PLACA DE CIRCUITO IMPRESO PARA EL MODULO DEL OPTOSWITCH. 9.3. VELETA. Este dispositivo fue ideado para proporcionar una indicación digital de la dirección del viento con una resolución de 10 grados, esta resolución es suficiente para propósitos aeronáuticos. El dispositivo mecánico consiste en un tubo de 2.5 pulgadas de diámetro y 6 de largo, cuenta con 4 rodamientos de ¼ de pulgada acoplados a 2 bases de 2.5 pulgadas de diámetro, el eje consta de una barra de aluminio de ¼ de pulgada de diámetro por 7 pulgadas de longitud; a este eje se encuentran ancladas la flecha direccional y la veleta mediante un acoplador cilíndrico de ¾ de pulgada y 1 un eje de aluminio de 3/8 de pulgada de diámetro y 10 pulgadas de longitud. 125 FOTOGRAFIA 5.-VELETA DIGITAL. Para lograr este propósito nuestro circuito se basa en un par de contadores up/down sincrónicos de tecnología CMOS (CD 4029), los cuales están conectados en cascada y son activados igual que en el caso del anemómetro por la interrupción de dos haces de luz infrarroja hecha por un par de encoder’s con un defazamiento de 5 grados. 126 El encoder. En el capitulo 6 hablamos de los diferentes tipos de encoders, por la complicación técnica que representa el fabricar un encoder de tipo absoluto decidimos usar uno de cuadratura (incremental) con la desventaja que el dispositivo no tendrá memoria de la ultima posición, esto se reflejara en que este dispositivo deberá ser calibrado cuando se instale y deberá contar con una batería de respaldo con el objeto de que siempre este energizado ya que en el momento en que le falte la energía requerirá calibrarse de nueva cuenta orientando la veleta al norte magnético. El encoder fue fabricado en plástico y fue hecho de manera manual C.I. CD4029. El C.I. CD4029 (anexo “E”) es un contador arriba/abajo pre-programable que puede realizar la cuenta en modo binario o en décadas dependiendo del nivel de voltaje en la pata 9 marcada como “binary/decade”, cuando esta pata tiene un nivel lógico “1” el contador realizara la cuenta en binario y cuando el nivel lógico sea “0” contara en décadas. De manera similar el circuito contara hacia arriba cuando el nivel lógico en la pata 10 sea “1” de lo contrario el conteo se realizara en forma descendente. 127 Este C.I. contiene 4 entradas las cuales son identificadas como J1 a J4 en las cuales puede programarse cualquier numero para ser cargado en cualquier momento de forma asincrónica en el contador, esto sucederá al llevar a la pata 1 marcada como “preset enable” al nivel lógico “1”. Esta ultima característica fue aprovechada en el circuito para programar al contador para que contara en forma ascendente hasta 35 y volviera a cero, y en forma descenderte brincara de 0 a 35. Ver hoja de datos del fabricante en el anexo “E”. En la figura 9.3 mostramos la distribución de terminales de este integrado. FIGURA 9.3.- DISTRIBUCION DE TERMINALES DEL CD4029. C.I. 7408. En el C.I. 7408 encontramos 4 compuertas “AND” de 2 entradas fabricado con tecnología TTL, en el capitulo 1 detallamos el funcionamiento de este tipo de compuertas. En la figura 9.3.1 mostramos la tabla de verdad correspondiente así como la distribución de patas. 128 FIGURA 9.3.1.-TABLA DE VERDAD Y DISTRIBUCION DE PATAS PARA EL 7408 CON 4 COMPUERTAS AND DE 2 ENTRADAS. C.I. 7421. Este C.I. contiene 2 compuertas “AND” de 4 entradas, esta fabricado con tecnología TTL, para esta aplicación utilizamos la presentación en cubierta 14 DIL, en el capitulo 1 hablamos de el funcionamiento de las compuertas AND, el funcionamiento de esta compuerta es igual a la de 2 entradas, la salida será alta si y solo si todas sus entradas son altas, en la figura 9.3.2.- mostramos la tabla de verdad para este tipo de compuertas y la distribución de patas. 129 FOTOGRAFIA 6.- DISTRIBUCIÓN Y CONEXIÓN DE CIRCUITOS INTEGRADOS. FIGURA 9.3.2.- TABLA DE VERDAD Y DISTRIBUCION DE PATAS PARA EL 7421 CON 2 COMPUERTAS AND DE 4 ENTRADAS. 130 C.I. 7447. Este circuito integrado es un conversor de código de BCD a 7 segmentos fabricado con tecnología TTL cuyas salidas están activas en nivel lógico bajo, esto quiere decir que necesitamos utilizar display de 7 segmentos de ánodo común, esto con el objeto de que cuando una de las salidas del 7447 pase a nivel bajo encienda el segmento del display correspondiente. Este C.I. se fabrica en presentación 16 DIL. En la figura 9.3.3.- presentamos el diagrama lógico así como la distribución de patas, y en el anexo “F” presentamos las hojas de datos del fabricante. FIGURA 9.3.3.-SIMBOLO LOGICO Y DISTRIBUCION DE TERMINALES DEL 7447. 131 TRANSISTOR BC548. En el circuito construido utilizamos un transistor BC 548 esto con el objeto de que funcionara como una compuerta inversora, por este motivo este transistor esta polarizado para trabajar como un interruptor en corte y saturación, el BC548 es un transistor NPN de silito de uso general para aplicaciones como interruptor, se fabrica en cubierta TO-92, en la figura 9.3.4.presentamos su símbolo eléctrico y su distribución de terminales y en el anexo “G” las hojas de datos del fabricante. FIGURA 9.3.4.- DIAGRAMA ELECTRICO Y DISTRIBUCION DE TERMINALES DEL TRANSISTOR BC548. En la figura 9.3.5.- presentamos el diagrama a bloques del circuito. 132 FIGURA 9.3.5. DIAGRAMA A BLOQUES DEL INDICADOR DE DIRECCION DE VIENTO. FOTOGRAFIA 7.-CIRCUITO Y TARJETA IMPRESA CON CONEXIONES. 133 9.4. FUNCIONAMIENTO DE LA VELETA. Al establecer la alimentación en el contador se carga el numero 00, cuando la veleta gira a la derecha, el primer encoder acoplado al eje de la veleta establece el haz del optoswitch provocando un pulso alto en la terminal 15 del C.I. 4029 marcada como reloj, esto hace que la cuenta varié sumando o restando de acuerdo al voltaje aplicado en la terminal numero 10 del mismo C.I. marcada como up/down. El voltaje para esta terminal es proporcionado por el segundo optoswitch el cual es interrumpido por un segundo encoder que se encuentra desfasado 5 grados con respecto al primero. Los C.I. 7421 y 7408 a través de las terminales de entrada a las compuertas AND censarán el numero de la cuenta y el sentido de la misma, en el caso de conteo ascendente al llegar al 36 se habilita la terminal numero 1 del CD4029 y con esto se carga el numero 00 que es presentado en el display, cuando la cuenta sea descendente al alcanzar el numero 99 las compuertas AND provocaran que se cargue el numero 35 y este se presentado en el display a través de la habilitación de la terminal numero 1 marcada como “preset enable”. 134 FOTOGRAFIA 8.- DISPLAY DE ANODO COMUN El display utilizado en este circuito es del tipo de ánodo común ya que utilizamos el C.I. 7447 como convertidor de código BCD y driver para el display.”En la figura 9.4.- presentamos el diagrama eléctrico del circuito de la veleta y en la figura 9.4.1.- las placas de circuito impreso utilizada., cabe mencionar que esta última fue fabricada con doble faz. 135 FIGURA 9.4.- DIAGRAMA ELECTRICO DEL INDICADOR DE DIRECCION. 136 FIGURA 9.4.a.- DIAGRAMA ELECTRICO DEL DISPLAY DE ANODO COMUN. FIGURA 9.4.1-PLACA DE CIRCUITO IMPRESO PRINCIPAL DEL INDICADOR DE DIRECCION. 137 FIGURA 9.4.1.a.-PLACA DE CIRCUITO IMPRESO PARA EL DISPLAY DE ANODO COMUN. 138 10. CONCLUSIONES. El desarrollo de este proyecto de implementación de un sistema para conocer algunas variables climatológicas, como son la velocidad y dirección del viento, mediante la conversión de datos analógicos a digitales, nos ha permitido observar la gran importancia que reviste el conocimiento de la electrónica y su amplia aplicación en el medio aeronáutico, ya que basados en una metodología sencilla y práctica, pudimos desarrollar una veleta y un anemómetro lo suficientemente confiable para determinar dichos parámetros climatológicos., ya que la idea fundamental consiste en el desarrollo de equipos de bajo costo de fabricación y con tecnología nacional, a fin de evitar los grandes desembolsos que las diferentes compañías y dependencias tanto privadas como del gobierno, tienen que realizar por la adquisición y mantenimiento por parte del mercado extranjero, de este y otros tipos de equipos, para el desarrollo de las operaciones en las instalaciones aeroportuarias del país. Debemos mencionar que, como todo proyecto inicial carente de los suficientes recursos tanto económicos como materiales, encontramos algunas limitaciones para la fabricación de los dispositivos mecánicos, que en algunos componentes requieren de herramienta especializada; y en lo concerniente a la parte electrónica, esta solo queda limitada por la capacidad y disposición del propio diseñador ya que el mercado para la adquisición de los componentes requeridos es lo suficientemente extenso y al alcance de todos. 139 GLOSARIO DE TERMINOS Y ABREVIATURAS. ADC.- Convertidor analógico digital Buffer.- Dispositivo que aumenta la máxima corriente de carga permisible de un amplificador operacional. CMOS.- Semiconductores de metal-oxido complementario. DAC.- Convertidor digital analógico. DIODO.- Un cristal pn. Dispositivo que conduce fácilmente cuando presenta polarización directa y muy poco cuando tiene polarización inversa. DIP.- Paquete dual en línea. GND.- Tierra. LED.- Diodo emisor de luz.LSI.-dispositivo de integración a gran escala. MSI.-dispositivo de integración a media escala. NC. - No conexión. SSI.-dispositivo con integración a pequeña escala. VLSI.-integración a muy alta escala VCC.- Voltaje de alimentación VDD.- Tierra para CMOS. 140 ANEXO “A” LISTA Y COSTO DE MATERIALES. PARA EL ANEMOMETRO Cantidad 2 2 1 1 2 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 Descripción Costo unitario Total C.I. DM9368 56.90 113.80 C.I. SN74LS90 5.20 10.40 C.I. SN74LS23 4.00 4.00 C.I. NE555 2.20 2.20 Diodo 1N4004 0.40 0.80 Diodo Zener 5.1V ½ W 1.30 1.30 Diplay 7 seg. Cátodo común. 8.26 16.52 Optoswitch HA21A1 11.00 11.00 Trimpot vertical 20 vueltas 1K 20.00 20.00 Trimpot vertical 20 vueltas 200K 20.00 20.00 Resistencia carbón 100Ω 1/4W 0.26 0.26 Resistencia carbón 330Ω 1/4W 0.26 0.26 Resistencia carbón 470Ω 1/4W 0.26 0.26 Resistencia carbón 2.2K 1/4W 0.26 0.52 Resistencia carbón 2.7K 1/4W 0.26 0.26 Resistencia carbón 22K 1/4W 0.26 0.26 Capacitor Electrolítico 47 μF 25 V 0.87 0.87 Capacitor Electrolítico 1 μF 50 V 0.87 0.87 Capacitor cerámico 1nF 0.87 0.87 Capacitor cerámico 10nF 0.87 0.87 Capacitor cerámico 33nF 1.30 1.30 Placa fibra de vidrio 1 cara 10X10 cm 4.26 4.26 141 PARA LA VELETA. Cantidad 2 2 1 1 1 2 2 2 3 14 1 Descripción C.I. CD4029 C.I. SN7447 C.I. SN74LS21 C.I. SN74LS08 Transistor BC548 Diodo 1N4148 Diplay 7 seg. Ánodo común. Optoswitch HA21A1 Resistencia carbón 2.2K 1/4W Resistencia carbón 330Ω 1/4W Placa fibra de vidrio 2 caras 10X10 cm Costo unitario 2.50 5.20 3.00 2.17 1.80 0.35 5.65 11.00 0.26 0.26 8.21 Total 5.00 10.40 6.00 4.34 1.80 0.70 11.30 22.00 0.78 3.64 8.21 142 ANEXO “B” 143 144 145 146 147 ANEXO “C” 148 149 150 151 152 ANEXO “D” 153 154 155 156 157 158 159 160 161 162 163 164 165 ANEXO “E” 166 167 168 169 170 171 172 173 174 ANEXO “F” 175 176 177 178 179 180 181 182 183 184 185 186 187 ANEXO “G” 188 189 190 BIBLIOGRAFIA. Ronald J. Tocci, 5/a. Edición, Sistemas Digitales (principios y aplicaciones), Prentice may, 1993. Enrique Maldonado, 7/1. edición, Sistemas electrónicos digitales, Alfa Omega Macombo, mandado España, 1992. Albert Paul Malvino (West Balley College), 5/a. edición, principios de electrónica, Mcgraw-Hill, México, 1993. Universidad de las Américas; Puebla, México; World Wide Web. Finkelstein, P.L. y otros, 1983. Quality Assurance Handbook for Air Pollution Measurement Systems: Vol. IV. Meteorological Measurements. EPA-600/482-060. U.S. Environmental Protection Agency. Holzworth, G.C., 1972, enero. Mixing Heights, Wind Speeds, and Potential for Urban Air Pollution throughout the Contiguous United States. Office of Air Programs Publication No. AP-101. U.S. Environmental Protection Agency. Randerson, D., 1984. Atmospheric Science and Power Production. DOE/TIC27601. U.S. Department of Energy. U.S. Environmental Protection Agency (Office of Air Quality Planning and Standards), 1987 (Revised 1993). On-Site Meteorological Program Guidance for Regulatory Modeling Applications. EPA-45/4-87-013. U.S. Environmental Protection Agency (Environmental Services Division). 1993. Guidance for Ambient Air Monitoring at Superfund Sites. Informed ASF-4. World Meteorological Organization, 1983. Guide to Meteorological Instruments and Methods of Observation. 5a ed. WMO-No. 8. Ginebra, Suiza. 191