Ecuacionews Racionales e Iracionales

Anuncio
COLEGIO ALTOARAGÓN.
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. 1º BACH.
Ejercicios de Ecuaciones Racionales e Irracionales (Material Ed. SM)
1
Resuelve la siguiente ecuación con un radical:
x − 25 − x 2 = 1
Solución:
Ecuación:
x − 25 − x 2 = 1
Despejamos el radical:
x− 1 =
25 − x 2
Elevando al cuadrado:
x 2 − 2 x + 1 = 25 − x 2
Pasando los términos al primer miembro:
2 x 2 − 2 x − 24 = 0 ↔ x 2 − x − 12 = 0
Resolviendo: x=4, x=-3
La segunda no es válida, por no verificar la ecuación inicial
Solución: x=4
2
Resuelve la siguiente ecuación con un radical:
x − 169 − x 2 = 17
Solución:
Ecuación:
x − 169 − x 2 = 17
Despejamos el radical:
x − 17 = 169 − x 2
Elevando al cuadrado:
x 2 − 34 x + 289 = 169 − x 2
Pasando los términos al primer miembro:
2 x 2 − 34 x + 120 = 0 ↔ x 2 − 17 x + 60 = 0
Resolviendo: x=12, x=5
Ninguna de las soluciones es válida, por no verificar la ecuación inicial
3
Resuelve la siguiente ecuación con un radical:
5 − 2x − x = 5
1
Solución:
Ecuación:
5 − 2x − x = 5
Despejamos el radical:
5 − 2 x = x+ 5
Elevando al cuadrado:
5 − 2 x = x 2 + 10 x + 25
Pasando los términos al segundo miembro:
x 2 + 12 x + 20 = 0
Resolviendo: x=-2, x=-10
La segunda no es válida, por no verificar la ecuación inicial
Solución: x=-2
4
Resuelve la siguiente ecuación con un radical:
x+4 =7
Solución:
Ecuación:
x+ 4 = 7
Elevando al cuadrado:
x + 4 = 49
Resolviendo: x = 45
5
Resuelve la siguiente ecuación con un radical:
x + 5x + 10 = 8
2
Solución:
Ecuación:
x + 5 x + 10 = 8
Despejamos el radical:
5 x + 10 = 8 − x
Elevando al cuadrado:
5 x + 10 = 64 − 16 x + x 2
Pasando los términos al segundo miembro:
x 2 − 21 x + 54 = 0
Resolviendo: x=3, x=18
La segunda no es válida, ya que no se verifica la ecuación inicial
Solución: x=3
6
Encuentra las soluciones, si existen, de la ecuación:
5x + 4 5x − 4 13
+
=
5x − 4 5x + 4
6
Solución:
Ecuación:
5 x + 4 5 x − 4 13
+
=
5 x− 4 5 x+ 4
6
Multiplicando por el MCM=6(5x-4)(5x+4) se tiene:
6(5 x + 4) 2 + 6(5 x − 4) 2 = 13(5 x + 4)(5 x − 4)
Operando:
150 x 2 + 240 x + 96 + 150 x 2 − 240 x + 96 = 325 x 2 − 208
Pasando términos al primer miembro y simplificando, se tiene:
− 25 x 2 + 400 = 0 → x 2 =
400
= 16 → x = ±4
25
Las soluciones son x=-4; x=4.
7
Encuentra las soluciones, si existen, de la ecuación:
x + 1 x − 1 2x + 1
+
=
x+2 x−2
x +1
3
Solución:
Ecuación:
x+ 1 x− 1 2 x+ 1
+
=
x+ 2 x− 2
x+ 1
Multiplicando por el MCM=(x+2)(x-2)(x+1) se tiene:
(x + 1) 2 (x − 2) + (x − 1)(x+ 1)(x + 2) = (2 x + 1)(x+ 2)(x− 2)
Operando:
2 x 3 + 2 x 2 − 4 x− 4 = 2 x 3 + x 2 − 8 x− 4
Pasando términos al primer miembro y simplificando se tiene:
x 2 + 4 x = 0 → x(x+ 4) = 0
Las soluciones son x=-4; x=0.
8
Un padre tenía 25 años cuando nació su hijo. La media geométrica de las edades de ambos en la actualidad
supera en 10 al número de años del hijo. Halla sus edades.
Solución:
Si la edad actual del hijo es x años, la del padre es x+25 años.
Se puede plantear la ecuación:
x(x+ 25) = x + 10
Elevando al cuadrado:
x 2 + 25 x = x 2 + 20 x + 100
Operando:
5 x = 100
Resolviendo: x = 20 años.
Las edades del hijo y del padre son respectivamente: x = 20 años, y = 45 años
9
La raíz cuadrada de la edad de un padre, da la edad de su hijo. Al cabo de 24 años la edad del padre será
doble que la del hijo. ¿Cuántos años tiene cada uno?
4
Solución:
Si x es la edad en años del padre, la del hijo, es
x
La ecuación es:
(
x + 24 = 2 x + 24
)
Operando y aislando el radical:
2 x = x − 24
Elevando al cuadrado:
4 x = x 2 − 48 x + 576
Operando:
x 2 − 52 x + 576 = 0
Resolviendo: x = 36 años o x = 16 años
Solución válida la primera
Las edades del padre y del hijo son respectivamente: 36 años y 6 años
10 Encuentra las soluciones, si existen, de la ecuación:
x
6−x
=
2x + 1 3x + 4
Solución:
Ecuación:
x
6−x
=
2 x+ 1 3 x+ 4
Igualando productos cruzados:
x(3 x + 4) = (6 − x)(2 x + 1) → 3 x 2 + 4 x = 12 x + 6 − 2 x 2 − x
Pasando términos al primer miembro y operando:
5 x 2 − 7 x− 6 = 0
Resolviendo:
x=
7 ± 49 + 120 7 ± 13
=
10
10
Las soluciones son:
x=
20
6
3
= 2; x = −
=−
10
10
5
11 Resuelve la siguiente ecuación con dos radicales:
x + 4 − 3x + 1 = −1
5
Solución:
Ecuación:
x + 4 − 3 x + 1 = −1
Aislando un radical:
x+ 4 = 3 x+ 1 − 1
Elevando al cuadrado:
x+ 4 = 3 x+ 1 + 1 − 2 3 x+ 1
Aislando el radical:
2 3 x+ 1 = 2 x− 2 ↔ 3 x+ 1 = x− 1
Elevando al cuadrado:
3 x+ 1 = x 2 − 2 x+ 1
Operando:
x2 − 5 x = 0
Resolviendo: x=0, x=5
Solución válida: x=5
12 Resuelve la siguiente ecuación con dos radicales:
36 + x = 2 + x
Solución:
Ecuación:
36 + x = 2 + x
Elevando al cuadrado:
36 + x = 4 + x + 4 x
Aislando el radical:
32 = 4 x
Elevando al cuadrado:
1024 = 16 x
Resolviendo: x=64
13 Resuelve la siguiente ecuación con dos radicales:
7 + 2x − 3 + x = 1
6
Solución:
Ecuación:
7 + 2x − 3 + x = 1
Aislando un radical:
7 + 2 x = 1+ 3 + x
Elevando al cuadrado:
7 + 2 x = 1 + 3 + x+ 2 3 + x
Aislando el radical:
x+ 3 = 2 3 + x
Elevando al cuadrado:
x 2 + 9 + 6 x = 12 + 4 x
Operando:
x 2 + 2 x− 3 = 0
Resolviendo: x=-3, x=1
Solución válida: las dos
14 Dos grifos vierten a la vez agua en un depósito y tardan dos horas en llenarlo. ¿Cuánto tiempo tardará cada
grifo en llenar el depósito si se sabe que el segundo tarda tres horas más que el primero? Razona la
respuesta.
Solución:
Si v 1 y v 2 son los caudales de cada uno de los dos grifos (cantidad de agua por unidad de tiempo) y el depósito
tiene un
volumen V. Siendo x el tiempo (en horas) que tarda en llenar el depósito el primer grifo y x+3 el tiempo (en horas)
de llenado del segundo grifo, podemos plantear:
1. Para el primer grifo:
V = v 1⋅ x → v 1 =
V
x
2. Para el segundo grifo:
V = v 2 ⋅ (x + 3) → v 2 =
V
x+ 3
3. Para los dos grifos juntos:
V 
V
V = (v 1 + v 2 ) ⋅ 2 → V =  +
⋅2
x
x
+
3

Dividiendo por V, se tiene:
1=
2
2
+
↔ x(x+ 3) = 2(x + 3) + 2 x
x x+ 3
Operando: x 2 − x − 6 = 0 , cuya única solución posible es x = 3 h.
Los tiempos de cada grifo son 3 h y 6 h respectivamente
7
15 Resuelve la ecuación siguiente:
2x + 1 − x =
x−3
Solución:
Ecuación:
2 x+ 1 − x =
x− 3
Elevando al cuadrado:
2 x + 1 + x − 2 x(2 x + 1) = x − 3
Aislando el radical:
2 x + 4 = 2 x(2 x + 1)
Simplificando por 2:
x+ 2 =
x(2 x + 1)
Elevando al cuadrado:
x 2 + 4 x+ 4 = 2 x 2 + x
Simplificando:
x 2 − 3 x− 4 = 0
Resolviendo: x=-1, x=4
La primera solución no es válida
Solución x=4
16 Halla dos números naturales, tales que la diferencia entre el doble del primero y el segundo sea la raíz
cuadrada de la suma de los cuadrados de dichos números; y la diferencia entre el segundo y la raíz
cuadrada del primero sea igual a la unidad.
Solución:
Sea x el primer número e y el segundo, del enunciado, se puede establecer el sistema:
2 x − y = x 2 + y 2


 y − x = 1
Operando se tiene:
4 x 2 − 4 xy + y 2 = x 2 + y 2
x(3 x − 4 y) = 0
⇒ 2
 2
y − 2 y + 1 = x
y − 2 y + 1 = x
De la primera ecuación se tienen dos posibilidades:
1ª solución : x = 0 ⇒ y 2 − 2 y+ 1 = 0 ⇒ y = 1 , no válida por no verificar el sistema inicial
y = 3 ⇒ x = 4
4y
4y

2
2
2ª solución : x =
⇒ y − 2 y+ 1 =
⇒ 3 y − 10 y + 3 = 0 ⇒ 
1
3
3
y = 3 ∉ N

La única solución válida es x = 4 e y = 3
8
17 Halla un número de dos cifras, sabiendo que éstas suman 7 unidades y que si sumamos 3 unidades al
número que resulta de intercambiar el orden de las cifras, su raíz cuadrada es el doble de la raíz del número
inicial.
Solución:
Sea N = ab el número que queremos calcular, se puede plantear el siguiente sistema:
 a+ b = 7

 ba+ 3 = 2 ab
Considerando el valor relativo de las cifras, el sistema anterior se puede expresar según:
 a+ b = 7
a+ b = 7
⇒

 a+ 10 b + 3 = 2 b+ 10 a
a+ 10 b+ 3 = 4(b+ 10 a)
⇒ a = 7 − b ⇒ 7 − b+ 10 b+ 3 = 4(b+ 70 − 10 b)
Operando la última ecuación, se tiene:
45 b = 270 ⇒ b =
270
= 6⇒ a =7−6 =1
45
El número es N = 16
9
Descargar