Math 30 Homework #9 1. f (x) = x2 sin x f 0 (x) = x2 cos x + (sin x)(2x) = 2x sin x + x2 cos x (a) f 0 (x) = 2x sin x − x2 cos x (c) f 0 (x) = 2x sin x + x2 cos x (b) f 0 (x) = x2 sin x − 2x cos x (d) f 0 (x) = −x2 sin x + 2x cos x 2. r(x) = (x3 − 7)5 r 0 (x) = 5(x3 − 7)4 (3x2 ) = 15x2 (x3 − 7)4 (a) r 0 (x) = 5x3 (x3 − 7)4 (b) r 0 (x) = 15x2 (x3 − 7)4 3. k(x) = (c) r 0 (x) = 5x(x3 − 7)4 (d) r 0 (x) = (15x2 − 7)(x3 − 7)4 x cos x e2x+3 d d e2x+3 dx (x cos x) − (x cos x) dx (e2x+3 ) (e2x+3 )2 e2x+3 [x(− sin x) + (cos x)(1)] − x cos x e2x+3 (2) = (e2x+3 )2 e2x+3 [−x sin x + cos x − 2x cos x] = (e2x+3 )2 cos x − x sin x − 2x cos x = e2x+3 k0 (x) = (a) k0 (x) = cos x + x sin x + 2x cos x e2x+3 (b) k0 (x) = cos x − x sin x + 2 cos x e2x+3 4. m(x) = p cos x − x sin x − 2x cos x e2x+3 cos x + x sin x − x cos x (d) k0 (x) = e2x+3 (c) k0 (x) = sin(ex ) 1 m(x) = (sin(ex)) 2 1 d 1 1 1 m0 (x) = (sin(ex ))− 2 (sin(ex )) = (sin(ex ))− 2 cos(ex )ex 2 dx 2 1 1 (sin(ex ))− 2 cos(ex )ex 2 1 1 (b) m0 (x) = (sin(ex ))− 2 sin(ex ) 2 1 1 (c) m0 (x) = − (sin(ex ))− 2 cos(ex ) sin(ex ) 2 (a) m0 (x) = 5. h(x) = (d) m0 (x) = 1 1 (sin(ex ))− 2 sin(x)ex 2 1 sin (x + cos x) 2 h(x) = 1 = [sin(x + cos x)]−2 sin (x + cos x) 2 d (sin(x + cos x)) dx = −2 [sin(x + cos x)]−3 cos(x + cos x)(1 − sin x) h0 (x) = −2 [sin(x + cos x)]−3 (a) h0 (x) = 2(sin(x + cos x))−3 sin(x + cos x)(1 − sin x) (b) h0 (x) = 2(sin(x + cos x))−3 (1 − sin x) (c) h0 (x) = −2(sin(x + cos x))−3 cos(x + cos x)(cos x)(1 − sin x) (d) h0 (x) = −2(sin(x + cos x))−3 cos(x + cos x)(1 − sin x) 6. p(x) = sin √ √ x − 1 · cos x + 2 √ √ 1 1 p(x) = sin x − 1 · cos x + 2 = sin(x − 1) 2 cos(x + 2) 2 1 d 1 1 d cos(x + 2) 2 + cos(x + 2) 2 sin(x − 1) 2 dx dx 1 1 d 1 1 1 d 1 = sin(x − 1) 2 − sin(x + 2) 2 (x + 2) 2 + cos(x + 2) 2 cos(x − 1) 2 (x − 1) 2 dx dx 1 1 1 1 1 1 − 12 − 12 2 2 2 2 = − sin(x − 1) sin(x + 2) (x + 2) (1) + cos(x + 2) cos(x − 1) (x − 1) (1) 2 2 √ √ √ √ − sin x − 1 sin x + 2 cos x + 2 cos x − 1 √ √ = + 2 x+2 2 x−1 1 p0 (x) = sin(x − 1) 2 √ √ √ √ sin x − 1 · sin x + 2 cos x − 1 · cos x + 2 √ √ (a) p (x) = − 2 x−1 2 x+2 √ √ √ √ cos x − 1 · sin x + 2 sin x − 1 · cos x + 2 0 √ √ (b) p (x) = − 2 x−1 2 x+2 √ √ √ √ sin x − 1 · cos x + 2 cos x − 1 · sin x + 2 0 √ √ (c) p (x) = − 2 x−1 2 x+2 0 √ √ √ √ cos x − 1 · cos x + 2 sin x − 1 · sin x + 2 √ √ (d) p (x) = − 2 x−1 2 x+2 0 cos x 7. g(x) = e (b) (c) (d) x+1 ex x+1 x + 1 d cos x g (x) = e sin + sin (e ) ex ex dx x+1 x+1 d x+1 + sin (ecos x )(− sin x) = ecos x cos ex dx ex ex x x+1 e (1) − (x + 1)ex x+1 cos x cos x =e cos −e sin sin x ex (ex )2 ex x+1 −xex x+1 cos x − e sin x sin = ecos x cos ex (ex)2 ex x x+1 x+1 cos x cos x −e sin x sin = −e cos ex ex ex x+1 x+1 x 0 cos x cos x g (x) = −e sin +e sin ex ex ex x+1 x+1 x 0 cos x cos x g (x) = −e sin x · cos −e sin ex ex ex x+1 x+1 x g 0 (x) = −ecos x sin x · sin − ecos x cos x e ex ex x+1 x+1 x 0 cos x cos x g (x) = −e sin x · sin −e sin ex ex ex 0 (a) sin cos x d dx 8. n(x) = sin(sin(cos x)) d (sin(cos x)) dx = cos(sin(cos x))(cos(cos x)(− sin x)) = − cos(sin(cos x)) cos(cos x) sin x n0 (x) = cos(sin(cos x)) (a) n0 (x) = − cos(sin(cos x)) · cos(cos x) sin x (b) n0 (x) = − cos(cos(sin x)) · sin x sin x (c) n0 (x) = − cos(sin(cos x)) · sin(cos x) cos x (d) n0 (x) = − cos(sin(cos x)) · sin x cos x 9. f (x) = x tan(1 + e2x ) d tan(1 + e2x ) + tan(1 + e2x )(1) dx 2 2x d 2x = x sec (1 + e ) (1 + e ) + tan(1 + e2x ) dx f 0 (x) = x = x sec2 (1 + e2x)(e2x)(2) + tan(1 + e2x ) = 2x sec2 (1 + e2x )e2x + tan(1 + e2x) (a) f 0 (x) = x tan(1 + e2x) + sec2 (1 + e2x)e2x (b) f 0 (x) = tan(1 + e2x ) + 2x sec2 (1 + e2x )e2x (c) f 0 (x) = tan(1 + e2x ) + sec2 (1 + e2x )e2x (d) f 0 (x) = tan(1 + e2x ) + 2x sec2 (1 + e2x ) 10. w(x) = sec(2 sin(πx)) d (2 sin(πx)) dx = sec(2 sin(πx)) tan(2 sin(πx))(2 cos(πx)(π)) w 0 (x) = sec(2 sin(πx)) tan(2 sin(πx)) = 2π sec(2 sin(πx) tan(2 sin(πx)) cos(πx) (a) w 0 (x) = π sec(2 sin(πx)) tan(2 sin(πx)) sin(πx) (b) w 0 (x) = 8πx sec(sin(πx)) tan(sin(πx)) cos(πx) (c) w 0 (x) = 2πx sec(2 sin(πx)) tan(2 sin(πx)) sin(πx) (d) w 0 (x) = 2π sec(2 sin(πx)) tan(2 sin(πx)) cos(πx) 11. v(x) = √ √ csc x + sec x 1 1 v(x) = (csc x) 2 + sec x 2 1 1 1 1 v (x) = (csc x)− 2 (− csc x cot x) + (sec x 2 tan x 2 ) 2 √ √ csc x cot x sec x tan x √ =− √ + 2 csc x 2 x 0 1 −1 x 2 2 (a) (b) (c) (d) √ √ csc x cot x sec( x) tan( x) √ + v (x) = √ 2 sec x 2 x √ √ csc x cot x sec( x) tan( x) 0 √ √ v (x) = + 2 x 2 sec x √ √ csc x cot x sec( x) tan( x) 0 √ + v (x) = − √ 2 csc x 2 x √ √ sec x tan x csc( x) cot( x) 0 √ v (x) = √ − 2 csc x 2 x 0 12. q(x) = cot2 (1 − x2 ) q(x) = cot2 (1 − x2 ) = cot(1 − x2 ) 2 d (cot(1 − x2 )) dx = 2 cot(1 − x2 )(− csc2 (1 − x2 ))(−2x) q 0 (x) = 2 cot(1 − x2 ) = 4x cot(1 − x2 ) csc2 (1 − x2 ) (a) q 0 (x) = −2x cot(1 − x2 )(csc2 (1 − x2 )) (c) q 0 (x) = 4x csc(1 − x2 )(cot2 (1 − x2 )) (b) q 0 (x) = −2x2 cot(1 − x2 )(csc2 (1 − x2 )) (d) q 0 (x) = 4x cot(1 − x2 )(csc2 (1 − x2 )) 13. h(x) = sin(sec2 x) h(x) = sin(sec2 x) = sin((sec x)2 ) d ((sec x)2 ) dx = cos(sec2 x)2 sec x(sec x tan x) h0 (x) = cos((sec x)2 ) = 2 cos(sec2 x) sec2 x tan x (a) h0 (x) = 2 cos(sec2 x) sec2 x tan x (c) h0 (x) = cos(sec2 x) sec x tan x (b) h0 (x) = 2 cos(sec2 x) sec x tan x (d) h0 (x) = 2 cos(sec2 x) sin(sec2 x) tan x 14. m(x) = csc2 (csc x) m(x) = csc2 (csc x) = (csc(csc x))2 d (csc(csc x)) dx = 2 csc(csc x)(− csc(csc x) cot(csc x))(− csc x cot x) m0 (x) = 2(csc(csc x)) = 2 csc2 (csc x) cot(csc x) csc x cot x (a) m0 (x) = 2 csc2 (csc x) csc x cot x (c) m0 (x) = 2 csc2 (csc x) cot(csc x) (b) m0 (x) = 2 csc2 (csc x) cot(csc x) csc x cot x (d) m0 (x) = −2 csc(csc x) cot(csc x) csc x cot x 15. Find an equation for the tangent line to g(x) = sin(cos(πx)) at x = 12 . (a) y = −πx + (b) y = πx − π 2 π 2 (c) y = 1 2 (d) y = πx + 3π 2 We want to find the equation of the tangent line, so we need the slope and a point on the line. To find the slope we need the derivative. d (cos(πx)) dx = cos(cos(πx))(− sin(πx))(π) g 0 (x) = cos(cos(πx)) = −π cos(cos(πx)) sin(πx) m = f0 1 1 1 = −π cos cos π · sin π · = −π(cos 0)(1) = −π(1) = −π 2 2 2 To find a point on the line, at x = 21 . Therefore we know the line touches the graph of g(x) 1 1 1 y = g( 2 ) = sin cos π · 2 = sin(0) = 0. Thus a point on the line is ( 2 , 0). Now we can find the equation of the line. 1 y − 0 = −π x − 2 π y = −πx + 2