RIAIDT Rede de Infraestruturas de Apoio á Investigación e ao Desenvolvemento Tecnolóxico Vicerrectorado de investigación http://www.usc.es/gl/investigacion/riaidt/ Título del estudio: Análisis mineralógico y composicional de una pieza de hormigón. Métodos XRD, XRF, ICPÓptico y Analizador CHNS Palabras clave: Difracción de polvo cristalino (XRD), Hormigón, Semicuantificación minerales, Análisis Elemental, Analizador CHNS, ICP-óptico, Fluorescencia de Rx (XRF), método RIR Test realizado por: Unidad de RayosX, Unidad de análisis Elemental http://www.usc.es/gl/investigacion/riaidt/ TABLA DE CONTENIDOS 1. PÁGINA INTRODUCCIÓN ........................................................................................................................................... 3 1.1. Difracción de polvo cristalino ............................................................................................................... 3 1.2. Fluorescencia de RayosX ...................................................................................................................... 3 1.3. Análisis elemental ................................................................................................................................ 4 1.4. ICP-Óptico ........................................................................................................................................... 4 2. OBJECTIVO ................................................................................................................................................... 4 3. EVALUACIÓN VISUAL.................................................................................................................................... 5 3.1. HC1_Colemanita: bloque inicial ............................................................................................................ 5 3.2. HC1_Colemanita: submuestreo ............................................................................................................ 5 4. MATERIALES, MÉTODOS ............................................................................................................................... 6 4.1. Test Item ............................................................................................................................................. 6 4.2. Metodología, instrumentación ............................................................................................................. 6 4.2.1. Medidas de polvo cristalino ........................................................................................................................................ 6 4.2.2. Análisis elemental ....................................................................................................................................................... 6 4.2.3. Medidas de fluorescencia de Rayos X ......................................................................................................................... 6 4.2.3.1. Espectrómetro de Fluorescencia de Rayos X con ánodo de Molibdeno ........................................................... 6 4.2.3.2. Espectrómetro de Fluorescencia de Rayos X con ánodo secundario de Pirografito y Hierro ........................... 6 4.2.1. 5. Medidas de ICP-OES .................................................................................................................................................... 6 RESULTADOS................................................................................................................................................ 7 5.1. Medidas de Análisis Elemental ............................................................................................................. 7 5.2. Medidas de Fluorescencia de RayosX.................................................................................................... 7 5.3. Medidas de determinación mineralógica (difracción de RayosX en polvo cristalino)............................... 8 5.4. Medidas de cuantificación del B (ICP-OES) ............................................................................................ 9 6. CONCLUSIONES .......................................................................................................................................... 10 7. STATEMENT OF OWNERSHIP ...................................................................................................................... 11 2/51 http://www.usc.es/gl/investigacion/riaidt/ 1. INTRODUCCIÓN 1.1. Difracción de polvo cristalino La difracción de rayos X es una de las técnicas más ampliamente usadas en el estudio de la materia sólida, aunque también encuentra aplicaciones en análisis de estados desordenados. Constituye una metodología veterana, aunque no para de renovarse continuamente. Sus orígenes se remontan a principios del siglo XX (Laue, 1912, W.H. Bragg y W.L. Bragg, 1915), quienes diseñaron experiencias de difracción y reflexión de rayos X por materia cristalina que permitieron mostrar la naturaleza electromagnética de esta radiación. En la actualidad, la difracción de rayos X tienen muchas aplicaciones en el estudio de la materia sólida: Unas veces a partir de mezclas de polvo mono o policristalinas y otras a partir de cristales con menos de un milímetro de diámetro, pueden realizarse estudios no destructivos de diversos tipos: Análsis cualitativo Análisis cuantitativo Análisis microtextural Tamaño de cristalito= mosaico= dominio coherente (Cristalinidad) Deformación no homogénea (strain) Tensores de dilatación térmica( termodifracción) Cambios de fase (reacciones en estado sólido, procesos secuenciales) Análisis estructural (Posiciones atómicas, oscilaciones atómicas de carácter térmico, desorden posicional, etc.) El análisis por difracción de rayos X se utiliza sobre cualquier material sólido1. Es ampliamente utilizado en materiales inorgánicos, superconductores, orgánicos, cementos, minerales, materiales corrosivos, metales y aleaciones, polímeros, detergentes, pigmentos, materiales forenses, productos farmacéuticos, zeolitas, cerámicas, explosivos… Para realizar el análisis de semicuantificación con datos de difracción de polvo cristalino, hemos usado el programa “Match! Copyright © 2003-2011 CRYSTAL IMPACT, Bonn, Germany”2. Para evaluar la calidad de las fases sugeridas, conviene fijarse en los valores reportados de FOM (calidad del ajuste con el patrón seleccionado) que se calculan en función de las posiciones de los picos y de las intensidades relativas de, al menos, tres picos principales del mineral evaluado. Cuanto más próximo a 1 dé este valor, más fiable su asignación. Bien es cierto que valores bajos pueden indicar que se trata de minerales en muy baja proporción ya que las intensidades relativas de los picos principales pueden estar mal obtenidas debido a procesos de solapamiento… 1.2. Fluorescencia de RayosX La técnica EDXRF3 utiliza la emisión secundaria o fluorescente de radiación X que se genera al excitar una muestra con una fuente emisora de rayos X. La radiación X incidente o primaria expulsa electrones de capas interiores del átomo. Entonces, los electrones de capas más externas ocupan los lugares vacantes, y el exceso energético resultante de esta transición se disipa en forma de fotones: la llamada radiación X fluorescente o secundaria. Esta radiación de fluorescencia es característica para cada elemento químico. Por lo tanto, es posible identificar un elemento dentro del espectro de la muestra si se conoce la energía entre los orbitales atómicos implicados (longitud de onda). La concentración de cada elemento se detecta midiendo la intensidad de la energía asociada a cada transición de electrones. Es decir, la salida de un análisis EDXRF es un espectro que muestra la intensidad de radiación en función de la energía. 1 2 3 http://en.wikipedia.org/wiki/Powder_diffraction http://crystalimpact.com/match/Default.htm http://en.wikipedia.org/wiki/Energy_dispersive_X-ray_spectroscopy 3/51 http://www.usc.es/gl/investigacion/riaidt/ 1.3. Análisis elemental El análisis elemental4 es una técnica que proporciona el contenido total de carbono, hidrógeno, nitrógeno y azufre presente en un amplio rango de muestras de naturaleza orgánica e inorgánica tanto sólidas como líquidas. La técnica está basada en la completa e instantánea oxidación de la muestra mediante una combustión con oxígeno puro a una temperatura aproximada de 1000ºC. Los diferentes gases generados en la combustión CO2, H2O y N2, son arrastrados mediante el gas portador (He) a través de un tubo de oxidación-reducción y después selectivamente separados e una columna cromatográfica específica para ser luego desorbidos térmicamente. Finalmente, los gases pasan de forma separada por un detector de conductividad térmica que proporciona una señal proporcional a la concentración de cada uno de los componentes individuales de la mezcla. 1.4. ICP-Óptico En la espectrometría de emisión óptica5 con plasma acoplado inductivamente (ICP-OES), la muestra es transportada al interior del aparato con una corriente líquida que se convierte en un aerosol mediante el proceso conocido como nebulización. La muestra, en forma de aerosol se transporta al plasma, donde es desolvatada, vaporizada, atomizada, excitada y/o ionizada por el plasma. Los átomos excitados y los iones emiten su radiación a una longitud de onda característica. Esta radiación característica es detectada y se puede convertir en información sobre su concentración. 2. OBJECTIVO El objetivo de este estudio es realizar tanto la determinación semicuantitativa mineralógica, mediante la técnica de difracción de RayosX analizando para ello, las fases cristalinas presentes, así como un análisis cuantitativo de los elementos químicos presentes, mediante las técnicas de fluorescencia de RayosX para la determinación de las concentraciones de los átomos pesados, el análisis elemental para la cuantificación de C, N, H, S y O, y usar el ICPóptico para cuantificar el B. 4 5 http://en.wikipedia.org/wiki/Atomic_absorption_spectroscopy http://en.wikipedia.org/wiki/Inductively_coupled_plasma_atomic_emission_spectroscopy 4/51 http://www.usc.es/gl/investigacion/riaidt/ 3. EVALUACIÓN VISUAL 3.1. HC1_Colemanita: bloque inicial Como se puede observar, el bloque etiquetado como “HC1_Colemanita” es una muestra claramente inhomogénea, por lo que hemos decidido muestrear en diferentes zonas para poder definir bien las composiciones asociadas a cada parte a analizar. En función del aspecto se han realizado 23 submuestreos que han sido nombrados como “HC1.01”, “HC1.02”,….,”HC1.23”. 3.2. HC1_Colemanita: submuestreo La submuestra “HC1.21” no se encuentra en esta vista general 5/51 http://www.usc.es/gl/investigacion/riaidt/ 4. MATERIALES, MÉTODOS 4.1. Test Item Aspecto: muestra de gran tamaño e inhomogénea. El aspecto de los componentes ha determinado la selección de las diferentes partes. Condiciones de almacenaje: temperatura ambiente, protegidas con una cinta de embalar suministrada por el sponsor. Una vez submuestreado, cada una de las partes se guarda en bolsas individuales. Medidas de protección: guantes de látex, gafas de protección y mascarilla de protección contra polvo Herramientas para la obtención del material a analizar: martillo y punzón metálico además de un microtaladro fresador. La homogenización de las submuestras se realizo mediante el uso de un mortero de ágata automático tipo “RM-100 RETSCH (nº serie 70104)”. 4.2. Metodología, instrumentación 4.2.1. Medidas de polvo cristalino Las medidas de difracción de polvo cristalino fueron hechas por un difractómetro tipo Philips, manejado con una unidad de control tipo “PW1710”, un goniómetro vertical tipo “PW1820/00” y un generador tipo “Enraf Nonius FR590” operando a 40Kv y 30mA. Los Rayos X se obtuvieron de un tubo sellado de Cu y la radiación fue monocromatizada con un monocromador de grafito (λ(Kα1)=1.5406Å). Los difractogramas fueron obtenidos en el rango angular de 2<2θ<65 con un paso de 0.02° a 5s por paso. Las muestras fueron giradas durante la medida para obtener los perfiles de pico más óptimos para el análisis, así como para minimizar el efecto de la orientación preferente. Las muestras en estado de polvo cristalino fueron depositadas en una base de un cristal orientado para evitar el ruido de fondo (scattering) ocasionado por un soporte tipo vítreo. 4.2.2. Análisis elemental Hemos realizado las pesadas en una balanza de alta precisión (METTLER TOLEDO modelo UMT2), y las cuantificaciones para el N, el C, el S y el H en el analizador tipo “Analizador Elemental FISONS modelo EA 1108”, que utiliza entre 1 y 10 mg de muestra, con una precisión del 0.3% y una reproducibilidad del 0.2%. 4.2.3. Medidas de fluorescencia de Rayos X 4.2.3.1. Espectrómetro de Fluorescencia de Rayos X con ánodo de Molibdeno Se utiliza para medir los elementos entre Mn y el U. El aparato ha sido diseñado y montado por el colaborador científico ucraniano Dr Andrij Cheburkin. Consta de un generador de alto voltaje Philips, proveniente de un difractómetro donado por REPSOL YPF, Refinería de A Coruña (2004) y un módulo que contiene la fuente emisora de rayos X (ánodo de Mo en un tubo de RayosX sellado de 2.2 Kw) y el detector (de dispersión de energía). 4.2.3.2. Espectrómetro de Fluorescencia de Rayos X con ánodo secundario de Pirografito y Hierro Se utiliza para medir elementos químicos “ligeros”, en la modalidad de ánodo de Plata (Pirografito) para Mg, Al, Si, P, S e Cl en modalidad de ánodo secundario de Fe para el K, Ca, Ti, V e Cr. Este aparato también ha sido diseñado y montado por el colaborador científico ucraniano Dr Andrij Cheburkin. Es un equipo similar al anteriormente mencionado, en base a módulos de un espectrofotómetro tipo “Spectrace 450”. 4.2.1. Medidas de ICP-OES 6/51 http://www.usc.es/gl/investigacion/riaidt/ Los componentes mayoritarios del ICP-OES son el espectrómetro (policromador con un detector de estado sólido CCD) y la fuente de plasma (generador RF de 40 MHz). Permite la medida simultánea de los elementos con lectura axial o radial intercambiables. Dispone de nebulizadores ultrasónico y Low –Flow y con cámaras de spray de dos tipos: ciclónica y Scott. Inyectores de alúmina y de cuarzo de diferentes diámetros. Dispone también de un muestreador automático. Es de la marca PerkinElmer, modelo Optima 4300 DV, con un muestreador automático tipo PerkinElmer AS93-plus. 5. RESULTADOS 5.1. Medidas de Análisis Elemental Muestra Carbono % Hidrógeno % Azufre %* HC1-01 0.026 0.826 0.345 HC1-02 0.039 2.350 - HC1-03 9.029 0.531 - HC1-04 0.694 1.834 0.213 HC1-05 0.064 1.721 0.430 HC1-06 0.070 0.969 0.084 HC1-12 0.170 0.226 2.443 HC1-13 0.192 2.512 0.061 HC1-16 0.076 2.347 0.111 HC1-20 0.119 2.244 0.340 *los valores son porcentajes en % peso y para el caso del S, para muy pocas cantidades, la señal de fondo se solapa con el posible pico o banda que pudiera aparecer. 5.2. Medidas de Fluorescencia de RayosX Téngase en cuenta nuestras calibraciones para ciertos elementos muy comunes: Si se estuviera interesado en alguno de los elementos que se salen de los rangos de calibración (medidas destacadas en rojo), habría que rehacer la medida diluyendo la muestra. Se haría bajo petición del sponsor. Elemento Na Mg Al Si P S Cl K Ca Ti V Cr Ba 7/51 Z 11 12 13 14 15 16 17 19 20 22 23 24 56 Unidades % % % % ppm ppm ppm % % % ppm ppm ppm L.D. 0,4-2,6 0,07-0,42 0,1-0,2 0,05-0,06 62-678 40-563 280-408 0,04-0,06 0,004-0,011 0,002-0,003 2--20 65? Concentración calibrada Min Max 0,26 5 0,27 21 1,9 34 226 5100 370 15000 80 23000 0,15 9 0,03 6 0,0023 1,5 40 352 1000 5800 http://www.usc.es/gl/investigacion/riaidt/ Elemento Mn Fe Ni Cu Zn Ga Ge As Se Br Rb Sr Y Zr Nb Pb Th Concentración calibrada Min Max 100 1730 0,5 9,5 12 2360 17 380 17 1250 5 40 4,7 170 4,9 17 2,9 86 14 1100 68 1000 9 40 40 690 2,2 63 0,2 600 4 36 Z 25 26 28 29 30 31 32 33 34 35 37 38 39 40 41 82 90 Unidades ppm % ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm L.D. 28-29 0,0018-0,0020 4--9 9--10 6 12--15 n.d. 1-1,4 2--4 1--2 2--4 1--5 1 0,3-0,7 0,6-3,5 0,5-7,4 2,4 Z 20 Unidades % ppm L.D. n.d. Concentración calibrada Min Max 6 40 1000 3000 Unidades % L.D. n.d. Concentración calibrada Min Max 0,16 0,42 Carbonatos Elemento Ca Sr Fosfatos Elemento P Z 15 n.d. no disponible 5.3. 8/51 Medidas de determinación mineralógica (difracción de RayosX en polvo cristalino) http://www.usc.es/gl/investigacion/riaidt/ Ver anexo A, en donde están las gráficas que muestran la correspondencia de los picos de los patrones con los picos del difractograma experimental. Los valores de la cuantificación mediante esta técnica son SEMICUANTITATIVOS. En el semicuantitativo utilizamos para evaluar la “calidad” de las fases encontradas, el FOM (en la tabla) que se determina en función no sólo de las posiciones de los picos sino de las intensidades relativas de algunos de los picos principales de cada una de las fases. La FOM de las fases cuyo valor supera el 0.7 se puede considerar con una calidad muy buena para un semicuantitativo. Para un análisis cuantitativo más preciso de las fases minerales cristalinas, habría que utilizar la metodología RIETVELD, que se realizaría en caso de ser solicitado por el sponsor. Muestra HC1.01 Ficha Formula FoM (Veatchite) Nombre 41.2 0.8474 99-100-4613 K (Si3 Al) O8 (Sanidine) 13.7 0.7998 99-101-1133 Ca B2 O6 H4 (Vimsite) 36.3 0.7156 99-100-8297 Zr O2 (Baddeleyite) 0.4 0.6390 99-100-9154 Ca B8 O15 H4 (CaB8O11(OH)4) 8.5 0.6127 HC1.02 99-100-4637 Ca.94 B3 O8 H5 (Colemanite) 100.0 0.9318 HC1.03 99-100-3538 (Ca.5 Mg.5) C O3 (Dolomite) 100.0 0.8333 99-100-4637 Ca.94 B3 O8 H5 (Colemanite) 90.6 0.8830 99-100-8717 Ca C O3 (Calcite) 3.9 0.7179 99-100-0259 Sr2 B11 O22 H7 (Veatchite) 2.6 0.7116 99-100-6417 Mg Al2 O4 (Spinel) 2.9 0.6110 99-100-4637 Ca.94 B3 O8 H5 (Colemanite) 90.5 0.8974 99-100-4613 K (Si3 Al) O8 (Sanidine) 9.5 0.7308 99-100-0259 Sr2 B11 O22 H7 (Veatchite) 42.2 0.7957 99-101-1133 Ca B2 O6 H4 (Vimsite) 34.8 0.5851 99-100-9154 Ca B8 O15 H4 (CaB8O11(OH)4) 16.3 0.5247 99-100-8297 Zr O2 (Baddeleyite) 6.8 0.4592 99-100-4637 Ca.94 B3 O8 H5 (Colemanite) 92.0 0.8941 99-100-4613 K (Si3 Al) O8 (Sanidine) 8.0 0.6932 99-100-0259 Sr2 B11 O22 H7 (Veatchite) 43.2 0.7975 99-101-1133 Ca B2 O6 H4 (Vimsite) 41.9 0.6803 99-100-8297 Zr O2 (Baddeleyite) 1.0 0.5719 99-100-9154 Ca B8 O15 H4 (CaB8O11(OH)4) 13.9 0.5599 99-100-6956 K Al Si3 O8 (Orthoclase) 84.8 0.8727 99-100-4167 (Mg4.5 Fe.5) Al5 Si4 O18 H8 (Chlorite) 3.7 0.7107 99-100-0472 Mg2.001 Al1.999 K.5 Si3 O12 (Biotite) 10.0 0.7043 99-101-2688 Fe (S1.46 As.54) (Pyrite) 99-100-4494 Mg Ca O17 B6 H12 (Hydroboracite) 99-100-4637 Ca.94 B3 O8 H5 (Colemanite) 99-101-1338 Si O2 (Quartz) 99-100-4637 Ca.94 B3 O8 H5 (Colemanite) 99-100-4613 K (Si3 Al) O8 (Sanidine) 99-100-4637 Ca.94 B3 O8 H5 (Colemanite) 99-100-3846 As S (Realgar) 99-100-8564 Na2 B4 O17 H20 99-100-2702 Na2 B4 O11.667 H8.667 HC1.04 HC1.05 HC1.06 HC1.08 HC1.10 HC1.12 HC1.13 HC1.16 HC1.19 HC1.20 HC1.23 5.4. % 99-100-0259 Sr2 B11 O22 H7 1.5 0.6850 100.0 0.8680 99.5 0.9152 0.5 0.5812 95.8 0.9110 4.2 0.6286 95.3 0.9024 4.7 0.6093 (Borax) 73.7 0.8895 (Tincalconite) 26.3 0.8336 Medidas de cuantificación del B (ICP-OES) Se determinó el Boro a dos longitudes de onda diferentes (249.677 y 249.772 nm) El análisis se realizó en ICP-OES. La concentración final está expresada en g de B por Kg de muestra 9/51 http://www.usc.es/gl/investigacion/riaidt/ Código Muestra Elemento Conc (Calib) Units Calib SD (Calib) Conc. Corregida Unidad Peso (g) Vol (mL) Conc g/Kg RBlank-1 B 249.677 -0,30648 mg/L 0,00214 -0,30648 mg/L RBlank-1 B 249.772 -0,37146 mg/L 0,00413 -0,37146 mg/L RBlank-2 B 249.677 -0,32032 mg/L 0,00029 -0,32032 mg/L RBlank-2 B 249.772 -0,38714 mg/L 0,00172 -0,38714 mg/L HC1 01 dil 1:50 B 249.677 43,42865 mg/L 1,02425 2171,43244 mg/L 0,475 25 114,286 HC1 01 dil 1:50 B 249.772 43,71298 mg/L 1,02663 2185,64903 mg/L 0,475 25 115,034 HC1 02 dil 1:50 B 249.677 45,31598 mg/L HC1 02 dil 1:50 B 249.772 45,63890 mg/L 0,51091 2265,79890 mg/L 0,509 25 111,287 0,47319 2281,94485 mg/L 0,509 25 112,080 HC1 03 dil 1:50 B 249.677 3,03352 HC1 03 dil 1:50 B 249.772 3,02909 mg/L 0,04078 151,67617 mg/L 0,485 25 7,818 mg/L 0,02975 151,45474 mg/L 0,485 25 7,807 HC1 04 dil 1:50 B 249.677 43,73063 mg/L 1,20861 2186,53169 mg/L 0,522 25 104,719 HC1 04 dil 1:50 B 249.772 44,08728 mg/L 1,24288 2204,36411 mg/L 0,522 25 105,573 HC1 05 dil 1:50 B 249.677 36,86330 mg/L 0,69948 1843,16486 mg/L 0,446 25 103,316 HC1 05 dil 1:50 B 249.772 37,17684 mg/L 0,68907 1858,84197 mg/L 0,446 25 104,195 HC1 06 dil 1:50 B 249.677 45,81032 mg/L 0,56450 2290,51596 mg/L 0,424 25 135,054 HC1 06 dil 1:50 B 249.772 46,13564 mg/L 0,58514 2306,78193 mg/L 0,424 25 136,013 HC1 13 dil 1:50 B 249.677 38,75120 mg/L 0,39425 1937,56007 mg/L 0,453 25 106,929 HC1 13 dil 1:50 B 249.772 39,02282 mg/L 0,43529 1951,14094 mg/L 0,453 25 107,679 HC1 16 dil 1:50 B 249.677 49,14191 mg/L 0,94069 2457,09556 mg/L 0,564 25 108,914 HC1 16 dil 1:50 B 249.772 49,49225 mg/L 0,91074 2474,61257 mg/L 0,564 25 109,690 HC1 20 dil 1:50 B 249.677 28,08352 mg/L 0,54427 1404,17606 mg/L 0,230 25 152,628 HC1 20 dil 1:50 B 249.772 28,38505 mg/L 0,54510 1419,25260 mg/L 0,230 25 154,267 HC1 23 B 249.677 48,98614 mg/L 0,21675 48,98614 mg/L 0,009 25 136,073 HC1 23 B 249.772 49,30853 mg/L 0,24349 49,30853 mg/L 0,009 25 136,968 HC1 12 B 249.677 38,05562 mg/L 0,44604 38,05562 mg/L 0,504 25 1,888 HC1 12 B 249.772 39,86278 mg/L 0,47498 39,86278 mg/L 0,504 25 1,977 6. CONCLUSIONES 10/51 Cabe destacar que la variabilidad estructural de los boratos presentes en la muestra (hidroxilos y agua de hidratación) hace que en las bases de datos utilizadas no se encuentre un patrón que se ajuste perfectamente a los patrones de difracción de las muestras, lo que nos genera unos cálculos de semicuantificación sobreestimados en ciertas fases presentes en las muestras. Las composiciones químicas son coherentes con la mineralogía. Como ya se ha destacado, en los semicuantitativos, las fases cristalinas con FOM<0.5, por ser minoritarias son de baja precisión. Las fichas de los minerales asignados están incluidas en el ANEXO. http://www.usc.es/gl/investigacion/riaidt/ Debido a la gran heterogeneidad de la muestra, para poder determinar la composición global lo adecuado sería pulverizar todo el hormigón, homogeneizar y medir. Ello hubiera evitado obtener el análisis pormenorizado, por lo que, llegados a este punto, se recomienda que se envíe otra pieza de hormigón total y pulverizarla por completo (nuestro mortero no dispone de tal volumen de muestra de entrada). De esta manera se recogería una muestra que representase a toda la pieza. En todo caso, en vista de las cantidades de las submuestras presentes, y en base a un criterio EXTRICTAMENTE VISUAL, poco preciso, se podría estimar una composición mineralógica total, de tal modo que: Baddeleyite 0,50%; Biotite 1,00%; Borato Calcico Hidroxilado 1,00%; Borax 0,50%; Calcite 1,00%; Chlorite 0,50%; Colemanite 80%; Dolomite 2%; Hydroboracite 1%; Orthoclase 1%; Pyrite 0,50%; Quartz 0,50%; Sanidine 2,00%; Spinel 0,50% ; Tincalconite 0,50%; Veatchite 6,00%; Vimsite 0,50%; Realgar 1,00%. 7. STATEMENT OF OWNERSHIP Este informe contiene un estudio realizado por “Unidade de Raios X” y “Unidade de Análisis Elemental” en la “Universidade de Santiago de Compostela”, en nombre del sponsor *****************************. Todos los resultados e interpretaciones son propiedad del patrocinador. Bajo ninguna circunstancia se mencionará a cualquier dato sin conocimiento del patrocinador. Las muestras serán devueltas al propietario. 11/51 http://www.usc.es/gl/investigacion/riaidt/ A. ANEXO A: DIFRACTOGRAMAS MUESTREOS HC1.01 12/51 RESULTANTES DEL ANÁLISIS SEMICUANTITATIVO Y FOTOS DE LOS http://www.usc.es/gl/investigacion/riaidt/ 13/51 http://www.usc.es/gl/investigacion/riaidt/ HC1.02 14/51 http://www.usc.es/gl/investigacion/riaidt/ Se ajustan a este mismo modelo de difracción de la muestra HC1.02, las muestras : HC1.07; HC1.09; HC1.11; HC1.14; HC1.15; HC1.17; HC1.18; HC1.21 y HC1.22, tal y como se presenta a continuación: 15/51 http://www.usc.es/gl/investigacion/riaidt/ 16/51 http://www.usc.es/gl/investigacion/riaidt/ 17/51 http://www.usc.es/gl/investigacion/riaidt/ 18/51 http://www.usc.es/gl/investigacion/riaidt/ HC1.03 En la muestra se aprecian trazas de “Stevensite”, y.aúnque la cuantificación refleje un 100% de “Dolomita” hay que tener en cuenta que estas trazas pueden representar entorno a un 3%. 19/51 http://www.usc.es/gl/investigacion/riaidt/ HC1.04 20/51 http://www.usc.es/gl/investigacion/riaidt/ 21/51 http://www.usc.es/gl/investigacion/riaidt/ HC1.05 22/51 http://www.usc.es/gl/investigacion/riaidt/ Se ajustan al modelo de difracción de la muestra HC1.05, las muestras : HC1.08 y HC1.19, tal y como se muestra a continuación: 23/51 http://www.usc.es/gl/investigacion/riaidt/ 24/51 http://www.usc.es/gl/investigacion/riaidt/ HC1.06 25/51 http://www.usc.es/gl/investigacion/riaidt/ Se ajusta al modelo de difracción de la muestra HC1.06, la muestra : HC1.10: 26/51 http://www.usc.es/gl/investigacion/riaidt/ 27/51 http://www.usc.es/gl/investigacion/riaidt/ HC1.12 28/51 http://www.usc.es/gl/investigacion/riaidt/ 29/51 http://www.usc.es/gl/investigacion/riaidt/ HC1.13 30/51 http://www.usc.es/gl/investigacion/riaidt/ 31/51 http://www.usc.es/gl/investigacion/riaidt/ HC1.16 32/51 http://www.usc.es/gl/investigacion/riaidt/ 33/51 http://www.usc.es/gl/investigacion/riaidt/ HC1.20 34/51 http://www.usc.es/gl/investigacion/riaidt/ 35/51 http://www.usc.es/gl/investigacion/riaidt/ HC1.23 36/51 http://www.usc.es/gl/investigacion/riaidt/ 37/51 http://www.usc.es/gl/investigacion/riaidt/ B. ANEXO B: LISTA DE PATRONES MINERALÓGICOS 38/51 http://www.usc.es/gl/investigacion/riaidt/ 39/51 http://www.usc.es/gl/investigacion/riaidt/ 40/51 http://www.usc.es/gl/investigacion/riaidt/ 41/51 http://www.usc.es/gl/investigacion/riaidt/ 42/51 http://www.usc.es/gl/investigacion/riaidt/ 43/51 http://www.usc.es/gl/investigacion/riaidt/ 44/51 http://www.usc.es/gl/investigacion/riaidt/ 45/51 http://www.usc.es/gl/investigacion/riaidt/ 46/51 http://www.usc.es/gl/investigacion/riaidt/ 47/51 http://www.usc.es/gl/investigacion/riaidt/ 48/51 http://www.usc.es/gl/investigacion/riaidt/ 49/51 http://www.usc.es/gl/investigacion/riaidt/ 50/51 http://www.usc.es/gl/investigacion/riaidt/ 51/51