اﻟﺪوال اﻟﻤﺜﻠﺜﻴﺔ ١{١ ﻗﻴﺎﺳﺎت اﻟﺰواﻳﺎ ١{١{١ Trigonometric Functions EאאF 1 ( 0, 0 ) אאא אאאאאאאאאא θ אאא + אאא − אאא אא 1 1 Wא 360 90 −45 270 E π ≈ 3.14 F 2π אאאK אאאאWאא א 2π = 360 א π = 180 π 2 − ×π ⎯⎯180 ⎯⎯ → א π 4 3π 2 ×180 π → א ⎯⎯⎯⎯ W א ٢ اﻟﺪوال اﻟﻤﺜﻠﺜﻴﺔ אאא Wאאא θ Kאאא θ ∈ y 1 ( x, y ) = ( cos θ,sin θ ) θ −1 1 x −1 ( ( א ) א א sin θ = y θ ) א cos θ = x cos θ sin θ K θ = 0 1 0 π 6 3 2 1 2 π 4 2 2 2 2 π 3 1 2 3 2 π 2 0 1 7π cos θ ، sin θ א ١ 6 אא θ Kא y 7π 6 π 6 ( cos 76π , sin 76π ) (− 3 1 , 2 2 1 x ) K cos θ = − 1 3 ، sin θ = 2 2 ٣ → sin : Dsin = , , Rsin = [ −1,1 ] Dcos = → , Rcos = [ −1,1 ] , 1 1 1 1 ( א ) א ( cos θ sin θ = − { 0, ±π, ±2π, …} Dcot ) א א sin θ cos θ π 3π 5π = − { ± 2 , ± 2 , ± 2 , …} tan θ = cot θ = Dtan Rcot = Rtan = 8 8 4 4 4 4 8 8 ( א ) א ( 1 sin θ π 3π 5π = − { ± 2 , ± 2 , ± 2 , …} csc θ = Dcsc ) א א 1 cos θ = − { 0, ±π, ±2π, …} sec θ = Dsec Rcsc = ( −∞, −1 ] ∪ [ 1, ∞ ) cos : Rsec = ( −∞, −1 ] ∪ [ 1, ∞ ) 8 8 4 4 4 4 8 8 ٤ اﻟﺪوال اﻟﻤﺜﻠﺜﻴﺔ اﻟﻌﻜﺴﻴﺔ ١{١{٢ sin : [ − π2 , π2 ] → [ −1,1 ] EאFאא sin−1 ½ sin−1 x = y ⇔ x = sin y −1 sin : [ −1,1 ] → [ − π2 , π2 ] cos : [ 0, π ] → [ −1,1 ] EאFאא cos−1 ½ cos−1 x = y ⇔ x = cos y cos−1 : [ −1,1 ] → [ 0, π ] tan : [ π π −2,2 ]→ EאFאא tan−1 ½ tan−1 x = y ⇔ x = tan y −1 tan : → [ − π2 , π2 ] 2 1 3 2 1 0 1 1 1 1 0 1 2 2 1 10 5 0 5 10 1 2 sin ( x ) אא sin−1 ( x ) W x ∈ [ −1,1 ] א cos−1 ( x ) sin−1 ( x ) א½ א W x ∈ [ −1,1 ] ½ −1 sin ( sin x ) = x cos ( cos−1 x ) = x ٥ θ WE sin θ = sin φ א φ ∈ [ − π2 , π2 ] אאאF sin−1 ( sin θ ) ½ − π2 ≤ θ ≤ 32π 2π א sin −1 ⎧⎪ θ ( sin θ ) = ⎪ ⎨ ⎪⎪ π − θ ⎩ , − π2 ≤ θ ≤ , π2 ≤ θ ≤ π 2 3π 2 θ WE cos θ = cos φ א φ ∈ [ 0, π ] אאאF cos−1 ( cos θ ) ½ −π ≤ θ ≤ π 2π א ,0 ≤ θ ≤ π ⎧⎪ θ ⎪− ⎪⎩ θ cos−1 ( cos θ ) = ⎪⎨ , −π ≤ θ ≤ 0 cos ( sin−1 −53 ) r cos−1 ( cos 7 ) q sin−1 ( sin 143π ) p sin ( sin−1 73 ) o W א٢ Kא 3 7 sin ( sin−1 73 ) = o 14 π 8π − 2π = 3 3 > 8π 2π − 2π = 3 3 sin−1 ( sin 14 π 3 3π 2 sin−1 ( sin 143π ) p ) = π − 23π = π 3 23π ∈ [ π2 , 32π ] K 0 ≤ 7 ≤ π ، cos−1 ( cos 7 ) = 7 sin α = q א، α = sin−1 −53 W cos ( sin−1 −53 ) r −3 5 , − π2 ≤ α ≤ π 2 Wאא α ، sin ٦ y 52 − 32 = 16 = 4 α x 5 K cos α = 3 اﻟﻤﺠﺎور 4 = اﻟﻮﺗــﺮ 5 ، cos α sin ( 2 cos−1 −41 ) p cos ( sin−1 −53 + tan−1 2 ) o Wא ٣ K o Kא α = cos−1 −41 W sin ( 2 cos−1 −41 ) p sin ( 2 cos−1 −41 ) = sin ( 2α ) = 2 sin α cos α α = cos−1 −41 ⇔ cos α = −41 , 0≤α≤π אKאא α cos 42 − 12 = 15 y 4 α x 1 sin ( 2 cos−1 −41 ) = 2 15 4 −1 15 =− 4 8 sin α = ( 415 )( ) W cos α = −1 4 ٧ cot−1 : cot−1 x = y sec−1 : ⇔ ⇔ ⇔ W sec−1 ½ x = sec y \ ( −1,1 ) → ( −π, − π2 ] ∪ ( 0, π2 ] csc−1 x = y W cot−1 ½ x = cot y \ ( −1,1 ) → [ 0, π2 ) ∪ [ π, 32π ) sec−1 x = y csc−1 : → [ 0, π ] W csc−1 ½ x = csc y