Document

Anuncio
‫اﻟﺪوال اﻟﻤﺜﻠﺜﻴﺔ‬
١{١
‫ﻗﻴﺎﺳﺎت اﻟﺰواﻳﺎ‬
١{١{١
Trigonometric Functions
 E‫א‬‫א‬F 1  ( 0, 0 ) ‫א‬‫א‬‫א‬
 ‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬‫א‬
θ
 
 ‫א‬‫א‬‫א‬
  + ‫א‬‫א‬‫א‬
  − ‫א‬‫א‬‫א‬
 ‫א‬‫א‬
 
1
 1 W‫א‬
360
90
−45
270
 
 
 E π ≈ 3.14 F 2π ‫א‬‫א‬‫א‬K ‫א‬‫א‬‫א‬‫א‬W‫א‬‫א‬
 ‫א‬ 2π = 360 

 ‫א‬ π = 180 

π
2
−
 
×π
  ⎯⎯180
⎯⎯
→ ‫א‬
π
4
3π
2
×180
π → 
‫א‬ ⎯⎯⎯⎯
W
‫א‬
٢
‫اﻟﺪوال اﻟﻤﺜﻠﺜﻴﺔ‬
‫א‬‫א‬‫א‬
 W‫א‬‫א‬‫א‬ θ K‫א‬‫א‬‫א‬ θ ∈
y
1
( x, y ) = ( cos θ,sin θ )
θ
−1
1
x
−1
(
(
‫א‬
 
‫ ) א א‬ sin θ = y
 θ
‫ ) א‬ cos θ = x
 
 
 cos θ
 sin θ
 K θ =
0
1
0
π
6
3

2
1

2

π
4
2

2
2

2

π
3
1

2
3

2


π
2
0
1
7π
 cos θ ، sin θ ‫א‬ ١
6
‫א‬‫א‬ θ  K‫א‬
y
7π
6
π
6
( cos 76π , sin 76π )
 
(−
3 1
,
2 2
1
x
)
 K cos θ = −
1
3
، sin θ = 
2
2
٣

→
sin :
Dsin =
,
,
Rsin = [ −1,1 ]


Dcos =
→
,
Rcos = [ −1,1 ]
,
1
1
1
1
 


 
 
 
(
‫א‬
‫) א‬
(
cos θ
sin θ
= − { 0, ±π, ±2π, …} 
  Dcot
 
‫) א א‬
sin θ
cos θ
π
3π
5π
= − { ± 2 , ± 2 , ± 2 , …}
tan θ =
cot θ =
 Dtan
Rcot =
Rtan =
8
8
4
4
4
4
8
8
 
 
(
‫א‬
‫) א‬
(
1
sin θ
π
3π
5π
= − { ± 2 , ± 2 , ± 2 , …} 
csc θ =
  Dcsc
‫) א א‬
1
cos θ
= − { 0, ±π, ±2π, …} 
sec θ =
 Dsec
Rcsc = ( −∞, −1 ] ∪ [ 1, ∞ )
 
cos :
Rsec = ( −∞, −1 ] ∪ [ 1, ∞ )
8
8
4
4
4
4
8
8


٤
‫اﻟﺪوال اﻟﻤﺜﻠﺜﻴﺔ‬
‫اﻟﻌﻜﺴﻴﺔ‬
١{١{٢
  sin : [ − π2 , π2 ] → [ −1,1 ] E‫א‬F‫א‬‫א‬ sin−1 ½
  sin−1 x = y ⇔
x = sin y
−1
  sin : [ −1,1 ] → [ − π2 , π2 ]
  cos : [ 0, π ] → [ −1,1 ] E‫א‬F‫א‬‫א‬ cos−1 ½
  cos−1 x = y ⇔
x = cos y
  cos−1 : [ −1,1 ] → [ 0, π ]
  tan : [
π π
−2,2
]→
E‫א‬F‫א‬‫א‬ tan−1 ½
 
 
  tan−1 x = y ⇔
x = tan y
−1
  tan : → [ − π2 , π2 ]
2
1
3
2
1
0
1
1
 
1
1
0
1


2
 
2
1
10
5
0
5
10
1
2
 
  sin ( x ) ‫א‬‫א‬ sin−1 ( x ) W
  x ∈ [ −1,1 ] ‫א‬ cos−1 ( x )  sin−1 ( x ) ‫א‬‫½ א‬
W x ∈ [ −1,1 ]  ½
−1
  sin ( sin x ) = x
cos ( cos−1 x ) = x
٥
 θ WE sin θ = sin φ ‫א‬ φ ∈ [ − π2 , π2 ] ‫א‬‫א‬‫א‬F sin−1 ( sin θ )  ½
 − π2 ≤ θ ≤ 32π  2π ‫א‬
  sin
−1
⎧⎪ θ
( sin θ ) = ⎪
⎨
⎪⎪ π − θ
⎩
, − π2 ≤ θ ≤
, π2 ≤ θ ≤
π
2
3π
2
 θ WE cos θ = cos φ ‫א‬ φ ∈ [ 0, π ] ‫א‬‫א‬‫א‬F cos−1 ( cos θ )  ½
 −π ≤ θ ≤ π  2π ‫א‬
,0 ≤ θ ≤ π
⎧⎪ θ
⎪−
⎪⎩ θ
  cos−1 ( cos θ ) = ⎪⎨
, −π ≤ θ ≤ 0
  cos ( sin−1 −53 )  r  cos−1 ( cos 7 )  q  sin−1 ( sin 143π )  p  sin ( sin−1 73 )  o W‫ א‬٢
 K‫א‬
3
7
  sin ( sin−1 73 ) = o
14 π
8π
− 2π =
3
3
>
  8π
2π
− 2π =
3
3
 
sin−1 ( sin
14 π
3
3π
2
  sin−1 ( sin 143π ) p

) = π − 23π
=
π
3

  23π ∈ [ π2 , 32π ] 


 K 0 ≤ 7 ≤ π ، cos−1 ( cos 7 ) = 7 
  sin α =
q
 
 ‫א‬، α = sin−1 −53 W cos ( sin−1 −53 ) r
−3
5
, − π2 ≤ α ≤
π
2
 W‫א‬‫א‬ α ، sin 
٦
y
52 − 32 = 16 = 4
α
x
5
 
 K cos α =
3
‫اﻟﻤﺠﺎور‬
4
= 
‫اﻟﻮﺗــﺮ‬
5
،  cos α
  sin ( 2 cos−1 −41 )  p  cos ( sin−1 −53 + tan−1 2 )  o W‫א‬ ٣
 K o  K‫א‬
  α = cos−1 −41 W sin ( 2 cos−1 −41 ) p

  sin ( 2 cos−1 −41 ) = sin ( 2α ) = 2 sin α cos α 
 
  α = cos−1 −41 ⇔ cos α = −41 ,
0≤α≤π
 ‫א‬K‫א‬‫א‬ α  cos
42 − 12 = 15
y
4
α
x
1
 
 „
  sin ( 2 cos−1 −41 ) = 2
15
4
−1
15

=−
4
8
  sin α =
( 415 )( )
W cos α =
−1
4

 
 
 
٧
  cot−1 :
  cot−1 x = y
  sec−1 :
⇔
⇔
⇔
W sec−1 ½
 
x = sec y
\ ( −1,1 ) → ( −π, − π2 ] ∪ ( 0, π2 ] 
  csc−1 x = y
W cot−1 ½




x = cot y
\ ( −1,1 ) → [ 0, π2 ) ∪ [ π, 32π ) 
  sec−1 x = y
  csc−1 :
→ [ 0, π ] 




W csc−1 ½
 
x = csc y
 
Documentos relacionados
Descargar