MAGNETISMO Y ELECTROIMANES El magnetismo es una de las fuerzas fundamentales de la naturaleza. Las fuerzas magnéticas son producidas por el movimiento de partículas cargadas, como por ejemplo electrones, lo que indica la estrecha relación entre la electricidad y el magnetismo. La manifestación más conocida del magnetismo es la fuerza de atracción o repulsión que actúa entre los materiales magnéticos como el hierro. Sin embargo, en toda la materia se pueden observar efectos más sutiles del magnetismo. Un electroimán es un tipo de imán en el que el campo magnético se produce mediante el flujo de una corriente eléctrica, desapareciendo en cuanto cesa dicha corriente. En 1819, el físico danés Hans Christian Orsted descubrió que una corriente eléctrica que circula por un conductor produce un efecto magnético que puede ser detectado con la ayuda de una brújula. Basado en sus observaciones, el físico estadounidense Joseph Henry inventó el electroimán en 1825. El tipo más simple de electroimán es un trozo de alambre enrollado. Una bobina con forma de tubo recto (parecido a un tornillo) se llama solenoide, y cuando además se curva de forma que los extremos coincidan se denomina toroide. Pueden producirse campos magnéticos mucho más fuertes si se sitúa un «núcleo» de material paramagnético o ferromagnético (normalmente hierro dulce o ferrita, aunque también se utiliza el llamado acero eléctrico) dentro de la bobina. El núcleo concentra el campo magnético, que puede entonces ser mucho más fuerte que el de la propia bobina. La principal ventaja de un electroimán sobre un imán permanente es que el campo magnético puede ser rápidamente manipulado en un amplio rango controlando la cantidad de corriente eléctrica. Sin embargo, se necesita una fuente continua de energía eléctrica para mantener el campo. Cuando una corriente pasa por la bobina, pequeñas regiones magnéticas dentro del material, llamadas dominios magnéticos, se alinean con el campo aplicado, haciendo que la fuerza del campo magnético aumente. Si la corriente se incrementa, todos los dominios terminarán alineándose, condición que se denomina saturación. Cuando el núcleo se satura, un mayor aumento de la corriente sólo provocará un incremento relativamente pequeño del campo magnético. En algunos materiales, algunos dominios pueden realinearse por sí mismos. En este caso, parte del campo magnético original persistirá incluso después de que se retire la corriente, haciendo que el núcleo se comporte como un imán permanente. Este fenómeno, llamado remanencia, se debe a la histéresis del material (La histéresis es la tendencia de un material a conservar una de sus propiedades, en ausencia del estímulo que la ha generado). Aplicar una corriente alterna decreciente a la bobina, retirar el núcleo y golpearlo o calentarlo por encima de su punto de Curie reorientará los dominios, haciendo que el campo residual se debilite o desaparezca. GENERADORES La obtención de energía eléctrica se puede producir de varias formas, por frotamiento, presión, luz, acción de campos magnéticos, reacciones químicas,… Los métodos más utilizados son los dos últimos. El uso de la energía química para la producción de energía eléctrica se da en las pilas. Ciertas sustancias naturales tienen la propiedad de generar corriente eléctrica en su interior gracias a la reacción química que se produce entre sus componentes. Si tomamos varios limones y unas chapas de cobre y cinc podremos fabricar una pila de voltaje muy bajo, se trata de una pila muy básica. Las pilas y baterías comerciales son generadores químicos de energía eléctrica que utilizan elementos capaces de desarrollar un flujo de electrones más intenso. ¿Cómo funciona una pila? Para analizar su funcionamiento imaginemos que estamos en el interior de una pila, observamos que hay una zona en la que existe gran acumulación de electrones (polo negativo) y el otro extremo una menor cantidad de electrones (polo positivo). Si conectamos un receptor (motor) entre los dos terminales de la pila vemos que los electrones comienzan a circular del borne negativo al borne positivo provocando un desplazamiento de los electrones que al atravesar el motor producen su movimiento. Los electrones llegan al polo positivo donde se acumulan, la pila posee la capacidad interna de ir “desplazando” los electrones que llegan al polo positivo al polo negativo. ¿Por qué se gastan las pilas? Este transvase interno de electrones se repite muchas veces hasta que esta capacidad interna se va debilitando y ya no puede llevarse a cabo el transvase. La mayoría de las pilas están fabricadas con metales pesados y por tanto, pueden ser muy contaminantes. Las pilas de tipo botón son las más contaminantes de todas por utilizar mercurio. El mercurio es un veneno muy activo que filtra hacia las aguas subterráneas y desde aquí pasa a los animales pudiendo ser la causa de graves enfermedades, NUNCA tires las pilas a la basura recíclalas en los contenedores existentes para ello o en comercios encargados de recogerlas. Hans Christian Oesterd, observó, mediante un experimento que la aguja de una brújula situada cerca de una corriente eléctrica se desviaba. Esto le llevó a una conclusión muy sencilla: La corriente eléctrica pasando a través de un conductor actúa como un imán. ¿Quieres comprobarlo? Enrolla un cable alrededor de una brújula y después conéctalo a una pila, verás cómo se mueve la aguja. Este efecto también podemos observarlo en el siguiente experimento, tomamos un papel y practicamos un orificio para el paso de un cable, en el papel situamos limaduras de hierro y conectamos el cable a una pila, podemos observar como la disposición de las limaduras ala pasar la corriente eléctrica es similar a la que formarían ante la presencia de un imán. Michael Faraday (1791-1867) se enteró del experimento de Oesterd y se le ocurrió la siguiente idea: ¿es posible que el movimiento de un imán genere corriente eléctrica? Para comprobar esta hipótesis construyó una bobina, arrollamiento de un cable conductor y situó un imán en su interior. Produjo el movimiento de uno respecto al otro y observó que se generaba un flujo eléctrico, a este fenómeno lo denominó inducción magnética, base del funcionamiento de las dinamos o generadores. Si enrollamos un cable alrededor de un hierro (un tornillo, varillas,…) tendremos una bobina mucho más potente ya que el hierro facilita la circulación del campo magnético por el interior de la bobina. Este diseño se denomina electroimán y tiene múltiples aplicaciones, timbres, grúa industrial, etc. Los alternadores y los dinamos son máquinas eléctricas que transforman la energía mecánica de rotación, que reciben a través de su eje en energía eléctrica alterna y continua respectivamente. El alternador.- Cuando un conductor se desplaza a través de un campo magnético se genera en este una corriente eléctrica inducida. Si el cable utilizado para moverlo con mayor facilidad tiene forma de espira, se inducirá en esta una tensión que irá oscilando (alternado) entre unos valores máximos y mínimo que incluso irán cambiando de giro. Se genera una corriente alterna. El alternador consta de dos partes, el rotor y el estator. El rotor es un elemento cilíndrico provisto de electroimanes situado en el interior del estator capaz de girar alrededor de su eje cuando éste es impulsado por la acción de una fuerza. El estator es la carcasa metálica fija en cuyo interior se aloja el rotor sobre el que se arrolla un hilo conductor. El dinamo y el motor.- Empleando un imán y una espira con unos anillos colectores es posible generar corriente eléctrica alterna, si sustituimos los anillos colectores por un solo anillo dividido en dos partes aisladas entre sí tendremos un dinamo. En este caso la corriente circula en un solo sentido, corriente continúa. El dinamo es una máquina reversible puede trabajar como generador o como motor. Como generador transforma la energía mecánica en energía eléctrica y como motor transforma la energía eléctrica mecánica de rotación.