Instituto Politecnico Nacional Bobina de Tesla ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD ZACATENCO INGENIERIA EN COMUNICACIONES Y ELECTRONICA DANIEL CAMACHO GARDUÑO DIEGO S. BORJON VILLAVICENCIO FELIPE RAMIREZ CASTAÑEDA PROF. BRITO RODRIGUEZ ROLANDO OBJETIVO Comprobación de la primera forma de emisión de una onda electromagnética a radiofrecuencia; el principio básico de la comunicación inalámbrica. CONSIDERACIONES TECNICAS Nikola Tesla fue un inventor, ingeniero mecánico e ingeniero eléctrico y uno de los promotores más importantes del nacimiento de la electricidad comercial. Se lo conoce, sobre todo, por sus numerosas y revolucionarias invenciones en el campo del electromagnetismo, desarrolladas a finales del siglo XIX y principios del siglo XX. Las patentes de Tesla y su trabajo teórico formaron las bases de los sistemas modernos de potencia eléctrica por corriente alterna (CA), incluyendo el sistema polifásico de distribución eléctrica y el motor de corriente alterna, que tanto contribuyeron al nacimiento de la Segunda Revolución Industrial. Una bobina de Tesla es un tipo de transformador resonante, llamado así en honor a su inventor, Nikola Tesla. Las bobinas de Tesla están compuestas por una serie de circuitos eléctricos resonantes acoplados; Tesla experimentó con una gran variedad de bobinas y configuraciones, así que es difícil describir un modo específico de construcción que satisfaga a aquellos que hablan sobre bobinas de Tesla. Las primeras bobinas y las bobinas posteriores varían en configuraciones y montajes. Generalmente las bobinas de Tesla crean descargas eléctricas de alcances del orden de metros, lo que las hace muy espectaculares. Primeras bobinas American Electrician da una descripción magnética o de su misma magnitud, de una de las primeras bobinas Tesla, donde un vaso acumulador de cristal de 15 cm por 20 cm es enrollado con entre 60 y 80 vueltas de alambre del mayor porcentaje cobre No. 18 B & S. Dentro de éste se sitúa una bobina primaria consistente en entre 8 y 10 vueltas de cable AWG No. 6 B & S, y el conjunto se sumerge en un vaso que contiene aceite de linaza o aceite mineralda. Bobinas Tesla disruptivas En la primavera de 1891, Tesla realizó una serie de demostraciones con varias máquinas ante el American Institute of Electrical Engineers del Columbia College. Continuando las investigaciones iniciales sobre voltaje y frecuencia de William Crookes, Tesla diseñó y construyó una serie de bobinas que produjeron corrientes de alto voltaje y alta frecuencia. Estas primeras bobinas usaban la acción disruptiva de un explosor (spark-gap) en su funcionamiento. Dicho montaje puede ser duplicado por una bobina Ruhmkorff, dos condensadores y una segunda bobina disruptiva, especialmente construida. La bobina de Ruhmkorff, alimentada a través de una fuente principal de corriente, es conectada a los condensadores en serie por sus dos extremos. Un explosor se coloca en paralelo a la bobina Ruhmkorff antes de los condensadores. Las puntas de descarga eran usualmente bolas metálicas con diámetros inferiores a los 3 cm, aunque Tesla utilizó diferentes elementos para producir las descargas. Los condensadores tenían un diseño especial, siendo pequeños con un gran aislamiento. Estos condensadores consistían en placas móviles en aceite. Cuanto menor eran las placas, mayor era la frecuencia de estas primeras bobinas. Las placas resultaban también útiles para eliminar la elevada autoinductancia de la bobina secundaria, añadiendo capacidad a ésta. También se colocaban placas de mica en el explosor para establecer un chorro de aire a través de él. Esto ayudaba a extinguir el arco eléctrico, haciendo la descarga más abrupta. Una ráfaga de aire se usaba objetivo. también con este Los condensadores se conectan a un circuito primario doble (cada bobina en serie con un condensador). Estos son parte de la segunda bobina disruptiva construida especialmente. Cada primario tiene veinte vueltas de cable cubierto por caucho No. 16 B & S y están enrollados por separado en tubos de caucho con un grosor no inferior a 3 mm. El secundario tiene 300 vueltas de cable magnético cubierto de seda No. 30 B & S, enrollado en un tubo de caucho y en sus extremos encajado en tubos de cristal o caucho. Los primarios tienen que ser suficientemente largos como para estar holgados al colocar la segunda bobina entre ambos. Los primarios deben cubrir alrededor de 5 cm del secundario. Debe colocarse una división de caucho duro entre las bobinas primarias. Los extremos de las primarias que no están conectados con los condensadores se dirigirán al explosor. En, System of Electric Lighting, Tesla describió esta primera bobina disruptiva. Concebida con el propósito de convertir y suplir energía eléctrica en una forma adaptada a la producción de ciertos nuevos fenómenos eléctricos, que requerían corrientes de mayores frecuencia y potencial. También especificaba un mecanismo descargador y almacenador de energía en la primera parte de un transformador de radiofrecuencia. Ésta es la primera aparición de una alimentación de corriente de RF capaz de excitar una antena para emitir potente radiación electromagnética. Otra de estas primeras bobinas Tesla fue protegida en 1897 por patente, Electrical Transformer. Este transformador desarrollaba (o convertía) corrientes de alto potencial y constaba de bobinas primaria y secundaria (opcionalmente, uno de los terminales de la secundaria podía estar conectada eléctricamente con la primaria; similarmente a las modernas bobinas de encendido). Esta bobina Tesla tenía la secundaria dentro de y rodeada por las convoluciones de la primaria. Esta bobina Tesla constaba de bobinas primaria y secundaria enrolladas en forma de espiral plana. El aparato estaba también conectado a tierra cuando la bobina estaba en funcionamiento. MATERIAL Material Clave Cantidad 1 195 mts. 3 mts. 6 mts. 1 2 1 8 2 1 mt. 4 D Artículo Tubo PVC Alambre de cobre esmaltado calibre 18 Tubo de cobre esmaltado calibre 12 Cable dúplex calibre 16 Transformador pri 125V, sec 5000 Volts 50 Volts-Ampere (VA) 30mA (tipo Tesla) Clavijas Foco de 18w a 54 volts Hojas de acetato para copias tamaño carta Vidrios de 10x10cm y 3mm de espesor Papel aluminio Tiras de madera de 2 x 1cm x 15 cm de largo Herramienta necesaria Desarmador plano y de cruz Pinza de corte y pinza de punta Tijeras Regla graduada Taladro Arco y segueta Lija FUNCIONAMIENTO El transformador T1 carga el capacitor C1 y se establece una diferencia de potencial muy grande (alta tensión) entre las placas de éste. El voltaje tan elevado es capaz de romper la resistencia del aire haciendo saltar una chispa entre los bornes del explosor EX La chispa descarga el capacitor C1 a través de la bobina primaria L1 (con pocas espiras) estableciendo una corriente oscilante. Enseguida el capacitor C1 se carga nuevamente repitiendo el proceso. Así resulta un circuito oscilatorio de radiofrecuencia al que llamaremos circuito primario. La energía producida por el circuito primario es inducida en la bobina secundaria L2 (con mayor número de vueltas) la cual es resonante a la frecuencia natural del primario, esto es, que oscila a la misma frecuencia en que está trabajando el circuito primario. El circuito oscilante secundario se forma con la inductancia de la bobina secundaria L2 y la capacidad distribuida en ella misma. Finalmente este circuito oscilante secundario produce ondas electromagnéticas de muy alta frecuencia y voltajes muy elevados. Las ondas que se propagan en el medio hacen posible la ionización de los gases en su cercanía y la realización de diversos experimentos. PROCEDIMIENTO CONSTRUCCION DE 1. Se realiza el embobinado secundario en un tubo de PVC de 2.5 pulgadas 2. El toroide de la bobina se realiza con un tubo de ventilación. 3. El embobinado primario se elabora con tubo de cobre calibre 12 sobre un cilindro de acrílico. 4. Se cortan las hojas de acetato en cruz y quedan 4 hojitas iguales de 14 x 10.7 cm. Se cortan 11 rectángulos de papel aluminio de 9 x 15 cm. Se colocan dos rectángulos de acetato y encima de estos un rectángulo de papel aluminio, este último se coloca de manera que sobresalga 4 cm por el lado más corto del acetato. Enseguida se colocan otras dos hojitas de acetato y encima de estas otro papel aluminio de manera que también sobresalga 4cm pero de lado contrario al anterior papel aluminio. Se coloca nuevamente otras dos hojitas de acetato y encima otro aluminio sobresaliendo 4 cm pero nuevamente del lado contrario que el papel aluminio anterior. Se repiten los pasos anteriores hasta acabar con las hojitas. A 1.5cm de cada extremo de (D) se les hace un orificio de 3/16". Se colocan dos (D) por encima de todas las capas a 3cm de los extremos de estas y las otras dos por debajo de las capas, de manera que los orificios de (D) coincidan. Se colocan los tornillos de 3/16 x 1 y 1/2" en los orificios y se colocan las tuercas enroscándolas ligeramente. Se cortan (G) a la mitad y las partes resultantes se doblan a la mitad. Estas servirán como pasador para mantener unidas las placas de papel aluminio de cada extremo. Al (E) se le hacen dos orificios de 3/16" con una separación de 7cm. Se hacen otros dos orificios del lado no perforado para fijarlo a la madera con dos pijas. Se toma el capacitor se quitan dos tuercas de dos de los extremos de (D) y se meten los tornillos, procurando apretar el capacitor para que no se desbarate. Se enroscan las tuercas fuertemente. El capacitor debe quedar sujeto al ángulo 5. Para el explosor se colocan 2 ángulos. Se hace un orificio de 1/4" a 2.5cm de altura en la parte de 4cm de largo de cada ángulo. En cada orificio se coloca un tornillo (cabeza de coche) con una tuerca y se le pone la roldana con la otra tuerca. Los ángulos se fijan a la madera, esto se hace colocando 2 pijas de 1/8 x 1/2" en las partes no perforadas de ambos ángulos. Estos se fijan con una separación de 3cm de tal forma que las cabezas de los tornillos se encuentren y estos se ajustan hasta una separación aproximada de menos de 1mm para que se produzca la chispa. Esto nos va a servir como un explosor. BOBINA EN FUNCIONAMIENTO