PROBLEMARIO DEL TERCER PARCIAL MATEMATICAS II I. INSTRUCCIONES. Determina las funciones trigonométricas de los ángulos señalados en los triángulos rectángulos. 9 11 0 6 15 II. 10 obtener las demás funciones trigonométricas. 13 9 SenA obtener las demás funciones trigonométricas. 12 5 SenA obtener las demás funciones trigonométricas. 7 18 SenA obtener las demás funciones trigonométricas. 16 20 SenA obtener las demás funciones trigonométricas. 15 a) Si el SenA b) Si el c) Si el d) Si el e) Si el III. INSTRUCCIONES. Dados los siguientes puntos, determina en que cuadrante en el sistema coordenado se les ubica y el valor de las demás funciones trigonométricas. Graficar 1. A(-6, 3) 2. Cos A= 3. A(5,4) 4. A(-6,-7) 5. A(10,-8) 3 8 2 5 9 7. Tan A= 16 6. Cos A= IV. INSTRUCCIONES. Determina el valor de las siguientes funciones trigonométricas para el ángulo señalado. Sen 30 = __________________ Tan 85 = __________________ Csc 37 = __________________ Cos 44= __________________ Sec 57= __________________ Tan 270.1= __________________ Sen 78 43’ = __________________ Ctg 36 28’ = __________________ Cos 135.49= __________________ Sen 180= __________________ V. INSTRUCCIONES. Resuelve los siguientes problemas. a) Un niño sostiene un papalote cuya cuerda forma un ángulo de elevación de 15 con el suelo. Si la longitud que le ha soltado a la cuerda es de 230 metros, ¿a qué altura volará el papalote? b) Para calcular la altura de un edificio se midió la longitud de la sombra que proyectaba en el mismo momento en que el ángulo de elevación del Sol era de 35. ¿Qué altura tiene el edificio si la sombra tenía una longitud de 200 metros? c) Observa la siguiente figura y determina el valor de los segmentos AB, BC y el ángulo faltante. d) Un observador se encuentra sobre una escalera y contempla un edificio que se encuentra a 200 metros de distancia, descubre que el ángulo de elevación de la parte superior del edificio es de 22° y que el ángulo de depresión de la base del edificio es de 11.1°. ¿Cuál es la altura del edificio? e) Se desea conocer la altura de la torre Eiffel. Para determinarla los ingenieros de Paris diseñaron el siguiente diagrama. Determina también el segmento AC del diagrama. Utiliza las funciones trigonométricas. VI. INSTRUCCIONES. Aplicando la Ley de los Senos, hallar los demás elementos del triángulo oblicuángulo.