Lecture 5: More Calculus of Trigonometric Functions 5.1 Some limit calculations We may use the limits lim x→0 sin(x) =1 x and 1 − cos(x) =0 x→0 x lim to help evaluate other limits. Example sin(3x) lim = lim x→0 x→0 x Example sin(2x) 2 = lim lim x→0 sin(3x) 3 x→0 Example sin2 (x) lim = lim x→0 x→0 x2 Example tan(t) lim = lim t→0 t→0 t Example We have 3 sin(3x) 3x sin(2x) 2x sin(3x) 3x sin(x) x sin(t) t sin(3x) = (3)(1) = 3. x→0 3x = 3 lim 2 1 2 = = . 3 1 3 sin(x) x 1 cos(t) = (1)(1) = 1. = (1)(1) = 1. 1 − cos(x) 1 + cos(x) sin(x) 1 + cos(x) 1 − cos2 (x) = lim x→0 sin(x)(1 + cos(x)) 1 − cos(x) lim = lim x→0 x→0 sin(x) sin2 (x) x→0 sin(x)(1 + cos(x)) sin(x) = lim x→0 1 + cos(x) 0 = = 0, 2 = lim or 1 − cos(x) = lim x→0 x→0 sin(x) lim 5-1 1−cos(x) x sin(x) x = 0 = 0. 1 Lecture 5: More Calculus of Trigonometric Functions 5-2 5.2 More derivatives Example If f (x) = sin2 (x), then f 0 (x) = 2 sin(x) cos(x). Example If f (x) = sec2 (x), then f 0 (x) = 2 sec(x) sec(x) tan(x) = 2 sec2 (x) tan(x). Example If g(t) = sin(4t), then g 0 (t) = 4 cos(4t). Example If g(t) = sin2 (4t), then g 0 (t) = 2 sin(4t) cos(4t)(4) = 8 sin(4t) cos(4t). Example If f (x) = sec3 (4x), then f 0 (x) = 3 sec2 (4x) sec(4x) tan(4x)(4) = 12 sec3 (4x) tan(4x). Example If f (x) = sec2 (x2 + 4) tan(3x), then f 0 (x) = sec2 (x2 + 4) sec2 (3x)(3) + tan(3x)(2 sec(x2 + 4) sec(x2 + 4) tan(x2 + 4)(2x)) = 3 sec2 (x2 + 4) sec2 (3x) + 4x sec2 (x2 + 4) tan(x2 + 4) tan(3x).