Biblioteca Central UABCS - Universidad Autónoma de Baja

Anuncio
UNIVERSIDAD AUTÓNOMA DE
BAJA CALIFORNIA SUR
Área de Conocimiento de Ciencias del Mar
Departamento Académico de Ingeniería en Pesquerías
TESIS
AISLAMIENTO E IDENTIFICACIÓN DE MICROALGAS
MARINAS CON POTENCIAL ACUÍCOLA
QUE COMO REQUISITO PARA OBTENER EL TÍTULO DE:
INGENIERO EN PESQUERÍAS
Presenta:
ZUMAYA HIGUERA MIRIAM GUADALUPE
DIRECTOR:
Dr. Juan Manuel Pacheco
La Paz. B.C.S. Diciembre de 2013
DEDICATORIA
A Dios Por haberme permitido llegar hasta este punto de mi vida y haberme dado salud
para lograr mis objetivos, por haberme dado paciencia para superar todas las barreras
dadas en el transcurso universitario.
A mis padres; mi madre María Guadalupe Higuera López y a mi padre Jesús Julián
Zumaya Martínez. Por haberme apoyado en todo momento, por sus consejos, por su
amor, por nunca haberme dejado sola, por apoyarme y estar siempre conmigo.
A mi padre Jesús Julián Zumaya Martínez, por ser el mejor padre y apoyarme en todo por
enseñarme tantas cosas en el trayecto, por su capacidad de superar las cosas y salir
adelante, por ser uno de los pilares más importantes de mi vida y por enseñarme a luchar
por mis sueños cueste lo que cueste.
Mi “papi” porque algún día me dijo que si realmente no podía con la escuela me metiera
al ESCUFI, sé que me lo dijiste porque pensabas que ya no estudiaría y que no podría mas,
pero con esto quise que te dieras cuenta que si puedo y aun puedo mas y que te lo debo a ti
a mi mama por haberme enseñado que no me conformara con otra cosa que no quisiera
solo por haberme tropezado en el camino.
A mi madre María Guadalupe Higuera López, por luchar conmigo en todo momento y
nunca dejarme sola, por siempre sacarme una sonrisa en todo momento y por guiarme a
este camino con tu manera de amarme siempre y en cada momento. A través de los años
me enseño a defender lo que quiero, por ser capaz de sacar las garras por mi y nunca
dejarme sola, me acuerdo mucho una ocasión en la secundaria que fuiste a ver que pasaba
con mi rendimiento porque mis calificaciones habían bajado y más en deporte y cuando te
diste cuenta te enfrentaste al problema como una guerrera sin miedo a salir perjudicada
por mí.
A los dos por ser amorosos y protectores en todos los aspectos, se lo debo a ustedes dos,
las personas más importantes de mi vida y de todo mi universo, les agradezco todo el
esfuerzo que han hecho por mí y sé que seguirán haciéndolo por mí y mis triunfos, todo se
lo debó a ustedes, me convirtieron en la persona que soy y nunca se los podre pagar.
Los amo.
Y con esto puedo decir papá que YA MADURE
2
AGRADECIMIENTOS
Muchas gracias a la U.A.B.C.S. por brindarme la oportunidad de estudiar en una carrera
muy importante y con un gran futuro para mi. La oportunidad de conocer a personas
maravillosas y a los maestros que me ayudaron a seguir subiendo escalores en mi escalera
del aprendizaje universitario.
Quiero agradecer en especial a mi director de tesis el Dr. Juan Manuel Pacheco Vega,
que con su sabiduría me guió en cada momento junto con mis asesores de tesis el Doc.
Marco Antonio Cadena Roa y la Dra. Maurilia Rojas Contreras por sus consejos y por su
manera tan sabia de guiarme en esta etapa, por su brindarme su tiempo y su apoyo en mi
carrera.
“Ely” Elizabeth Perez Bravo (Laboratorista), que con gran valentía se atrevió a tomar
una muestra y por poco se ahogaba mientras que nosotros que estábamos en la orilla del
mar pensábamos que estaba saludando.
Quiero agradecer a todos mis maestros, esos que desde los inicios escolares han dejado su
huella en mí. Agradezco a mis profesores de la universidad, que me apoyaron y que
estuvieron conmigo resolviendo mis dudas, con su gran paciencia y perseverancia.
A mi familia ya que son las personas más importantes de todo el mundo para mí, nunca me
abandonaron y estuvieron luchando junto a mí; apoyándome en todo momento y nunca me
dejaron sola.
A mi hermano pequeño (bebe) Julián Zumaya higuera, que atreves de su fuerza y valentía
supo como apoyarme y con sus pequeñas anécdotas de vida me enseño que nunca hay que
darse por vencido, gracias chucho por tus pequeños consejos que me das.
A mis amigos casi hermanos; Miguel Humberto Armenta Cisneros (feíto), por sus
ocurrencias en las clases y por enseñarme a tener paciencia de aguantarles el mal genio.
A Ricardo Alberto Cabieses Núñez, porque siempre estuvo a mi lado, enseñándome que en
todos los momentos y actividades universitarias había instantes de risas y diversión.
A Ángel Álvarez Almaraz pro su sabios consejos, su tiempo y paciencia por decirme que
me “calmara” en momentos de histeria y estrés ya que para aguantarme en esos
3
momentos hay que tener mucha paciencia y calma, por tus asesorías y pequeñas clases en
la universidad tus enseñanzas y anécdotas de vida. Por saber que pase lo que pase se que
cuento con el.
Gracias a todas aquellas personas que estuvieron conmigo a través de estoy años, en
especial a mis familiares y amigos. Les agradezco a todas aquellas personas que me
apoyaron en el transcurso de mi formación universitaria. Las que estuvieran cerca de mí y
las que no también se los agradezco, a esas personas que no me tenían fe y al final les
demostré que se salir adelante.
Y por último solo quiere decir GRACIAS…
4
CONTENIDO
DEDICATORIA ........................................................................................................ 2
AGRADECIMIENTOS ............................................................................................. 3
RESUMEN .............................................................................................................. 7
LISTA DE TABLAS ................................................................................................ 8
LISTA DE FIGURAS................................................................................................ 9
INTRODUCCIÓN .................................................................................................. 11
ANTECEDENTES ................................................................................................. 23
JUSTIFICACIÓN ................................................................................................... 26
OBJETIVOS .......................................................................................................... 28
OBJETIVO GENERAL ....................................................................................... 28
OBJETIVOS ESPECÍFICOS .............................................................................. 28
MATERIAL Y MÉTODOS ...................................................................................... 29
Sitios de muestreo ............................................................................................. 29
Localización de los diversos puntos de muestreo. ............................................. 29
MUESTREO .......................................................................................................... 31
Preparación de recipientes para colecta de muestras .................................... 31
Etiquetas de botellas....................................................................................... 31
Colecta de las muestras .................................................................................... 32
Criterio de selección........................................................................................... 34
Aislamiento de microalgas de origen local con potencial acuícola ........................ 34
Elaboración de micropipeta ................................................................................ 34
Preparación de placas de agar marino ........................................................... 34
Preparación de tubos de ensayo .................................................................... 35
Observación de las muestras al microscopio ..................................................... 35
Siembra de agar. ................................................................................................... 36
Transferencia de muestras de agar a tubo de ensayo (a medio liquido) ........... 37
Revisión de los tubos de ensayo con muestra ................................................... 38
Transferencia de tubo a tubo con medio liquido................................................. 38
5
Purificación de las cepas ................................................................................... 38
Morfología celular de microalgas ...................................................................... 40
Curvas de crecimiento de las cepas identificadas.............................................. 41
RESULTADOS ...................................................................................................... 43
Morfología celular y dimensiones de las microalgas ............................................. 45
Curva de crecimiento de las cepas de microalgas identificadas ........................... 53
DISCUSIÓN .......................................................................................................... 59
CONCLUSIONES .................................................................................................. 65
BIBLIOGRAFÍA ..................................................................................................... 66
ANEXOS ............................................................................................................... 71
6
RESUMEN
El medio marino presenta una amplia variedad microbiológica, algunas de ellas
conocidas y otras más totalmente desconocidas. De las especies conocidas, se
encuentra un reducido grupo de microalgas marinas utilizadas como alimento vivo
en acuicultura y cultivadas bajo condiciones controladas. No obstante, se
encuentra un número indeterminado de especies algales susceptibles de ser
aprovechadas mediante la sustitución de las especies tradicionales. En este
trabajo se buscó llevar a cabo el aislamiento y caracterización de nuevas especies
de microalgas de origen local recolectadas de la zona sur del estado de B.C.S.,
desde el poblado de San Juan de la Costa, B.C.S. (Zona del Golfo de California),
hasta el Poblado de Cabo Pulmo, B.C.S. (zona Pacifico). Después del proceso de
aislamiento y purificación, se obtuvieron las siguientes cepas de microalgas:
Chaetoceros sp (1), Chaetoceros sp (2), Navícula sp (1), Navícula sp (2),
Spirulina sp y Amphora sp. Cada una de ella con sus características particulares
de tamaño celular, tasa de crecimiento, aclimatadas a ambientes locales y
facilidad de cultivo, lo que las hace atractivas y con potencial acuícola.
7
LISTA DE TABLAS
Página
Tabla 1. Preparación de antibiótico.
39
Tabla 2. Mezcla de antibióticos.
39
Tabla 3. Cantidades de antibióticos agregados a las diversas muestras.
40
Tabla 4. Condiciones del agua superficial en los diferentes puntos de
muestro.
44
45
Tabla 5. Cepas de microalgas marinas aisladas de la región de la zona sur
del Golfo de California.
Tabla 6. Parámetros del agua.
62
Tabla 7. Preparación del medio f/2 Guillard utilizado para el cultivo de
microalgas
71
71
Tabla 8. Metales traza en 100ml
Tabla 9. Preparación de vitamina en 1 L de agua destilada
72
8
LISTA DE FIGURAS
Figura 1. Curva de crecimiento; 1- Fase de adaptación; 2-fase de
crecimiento exponencial; 3-fase de declinación relativa de crecimiento;
4-fase estacionaria; 5-fase de muerte.
19
Figuera 2. Sitios de muestreo para la región Golfo.
30
Figura 3. Recolección de muestra del mar con botellas de plástico
estéril.
33
Figura 4. Recolección de muestra en sustrato.
33
Figura 5. Pipetas Pasteur de vidrio modificada.
36
Figura 6. Siembra en placas de agar marino.
36
Figura 7. Equipo fotográfico Nikon Optiphot-2.
40
Figura 8. Cámara de conteo Neubauer.
42
Figura 9. Puntos geográficos en donde se realizaron los muestreos de
agua de mar.
43
Figura 10. Chaetoceros sp., autóctona aislada de la Bahía de la paz con
un aumento de 60X.
46
Figura 11. Chaetoceros sp (1). Autóctona a aislada de la Bahía de La
Paz. Con aumento de 20X.
47
Figura 12. Spirulina sp., autóctona aislada de la Bahía de La Paz. Con
un aumento de 20X.
48
9
Figura 13. Navícula sp (1)., autóctona a aislada de la Bahía de La Paz.
Con aumento de 10X.
49
Figura 14. Navícula sp (2)., autóctona aislada de la Bahía de La Paz.
Con aumento de 20X.
50
Figura 15. Amphora sp., autóctona aislada de la Bahía de La Paz. Con
aumento de 20X.
52
Figura 16. Amphora sp. de J. Moreno 1996.
52
Figura 17. Cinética de crecimiento de Chaetoceros sp (1)
53
Figura 18. Cinética de crecimiento Chaetoceros sp (2)
54
Figura 19. Cinética de crecimiento de la microalga Spirulina sp.
55
Figura 20. Cinética de crecimiento Navícula sp (1)
56
Figura 21. Cinética de crecimiento Navícula sp (2)
57
Figura 22. Cinética de crecimiento Amphora sp.
58
10
INTRODUCCIÓN
La acuacultura es el cultivo de organismos acuáticos bajo condiciones
controladas, hasta la cosecha, procesamiento, comercialización y consumo. Es
una actividad interdisciplinaria que va desde la selección y manejo de organismos
reproductores y producción de crías (Karim, 2002).
La acuacultura se considera a nivel mundial como una estrategia importante para
lograr el desarrollo de las poblaciones menos favorecidas, incluso en algunos
casos las pesquerías basadas en el cultivo, como una forma de promover una
diversificación en el ingreso y la dieta (usar los recursos de forma responsable y
de impactos mínimos sobre el ambiente). (FAO, 2000)
La producción acuícola mundial ha seguido creciendo en el nuevo Milenio, aunque
más lentamente que en los decenios de 1980 y 1990. El sector de la acuacultura
ha evolucionado e innovado tecnológicamente. La producción acuícola mundial
alcanzó otro nivel máximo sin precedentes de 60 millones de toneladas (excluidas
las plantas acuáticas y los productos no alimentarios) en el 2010, con un valor
total estimado de 119 000 millones de USD. (FAO, 2011).
La acuicultura participa en la producción pesquera nacional con poco más de 12
por ciento de la producción nacional. La acuicultura podría representar en nuestro
país más de 40 por ciento de la producción pesquera total en un plazo de entre
diez y quince años. La Carta Nacional Pesquera cita que en México se cultiva un
11
total de 61 especies, de las cuales 40 son nativas y 21 son de origen exótico
habiendo sido introducidas al país.
En México, la acuicultura nace como una actividad complementaria de apoyo
social a las comunidades rurales. Actualmente en México, las únicas estadísticas
de producción en acuicultura disponibles corresponden al año 2012 (SAGARPA,
Anuario Estadístico de Pesca 2012).
Las microalgas son parte muy importante para el desarrollo de acuacultura, ya
que éstas sirven de alimento para otros animales marinos, como lo son la
acuacultura de camarón, ostión, pepino de mar, etc.
La importancia de estas en el océano se manifiesta no solo en su productividad,
sino también en diversas formas tales como la prevención de la remoción de
sustratos, la filtración de agua, alimento y el hecho de que proveen un hábitat
para los animales. (Clinton, 1986).
Las microalgas de formas microscópicas son productores primarios importantes y
forman la comunidad fitoplanctónica, son microorganismos fotosintéticos que
crecen rápidamente gracias a su estructura unicelular, como las algas verdes
(Chlorophyta) y las diatomeas (Bacillariophyta).
Este término se refiere a aquellos microorganismos que contienen clorofila y otros
pigmentos fotosintéticos, capaces de realizar fotosíntesis. (Karim, 2002).
Las microalgas representan la base nutricional de la cadena trófica en el mar y
maricultura. La mayoría de los invertebrados dependen de las microalgas al
12
menos al inicio de su ciclo de vida y en algunos casos como los moluscos, los
requieren toda su vida, por lo que se enfatiza su producción como alimento vivo
por estar directamente relacionado con una buena producción para especies en
cultivo (ostiones, almejas, larvas de crustáceo y peces) (Guedes y Malcata, 2011).
Estas están presentes en todos los cuerpos de agua, como lagos y mares y ríos.
También se encuentran en el suelo y en ambientes terrestres.
Según la FAO las microalgas más utilizadas en los laboratorios de acuicultura son
Phaeodactylum (diatomea), Skeletonema (diatomea), Dunaliella (clorofícea),
Chlorella (Cloroficea), Tetraselmis (clorofícea),
Monochysis (Crisoficea) y
Isochysis (crisofícea).
Coutteau y Sorgeloos (1992) mencionaron que el número de especies de
microalgas que se utilizan como alimento vivo para fines de acuicultura es muy
limitado, y que los géneros usados con mayor frecuencia son las diatomeas
Chaetoceros
y
Thalassiosira,
la
haptofita
Isochrysis,
la
eustigmatofita
Nannochloropss y la prasinofita Tetraselmis. Malagrino et al. (1999), recalcaron
que también en México el número de especies de microalgas usadas es limitado y
López-Elías et al. (2003a) reportaron que en
laboratorios productores de
postlarvas de peneidos del noroeste de México se cultivan las
especies
Chaetoceros muelleri, C. calcitrans, Isochrysis sp., Tetraselmis suecica, T. chui y
Dunaliella tertiolecta.
13
Según la FAO las microalgas pueden crecer en prácticamente todas partes,
requiriendo simplemente luz solar, nutrientes sencillos, y suficiente aireación.
Estas se pueden adaptar a vivir en una gran variedad de condiciones ambientales
El crecimiento que pueden presentar puede variar entre especies, no obstante un
elemento muy importante a considerar al comparar es la tasa de crecimiento. Las
distintas variables que intervienen o determinan el crecimiento especifico de una
especie de microalgas son: las especies que se estén utilizando, las condiciones
del cultivo empleadas, el medio de cultivo, el tipo y cantidad de nutrientes, el
sistema de cultivo (estático o agitado, semicontinuo o continuo) y las condiciones
ambientales utilizadas (calidad y cantidad de luz, temperatura, pH, salinidad)
(Porras, 2006).
Al igual que cualquier otro organismo vivo, las condiciones físicas tienen gran
influencia en el crecimiento de la microalga. Cada especie presenta un particular
intervalo de temperatura, intensidad de luz, preferencias espectrales, salinidad,
bióxido de carbono y oxígeno para la producción de un máximo crecimiento.
Adicionalmente, podemos mencionar que más que la influencia de un solo
parámetro es el conjunto de parámetros lo que da lugar a una determinada
respuesta en el crecimiento de las microalgas (Cañizares et al., 1994).
Con respecto a la luz, las microalgas son fotoautótrofas encargadas de convertir la
energía luminosa en metabólica por medio de la fotosíntesis y sus periodos de
exposición a ésta. Los periodos de iluminación pueden ser continuos (mediante luz
14
artificial), discontinuos (periodos de iluminación alternados con periodos de
oscuridad, también con luz artificial) o en el ciclo natural día y noche (Richmond,
1986).
La aireación, además de proporcionar oxígeno,
asegura la distribución
homogénea de las células y los nutrientes dentro del cultivo, dejándolos disponible
para su mejor aprovechamiento, mejora la distribución de la luz entre las células
asegurando que permanezcan fotosintéticamente activas, evitando que se
sedimenten, y previene una estratificación térmica (Richmond, 1986). Esté
elemento es de gran
importancia en las diferentes especies, sin embargo en
especies bentónicas se mejora la tasa de crecimiento debido a que se favorece la
permanencia de células sin formar colonias, lo que puede retardar el crecimiento
en especies bentónicas.
La temperatura de cultivo en microalgas de interés general, son las consideradas
como especies tropicales, debido a que su crecimiento no sufre alteraciones en un
intervalo de 16 a 27ºC presentando un óptimo de 24ºC. Bajas temperaturas en
referencia con el intervalo anterior no matan a la microalga, sin embargo, puede
provocar una disminución de crecimiento, temperaturas arriba de 35ºC
provocarían que la mayoría de las microalgas colapsaran (Hoff y Snell, 2001).
La salinidad óptima para una microalga dependerá de la especie. Generalmente
para el cultivo en interiores, este parámetro no es controlado y se maneja la
salinidad presente en el agua de mar. En un cultivo a exterior la salinidad se
15
convierte en el parámetro control en el crecimiento de la microalga (Abalde et al.,
1995).
Los macro y micronutrientes específicos, deben tener un balance en la proporción
suministrada. Su deficiencia, invariablemente se manifiesta ya sea como un
descenso en el crecimiento o hasta la detención del mismo (Hoff y Snell, 2001).
Las fuentes de macronutrientes se consideran los nitratos, fosfatos y en el caso de
las diatomeas la adición de silicatos. Los micronutrientes son aquellos que se
suministran en pocas cantidades (trazas) en comparación con los macronutrientes,
pero no por ello son menos importantes. Se sabe que en soluciones alcalinas
algunos metales se precipitan, agentes quelantes tales como el EDTA (Acido
Etilen-diamino-tetracético) se utiliza para mantener los metales en solución
haciéndolos disponibles para las microalgas (kaplan et al., 1986).
La mayoría de las microalgas son auxotróficas, esto es, que no son capaces de
sintetizar las vitaminas necesarias y tienen que asimilarlas del medio. La tiamina
(B1), la cianocobalamina (B12) y la biotina (B6) son consideradas esenciales para
la mayoría de las microalgas (Hoff y Snell, 2001).
Para proporcionar estos nutrientes se debe seleccionar el medio de cultivo que se
va a utilizar. El agua marina es un medio de cultivo ideal para el crecimiento de las
microalgas marinas; sin embargo, es necesario enriquecerla con nutrientes. Los
medios de cultivo son muy diversos, pero todos coinciden en una fuente principal
de nitrógeno, fósforo y una mezcla de metales traza como soluciones quelantes y
vitaminas (Provasoli et al., 1957; Stein, 1973). Se tienen una amplia diversidad de
16
diferentes medios de cultivo, que cubran las necesidades de las especies que se
desean cultivar. No obstante, de los diferentes medios de cultivo utilizados, el
medio F/2 (Guillard, 1975) es considerado como el medio que reúne los
requerimientos de nutrientes para los diversas especies de fitoplancton marino,
por lo que es ampliamente utilizado y considerado como el medio estándar.
Además de los factores físico-químicos mencionados anteriormente mencionados,
otro aspecto importante a considerar en el cultivo de microalgas es la asociación
de estas con las bacterias. Se ha sugerido que el mejor crecimiento se da en
cultivos libres de bacterias (axénicos), condiciones que son difíciles y costosas de
conseguir. Sin embargo, parece ser que muchas especies de microalgas crecen
mejor en asociación con las bacterias. En los casos en los que esto se ha podido
observar se sabe que se debe a la producción de cianocobalamina (B12) que lleva
a cabo la bacteria y que la proporciona a la microalga (Hoff y Snell, 2001).
En el cultivo de microalgas se hace necesario el conocimiento de la cinética de
crecimiento de cada especie en cada determinado volumen. Independientemente
de la especie y el volumen en el que es cultivada se reconoce un patrón estándar
de crecimiento indicado por las siguientes fases de crecimiento: (Foggy y Thake,
1987).
La fase Lag o fase de adaptación es aquella donde no ocurre incremento en el
número de células, pudiendo incluso llegar a disminuir en número con respecto al
inoculo inicial.
17
La fase exponencial es aquella en donde una vez adaptadas al medio de cultivo,
las microalgas comienzan a multiplicarse en forma exponencial, puesto que la
división de lugar a nuevas células que son capaces de dividirse.
La fase de declinación relativa de crecimiento, es aquella que se presenta al final
de la fase exponencial, y corresponde a una disminución de nutrientes, cambios
de pH y alteración de otros factores como consecuencia del incremento de la
población; de ahí que las microalgas disminuyan su tasa de división celular.
La fase estacionaria se observa cuando el número de células se mantiene
constante por cierto periodo de tiempo debido al balance entre la natalidad y la
mortalidad que presenta la población en cultivo. Las células pueden durar horas o
días en esta fase, aunque lo más normal es que comiencen a morir.
La fase de muerte se presenta al final del crecimiento cuando las células mueren
también en una forma exponencial. (Fogg y Thake, 1987).
18
Figura 1. Curva de crecimiento; 1- Fase de adaptación; 2-fase de crecimiento
exponencial; 3-fase de declinación relativa de crecimiento; 4-fase
estacionaria; 5-fase de muerte
Las microalgas presentan varios tipos de reproducción, los cuales son sexual
(gametofítica) y asexual (esporofítica), aunque generalmente es asexual, por fisión
binaria, con tiempo de duplicación de 8 a 24 horas o más para las eucariotas y de
una hora o menos para las cianobacterias (procariotas) (karim, 2002)
En la reproducción sexual intervienen gametos y la reproducción asexual puede
ser por división simple, originándose dos o más células. En el caso de
Cheatoceros que cuenta con flagelos cuentan con movilidad y se reproduce por
zoosporas.
En el caso de la reproducción de las microalgas, el fotoperiodo es un factor
importante ya que regula la división celular, en diatomeas la reproducción asexual
por fisión binaria ocurre durante el periodo de luz.
19
Las especies formadoras de auxosporas (esporas sexuales), dan lugar a células
del mismo tamaño y esto ocurre en el periodo de obscuridad.
La composición de lípidos de las microalgas puede variar en función de las
diferentes cantidades y el tipo de lípidos que contienen, durante las diferentes
fases de crecimiento en condiciones de cultivo pueden diferir significativamente
(Ying y Kangsen, 2005). En cultivos de microalgas, la acumulación de triglicéridos
usualmente coincide con la fase estacionaria, ya que estos se incrementan por
limitaciones en las condiciones de cultivo. (Pacheco-Vega, 2010)
Otra de las variables fundamentales en crecimiento de microalgas, es la
disponibilidad de nutrientes en el medio de cultivo. Además de su efecto en el
crecimiento, este factor también puede modificar los perfiles de ácidos grasos
(Pacheco-Vega, 2010).
El uso de microalgas de origen local como alimento de diversos cultivos tiene
grandes ventajas, principalmente económicas. Cuentan con una gran facilidad de
cultivo ya que no necesitan temperaturas bajas para su crecimiento, a temperatura
ambiente y sobreviven sin ningún problema. No son difíciles de conseguir ni
tendrían un precio alto en el mercado, ya que estas pueden ser recolectadas del
ambiente local.
Desde la década de los noventas, se han venido realizando investigaciones sobre
cultivos de diatomeas bentónicas autóctonas en algunos países de Latinoamérica
con el objetivo de ser usadas en el maricultivo. También se conoce que en
laboratorios de producción de larvas de camarones se utilizan especies de este
20
grupo como fuente de alimentación para organismos de cultivo (Almaguer et al.,
2004). Con el objetivo de optimizar los sistemas de cultivo que requieren alimento
vivo, se han venido desarrollando experimentos para mejorar la selección de
microalgas de especies fitoplanctónicas como suplemento alimenticio en
acuicultura (Almaguer et al., 2004)
La evaluación de microalgas de posible interés económico se realiza con la
finalidad de obtener las condiciones óptimas que permitan alcanzar una mayor
productividad de biomasa en cultivos, mediante la evaluación de factores de
crecimiento y composición bioquímica.
Sin embargo, es necesario aplicar
primeramente su aislamiento del medio natural para ser explorada su posible uso
(Bermudez et al., 2002).
En los océanos solo encontramos espermatofitas y talofitas. Las más importantes
de esta división son las algas, las que comúnmente están divididas en cuatro
grupos, principalmente por su color: algas pardas, algas verdes, algas rojas y
algas verde-azuladas.
En las diferentes zonas geográficas del ambiente marino, se pueden encontrar
especies de microalgas pertenecientes a los géneros
ya utilizados para usos
acuícolas en otras zonas geográficas. Estos géneros, no representan riesgos de
toxicidad para su uso como alimento vivo. No obstante, el aprovechar las especies
locales representa una disminución en los costos para la producción de alimento
vivo, debido a las condiciones de cultivo, donde no se requiere baja temperatura
ni iluminación artificial.
21
La finalidad de aislar microalgas es la de obtener cultivos monoespecíficos a partir
de un
solo individuo (célula, filamento o quiste). Existen varios métodos de
aislamiento que dependen de las dimensiones de las microalgas de su movilidad y
de su morfología. Los más utilizados son el aislamiento con micropipeta, en placas
de agar y con diluciones sucesivas. Es recomendable combinar dos o más de
estas técnicas, que frecuentemente permiten lograr más fácilmente el aislamiento
de un solo organismos (Trujillo, 1997). En todos los casos, los aislamientos se
realizan verificando los resultados de la secuencia de operaciones con la ayuda de
un microscopio.
Por lo anterior, con este trabajo se busca generar un banco de cepas algales
provenientes de la región Sur de la Península de Baja California, con potencial
acuícola e identificadas a nivel de género y especies.
En este trabajo nos enfocaremos a la búsqueda de microalgas locales en la zona
de la bahía de la Paz B.C.S. y región sur de la península, a través de muestreos
en diversos puntos de esta área.
22
ANTECEDENTES
Fue Hensen en 1887, quien usó por vez primera el término plancton (del griego
planktós: errantes), para llamar a todas las partículas organogénicas, muertas o
vivas que se mueven a merced de las aguas. Desde hace muchos años el
plancton ha sido objeto de estudio. La comunidad planctónica se clasifica, según
sus componentes, en fitoplancton y zooplancton. El fitoplancton comprende un
amplio grupo de organismos autótrofos mayoritariamente microscópicos, que
representan el primer eslabón en la cadena alimenticia. (Hensen, 1887)
El
termino
microalga aparece
posteriormente,
muy ligado
al
desarrollo
biotecnológico; éste se refiere a aquellos microorganismos que contienen clorofila
a y otros pigmentos fotosintéticos, capaces de realizar fotosíntesis oxigénica. En
este contexto, las cianobacterias o algas verde-azules, con estructura celular
procariotal, se han considerado tradicionalmente dentro del grupo /1/. (Gómez,
2007).
En 1830 Ehrenberg, descubre rocas de origen marino formadas por restos
esqueléticos diminutos (diatomeas); en 1840 J. Dalton Hooker descubre en hielo
antártico microorganismos que forman masas marronáceas. (Sobrino, 2008).
En 1982 Schutt escribe el primer trabajo sobre biología de fitoplancton, publicado
en alemán. (Sobrino, 2008).
23
La acuacultura se origino en las antiguas civilizaciones del Asia Menor debido a
que sus fuentes de alimentación estaban orientas hacia el mar, ríos y lagos.
Aunque también se dice que la acuacultura proviene de China y se describe el
cultivo de las carpas tanto para fines ornamentales como alimenticios, el cual
remonta al siglo V A.C. (Sobrino, 2008).
En el caso de la acuacultura en México esta se remonta al periodo prehispánico
cuando los peces eran cultivados con fines religiosos y ornamentales, según lo
atestiguan relatos de Francisco Javier Clavijero, Fray Juan de Torquemada y
Hernán Cortes.
Anteriormente en el centro de investigaciones marinas en la universidad de La
Habana, se aislaron dos especies de diatomeas pertenecientes al género
Amphora para ser cultivadas y usadas en la alimentación de las postlarvas
tempranas de los camarones marinos, estos traídos de Brasil. (Almaguer, 2004).
En el 2012 se aislaron e identificaron microalgas oleaginosas para la producción
de biodiesel en la cuenca alta del Rio Itaya en Loreto-Peru (Ruiz, 2012).
Recientemente se aislaron especies de microalgas con potencial para ser
empleadas como alimento en la acuacultura así como impactar en otras
aplicaciones biotecnológicas en la Universidad Autónoma del Carmen. (Reyes et,
al. 2001).
24
En el caso de la acuacultura en el Municipio de La Paz, B.C.S. contamos con
empresas acuícolas como lo son; Granmar, Acuacultura Marh,
Acuacultura
Robles, S.P.R. de R.I. e instituciones educativas con laboratorios acuícolas:
UABCS, CRIP, CIBNOR, S.C. y CETMAR, aunque de todos estos, los principales
productores de microalgas son los laboratorios productores de postlarvas de
camarón.
El cultivo de microalgas para el consumo humano es aún una actividad joven e
incipiente, su desarrollo efectivo apenas cuenta con unos 50 años (García, 2000)
25
JUSTIFICACIÓN
Existen una gran variedad de microalgas explotadas para uso comercial, sin
embargo
también existe gran diversidad de microalgas no explotadas. Según
Mata et al., (2010) se conocen alrededor de 50,000 diferentes especies de
microalgas marinas cultivables, y solamente se han identificado alrededor de
30,000. Esto nos muestra la importancia y potencial que existe en especies
todavía desconocidas en el ambiente marino. Por lo tanto consideramos factible la
búsqueda de cepas adaptadas a los ambientes locales para su explotación.
El uso de cepas locales puede contribuir
a la disminución de los costos de
producción, debido a la facilidad del cultivo de las cepas, bajo condiciones
ambientales semi-controladas, y considerando que su composición y sus
propiedades son desconocidas, se abren posibilidades para nuevos estudios.
Las características morfológicas y la composición bioquímica, puede variar
significativamente dentro del mismo género y especie de microalga por efecto de
las condiciones de cultivo. Es por esto que resulta de vital, importancia llevar a
cabo la implementación de técnicas moleculares para una mejor diferenciación
entre especies del mismo género.
26
Este proyecto de investigación tiene como objetivo principal el llevar acabo el
aislamiento de nuevas especies de microalgas marinas con potencial acuícola
provenientes de zonas locales.
Con este trabajo de investigación, se abre la posibilidad de obtener nuevas cepas
de microalgas locales que puedan cultivarse en sistemas de cultivo al exterior y,
que puedan remplazar a las cepas comúnmente utilizadas en la industria acuícola.
También se abre la posibilidad de darle un uso biotecnológico, lo cual disminuiría
costos de producción y proveería un beneficio a toda la cadena productiva.
En la zona geográfica donde nos encontramos se facilita el cultivo de de
microalgas debido a las condiciones tanto ambientales como sanitarias favorables
para su ciclo vital.
27
OBJETIVOS
OBJETIVO GENERAL
-
Obtener mediante aislamiento y caracterización morfológica, cepas
de microalgas locales con potencia acuícola.
OBJETIVOS ESPECÍFICOS
-
Aislar microalgas de origen local con potencial acuícola.
-
Purificar cepas microalgas de origen local con potencial acuícola.
-
Caracterización morfológica y de crecimiento de cepas axénicas de
las microalgas aisladas.
-
Identificar taxonómicamente nuevas cepas locales
28
MATERIAL Y MÉTODOS
Sitios de muestreo
Localización de los diversos puntos de muestreo.
La localización de los puntos de muestreo se definieron previamente
mediante el uso de mapa de la región, al momento de realizar el recorrido
de muestreo se consideraron las zonas de acceso terrestre llevando a cabo
el muestreo en los puntos siguientes (figura 2):
1. punto 1 de recolección:
Latitud: 24°17´19.6”
Longitud: 110°0´0.00”
2. Punto 2 de recolección:
Latitud: 24°19´9.1”
Longitud: 110°38´53.6”
3. Punto 3 de recolección:
Latitud: °21´47.0”
Longitud: 110° 40´50.55”
4. Punto 4 de recolección:
Latitud: 24°08´28.5”
Longitud: 110°25´43.9”
5. Punto 5 de recolección:
Latitud: 24°06´30.7”
Longitud: 110°24´55”
29
6. Punto 6 de recolección:
Latitud: 24°59´49.6”
Longitud: 109°59´29.7”
7. Punto 7 de recolección:
Latitud: 24°59´30.7”
Longitud: 109°59´30.7”
8. Punto 8 de recolección:
Latitud: 23°41´45.3”
Longitud: 109°41´50”
9. Punto 9 de recolección:
Latitud: 23°29´48.4”
Longitud: 109°27´55.0”
Figura 2. Sitios de muestreo para la región Golfo.
30
MUESTREO
Preparación de recipientes para colecta de muestras
Para esto se utilizaron botellas pet desechables de 600ml cada una.
1. Las botellas con tapaderas se lavaron por dentro y por fuera con agua
destilada
2. Fueron colocadas en un horno a 37 °C por 24 horas para acelerar el secado
de los recipientes.
3. Para incrementar la limpieza, fueron limpiados con alcohol por dentro y
fuera.
4. Cada una de las botellas fue colocada una etiqueta de identificación en
blanco para ser llenada con la información del sitio de colecta.
Etiquetas de botellas
Las etiquetas de las botellas fueron llenadas con la siguiente información:
1. Fecha
2. Hora
3. Columna, sustrato
4. Latitud, longitud
5. Oxigeno
6. Temperatura
7. Salinidad
8. pH
9. nota
31
Colecta de las muestras
Las muestras se colectaron en diversos sitios de la región Golfo y Pacifico, para lo
cual se recorrió vía terrestre los diferentes puntos de muestreo, realizando las
siguientes actividades:
Se accedió a la zona intermareal en forma terrestre, colectando muestras de
sustrato con ayuda de la botella y mediante raspados superficial de los sustratos
presentes.
Fue registrado en las etiquetas la información correspondiente de Coordenadas
geográficas, Temperatura, Oxígeno disuelto, pH, y hora del día. Para esta
información se utilizó un multiparámetro Hanna (es un quipo portátil, impermeable
e incorpora las más avanzadas tecnologías en el diseño de su sensor. Mide 11
parámetros con una misma sonda: pH, mV, ORP, Oxígeno Disuelto, % de
saturación y mg/L, Conductividad, Salinidad y temperatura). Las muestras fueron
cerradas y colocadas en una hielera para evitar cambios repentinos de
temperatura durante el muestreo, el cual tuvo una duración de 14 hrs (figura 3 y
4). Una vez tenidas las muestras en el laboratorio experimental de acuacultura de
la UABCS. Se inició la revisión de las muestras mediante un microscopio
compuesto Olympus. Debido a que el proceso de revisión tardo más de un día,
fue necesario agregarle medio F/2 (Guillar, 1975)
para evitar la pérdida de
especies por sucesión.
32
Figura 3. Recolección de muestra del mar con botellas de plástico estéril.
Figura 4. Recolección de muestra en sustrato.
33
Criterio de selección
El criterio de selección que se utilizo para elegir las muestras fueron: tamaño de la
célula, que no fueran repetidas a las ya obtenidas de otras muestras y la
abundancia de otras especies.
Aislamiento de microalgas de origen local con potencial acuícola
Elaboración de micropipeta
La elaboración de las micropipeta se realizó utilizando micropipeta Pasteur y
consistió en la reducción del diámetro de la punta mediante calentamiento a fuego
directo con el mechero.
1. Preparación de la campana (se limpio con alcohol, y se prendió el mechero)
2. Se colocó la punta de la micropipeta en fuego.
3. Se expandió suavemente con pinzas, hasta alargarla tratando de que está
conservara la forma recta.
4. Se esterilizó en autoclave a 15 PSI por 20 min.
Preparación de placas de agar marino
La preparación de placas de agar marino se realizó utilizando cajas desechables.
Para ello se preparó en un matraz Erlenmeyer de un litro conteniendo agua de mar
estéril, se utilizó agar marino (DB-2216) al 1-5%.
34
Una vez disuelto se esterilizó en la autoclave a 15 lb de presión por 20 minutos.
Después de su esterilización, se esperó a que bajara la temperatura a 54 oC para
el llenado de las placas. El llenado de las placas se realizó bajo la campana y
mediante el uso mecheros, previa limpieza con alcohol. Se dejo solidificar el agar y
posteriormente se guardaron a 4oC bajo refrigeración.
Preparación de tubos de ensayo
Los tubos de ensayo se lavaron con agua destilada, se dejaron estilar por un día
para eliminar residuos del agua, estos se llenaron con agua de mar con nutrientes
(macronutrientes, micronutrientes, vitaminas y silicatos). Los tubos de ensayo
grandes se llenaron con 10ml y los tubos chicos con 5 ml, estos se taparon y se
colocaron en la autoclave por 20 min.
Observación de las muestras al microscopio
Una vez mantenidas las muestras en el laboratorio experimental de acuacultura de
la UABCS. Con una pipeta Pasteur (Figura 5) se tomaron varias muestras de las
botellas colectadas en los diferentes sitios de muestreo. Cada muestra se coloco
en un porta objetos. Se hizo la revisión de las muestras mediante un microscopio
compuesto Olympus. Debido a que el proceso de revisión tardo más de un día, fue
necesario agregarle medio f/2 (Guillar, 1975) a cada muestra para evitar la pérdida
de especie por sucesión.
35
Figura 5. Pipetas Pasteur de vidrio modificada
Siembra de agar.
Para realizar la siembra en cajas de agar se preparo la campana, limpiándola con
alcohol, prendiendo el mechero y colocándolo en el medio de esta. Con ayuda de
la pipeta Pasteur se tomo una gota de muestra y se coloco en las cajas de agar.
Con una varilla de vidrio previamente esterilizada y enfriada, se dispersó una gota
de muestra sobre el agar marino, la caja de petri se tapó y se selló con parafina
(Figura 6). Cada caja fue etiquetada con los datos de las muestras y la fecha, esto
para evitar posibles errores debido a la cantidad de muestras analizadas.
Figura 6. Siempre en placas de agar marino
36
Después de 4 días de las siembras en las cajas de agar, se observaron diversas
colonias. Para la selección de estas, con un marcador se eligió la colonia y se
marco con un círculo.
Se llevó a cabo la limpieza de la campana con alcohol y prendieron los mecheros
para que la muestra no se contaminara; al igual se limpio con alcohol un
portaobjetos en el cual se puso la muestra tomada de la caja de agar que contenia
una gota de agua de mar estéril.
Con ayuda de una aza estéril se tomó una parte de una colonia de la caja de agar
y se colocó sobre otra caja de agar marino nueva y se dispersó, con la misma aza
se tomó la otra parte de la colonia y se colocó en una gota de agua de mar puesta
sobre en el portaobjetos y se observó en el microscopio Olympus.
Transferencia de muestras de agar a tubo de ensayo (a medio liquido)
Se limpió la campana como se describió anteriormente, y con el aza estéril se
tomó, cada colonia seleccionada y se transfirió a un tubo de ensayo con medio
f/2. Se incubaron todos los tubos a una temperatura menor de 23 ˚C, con luz
artificial las 24 hrs del día.
37
Revisión de los tubos de ensayo con muestra
La revisión de los tubos de ensayo se hizo en la campana debidamente limpia.
Con una pipeta Pasteur previamente esterilizada se tomo una gota de muestra de
cada tubo de ensayo, tanto de la columna como del fondo del tubo de ensayo,
esta gota se coloco en el porta objetos debidamente limpio y se observó al
microscopio.
Transferencia de tubo a tubo con medio liquido
Del paso anterior se seleccionaron los tubos con las microalgas con
características deseadas y de la misma forma con una micropipeta Pasteur se
pasó a un tubo nuevo con medio f/2. Estas transferencias se continuaron hasta
conseguir que la microalga estuviera sin la presencia de otro tipo de
microorganismo.
Purificación de las cepas
En la campana previamente limpiada con alcohol y cuando se logró en el paso
anterior obtener cultivos de microalgas mono específicos, se tomo un poco de
muestra con la pipeta Pasteur y se paso al tubo nuevo con medio f/2. Se dejo
reposar por 24 hrs, después de las 24 hrs se le agregó:
38
1500µl y 2000µl de antibiótico (streptunicina, dicioxacilina y eritromicina) a 15 ml
de medio f/2 (Tabla 1).
Tabla 1. Preparación de antibiótico
Reactivo
Cantidad (g/50 ml agua)
Streptunicina
0.08333
Dicioxacilina
0.08333
Eritromicina
0.08333
Estos fueron agregados a 50ml de agua destilada estéril. Con
los diferentes
antibióticos se realizaron tres mezclas diferentes como se muestra en la Tabla 2.
Tabla 2. Mezcla de antibióticos
Mezcla 1
Mezcla 2
Mezcla 3
Streptunicina
Dicioxacilina
Streptunicina
Dicioxacilina
Eritromicina
Eritromicina
Después de 24 horas de estar las muestras bajo un baño de antibióticos, fueron
centrifugadas a 300 revoluciones por 10 minutos, esto para eliminar el antibiótico y
que las muestras quedaran puras (Tabla 3).
39
Tabla 3. Cantidades de antibióticos agregados a las diversas muestras
Mezcla de antibiótico
Cantidad
1
1500µl
2
2000µl
3
1500µl
Morfología celular de microalgas
En la campana debidamente limpia se hicieron preparaciones frescas en
portaobjetos (con sus respectivos cubreobjetos) a partir de los tubos preparados
con 1.7 ml de cultivo y se observaron.
En el microscopio Nikon Optiphot-2 (optizoom 0.8x-2,0x), adaptado con un monitor
Digital sight ds-l1 (6.3 pulgadas) que contenía una tarjeta donde se almacenaron
las imágenes CompactFlash; éste se conectó a una Computadora Acer atrevés
de una interfaz USB (Figura 7).
Figura 7. Equipo fotográfico Nikon Optiphot-2
40
Ya que se tuvieron las fotografías deseadas se realizaron las mediciones de las
células de microalgas. Para esto se utilizó el programa image-pro plus, el cual se
calibró a 20 x 2.0 micras.
Se midieron los diámetros de las células de cada microalga a través de las
imágenes. Cuando se tuvo el número de mediciones deseadas se pasó a una hoja
de cálculo. En promedio se midieron entre 15 a 20 imagenes por cepa.
Curvas de crecimiento de las cepas identificadas
Para la elaboración de las una curvas de crecimiento, las microalgas se
sembraron por triplicado en un medio de cultivo preparado en matraces de 1000ml
con una varilla de vidrio,
950ml de agua de mar, 950µl macronutrientes,
micronutrientes y silicatos; 400µl de vitaminas; y esterilizado en la autoclave por
20 min. Se colocaron en el cepario con aireación, a una temperatura de 24oC, con
una iluminación artificial constante por 8 días.
Todos los días durante 8 días se tomaron muestras de todos los matraces, se
observaron al microscopio y se contaron. Para esto en la campana se tomaron 5
ml de cada cultivo y se colocaron en tubos de ensayo, se les agrego una gota de
lugol para fijar las muestras y facilitar el conteo.
Para realizar el conteo directo, se utilizó una cámara de Neubauer (cuenta con
cuatro canales longitudinales y un canal transversal central, en cuyos lados
inferiores y superior existen grabados dos cuadros de 9mm2 de superficie que
están subdivididos en cuadrículas más finas) (Figura 8). Esta se cubrió con la
41
cubre-cámara que se adhiere por tensión superficial, ya adherida se introdujo el
liquido que contiene el cultivo, este por capilaridad entró entre la cámara y la
cubre-cámara. Los conteos se hicieron, con ayuda del microscopio Olympus.
Ya que se tuvo el conteo el siguiente paso fue calcular la concentración de
microalga que se tiene por unidad de volumen de la muestra inicial.
Figura 8. Cámara de conteo Neubauer
42
RESULTADOS
Sitios de muestreo
Los sitios de muestreo fueron seleccionados previamente mediante el uso de
mapas locales, no obstante al momento de llevar a cabo el muestreo se
consideraron los sitios de acceso viables. Después de estas consideraciones
fueron llevados a cabo los muestreos en nueve diferentes puntos geográficos de
condiciones ambientales (Figura 9).
Figura 9. Puntos geográficos en donde se realizaron los muestreos de agua
de mar.
El sitio de muestreo comprendió desde la zona conocida como San Juan de la
Costa en el Golfo de California, hasta la región conocida como Cabo Pulmo. En
43
cada uno de los puntos de muestreo se registraron las condiciones ambientales:
Oxígeno disuelto, pH, Temperatura superficial del mar y salinidad. Estos factores
presentaron variación por efecto de la zona de muestreo (Tabla 4).
Tabla 4. Condiciones del agua superficial en los diferentes puntos de
muestro
Punto Coordenadas
Oxígeno pH
Temperatura Salinidad
geográficas
disuelto
del
agua (ppt)
(Latitud/Longitud)
(mg/L)
(°C)
1
24°17´19.6”/10°0´0.00”
7.32
7.95
30.02
33.02
2
24°19´9.1”/110°38´53.6”
6.65
7.95
30.42
36.46
3
24°21´47.0”/110°40´50.55” 6.54
7.87
31.51
32.98
4
24°08´28.5”/ 110°25´43.9”
3.12
7.93
34.14
37.12
5
24°06´30.7”/110°24´55”
7.56
8.05
31.58
37.25
6
24°59´49.6”/ 109°59´29.7”
8.80
8.09
31.68
35.76
7
24°59´30.7”/ 109°59´30.7”
8.55
8.02
31.37
35.68
8
23°41´45.3”/ 109°41´50”
7.57
7.92
31.15
33.7
9
23°29´48.4”/ 109°27´55.0”
7.65
8.13
31.29
33.47
Resultados del aislamiento y purificación de las microalgas
Se utilizaron diversos métodos de aislamiento los cuales fueron, siembra en agar,
transferencia de agar a tubo, transferencia de tubo a tubo, el más efectivo para
aislar las diversas muestras fue el tercer método, transferencia de tubo a tubo, ya
que fue más fácil de manipular las muestras y aislarlas a través de transferencia
44
de medio a medio, aunque se podría decir que es algo tedioso; ya que no solo se
toma la muestra sola sino también se toman otros microorganismos que se
encuentran en la muestra. De un solo tubo se pudieron aislar diversas cepas y con
ayuda de este método fue algo más sencillo aunque más laborioso, pero fue uno
de los métodos que nos dio mejores resultados.
Después del proceso de aislamiento y purificación de las cepas de microalgas
obtenidas, fueron identificadas hasta nivel de género, obteniéndose las que se
muestran en la tabla 5.
Tabla 5. Cepas de microalgas marinas aisladas de la región de la zona sur
del Golfo de California.
Género
Lugar
de
muestreo Zona
geográfica
de
(columna
de
agua
o procedencia
sustrato rocoso)
Chaetoceros sp (2)
Columna
24°21´47.0”/110°40´50.55”
Chaetoceros sp (1)
Sustrato
23°29´48.4”/ 109°27´55.0”
Navícula sp (1) y (2)
Columna
24°17´19.6”/10°0´0.00”
Spirulina sp
Sustrato
23°29´48.4”/ 109°27´55.0”
Amphora sp
Sustrato
23°29´48.4”/ 109°27´55.0”
Morfología celular y dimensiones de las microalgas
Después del proceso de aislamiento y purificación, fue documentada la morfología
celular de las cepas aisladas. En la figura 10 se muestra la microalga identificada
45
como Chaetoceros sp., no pudiendo llegar a su identificación a nivel de especie.
Sin embargo las características importantes que sobresalen de esta microalga
son: es una diatomea marina y presenta cuatro setas en sus extremos. El tamaño
registrado en esta especie fue de 5.13µm de ancho, presentando una longitud de
5.76 µm cada una de ellas. Cuenta con cuatro setas que presentan un tamaño de
18.15, 18.39, 19.45 y 16.0 µm.
Chaetoceros sp. (1)
Figura 10. Chaetoceros sp., autóctona aislada de la Bahía de la paz con un
aumento de 60X
46
Chaetoceros sp (2)
Al igual que la muestra anterior, esta microalga fue clasificada como Chaetoceros
sp (2), debido a que fue la segunda de este mismo género, presentó las mismas
características que la microalga anterior solo que esta tuvo diferente tamaño. Esta
midió de ancho de 3.53 µm con una longitud de 6.91µm. Al igual que la anterior
también cuenta con cuatro setas que tienen una longitud de 20.23µm. (Figura 11)
Figura 11. Chaetoceros sp (1). Autóctona a aislada de la Bahía de La Paz.
Con aumento de 20X.
47
Spirulina sp.
Esta es una cianobacteria esta presentó un cuerpo en espiral. El tamaño
registrado de esta especie fue de 28.54 de largo, con una anchura de 7.78 µm
(Figura 12).
Figura 12. Spirulina sp., autóctona aislada de la Bahía de La Paz. Con un
aumento de 20X.
48
Navícula sp., (1)
Esta microalga es una diatomea marina un cuerpo ovalado alargado. El tamaño
registrado en esta especie fue de 3.27 µm de ancho, presentando una longitud de
7.84 µm cada una de ellas. (Figura 13)
Figura 13. Navícula sp (1)., autóctona a aislada de la Bahía de La Paz. Con
aumento de 10X.
49
Navícula sp (2)
Al igual que la microalga anterior esta es una Navícula sp, esta microalga es una
diatomea marina un cuerpo ovalado alargado. Pero en este caso es de una
longitud mayor que la anterior. El tamaño promedio registrado en esta especie fue
de 6.59 µm de ancho presentando una longitud de 16.03 µm cada una de ellas. El
tamaño diferente de esta cepa con respecto a la anterior, sugiere que pertenecen
a diferente especie (Figura 14)
Figura 14. Navícula sp (2)., autóctona aislada de la Bahía de La Paz. Con
aumento de 20X.
50
Amphora sp.
Esta microalga es desconocida fue catalogada como Amphora sp por su parecido
a estas microalgas, esta microalga tiene una anchura de 6.42µm de ancho con
una longitud 16.23µm (Figura 15).
Según L Moreno 1996 este género de microalgas se caracteriza por tener valva
semilanceolada, margen ventral ligeramente redondo. Lados dorsal con un
espacio rectangular que interrumpe a las estrias en la porción central, puede o no
estar parcialmente abierto al área central. Esta cuenta con una anchura de 7 a 10
µm y una longitud de 29.5 a 35 µm. (Figura 16)
51
Figura 15. Amphora sp., autóctona aislada de la Bahía de La Paz. Con
aumento de 20X.
Figura 16. Amphora sp. (de J. Moreno 1996).
52
Curva de crecimiento de las cepas de microalgas identificadas
Para realizar las siguientes curvas de crecimiento, se llevaron a cabo conteos de
las diferentes cepas de microalgas durante 9 días.
Los cultivos de las diferentes cepas aisladas fueron escalados a volúmenes
progresivamente mayores para la determinación de las cinéticas de crecimiento de
cada cepa. Para el caso de la microalga Chaetoceros sp (1), se obtuvo la cinética
de crecimiento que se muestra en la figura 17 en ella se observa una mayor
densidad en el día 7 a partir de ese día se presentó la fase de muestre. Sin
embargo la mayor densidad celular fue de 5563.3x103 cel/mL.
Chaetoceros sp (1)
Figura 17. Cinética de crecimiento de Chaetoceros sp (1)
53
Chaetoceros sp (2)
De acuerdo a los resultados de la cinética de crecimiento de Chaetoceros sp, (2),
se obtuvo la curva de crecimiento que se muestra en la figura 18. En ella se
observa que la densidad fue incrementando a partir del día 5 y esta se mantuvo
hasta el día 7. A partir del día 8 se presentó la fase de muerte. Sin embargo la
mayor densidad celular fue de 5195.8x103 cel/mL.
Figura 18. Cinética de crecimiento Chaetoceros sp (2)
54
Spirulina sp.
Para la microalga Spirulina sp, se obtuvo la cinética de crecimiento que se
muestra en la figura 19 en ella se observa una mayor densidad en el día 7 a partir
de ese día se presentó la fase de muerte. Sin embargo la mayor densidad celular
fue de 2623.3x103 cel/mm.
Densidad celular (x10
cel/ml)
3
Figura 19. Cinética de crecimiento de la microalga Spirulina sp.
55
Navícula sp (1)
En el caso de Navicula sp (1), para esta microalga se obtuvo la cinética de
crecimiento que se muestra en la figura 20 en ella se observa que el día 6 hubo
una baja de densidad, en el día 7 se incremento la densidad y a partir del día 8 se
presentó la fase de muerte. Sin embargo la mayor densidad celular fue de
460.4x103 células por mililitro.
Densidad celular (x10 3
cel/ml)
Figura 20. Cinética de crecimiento Navícula sp (1)
56
Navícula sp (2)
De acuerdo con la cinética de crecimiento de Navicula sp (2), para esta microalga
se obtuvo la cinética de crecimiento que se muestra en la figura 21 en ella se
observa una mayor densidad en el día 7. A partir de ese día se presentó la fase de
muerte. Sin embargo la mayor densidad celular fue de 9.7x105 cel/ml.
Densidad celular (x10 3
cel/ml)
Figura 21. Cinética de crecimiento Navícula sp (2)
57
Amphora sp.
En el caso de la microalga Amphora sp. Se obtuvo la cinética de crecimiento que
se muestra en la figura 22 en ella se observa una mayor densidad en el día 3 a
partir de ese día se presentó la fase de muestre, pero lo que se ve en la figura es
que a partir del
día 5 se incrementa nuevamente la densidad celular y
posteriormente baja. Sin embargo la mayor densidad celular fue de 6.64x105
células por mililitro.
Densidad celular (x10 3 cel/ml)
Figura 22. Cinética de crecimiento Amphora sp.
58
DISCUSIÓN
Una de las dificultades que se puede presentar al momento de aislar microalgas
por la técnica de micropipeta es tomar una célula ayudado con el del microscopio,
ya que es una labor que se puede volver complicada por la dificultad de saber en
qué momento solo agarrar la microalga deseada sin tomar algo no deseado como
algunas bacterias u otro tipo de contaminación presente.
Al momento de la identificación y comparación con las microalgas que ya se
conocen y las que ya se tienen en el laboratorio, fue necesaria una revisión
minuciosa mediante el enfoque y toma de imágenes con diferentes aumentos del
microscopio. Adicionalmente, se consideró en cada momento el comportamiento
de los cultivos en tubos de cultivo.
Después del proceso de aislamiento se obtuvieron las cepas que se muestran en
los resultados. Cada una de ellas con características particulares que las hacen
diferentes entre ellas. Existen diferencias entre el número de especies de
microalgas marinas conocidas y las desconocidas. En México, un número
estimado de taxones (especies, formas y variedades) se aproxima a1 488,
incluidos en 211 géneros, que representa 33-42% del total calculado para todo el
mundo (Hernández, 2003; Hernández, 2013). De acuerdo a los resultados
obtenidos en este trabajo, algunas de las especies obtenidas forman parte de las
descritas por Moreno et al (1996), quienes hacen mención de la diversidad de
diatomeas del Golfo de California, sin embargo en el caso de Spyrulina sp, no se
describe en documentos en donde se describen las diatomeas y dinoflagelados de
59
la región (Licea et al. 1995; Moreno et al. 1996). Esto podría ser debido a que este
género no forma parte de la clasificación de diatomeas o dinoflagelados,
perteneciendo al grupo conocido como cianobacterias. Aunque no se tienen
registros de este género de cianobacterias en el Golfo de California, se puede
considerar como un género con potencial de utilización en la acuícultura marina.
Las características morfológicas varían dependiendo de las especies. En este
trabajo se encontraron microalgas de 3 micras de largo a 31 micras de ancho en
promedio.
En el caso de Navícula sp (1) y (2); se encuentran en la clasificación de
Diatomeas, algunas de color marrón rojizo o dorado, son células encerradas en
una cubierta de naturaleza silícea de alto índice de refracción denominada
frústula. Esta cuanta con una visión valvar lanceolada con estrías repartidas a
ambos lados del rafe (Bolívar, et al., 1998).
Estas son células rectangulares en vista singular. Valvas lanceoladas con unas
ligueras terminaciones. En la zona medio presentan estrías transversales en la
zona medio. Los extremos de la célula son redondeados. Presentan dos
cloroplastos por célula. Son cosmopolitas. (Tomas, 1997). Esta microalga puede
tener entre 50 y 500 µm en promedio (López, et al. 2011)
Notamos que esta microalga es rectángula y alargada, son estriadas, son de color
verdoso con medidas de 3 a 7 micras en promedio.
Una de las microalgas usadas ampliamente en la acuacultura son las
pertenecientes al género Chaetoceros sp, en estos resultados se obtuvieron dos
60
diferentes especies de este género. La clasificada como Chaetoceros sp,
diatomea que se caracteriza por ser de color café, de forma rectangular, con
tamaño promedio de 3 a 7 µm, presenta cuatro zetas en sus extremos se
desarrolla en salinidades de 35%º, y puede crecer a temperaturas de entre 15 y
30°C (Pacheco-Vega, 2010).
De las diferentes características externas en la microalga Chaetoceros sp (1) Y
(2), se observó su forma cuadrada, con cuatro setas, en el caso de la segunda
especie de Chaetoceros obtenida, fue clasificada como Chaetoceros sp (2) esta es
de menor tamaño de 4 a 5 micras mientras que la Chaetoceros (1) la cual mide 7 a
9 micras. Se dice que esta microalga mide de 7 a 30 micras (López, et al. 2011).
De acuerdo a la literatura consultada, la cianobacteria Spirulina sp, se trata de una
alga azul, incluida dentro de la clase de las denominadas Cianofíceas o
Cianobacterias, de carácter multicelular, cuya células cilíndricas tienen un ancho
de 3 a 12 micras, alcanzando a veces hasta 16 micras. Sus filamentos presentan
un esquema en forma de hélice abierta y llegan a medir entre 100 y 200
milimicrones (Ramírez, et al. 2006). Las condiciones de esta hélice y sus medidas
dependerán de las condiciones ambientales y del crecimiento de la cianobacteria.
(Ramírez, et al. 2006). En el caso de la Spirulina aislada esta es de un color grisazul, con medidas de 5 micras de ancho por 31 micras de largo en promedio. Este
género de microorganismos contiene de 65 a 70% de proteína.
61
Amphora sp, notamos que es alargada como la navícula y de color verde o café,
seccionada por la mitad. Con medidas de 5 micras de ancho a 14 micras de largo.
Esta puede llegar a medir de 5 micras hasta 2 mm según López, 2011.
Por otro lado notamos que el oxigeno disuelto en el mar al momento de tomar las
muestras fue de 6 a 8 mg/L, no varió mucho ya que las muestras fueron tomadas
de lugares con características similares de pH y temperatura del agua (Tabla 6).
Algunas muestras fueron tomadas del mismo lugar y por eso se tiene
características iguales a los parámetros del agua.
Tabla 6. Parámetros del agua.
Muestra
pH
Chaetoceros sp (1)
Oxígeno
disuelto (mg/L)
7.65
8.13
Temperatura del
agua (°C)
31.29
Chaetoceros sp (2)
6.54
7.87
31.51
Navicula sp (1)
7.32
7.95
30.42
Navicula sp (2)
7.32
7.95
30.42
Spirulina sp
7.65
8.13
31.29
Amphora sp
7.65
8.13
31.29
Para el caso de la microalga Chaetoceros sp se dice que esta se encuentra en
lugares con una temperatura de 22 hasta 30 °C y con un pH entre 7.9 a 9.
(Medina, 2012.). Sin embargo la microalga de este género, se aisló de un sitio con
una temperatura en el rango de 31 a 32 °C. Con un pH de 6.54 a 7.65, lo cual
quiere decir que es un pH bajo al promedio.
62
La microalga del género Navicula sp, generalmente sobrevive a una temperatura
de 19 ºC, con un pH de 8.3 y con oxigeno de 7.6 (Bustamante, 2008). En la figura
6 se observa que la cepa de Navicula sp fue aislada a una temperatura de 30.4
°C, un pH 7.95 y con oxigeno en el agua de 7.32 mg/L, el cual es un poco más
bajo que el mencionado anteriormente.
Con respecto a la cianobacteria Spirulina sp, generalmente puede encontrarse a
temperaturas de 25 ºC y aun pH entre 8 a 11 (Rolando, 2006). Según los datos
tomados de la Figura 6 la cepa de spirulina sp se aisló de agua de mar a una
temperatura de 31.29 °C y con un pH de 8.13.
Respecto a la cinética de crecimiento de las diferentes cepas aisladas, para el
caso de la microalga Chaetoceros sp, según Christine en 1997,
la densidad
celular máxima se alcanza en el quinto día de cultivo con un valor de 2.7x106
cel/mL. En el caso de la cepa de esta especie aislada, la densidad máxima se
alcanzó en el día 7 para Chaetoceros sp (1) con una densidad máxima de 5.6x106
cel/mL y en el caso de Chaetocer sp (2) la densidad máxima se alcanza en el día
5 con una densidad máxima de 5.2x106 cel/mL.
Con respecto al género Navicula sp, este cuenta con una cinética de crecimiento
con una densidad máxima de 9.3x105 células/ml en el cuarto día (Curbelo et al.,
2004). En el caso de las cepas de Navicula sp (1) y (2), se alcanzo una densidad
máxima en el dia 7 de 4.6x105 cel/mL y 9.7x105 cel/ml respectivamente.
63
La Spirulina generalmente cuenta con una densidad máxima a partir del día 6 con
4.4x105 (Niño, 2006). Sin embargo en la cepa aislada alcanzó una densidad
máxima el día 7 con 2.6x105 células/ml.
En las curvas de crecimiento de las cepas aisladas se observó que éstas duran
más tiempo vivas que las microalgas comunes, en este caso duraron nueve días,
se tiene conocimiento que la curva de crecimiento más común es de una semana
(7 días).
64
CONCLUSIONES
Con este trabajo se puso en evidencia la riqueza de microalgas marinas presentes
en la zona costera de Baja California Sur, pudiéndose obtener especies
acondicionadas a las condiciones y con potencial acuícola o biotecnológico.
Aunque no se han evaluado en condiciones extremas de cultivo, podríamos decir
que las obtenidas en este trabajo pueden ser más tolerantes o resistentes a las
altas temperaturas de nuestra región, esto por su origen.
Con el desarrollo del presente trabajo, se aislaron seis diferentes cepas de
microalgas, pudiéndose identificar el género, mientras que la especie no se pudo
determinar visualmente, sin embargo fueron clasificadas de las siguientes forma:
Chaetoceros sp (1), Chaetoceros sp (2), Navícula sp (1), Navícula sp (2),
Spirulina sp y Amphora sp.
Las diferentes cepas presentaron un tamaño adecuado para su uso en la
acuacultura y fueron fácilmente cultivables bajo condiciones de laboratorio. Sin
embrago, se requieren más evaluaciones de composición bioquímica y ensayos
de utilización como alimento vivo para determinar su completo potencial de uso
acuícola. La Spirulina sp, es una cianobacteria que podría presentar un gran
potencial al igual que la especie dulce acuícola, ya que esta es considerada de
alto valor nutricional por el contenido de proteínas y pigmentos.
También se
podrían utilizar como suplemento dietético.
65
BIBLIOGRAFÍA

Abalde, J. Cid a., Fidalgo, P., Torres, e. y Herrero, C. 1995. Microalgas:
cultivo y aplicaciones. Universidad de Coruña. España. 210 pp.

Almaguer, Y.R., E. Alfonso y S. Leal. 2004. Aislamiento y cultivo de dos
especies de diatomeas bentónicas. Rev. Invest. Mar. 60 pp.

Arredondo B. y Voltolina D. 2007. Métodos y herramientas analíticas en la
evaluación de la biomasa microalgal. 2-3.

Bermudez T. K., N. Robledo Q., L. Barrera N., y M. Wink. 2002. Alkaloid
profile of leaves and seeds of Lupinus hintonii C. P. Smith. Z. Naturforsch.
243–247.

Bustamante C. 2008. Composición y abundancia de la comunidad de
fitoperifiton en el Río Quindío. 17pp.

Cañizares, V. R., C. Casas C., A. R. Domínguez B y D. Voltolina L. 1994.
Las microalgas en la
acuacultura.
Cuadernos sobre
fiotecnología.
CINVESTAVIP. Departamento de biotecnología y bioingeniería. México. 44
pp.

Clinton, J. 1986. Botánica Marina. Limusa. México. 18 pp.

Christine J. 1997. Generación biotecnológica para la producción de
microalgas. 25 -26.

Coutteau, P. ay Sorgeloos, P. 1992. The requirement for live algae and their
replacement by artificial diets in the hatchery and nursery rearing of bivalve
molluscs: an international survey. J. Shellfish Res. 467-476.
66

Curbelo, R., Leal, S., Nuñez, N., Quintana, P., Benguela, I., Muñoz, D.,
Almaguer, Y. 2004. Cultivo de la microalga Bentónica Navicula sp. Para la
alimentación de las primeras postlarvas de camarón blanco. 148 pp.

FAO. 2000. Código de Conducta para la Pesca Responsable. Organización
de las Naciones Unidas Para la Agricultura y Alimentación. Roma. 46 pp.

Fernando, B. y Sánchez P., 1998. Claves de identificación de microalgas
frecuentes en monumentos. 94 pp.

Fogg, G. E. y Thake, B. 1987. Algae Culture and Phytoplancton Ecology.
The University of Wiscoinsin Press. Third Edition. E.U.A. 126 pp.

García, M. 2000. Mar, aplicaciones de las microalgas. 4 pp.

Guedes, A. y Malcata, F. 2011. Microalgae as sources of high added-valie
compounds-a brief review of recent work. Biotechnology progress. P: 597613.

Guillard, R.L. 1975. Culture of Marine Invertebrate animals. 29-60.

Hernández-Becerril, D.U. 2003. La diversidad del fitoplancton merino de
México: un acercamiento actual. In Planctología Mexicana, M. T. Barreiro,
M.E. Meave, M. Signoret y M. G. Figueroa (eds). Sociedad Mexicana de
Planctónicas marinas (Cyanobacteria,
Prasinophyceae,
Euglenophyta,
Chrysophyceae, Dictyochophyceae, Eustigmatophyceae, Parmophyceae,
Raphidophyceae, Bacillariophyta, Cryptophyta, Haptophyta, Dinoflagellate)
en México. Revista Mexicana de Biodiversidad. 1-11.

FAO. 2011. Examen mundial de la pesca y la acuicultura. Disponible en:
http://www.fao.org/docrep/013/i1820s/i1820s01.pdf
67

Hoff, F. and T. Snell. 2011. Plankton culture manual. Florida aqua farm, inc.
E.U.A. P:162.

Kaplan, D.A; E. Richmond; Dubinsky and S. Aronson. 1986. Algal nutrition.
En: Richmond, A. (Ed). Handbook of microalgal mass culture. CRC Press.
Inc. E.U.A. P: 147-198.

Karim, A. 2002. Manual para el cultivo de microalgas. Memoria técnica
profesional. Universidad Autónoma de Baja California Sur. Biólogo Marino.
50 pp.

Licea, S., Moreno, J. L., Santoyo, H. y Figueroa, G. 2003. Dinoflageladas del
Golfo de California. Universidad Autónoma de Baja California Sur. La paz, B.
C. S. México. SAGARPA, Anuario Estadístico de Pesca. 165 pp.

López, E., voltolina, D., Nieves, S., Y Figueroa, O.
2004. Producción y
composición de microalgas en laboratorios comerciales del noroeste de
México. 636.649.

López, R., Cañon, M., y Gracia, M. 2011. Catálogo de Fitoplancton. 32 pp.

Mata T., Martins A. y Caetano N. 2009. microalgae for biodisel production
and otrher applications: a review. 221 pp.

Malagrino, G., López-contreras, L., Cáceres-Martínez, C. y Hirayama, K.
1999. Status of live food cultura for aquacultura purpose in mexico- bulletin
of the faculty of fisheries. Nagasaki University. 43-47.

Medina Reyna, E. 2012. Crecimiento y composición bioquímica de la
diatomea Chaetoceros muelleri lemmerman, mantenida en cultivo estático
con un medio comercial. 19-25.
68

Moreno, L. L., Licea, S. y Santoyo, H. 1996. Diatomeas del Golfo de
California. Universidad Autónoma de Baja California Sur. La Paz, B.C.S.
México. 272 pp.

Niño Martínez y Londoño Martínez, D.F. 2006. Evaluación del crecimiento de
Spirulina platensis sobre un efluente de suero de quesería. Tesis
profesional. Universidad de la Sabana. 55 pp.

Pacheco-Vega, J.M. 2010. Evaluación de la producción de a idos grasos
altamente instaurados de la microalga Chaetoceros muelleri por efecto de la
concentración y el tipo de nutrientes en el medio de cultivo y su efecto en
zonas de camarón blanco (Litopenarus vannamei). Tesis. Doctorado.
UABCS. 102 pp.

Porras, D. 2006. Evaluación de crecimiento y composición bioquímica de la
microalga Chaetoceros muelleri
cultivada en diferentes recipientes de
cultivos. Tesis de Ingeniero en Pesquerías. UABCS. 55 pp.

Provasoli, L; A. McLaughin y M.R. Droop. 1957. The development of artificial
media for marine algae. Arch. Fur. Microbiologia. P: 392-428.

Ramírez. L; y Olvera, R. 2006. Conocimientos acerca del alga spirulina
(arthrospira). Interciencia, vol.31 (nº 009).

Reyes, Z. y Gelabert, R. 2001. Cepas de microalgas aisladas de la laguna
de términos, Campeche. Universidad autónoma del Carmen. Primer
Simposium para el Conocimiento de los Recursos Costeros del Sureste de
México. y Primera Reunión Mesoamericana para el Conocimiento de los
Recursos Costeros. Universidad Autónoma del Carmen.
69

Richmond, A. 1986. Cell response to environmental factors. En: Richmond,
A. (Ed). Handbook of microalgal mass culture. CRC Press. Inc.,
E.U.A.U.S.A. P: 69-99.

Rolando, A. 2006. Evaluación pH en el cultivo de Spirulina spp.
(=Arthrospira) bajo condiciones de laboratorio. Universidad Javeroiana.
Colombia. 105 pp.

Ruiz, M. C., Gómez, J. C., Chávez, J. D. Á., y Bosmediano, H. S. 2013.
Identificación de microalgas oleaginosas en el área de concesión para
conservación, cuenca alta del río Itaya. Loreto-Perú. Ciencia Amazónica,
2(2), 162-168.

SAGARPA.
2012.
Anuario
Estadístico
de
Pesca.
http://www.conapesca.sagarpa.gob.mx/wb/com.

Stein, J.R. 1973. Handbook of Phycological Methods. Culture methods and
growth measurements. Cambridge University press. USA. 446 pp.

Steemann-nielsen, E. 1952. The use of radioactive carbon (14C) for
measuring organic production in the sea. Joutn. Cons. Internat. Explor. P:
117-140.

Tomas C. 1997. Identifying marine phytoplankton. Academic Press. New
York. 858 pp.

Trujillo, V. M. 1997. Manual de técnicas de aislamiento de cepas de
microalgas.
Informe
Técnico.
Comunicaciones
Académicas,
Seie
Acuicultura. 29 pp.
70
ANEXOS
Preparación del medio (f/2)
Para la preparación de agua de mar enriquecida de nutrientes, se siguió las
equivalencias de concentración de macronutrientes que se muestran en la tabla 7.
Tabla 7. Medio de cultivo F/2 de Guillard utilizado para el cultivo de
microalgas.
Nutrientes
Formula
Concentración
1
Nitrato
NaNO3
75.0 g por L
2
Fosfato
NaH2PO4.H2O
5.0 g por L
3
Silicato
Na2SiO3.9H2O
30.0 g por L
4
Metales traza
FeCl3.6H2O
3.5 g
Na2EDTA
4.36 g
Disuelta en 900 ml de agua destilada.
Añadir 1 ml de cada una de las siguientes soluciones de metales traza (tabla 8).
Tabla 8. Metales traza en 100ml
Formula
Concentración
CuSO4.5H2O
0.98 g por 100 ml
ZnSO4.7H2O
2.20 g por 100 ml
CoCl2.6H2O
1.00 g por 100 m
MnCl2.4H2O
18.00 g por 100 ml
Na2MoO4.2H2O
0.63 g por 100 ml
71
Añadir 1 ml por litro de fricción revuelo de soldadura (FSW) de las soluciones
anteriores
Tabla 9. Preparación de vitamina en 1 L de agua destilada
Nutrientes
Concentración
Vitaminas
Biotina
1.0 mg
B12
1.0 mg
Tiamina HCl
20.0 mg
Disolver todas las concentraciones en 1 L de agua destilada y posteriormente
congelar, por cada litro de agua de mar añada ½ litro de solución de vitaminas.
(Tabla 9).
72
Descargar