Documento Final de Tesis - Universidad Distrital Francisco Jose

Anuncio
POTENCIALIDAD DE USO DE LA MADERA DE 15 ESPECIES FORESTALES,
PROCEDENTES DE LA UOF YARÍ-CAGUÁN, DEPARTAMENTO DE CAQUETÁ
JUAN FELIPE SOLORZANO G.
SEBASTIAN SUAREZ DIAZ
SERGIO ANDRES MOGOLLON A.
DOCUMENTO PARA OPTAR AL TRABAJO DE GRADO EN LA MODALIDAD DE
INVESTIGACION -INNOVACION COMO AUXILIARES DE INVESTIGACION
UNIVERSIDAD DISTRITAL FRANCISCO JOSE DE CALDAS
FACULTAD DE MEDIO AMBIENTE Y RECURSOS NATURALES
INGENIERIA FORESTAL
BOGOTA D.C.
2016
2
Tabla de contenido
Agradecimientos ............................................................................................................................. 4
Índice de tablas ............................................................................................................................... 5
Índice de figuras .............................................................................................................................. 6
Índice de anexos.............................................................................................................................. 6
Resumen.......................................................................................................................................... 7
Summary ......................................................................................................................................... 9
1.
Introducción .......................................................................................................................... 11
2.
Objetivos ............................................................................................................................... 12
2.1 Objetivo general .................................................................................................................. 12
2.2 Objetivos específicos .......................................................................................................... 12
3.
Estado del arte ....................................................................................................................... 13
4.
Cronograma........................................................................................................................... 12
5.
Área de estudio ..................................................................................................................... 13
5.1 Generalidades de Cartagena del Chaira .............................................................................. 13
6.
Metodología .......................................................................................................................... 15
6.1 Etapa preparatoria ............................................................................................................... 15
6.1.1 Selección de especies. .................................................................................................. 15
6.2 Etapa de campo ................................................................................................................... 16
6.2.1 Georreferenciación y evaluación del individuo. .......................................................... 16
6.2.2 Tala y pautas de muestreo. ........................................................................................... 16
6.2.3 Evaluación del material obtenido................................................................................. 17
6.2.4 Transporte menor y mayor. .......................................................................................... 17
6.3 Etapa de laboratorio ............................................................................................................ 19
6.3.1 Propiedades físicas. ...................................................................................................... 19
6.3.2 Propiedades mecánicas ................................................................................................ 19
6.4 Etapa de resultados y análisis ............................................................................................. 21
7. Resultados y Análisis ................................................................................................................ 23
7.1 Etapa de campo ................................................................................................................... 23
3
7.2 Etapa de laboratorio ............................................................................................................ 23
7.2.1 Resultado de propiedades físicas ................................................................................. 28
7.2.2 Resultado de propiedades mecánicas ............................................................................... 44
7.2.3 Resultados de usos ....................................................................................................... 65
8. Conclusiones y Recomendaciones ............................................................................................ 72
8.1 Conclusiones ....................................................................................................................... 72
8.2 Recomendaciones ............................................................................................................... 73
9. Anexos ...................................................................................................................................... 81
Anexo1. Información del formato de colecta de las 15 especies estudiadas ............................ 81
Anexo 2. Registro fitosanitario del estado de la madera .......................................................... 84
4
Agradecimientos
Esta investigación conto con la financiación y apoyo de la Corporación para el Desarrollo
Sostenible del Sur de la Amazonia (CORPOAMAZONIA) y la Universidad Distrital Francisco
José de Caldas, en el marco del Contrato Interadministrativo 0536 de 2014. Igualmente los autores
queremos expresar nuestros agradecimientos especiales a la Universidad Distrital Francisco José
de Caldas por sus aportes científicos y académicos para la culminación del presente estudio.
5
Índice de tablas
Tabla 1. Cronograma de actividades establecidas para la ejecución del estudio
Tabla 2. Especies seleccionadas por CORPOAMAZONIA
Tabla 3. Normas técnicas para la determinación de propiedades físicas
Tabla 4. Normas técnicas y especificaciones para cada uno de los ensayos mecánicos.
Tabla 5. Tiempo de duración de ensayos mecánicos
Tabla 6. Tiempos de cambio de accesorio, montaje y toma de datos
Tabla 7. Tiempo de calentamiento de la máquina universal
Tabla 8. Tiempo total empleado en fase de laboratorio
Tabla 9. Resumen de las propiedades físicas de las especies P. nitida, C. racemosa, I. nobilis,
Endlicheria sp y E. albiflora.
Tabla 10. Resumen de las propiedades físicas de las especies Q. acuminata, H.cf petraeum,
Lauraceae (A. panurensis, N. cf membranaceae, O. cf myrianthaK), E. parvifolia y V. pavonis
Tabla 11. Resumen de las propiedades físicas de las especies H. oblongifolia, O. cf cymbarum,
C. matourensi, D. guianense y Q.paraensis
Tabla 12. Clasificación de las 15 especies según la densidad seca al aire. Tomado de Díaz 2005
Tabla 13. Clasificación de las 15 especies según la densidad anhidra tomada de Guevara 2001.
Tabla 14. Clasificación de las 15 especies según la densidad básica tomada de Puertas et al.
2013
Tabla 15. Clasificación contracción volumétrica total para las especies estudiadas. Tomado
como referencia la clasificación presentada por Londoño 2007.
Tabla 16. Clasificación de las especies según la relación anisotropía.
Tabla 17. Propiedades mecánicas de las especies P. nitida, C. racemosa, I. nobilis, Endlicheria
sp y E. albiflora.
Tabla 18. Resumen de las propiedades mecánicas de las especies Q. acuminata, H.cf petraeum,
Lauraceae (A. panurensis, N. cf membranaceae, O. cf myriantha), E. parvifolia y V. pavonis.
Tabla 19. Resumen de las propiedades mecánicas de las especies H. oblongifolia, O. cf
cymbarum, C. matourensi, D. guianense y Q.paraensis
Tabla 20. Clasificación de la Resistencia máxima según ASTM de las especies
Tabla 21. Clasificación de la Resistencia al límite proporcional según ASTM de las especies
6
Tabla 22. Clasificación del Módulo de elasticidad según ASTM de las 15 especies
Tabla 23. Clasificación a la resistencia unitaria máxima
Tabla 24. Categorización de las 15 especies para el ensayo de Compresión Perpendicular
Tabla 25. Clasificación del EUM en la prueba de cizallamiento según ASTM
Tabla 26. Clasificación de dureza lateral según ASTM
Tabla 27. Categorización de las 15 especies para el ensayo de tenacidad
Tabla 28. Resumen y priorización de usos de las 15 especies estudiadas
Tabla 29. Resumen y priorización de usos de las 15 especies estudiadas (continuación)
Índice de figuras
Figura 1. Sistema de muestreo para la obtención de bloques y rodajas y los respectivos códigos
de identificación y seguimiento.
Figura 2. Densidad básica de las especies estudiadas.
Figura 3. Contenido de Humedad en punto de saturación de fibras de las especie estudiadas.
Figura 4. Contenido de Humedad libre de las 15 especies estudiadas.
Figura 5. Contenido de humedad máximo de las especies estudiadas.
Figura 6. Contracción normal tangencial y radial para las 15 especies forestales.
Figura 7. Flexión Estática de las especies objeto de estudio, ordenada de acuerdo a los valores
de MOE (1000 kg/cm2).
Figura 8. Compresión paralela para las 15 especies forestales.
Figura 9. Resistencia en el límite proporcional de las 15 especies para el ensayo de Compresión
Perpendicular.
Figura 10. Dureza para las 15 especies forestales. Dureza tangencial (Durt), Dureza radial
(DurR) y dureza en extremos (DurE). De acuerdo a las barras; 8 de las 15 especies de madera,
presentaron menores resistencias a la penetración en planos laterales.
Figura 11. Correlación en términos de variabilidad compartida y explicada entre Compresión
perpendicular (RLP) y Dureza radial.
Figura 12. Relación entre densidad básica y tenacidad de la madera de las 15 especies
Figura 13. Dendrograma de usos de las 15 especies forestales
Índice de anexos
Anexo 1. Información del formato de colecta de las 15 especies estudiadas
Anexo 2. Registro fitosanitario del estado de la madera
7
Resumen
El estudio de las propiedades físico - mecánicas y uso posible de 15 especies forestales en la
Unidad de Ordenación Forestal Yarí – Caguán, Municipio de Cartagena del Chaira (Caquetá), se
realizó mediante el contrato interadministrativo Nº 536 de 2014 celebrado entre la Universidad
Distrital Francisco José de Caldas y la Corporación para el Desarrollo Sostenible del Sur de la
Amazonia (CORPOAMAZONIA), con el objetivo de determinar las propiedades físico mecánicas de quince (15) especies forestales y establecer su uso más adecuado para así contribuir
con el manejo y uso sostenible de este recurso forestal maderable.
La Unidad de Ordenación Forestal (UOF) Yarí - Caguán, se encuentra localizada en los municipios
de Cartagena del Chaira y San Vicente del Caguán, departamento de Caquetá (Colombia). El
estudio comprendió un muestreo en campo a fin de identificar las especies seleccionadas, la
obtención de muestras debidamente orientadas y clasificadas por medio de un muestreo
sistemático para realizar las pruebas físico mecánicas de la madera de las especies: Guarango
(Parkia nitida), Pelacara (Clarisia racemosa), Guamo Cerindo (Inga nobilis), Amarillo
(Endlicheria sp.), Fono Negro (Eschweilera albiflora), Arenillo (Qualea acuminata), Chocho
(Hymenolobium cf. petraeum), Amarillo (Ocotea cf. myriantha, Nectandra cf. membranacea,
Aniba panurensis), Sangretoro (Virola pavonis), Fono Colorado (Eschweilera parvifolia),
Aguarráz (Ocotea cf. cymbarum), Tamarindo (Hymenaea oblongifolia), Vara Blanca (Croton
matourensis), Puchico o Algarrobillo (Dialium guianense) y Avichure (Qualea paraensis).
Las pruebas de laboratorio se realizaron en el laboratorio de maderas de la Facultad de Medio
Ambiente y Recursos Naturales de la Universidad Distrital Francisco José de Caldas de Bogotá.
Los métodos de laboratorio se realizaron siguiendo las normas de la American Society for Testing
and Material (ASTM), Comité Panamericano de Normas Técnicas (COPANT), la Norma ISO y la
Norma Técnica Colombiana (NTC). El análisis e interpretación de resultados se realizó mediante
la aplicación de programas estadísticos SPSS v. 20 y RWizard 2.2. La definición de usos
potenciales se realizó mediante la adaptación de la metodología propuesta por Klinger & Talero,
(2001).
Como resultados del estudio se obtuvieron setenta y un (71) usos potenciales para las 15 especies,
agrupados en cuatro unidades. (i) Grupo de especies de madera liviana (V. pavonis, P. nitida, C.
8
matourensis y Q. paraensis) se asociaron usos de poca transformación como huacales, encofrados,
aisladores y otros de transformación de mejor acabado como maquetas y modelos para fundición.
(ii) Grupo de especies de la familia Lauraceae (Endlicheria sp, A. panaurensis, O. myriantha, N.
membranaceae), maderas livianas a medianamente pesadas, presentaron usos como balsas,
muebles y alma de tableros enlistonados. (iii) Grupo de las especies Inga nobilis, Qualea
acuminata, Ocotea cf. cymbarum, Clarisia racemosa e Hymenolobium cf. petraeum, en este grupo
se diferenciaron características físicas de la madera como dirección del grano y textura, que
determinaron el subgrupo de torneado y tallado como muebles, artesanías, culatas para armas,
instrumentos musicales, y el subgrupo de madera de construcción. (iv) Grupo de especies de
madera con densidades altas (E. parviflora, E. albiflora, D. guianense e H. oblongifolia), en donde
se destacaron los usos de tráfico pesado como pisos, durmientes, armazones en general estructura
de buques y otros que se relacionan con la manufactura como quillas y arcos para violines.
9
Summary
The study of the physical - mechanical properties and possible use of fifteen (15) forest species in
the Forest Management Unit (FMU) Yarí – Caguán in the municipal district of Cartagena del
Chairá (Caquetá), it was developed by the administrative contract N º 536 of 2014 signed between
Francisco José de Caldas Public University and Sustainable Development of Southern Amazonia
Corporation (CORPOAMAZONIA), with the aim to determine the physico - mechanical
properties of fifteen (15) forest species and establish the proper use to contribute to the sustainable
management and use of forest resources.
The Forest Management Unit (FMU) Yarí – Caguán, located in the municipal District of Cartagena
of Chairá and San Vicente of Caguán, department of Caquetá Colombia. The study included a field
sampling in order to identify the selected species, obtaining samples rightly oriented and sorted
out through systematic sampling to perform the physical and mechanical tests in the wood species:
Guarango (Parkia nitida) Pelacara (Clarisia racemosa.), Guamo Cerindo (Inga nobilis.), Amarillo
(Endlicheria sp.), Fono Negro (Eschweilera albiflora), Arenillo (Qualea acuminata), Chocho
(Hymenolobium cf. petraeum), Amarillo (Ocotea cf. myriantha, Nectandra cf. membranacea,
Aniba panurensis), Sangretoro (Virola pavonis), Fono Colorado (Eschweilera parvifolia),
Aguarráz (Ocotea cf. cymbarum), Tamarindo (Hymenaea oblongifolia), Vara Blanca (Croton
matourensis), Puchico o Algarrobillo (Dialium guianense) y Avichure (Qualea paraensis).
Laboratory tests were performed in the wood’s Laboratory in the Environment and Natural
resources Faculty at the Francisco Jose de Caldas Public University of Bogota. The laboratory
methods were made following the rules of the American Society for Testing and Material (ASTM),
The Pan American Commission of Technical Standards (COPANT), International Organization
for Standardization (ISO) and the Colombian Technical Standards (NTC). The analysis and
interpretation of results were done by applying statistical programs SPSS v. 20 and RWizard 2.2.
The definition of potential usages was based on the methodology proposed by Klinger and Talero,
(2001).
The findings of this study are: seventy one (71) potential uses for the fifteen species, grouped in
four units. (i) Species group of light wood (V. pavonis, P.nitida, C.matourensis y Q.paraensis)
they are used for applications such as huacales, formwork, insulators and others as models or
foundry models. (ii) Species group of Lauraceae family (Endlicheria sp, A. panaurensis, O.
10
myriantha, N. membranaceae), lightweight woods to moderately heavyweight, these were used
to make: rafts, furniture and boards.(iii) Species group Inga nobilis, Qualea acuminata, Ocotea cf.
cymbarum, Clarisia racemosa e Hymenolobium cf. petraeum, in this group was possible identify
differences in the physical wood characteristics such as: direction of grain and texture, which
stablished the turning and carving subgroup like furniture, crafts, butts for guns, musical
instruments, and the subgroup of building wood (iv) Species group of high density wood (E.
parviflora, E. albiflora, D. guianense e H.oblongifolia), some of these usages are: heavy traffic
floors, wooden frames for Ships and others related to violins raw materials.
11
1. Introducción
Los bosques primarios residuales así como los bosques secundarios poseen una oferta importante
de especies maderables de alto valor comercial. Por tanto, la determinación en la aptitud de uso de
las especies forestales con fundamento en la caracterización de sus propiedades físicas y
mecánicas, permite fomentar el uso la madera de tal forma que permita posicionarla en el mercado
nacional e internacional (Puertas, et al. 2013), con lo cual se espera que al incrementar su valor
comercial se impulsen procesos que permitan el manejo y conservación de este importante recurso.
Debido al comportamiento heterogéneo y anisotrópico de la madera, las propiedades físicas y
mecánicas de la madera varían entre especies e individuos, variación que hace que se presenten
usos múltiples (Moglia et al. 2014). Pero la información limitada que existe sobre estas
propiedades sobre las propiedades físicas y mecánicas de la madera (Baradit et. al 2013), ha
generado dificultades y falta de criterios y falta de criterios al momento de recomendar o sugerir
usos, así como la adopción de tecnologías apropiadas para su procesamiento (Roussy et. al 2013).
Tal es el caso de varias de las especies presentes en la Unidad de Ordenación Forestal Yarí Caguán, en el municipio de Cartagena del Chairá, en donde el conocimiento de su silvicultura es
apenas incipiente y los estudios de las propiedades físicas y mecánicas de sus maderas son escasos
o incompletos.
Es así como con la determinación de las propiedades físicas y mecánicas de 15 especies forestales
de la UOF Yarí - Caguán, tiene como propósito generar conocimiento del comportamiento de la
madera desde diferentes perspectivas de análisis para determinar de manera más adecuada la
potencialidad de uso de las especies y así, contribuir con la conservación de los ecosistemas
naturales al generar nuevas herramientas que permitan disminuir la presión sobre las especies
forestales maderables tradicionalmente sobreexplotadas.
12
2. Objetivos
2.1 Objetivo general
Determinar la potencialidad de uso de la madera de 15 especies forestales procedentes de la UOF
Yarí– Caguán con fundamento en el análisis de sus propiedades físicas y mecánicas.
2.2 Objetivos específicos

Determinar las propiedades físicas y mecánicas de la madera de 15 especies forestales
maderables.

Aplicar una propuesta metodológica para la determinación de los usos potenciales de la
madera de las 15 especies forestales.

Evaluar y clasificar los usos potenciales de las 15 especies objeto de estudio, con
fundamento en la metodología propuesta por Klinger y Talero (2001).
13
3. Estado del arte
Teniendo presente que Colombia es un país con un gran potencial maderero que por décadas ha
sido explotado, Cárdenas & Salinas (2007), mencionan la necesidad de replantear la sostenibilidad
de estos recursos. Es sabido que el aprovechamiento de algunas especies forestales se restringe a
tan solo unos grupos en particular y dada la importancia de la región donde se desarrolló el presente
estudio, resulta valioso mencionar que en la Amazonia colombiana alrededor de 665 especies de
plantas útiles han sido registradas, sobresaliendo 164 especies maderables que presentan algún uso
actual o potencial (López & Cárdenas, 2000).
Lo anterior permite vislumbrar que existen especies que por su falta de estudio en sus propiedades
físico-mecánicas no han sido utilizadas de la mejor manera y las cuales pueden generar un impacto
positivo para aquellas que tienen cifras de aprovechamiento bastante significativas, criterios que
han sido sustentados por el Ministerio del Medio Ambiente y las Corporaciones. Al respecto Otavo
(2008), resalta que en la UOF Yarí-Caguán de las 74 familias representativas, se destacan algunas
especies por su uso maderable como por ejemplo el Achapo (C. cateniformis), Guamo Cerindo
(Inga cf. cylindrica), Capirón (Calycophyllum spruceanum), Marfil o Papelillo (Simarouba sp.),
Fono Cabuyo (Eschweilera sp.), Canelo (Ocotea sp.), Chocho (Parkia cf. panurensis), Laurel
Comino (Protium sp. y Nectandra sp.), entre otras.
Conociendo que algunas de las especies objeto de estudio no presentan información concerniente
a sus propiedades físico-mecánicas, Bárcenas (1995), resalta que la manera de darle un mayor y
mejor uso a las maderas tropicales poco utilizadas, es generando el conocimiento de sus
características tecnológicas y la recomendación de usos con estas características. De igual manera
Roussy et al. (2013), afirma que los resultados del estudio de las características tecnológicas de la
madera llevados a cabo mediante ensayos estandarizados permiten ampliar el espectro de usos de
una especie y dar la recomendación hacia nuevas aplicaciones de mayor valor agregado.
Destacando la importancia que tienen las propiedades físico-mecánicas, Guevara (2001), señala
que la madera por ser un material natural con distintas variaciones en sus propiedades a nivel
estructural requiere tener el mejor conocimiento con el fin de determinar un uso adecuado.
Afirmación que también es sustentada por Aróstegui & Sato (1970), quienes mencionan que para
14
poder determinar los usos posibles que una especie pueda llegar a presentar es necesario conocer
sus propiedades físico-mecánicas.
Trabajos como el desarrollado por Triana et al. (2008), llevaron a cabo el estudio de algunas
propiedades mecánicas de la madera, realizando los ensayos mecánicos de flexión estática,
compresión paralela, cizallamiento e impacto con el objetivo de determinar sus propiedades
mecánicas y así poder definir sus posibles usos.
Frente a la determinación de los posibles usos de la madera son muy pocas las metodologías que
trabajan para llegar a determinar el uso de una especie maderable con base en los resultados de sus
propiedades físico - mecánicas, razón por la cual Klinger & Talero (2001), formularon una
propuesta metodológica para identificar usos potenciales a partir del análisis cuantitativo de 14
parámetros físico-mecánicos obteniendo como resultado una base de datos de propiedades físico
mecánicas y usos actuales de aproximadamente 700 especies.
Diferentes autores han reportado varios usos que tienen las especies objeto de estudio algunos
referenciados en bibliografía y otros obtenidos directamente de la información recopilada en
campo.
Rivera & Vargas (1982) y el Laboratorio Nacional de Productos Forestales (1971), reportaron para
la especie Guarango (Parkia nitida Miq), como principales usos elementos de construcción,
techos, pisos y acabados de interiores, carpintería, ebanistería, armazón de barcos y cercas. La
especie Pelacara (Clarisia racemosa Ruiz & Pav), es empleada en construcción, estructuras y
traviesas, acabados, cercas, cajonería, gabinetería y carrocerías Aróstegui (1982). La especie
Guamo Cerindo, (Inga nobilis Willd) se utiliza en la fabricación de muebles, embalajes y vigas,
su fruto tiene uso comestible (Laboratorio Nacional de Productos Forestales, 1936).
La madera de la especie Amarillo (Endlicheria sp.), es usada en carpintería, carrocerías, acabados
y pisos. La madera de Chocho (Hymenolobium cf petraeum Ducke), se utiliza en pisos cercas,
muebles y construcción en general, usos reportados como tradicionales. Las especies de la familia
Lauraceae, conocidas como amarillos (Ocotea cf. cymbarum Kunth, Nectandra cf. membranaceae
Sw. Griseb y Aniba panurensis Meisn.), reportaron en campo un uso en la producción de pisos,
15
acabados, carpintería y construcción en general. La madera de la especie Fono Colorado
(Eschweilera parvifolia Mart. ex DC), se utiliza en la construcción de pisos y cercas. La madera
de la especie Sangretoro (Virola pavonis A.DC. A.C. Sm) se utiliza en cercas y como madera para
construcción, usos registrados de acuerdo a la información recopilada en campo.
La madera de la especie Fono Negro (Eschweilera albiflora (DC.) Miers), se usa en elementos de
construcción y estructuras, pisos, durmientes, cercas, cajones y gabinetes (Aróstegui, 1982). La
especie Arenillo (Qualea acuminata Spruce ex Warm), se utiliza para la construcción de vigas,
cercas, tableros, muebles y chapas (Schultes, 1978). Mientras que para la especie Tamarindo
(Hymenaea oblongifolia Huber), Rodríguez & Sibille (1996) y WWF-Colombia (2013), reportaron
como principales usos
ebanistería, muebles, pisos industriales, tornería, chapas, traviesas,
construcciones pesadas, pisos, carretería, estructuras, artículos deportivos, tornería, mangos de
herramientas.
León (2014), reportó para la especie Aguarráz, (Ocotea cf. cymbarum Kunth), usos en construcción
de botes y casas. Mientras que Quevedo (2010), reportó para vara blanca (Croton matourensis
Aubl.) un uso en huacalaes, aserrío y como embalaje para transporte de alimentos. La especie
Puchico (Dialium guianense (Aubl.) Sandwit), presenta como usos principales ebanistería,
construcción con pilotes, traviesas, construcciones pesadas, pisos, muebles pesados, chapas,
cuchillas decorativas, tornería y carretería, según lo reportado por Bárcenas (1995) y Lastra (s.f).
Y por último, la especie Avichure (Qualea paraensis Ducke) se utiliza en la producción de tableros
contrachapados y laminados, cajas, embalajes, estibas, remos, canoas, molduras, artículos
deportivos y juguetes (ITTO, Lesser used species (2016). Tropical timber: design by gravitate.
Recuperado de http://www.tropicaltimber.info.
12
4. Cronograma
Para la planificación del proyecto se formuló un cronograma mensual donde se contemplaron las actividades, los indicadores de
FORMATO
LA FORMULACION
DE PLAN
TRABAJO AUXILIARES
INVESTIGACION
gestión y los resultados para
cadaPARA
objetivo
específico.
ElDEtiempo
total de ejecución
fue de 12 meses (Tabla 1).
INGENIERIA FORESTAL
Nombre del Auxiliares:
SERGIO ANDRES MOGOLLON - JUAN FELIPE SOLORZANO G.- SEBASTIAN SUAREZ DIAZ
Codigos: 20092010032 - 20092010055 - 20092010056
Tabla 1. Cronograma de actividades establecidas para la ejecución del estudio
ACTIVIDADES
INDICADOR DE
GESTIÓN
RESULTADOS
Consultar fuentes bibliograficas y
elaboración de documentos tecnicos
Revisión de bases de datos y fuentes bibliográficas
Métodos, procedimientos y
fuentes consultadas
Marco de referencia y marco
bibliográfico de apoyo de análisis
Apoyar en la identificación de los
individuos objeto de estudio y en la
clasificación, selección y
dimensionamiento de bloques y
rodajas.
Capacitar al personal local de apoyo en la
actividad de codificación de la madera. Ademas
de realizar seguimiento a los procesos de
obtención de los bloques y rodajas.
Bloques y rodajas para las
15 especies
Obtención de 270 bloques y 720
rodajas con dimensiones
establecidas y codificación para
cadena de custodia
Obtener probetas para ensayos fisicomecanicos de las 15 especies
seleccionadas.
Obtención de las probetas de acuerdo con las
normas estipuladas para las pruebas fisicomecanicas.
Numero de probetas
obtenidas
Obtención de un total de 7300
probetas para pruebas mecanicas y
810 para pruebas fisicas.
Analizar los resultados de las
pruebas físicas de las 15
especies seleccionadas
Aplicación de metodologias con estadistica
descriptiva a los resultados obtenidos en las
propiedades fisicas de las 15 especies.
Propiedades físicas por
especie
Reporte de propiedades fisicas de
las 15 especies con estadisticos de
tendencia central.
Realizar los ensayos mecanicos
para las 15 especies
seleccionadas
Ejecución de pruebas mecanicas en maquina
universal de acuerdo a las normas tecnicas
establecidas.
Numero de ensayos por
especie
Ejecución de 7300 ensayos
mecanicos
Analizar los resultados de las
pruebas mecanicas de las 15
especies seleccionadas
Aplicación de metodologias con estadistica
descriptiva a los resultados obtenidos en las
propiedades mecanicas de las 15 especies
conforme a las normas tecnicas.
Determinación de los usos
potenciales de las 15 especies
objeto de estudio.
Comparación y analisis de las propiedades fisico
mecanicas mediante el uso de bases de datos y
software.
OBJETIVOS ESPECIFICOS
Reporte de propiedades mecanicas
Propiedades mecanicas por
de las 15 especies con estadisticos
especie
de tendencia central.
Usos determinados para
cada especie
Alcances y consideraciones de los
usos determinados en el estudio.
CRONOGRAMA
1 2 3 4 5 6 7 8 9 10 # 12
13
5. Área de estudio
El proyecto fue realizado en la Unidad de Ordenación Forestal Yarí – Caguán (UOF-YC), en el
departamento de Caquetá, la cual forma parte de la reserva forestal de la amazonia decretada por
la ley 2 de 1959. Tiene un área aproximadamente de 840.213 ha, de la cuales el 18.63%
corresponde al municipio de San Vicente del Caguán y el 81.37% pertenecientes al municipio de
Cartagena del Chaira, en las veredas de Cumarales, el Barro y el Barrito, jurisdicción de la
Corporación para el Desarrollo Sostenible del Sur de la Amazonía
Colombiana
(CORPOAMAZONIA), (Mapa 1).
5.1 Generalidades de Cartagena del Chaira
Cartagena del Chairá se localiza en el Departamento del Caquetá, al sur-occidente de Colombia en
la región amazónica. El municipio se ubica en el renglón del Medio y Bajo Caguán. Su cabecera
municipal está a 154 kilómetros al oriente de Florencia (capital del departamento) y a 725
kilómetros de la capital de la república de Colombia (P.B.O.T., 2010).
Al norte limita con los municipios de El Paujil, El Doncello y Puerto Rico; al Sur con el municipio
de Solano; al oriente con los municipios de San Vicente y Solano; y al occidente con los municipios
de Solano y Montañita.
Cartagena del Chaira se encuentra referenciada dentro de las coordenadas Latitud Norte 1°21’0”
y Longitud Oeste 74°50’24”. Su extensión total es de 12,826 km 2 por lo que lo posiciona como el
tercer municipio con mayor área de cobertura del departamento del Caquetá.
De acuerdo al IGAC (1993), la zona presenta una temperatura promedio de 25.3°C, siendo enero
el mes más caluroso del año. El régimen de lluvias es de comportamiento monomodal, con
precipitación media anual de 2685 mm. Cuenta con una humedad relativa promedio de 83.8%,
indicando valores cercanos a los de saturación y los vientos corren a velocidades promedio de 1
m/s, tendiendo a incrementarse en la parte noroccidental del municipio.
14
Mapa 1. Localización del Municipio de Cartagena del Chaira y puntos de muestreo
15
6. Metodología
6.1 Etapa preparatoria
6.1.1 Selección de especies.
Mediante el concepto C-DTC-0263 emitido por CORPOAMAZONIA durante el trascurso del
contrato Interadministrativo 0536 de 2014 celebrado con la Universidad Distrital Francisco José
de Caldas (UDFJC) y la Regional Caquetá de Corpoamazonia dicha institución regional, se
definieron las especies forestales objeto de estudio
(Tabla 2).
La selección de las especies se realizó con la participación de 15 actores vinculados al sector
forestal del departamento del Caquetá, en representación de la Asociación de Transformadores de
maderas del Caquetá (Asotmaca), la Asociación de aserraderos y ebanistas (Asoeba), la
Asociación
de
Ingenieros
de
Colombia
(Acif)-Capitulo
Caquetá
y
profesionales
CORPOAMAZONIA.
Conforme a la metodología adoptada por CORPOAMAZONIA para la selección de las especies,
se definieron los siguientes criterios de selección para la determinación final de las especies
maderables objeto de estudio:

Especies maderables reportadas para su aprovechamiento y movilización en el
departamento del Caquetá periodo 2010-2015.

Importancia de especies de acuerdo a volúmenes aprovechados y movilizados en el
departamento del Caquetá periodo 2010-2015.

Existencia de Estudios de propiedades físicas y mecánicas de especies forestales locales.
16
Tabla 2. Especies seleccionadas por CORPOAMAZONIA.
Nº
ESPECIE
NOMBRE CIENTÍIFICO
1
Guarango
Parkia nítida Miq
2
Pelacara
Clarisia racemosa Ruiz & Pav
3
Guamo Cerindo
Inga nobilis Willd
4
Amarillo
Endlicheria sp
5
Fono Negro
Eschweilera albiflora. (DC.) Miers
6
Arenillo
Qualea acuminata Spruce ex Warm
7
Chocho
Hymenolobium cf. petraeum Ducke
Ocotea cf. myriantha (Meisn.) Mez
8
Amarillo - Laurel
Nectandra cf. membranaceae (Sw.) Griseb
Aniba panurensis (Meisn.) Mez
9
Fono Negro
Eschweilera parviflora Mart. ex DC
10
Sangretoro
Virola pavonis (A.DC.) A.C.Sm
11
Tamarindo
Hymenaea oblongifolia Huber
12
Aguarráz
Ocotea cf. cymbarum Kunth
13
Vara Blanca
Croton matourensis Aubl.
14
Puchico
Dialium guianense (Aubl.) Sandwit
15
Avichure
Qualea paraensis Ducke
6.2 Etapa de campo
6.2.1 Georreferenciación y evaluación del individuo.
Cada individuo ubicado fue georeferenciado y contó con un expediente de control, donde se
midieron variables dasométricas y descripción de aspectos vegetativos como copas, fuste, raíz,
entre otros. De igual manera se registraron aspectos reproductivos como flores y frutos, dado el
caso de presencia.
6.2.2 Tala y pautas de muestreo.
Se obtuvieron un total de 6 bloques y 16 rodajas por individuo. Cada bloque fue aserrado de 30
cm x 10 cm o de 15 cm x 15 cm con una longitud de 2 metros. Los bloques y las rodajas se
17
obtuvieron de 3 secciones distintas del árbol; de la sección basal del árbol se obtuvieron dos
bloques y 6 rodajas y de la sección media y apical 2 bloques y 5 rodajas.
Esta metodología de muestreo se estableció de acuerdo a lo propuesto por Bárcenas (1995) quien
argumenta que la variación de las propiedades mecánicas no solo se presenta entre especies sino
también de donde provenga el material de un mismo árbol. Como respuesta a ello, el autor plantea
una propuesta de muestreo la cual estratifica en tres zonas el fuste, incluyendo la obtención de
rodajas en cada zona para la determinación de propiedades físicas. La codificación de bloques y
rodajas se realizó con la finalidad de llevar la cadena de custodia del material obtenido en el
bosque, esta codificación y marcación tanto para bloques como para rodajas se puede observar en
la figura 1.
6.2.3 Evaluación del material obtenido.
Se contó con una planilla control donde se registraron los defectos alusivos a las afectaciones
sanitarias o defectos físicos de los bloques y las rodajas. Así mismo, se llevó a cabo la
caracterización estructural y organoléptica de la madera.
6.2.4 Transporte menor y mayor.
El material obtenido en campo fue transportado por tracción animal hasta el rio Caguán, luego por
vía fluvial hasta Cartagena del Chairá y posteriormente por vía terrestre hasta la ciudad de Bogotá
D.C. El material finalmente fue dispuesto en la bodega de almacenamiento de madera de la
Facultad de Medio Ambiente y Recursos Naturales de la Universidad Distrital Francisco José de
Caldas.
18
Figura 1. Sistema de muestreo para la obtención de bloques y rodajas y los respectivos códigos
de identificación y seguimiento. Adaptado de Igartua (2013).
19
6.3 Etapa de laboratorio
6.3.1 Propiedades físicas.
Las rodajas fueron utilizadas para obtener las probetas y poder determinar las propiedades físicas.
Las probetas tenían que estar muy bien orientadas y sin ningún tipo de afectación o daño. Los
ensayos fueron realizados de acuerdo a lo establecido por norma COPANT (Tabla 3.)
Tabla 3. Normas técnicas para la determinación de propiedades físicas
PRUEBA
NORMAS TÉCNICAS
Contenido de Humedad
COPANT 460 - NTC 2500 - ASTM D 2016-74
Densidad o Peso Específico
COPANT 461- NTC 2500 - ASTM D 2395-69
Cambios dimensionales de la madera
COPANT 462 - NTC 2500
En total se obtuvieron 810 probetas para la determinación de propiedades físicas para las 15
especies estudiadas.
6.3.2 Propiedades mecánicas
Los bloques fueron almacenados y apilados en forma de encastillado y con el fin de acelerar su
proceso de secado, se trasladaron a la carpintería del laboratorio de maderas, donde se llevó a cabo
la obtención de listones de 6 cm x 6 cm x 2 m para el posterior dimensionamiento de las probetas
de ensayo (Tabla 4).
Los ensayos mecánicos se realizaron de acuerdo con los métodos propuestos en cada una de las
normas técnicas del comité panamericano de normas técnicas (COPANT) y la Norma técnica
colombiana (NTC) (Tabla 5). El procedimiento general consistió en (1) selección, orientación y
clasificación de la probeta, (2) dimensionamiento de la probeta, (3) Cargue de la probeta, de
acuerdo con las especificaciones de carga y velocidad del ensayo, (4) Falla de la probeta (5)
registros gráficos y métricos de deformación y carga (6) registro de contenido de humedad de la
probeta ensayada (7) disposición final de los elementos ensayados para el mantenimiento de la
cadena de custodia.
20
Los ensayos se realizaron en la maquina universal hidráulica Mohr & Federhaff con dispositivo
de lectura SATURN PLUS y un péndulo de tenacidad para la determinación de las propiedades
mecánicas. Así mismo, se emplearon estufas análogas e instrumentos de medición para la
determinación de las propiedades físicas.
Tabla 4. Normas técnicas y especificaciones para cada uno de los ensayos mecánicos.
PRUEBA
Compresión
paralela
NORMA
DIMENSIONES
COPANT 464
NTC 784
2.5 cm x 2.5 cm x 10 cm
ASTM D 143
ISO 3132
2cm x 2 cm x 5 cm
Compresión
perpendicular
COPANT 466
NTC 785
ASTM D 143
COPANT 465
Dureza
5 cm x 5 cm x 15 cm
NTC 918
ASTM D 143
COPANT 463
Cizallamiento
NTC 775
5 cm x 5 cm x 6.5 cm
ASTM D 143
Flexión
Estática
COPANT 555
NTC 663
2.5 cm x 2.5 cm x 41 cm
ASTM D 143
COPANT 556
Tenacidad
NTC 1823
ASTM D 143
2 cm x 2 cm x 24 cm
ILUSTRACIÓN
21
6.4 Etapa de resultados y análisis
Se obtuvieron resultados de cargas aplicadas y deformaciones, los cuales se leyeron en medio
digital por el software SATURN PLUS y en medio manual para el caso de los ensayos con péndulo
e instrumentos de medición dimensional. Cada resultado de ensayo mecánico fue ajustado a un
contenido de humedad al 12%.
Las variables calculadas fueron las dictaminadas por la Comisión Panamericana de Normas
Técnicas (COPANT) para las pruebas de flexión, compresión paralela y perpendicular, tenacidad,
dureza, cizallamiento. Por lo que se calcularon de acuerdo al tipo de prueba: Esfuerzos Máximos
(EM), Módulos de Elasticidad (MOE), Resistencia Unitaria Máxima (RUM), Resistencia al Limite
Proporcional (RLP), Esfuerzos Unitarios Máximos (EUM), Fuerza aplicada versus penetración
(dureza), kilogramos fuerza marcada (tenacidad).
Para las propiedades físicas se determinaron: densidad verde, densidad seca al aire, densidad
anhidra y densidad básica. Para las contracciones se evaluaron: volumétrica, radial y tangencial,
tomando en cuenta para cada una de ellas la normal, total y especifica. Por último, se tomaron
contenidos de humedad en punto de saturación de las fibras, libre y máximo y por ultimo
coeficiente de estabilidad dimensional.
Para el análisis estadístico de los resultados se recurrió al programa estadístico RWizard 2.2 y
SPSS v.20 en el que se llevó a cabo, estadística descriptiva, análisis de la varianza y análisis
multivariante. Respecto a la determinación de los usos posibles se realizó de acuerdo a los
parámetros de evaluación para 78 tipos de usos y la base de datos de propiedades físico-mecánicas
y usos registrados de 700 especies de madera que plantearon y desarrollaron Kingler & Talero en
el 2001.
Cada especie de madera fue sometida a dos matrices de evaluación, consideradas como dos etapas
de filtro para definir y dar prioridad de usos. El primer filtro constó de un diseño matricial de 78 x
12, correspondiendo a filas el tipo de uso y columnas a criterios físico-mecánicos de evaluación y
aceptación. La aceptación para este primer filtro requirió que la especie cumpliera con los rangos
del parámetro evaluado, dichos rangos fueron establecidos de acuerdo a los valores mínimos y
22
máximos de las especies que comparten el mismo uso, las cuales se encontraban en la base de
datos citada previamente.
La segunda matriz de evaluación constó de un diseño de 78 x 20, correspondiendo nuevamente a
filas el tipo de uso, pero variando en esta ocasión las columnas, puesto que estas involucraron
parámetros de evaluación que a criterio propio del estudio, se contemplaron a partir de otras
evaluaciones que se obtuvieron en laboratorio como propiedades organolépticas, durabilidad
natural de la madera a partir de registros en campo, facilidad de la madera al clavado y otras
variables físico-mecánicas de mayor restricción e importancia para cuyo uso había sido aceptado
previamente en el primer filtro. Estos parámetros fueron evaluados de acuerdo a calificaciones
categóricas, obteniendo como resultado la jerarquización de las posibles especies dentro de cada
uso.
23
7. Resultados y Análisis
7.1 Etapa de campo
Cabe mencionar que los resultados expuestos para esta fase corresponden al cumplimiento de las
actividades establecidas por cronograma. Por tanto, los resultados mencionados a continuación
surgen con la intención de exponer
las labores ejecutadas por parte de los auxiliares de
investigación, acorde a sus obligaciones que se encontraron en el marco del contrato
interadministrativo Nº 536 de 2014 celebrado entre la Universidad Distrital Francisco José de
Caldas y Corpoamazonia.
Se obtuvo un volumen total aproximado de 30,4 m3 de madera, correspondiente a 270 bloques y
720 rodajas, resultantes de los procesos de aprovechamiento y transformación primaria de 45
individuos pertenecientes a las 15 especies forestales maderables.
A partir de los individuos seleccionados para el aprovechamiento, junto a otros individuos
encontrados en la zona que correspondían a las mismas especies del presente estudio, se extrajo
un total de 88 tarugos de madera, los cuales ingresaron a la colección de la xiloteca José Anatolio
Lastra Rivera, perteneciente a la Universidad Distrital Francisco José de Caldas.
Para los 45 individuos se registró la información concerniente a lo establecido por la ficha de
colecta, donde quedaron reportados aspectos de localización y georreferenciación, mediciones
dasométricas, aspectos vegetativos, botánicos y reproductivos si era el caso, entre otros (Anexo 1).
7.2 Etapa de laboratorio
Se realizaron las observaciones correspondientes de cada uno de los bloques y rodajas obtenidas
en campo. Los resultados se exponen en el anexo 2, sin olvidar que para cada bloque y rodaja se
tienen las respectivas anotaciones
En general los defectos evidenciados respondieron a factores relacionados con la actividad del
aserrado, como lo son: las aristas faltantes al momento del canteado de la troza, grietas y rajaduras
24
dadas por el efecto conocido como “media agua”. También se destacaron los defectos por origen
biológico como pudriciones locales por termitas y manchas por hongos cromógenos.
Otro grupo de defectos fueron propios de la especie, como la presencia de nudos que alcanzaban
diámetros de hasta 10 cm y para el caso particular de Croton matourensis, fue el único en el que
se observó medula incluida en los bloques de madera.
Con fines de reportar la duración total del proyecto durante la fase de laboratorio, se tomaron
tiempos representativos para cada tipo de ensayo mecánico. Como representativo se consideró el
tiempo aproximado que a partir de la experiencia del operario lo tipificó como un tiempo normal,
teniendo presente las diferentes especies de madera ensayadas.
Para ello fueron reportados: tiempo de ensayo por tipo de prueba mecánica, tiempo de cambio de
accesorio, toma de datos para cada tipo de ensayo y tiempo de calentamiento de máquina universal.
Estos tiempos a su vez, se reportaron tanto en horas, días laborales y en meses.
Vale anotar que los tiempos fueron medidos durante la realización de los ensayos, siguiendo las
velocidades establecidas por las normas COPANT.
Los tiempos y movimientos reportados representan parcialmente la fase de laboratorio, puesto que
no se tomaron en cuenta tiempos de actividades previas y posteriores a los ensayos, resaltando:
tiempos de secado y control de humedad de la madera, clasificación y selección de probetas, cortes
de cubos para la obtención del contenido de humedad y medición de pesos específicos y anhidros
para el ajuste de los mismos.
Los tiempos para los ensayos mecánicos fueron tomados por cada plano de la madera requerido.
Así mismo, los tiempos se muestran por prueba unitaria y por las 15 especies forestales estudiadas
(Tabla 5).
25
Tabla 5. Tiempos de duración de ensayos mecánicos de las 15 especies estudiadas
PRUEBAS
Compresión paralela
Compresión
perpendicular
Radial
Tiempo/
N° Probetas/15
N° Ensayos/15
sp.
sp.
682
682
3.8
2591.6
632
632
4
2528
726
4356
2
8712
1450
1450
5
7250
1341
1341
6.7
8984.7
1917
1917
0.5
958.5
495
2970
3
8910
7243
13348
ensayo
(min)
Tiempo/15 SP
(min)
Radial
Dureza
Tangencial
Longitudinal
Cizallamiento
Flexión
Tenacidad
Radial
Tangencial
Radial
Tangencial
Radial
Tangencial
Radial
Extracción de
clavos
Tangencial
Transversal
TOTAL
39934.8
TOTAL (horas)
665.6
TOTAL DÍAS (8 horas laborales c/día)
83.2
TOTAL MESES (26 días hábiles c/mes)
3.2
Los tiempos presentados incluyen el promedio de cada prueba para todas las especies. Tiempos
tomados por los autores.
Nótese que la cantidad de ensayos varía respecto al número de probetas en las pruebas de dureza
y extracción de clavos, dicha situación se explica por la consideración de ensayo como cada fuerza
accionada sobre la probeta, donde por normas COPANT las pruebas de dureza y extracción de
clavos deben ser ensayadas doble vez por cada uno de sus tres planos, para un total de 6 ensayos
por probeta.
26
Los tiempos de cambio y montaje son considerados como los momentos donde el operario realiza
cambio de herramienta en la máquina universal y posiciona la probeta en el plano de ensayo, puesto
que son distintas las herramientas empleadas para cada prueba y el plano de orientación de la
probeta.
Por su parte los tiempos de ingreso representan los datos de registro del ensayo al software,
mientras la toma de datos hace alusión a la toma de dimensiones de superficie para cada probeta a
fallar y a la transferencia de valores leídos por el Software Saturn Plus a las tablas predefinidas de
cálculos de esfuerzos y resistencias mecánicas (Ver tabla 6).
Tabla 6. Tiempos de cambio de accesorio, montaje y toma de datos en la maquina universal
TIEMPO
TIEMPO/ENSAYO
N°
(min)
ENSAYOS
0.5
682
341
0.5
632
316
Dureza
0.1
4356
435.6
Cizallamiento
0.3
1450
435
Flexión
0.5
1341
670.5
Tenacidad
0.1
1917
191.7
Extracción de clavos
0.6
2970
1782
PRUEBAS
Compresión paralela
Compresión
perpendicular
TOTAL
(min)
TOTAL (min)
4171.8
TOTAL (horas)
69.5
TOTAL DÍAS (8 horas laborales c/día)
8.6
TOTAL MESES (26 días hábiles c/mes)
0.3
Los tiempos presentados incluyen el promedio de cada prueba para todas las especies. Tiempos
tomados por los autores.
27
Los tiempos de calentamiento solo se tomaron en cuenta para el inicio de cada jornada, con un
tiempo de duración de 40 minutos que es lo que necesita la máquina universal como medida
preventiva para el calentamiento del motor y del sistema hidráulico (Tabla 7).
Tabla 7. Tiempo de calentamiento de la maquina universal
DURACIÓN DIARIA
DÍAS
TIEMPO TOTAL DE
(min)
LABORADOS
CALENTAMIENTO
(min)
40
92
3675.55
TOTAL EN HORAS
61.26
TOTAL DÍAS (8 horas laborales c/día)
7.6574
TOTAL MESES (26 días hábiles c/mes)
0.2945
El tiempo total para la fase de laboratorio, en lo concerniente a la ejecución de los ensayos
mecánicos, se definió como la sumatoria de los tiempos de los tres movimientos caracterizados,
dando así un total de 3.8 meses durante su desarrollo (Tabla 8).
TT = TP + TA + TC
TIEMPO TOTAL (TT)
Total tiempo de ensayos mecánicos (TP)
Total tiempo cambio aditamento, montaje, ingreso y toma de datos (TA)
Total tiempo calentamiento máquina universal (TC)
Tabla 8. Tiempo total empleado en fase de laboratorio
Total
47782.2
Total en horas
796.4
Total días (8 horas laborales c/día)
99.5
Total meses (26 días hábiles c/mes)
3.8
28
7.2.1 Resultado de propiedades físicas
En las tablas 9, 10 y 11 se reportan las propiedades físicas de las 15 especies objeto de estudio del
proyecto, agrupadas en densidades, contenidos de humedad, contracciones y el coeficiente de
estabilidad dimensional. En esta se observa que los menores coeficientes de variación se
encontraron en las densidades con un promedio equivalente a 10.45%, siendo la densidad verde la
que menos presentó variación. Los contenidos de humedad presentaron un valor de 17.6 %,
comportándose de manera similar los tres tipos de contenidos de humedad. En cuanto a las
contracciones, las volumétricas presentaron el menor valor de coeficiente de variación con un valor
de 15.3%, seguida de la tangencial y por último las contracciones en el plano radial con 24.4%.
Finalmente la propiedad del coeficiente de estabilidad dimensional presentó un coeficiente de
variación del 23.3%.
29
Tabla 9. Resumen de las propiedades físicas de las especies P. nitida, C. racemosa, I. nobilis, Endlicheria sp y E. albiflora.
Propiedad física
Variable
Verde
Seca al aire
Densidades (g/cm3)
Anhidra
Básica
P.S.F
Contenidos de humedad
Libre
(%)
Máximo
Total
Volumétrica Normal
Especifica
Total
Contracciones
Radial
Normal
(%)
Especifica
Total
Tangencial
Normal
Especifica
Coeficiente de Estabilidad Dimensional
Guarango
Media
C.V.
0,843
19,123
0,374
19,295
0,368
19,391
0,328
18,950
33,333 18,703
214,116 26,623
247,993 24,858
10,614 12,698
8,011
1,314
0,327
19,121
3,271
20,633
2,285
30,074
0,099
30,294
6,081
19,590
4,768
20,778
0,183
25,605
1,917
26,806
El tamaño de muestra (n) para cada propiedad física fue de 54 probetas
CH psf (contenido de humedad punto de saturación de las fibras
Pelacara
Media
C.V.
1,061
3,614
0,621
7,664
0,606
8,060
0,546
8,712
17,894 29,311
99,409 13,633
118,030 13,921
9,719
24,180
6,172
28,162
0,546
8,724
3,639
24,213
1,769
33,325
0,205
26,608
6,731
24,280
3,972
38,331
0,389
17,219
1,892
19,257
Guamo Cerindo
Media
C.V.
0,952
14,671
0,626
21,938
0,573
21,910
0,508
20,802
22,223 16,026
106,929 30,804
128,902 27,058
10,947 16,632
4,592
16,511
0,508
20,809
3,845
27,050
1,442
35,185
0,173
29,507
7,043
16,723
2,831
22,047
0,328
23,275
1,928
21,063
Amarillo
Media
C.V.
0,834
14,922
0,603
11,267
0,549
11,366
0,497
11,143
19,048
16,853
117,793 17,838
136,841 16,692
9,369
13,680
3,719
30,502
0,497
11,158
3,151
24,714
1,119
30,834
0,165
23,477
6,428
14,054
2,490
31,369
0,348
24,057
2,160
24,148
Fono negro
Media
C.V.
1,124
9,158
0,923
13,034
0,833
9,944
0,721
9,792
18,782 16,814
54,578 20,343
73,359 17,407
13,399 13,629
5,849
30,256
0,720
9,794
4,265
23,539
1,912
0,429
0,234
26,500
7,909
29,457
3,605
47,162
0,418
27,585
2,008
33,626
30
Tabla 10. Resumen de las propiedades físicas de las especies Q. acuminata, H.cf petraeum, Lauraceae (A. panurensis, N. cf
membranaceae, O. cf myrianthaK), E. parvifolia y V. pavonis
Propiedad física
Variable
Verde
Seca
al
3
aire
Densidades (g/cm )
Anhidra
Básica
P.S.F
Contenidos de humedad
Libre
(%)
Máximo
Total
Volumétrica Normal
Especifica
Total
Contracciones
Radial
Normal
(%)
Especifica
Total
Tangencial Normal
Especifica
Coeficiente de Estabilidad Dimensional
Arenillo
Media
C.V.
1,106
5,275
Chocho
Media
C.V.
1,083
6,015
Lauraceae
Media
C.V.
0,770
11,793
Fono colorado
Media
C.V.
1,181
4,687
Sangretoro
Media
C.V.
0,791
11,313
0,752
7,110
0,641
8,511
0,613
9,529
0,820
7,671
0,432
16,700
0,715
0,601
26,569
74,178
100,747
15,879
7,814
0,604
5,907
2,460
0,229
10,308
4,273
0,385
1,826
7,991
7,667
12,693
15,788
13,100
10,824
13,432
7,253
23,287
28,372
22,185
14,921
24,126
11,382
28,287
0,618
0,544
21,880
96,386
118,266
11,850
8,200
0,545
4,717
3,108
0,218
7,347
4,944
0,339
1,589
8,535
7,938
16,811
14,594
12,714
15,444
33,109
7,916
21,498
32,893
20,546
19,824
35,203
18,313
19,705
0,556
0,498
21,006
115,226
136,233
10,283
4,762
0,502
3,311
1,519
0,170
6,273
3,018
0,323
1,942
10,657
10,777
32,770
15,784
15,748
23,152
29,253
10,554
18,068
29,484
18,230
14,657
29,485
17,929
20,950
0,803
0,682
22,117
58,510
80,627
15,042
10,435
0,681
3,783
2,685
0,172
10,042
7,523
0,452
2,713
7,419
6,628
11,624
15,953
12,302
17,906
12,499
6,601
11,328
21,192
17,497
16,028
13,837
10,886
11,443
0,418
0,356
42,360
179,565
221,925
14,718
12,281
0,357
5,268
3,763
0,129
9,986
7,869
0,243
1,970
16,974
16,626
20,726
23,121
21,215
14,596
14,485
16,886
20,484
31,699
25,926
15,983
21,070
18,965
26,805
El tamaño de muestra (n) para cada propiedad física fue de 54 probetas
CH psf (contenido de humedad punto de saturación de las fibras
31
Tabla 11. Resumen de las propiedades físicas de las especies H. oblongifolia, O. cf cymbarum, C. matourensi, D. guianense y
Q.paraensis
Propiedad física
Variable
Verde
Seca
al
3
aire
Densidades (g/cm )
Anhidra
Básica
P.S.F
Contenidos de humedad (%) Libre
Máximo
Total
Volumétrica Normal
Especifica
Total
Contracciones
Radial
Normal
(%)
Especifica
Total
Tangencial Normal
Especifica
Coeficiente de Estabilidad Dimensional
Tamarindo
Media
C.V.
1,158
5,195
0,821
0,798
0,699
17,836
59,648
77,484
12,394
8,653
0,698
5,432
3,660
0,311
8,237
5,781
0,464
1,594
9,169
8,992
8,552
16,234
20,145
16,639
15,483
17,071
8,522
26,984
25,875
28,964
24,762
28,430
23,116
33,628
El tamaño de muestra (n) para cada propiedad física fue de 54 probetas
CH psf (contenido de humedad punto de saturación de las fibras
Aguarráz
Media
C.V.
0,942
5,977
0,666
0,616
0,544
21,518
96,828
118,346
11,634
6,873
0,543
4,189
2,029
0,196
8,134
4,177
0,381
1,966
7,782
7,970
7,768
11,680
14,152
12,976
8,218
13,864
7,767
12,651
27,233
16,261
10,958
26,238
13,640
14,916
Vara blanca
Media
C.V.
0,821
9,517
0,436
0,404
0,366
25,811
182,813
208,624
9,417
5,168
0,365
3,105
1,456
0,127
6,136
3,227
0,243
2,069
8,359
9,103
8,274
19,225
12,954
11,516
20,243
11,107
8,274
25,420
52,097
28,707
12,857
18,397
19,772
23,565
Puchico
Media
C.V.
1,201
3,339
0,993
0,940
0,820
15,684
40,020
55,704
12,794
4,319
0,819
4,751
1,495
0,302
7,778
2,193
0,491
1,673
5,283
5,560
5,768
14,657
15,322
13,021
12,296
18,681
5,768
13,405
21,032
16,605
16,460
25,922
15,507
21,745
Avichure
Media
C.V.
0,974
7,899
0,635
0,578
0,505
25,0270
109,4240
134,4510
12,5223
5,3980
0,504
4,5059
1,625
0,179
8,7828
3,3560
0,348
2,030
12,784
13,249
12,443
12,593
21,474
18,673
12,553
23,755
12,442
20,473
33,163
17,668
12,489
26,581
14,735
23,423
32
7.2.1.1 Análisis de propiedades físicas
Densidades
Pereyra & Gelid (2002), mencionan que la densidad es una propiedad de la cual dependen la
mayoría de características tanto físicas como mecánicas, resaltando la importancia de obtener una
clasificación como referente en la práctica. Actualmente se distinguen diferentes tipos de
clasificación de la densidad de la madera dependiendo del estado de la misma, por ejemplo estado
en verde, estado seco al aire y estado anhidro.
En la tabla 12, se presenta la clasificación de la densidad de las 15 especies estudiadas en estado
seco al aire citado por Díaz (2005) y propuesto por Sanevalle (1955).
Tabla 12. Clasificación de las 15 especies según la densidad seca al aire. Tomado de Díaz 2005
Categoría
Muy livianas
Rango
(g/cm3)
<0.500
Valor
(g/cm3)
0.374
0.432
0.436
0.641
0.603
Nombre
común
Guarango
Sangretoro
Vara blanca
Chocho
Guamo
Cerindo
Amarillo
0.613
Lauraceae
Pelacara
Aguarráz
Arenillo
Avichure
Fono negro
Fono
colorado
Tamarindo
Puchico
0.626
Livianas
0.5000.649
Semi-pesadas
0.6500.799
0.621
0.666
0.752
0.670
0.923
Pesadas
0.8000.950
0.820
Muy pesadas
>0.950
0.821
0.993
Nombre Científico
Parkia nitida Miq
Virola pavonis (A.DC.) A.C.Sm
Croton matourensis Aubl.
Hymenolobium cf petraeum Ducke
Inga nobilis Willd
Endlicheria sp.
Ocotea cf. myriantha (Meisn.) Mez
Nectandra cf. membranaceae (Sw.)
Griseb
Aniba panurensis (Meisn.) Mez
Clarisia racemosa Ruiz & Pav
Ocotea cf. cymbarum Kunth
Qualea acuminata Spruce ex Warm
Qualea paraensis Ducke
Eschweilera albiflora (DC.) Miers
Eschweilera parvifolia Mart. ex DC
Hymenaea oblongifolia Huber
Dialium guianense (Aubl.) Sandwit
33
Cisternas (1994) define densidad seca al aire como la densidad a un contenido de humedad en
equilibrio con una atmosfera estándar (20ºC – humedad relativa 65%). Estas condiciones dan un
contenido de humedad de equilibrio del 12%, razón por la que se conoce también como densidad
al 12%. De acuerdo a la anterior categorización se puede observar que de las 15 especies
estudiadas, cinco se encuentran en la categoría de livianas, tres en muy livianas, tres en semipesadas, tres como pesadas y una como muy pesadas.
Nuñez (2007) menciona que la utilización de las densidades tanto verde como seca al aire, es
normal en la medida que son parámetros de condiciones que se dan de forma natural en el árbol,
ya que una se da en estado en verde y la otra actuando bajo las condiciones del ambiente. La
densidad seca al aire se emplea internacionalmente con fines de comparación (Escobar, Rodríguez
y Correa, (s.f).
De igual forma se presenta en la tabla 13, la densidad anhidra para las 15 especies, siendo esta
clasificación presentada en la Publicación Maderas Colombianas y reportada por Guevara (2001).
La densidad anhidra definida como la densidad seca al horno, se refiere a la madera que ha sido
secada hasta un contenido de humedad constante. De acuerdo a esta categorización de las 15
especies estudiadas, siete de ellas se encuentran como medianamente pesadas, cuatro como
livianas y cuatro como pesadas. Dependiendo del estado o el contenido de humedad en el que se
encuentre la madera, su aplicación tendrá mayor importancia, por ejemplo la madera anhidra es
considerada un excelente aislante eléctrico, propiedad que disminuye a medida que aumenta el
contenido de humedad (Fritz, 2004).
En la tabla 14 se muestra la clasificación de la especies según la densidad básica de acuerdo Puertas
et al. (2013), en la que se observa que la especie Dialium guianense tiene el comportamiento de
muy alta, con una densidad de 0.820 g/cm3. Las especies Parkia nítida, Croton matourensis y
Virola pavonis presentan los valores más bajos de esta densidad con valores de 0.328 g/cm 3, 0.366
g/cm3 y 0.366 g/cm3 respectivamente. El 46% de las especies presentaron una categoría de
densidad media con valores ente 0.497 g/cm3 y 0.546 g/cm3; por último, el 26,7% tienen una
densidad alta.
34
Tabla 13. Clasificación de las 15 especies según la densidad anhidra tomada de Guevara 2001
Categoría
Livianas
Rango
Valor
Nombre
(g/cm3)
(g/cm3)
común
Nombre Científico
0.368
Guarango
Parkia nitida Miq
0.35-
0.549
Amarillo
Endlicheria sp.
0.55
0.418
Sangretoro
Virola pavonis (A.DC.) A.C.Sm
0.404
Vara blanca
Croton matourensis Aubl.
0.616
Aguarráz
Ocotea cf. cymbarum Kunth
0.715
Arenillo
Qualea acuminata Spruce ex Warm
0.606
Avichure
Qualea paraensis Ducke
0.618
Chocho
Hymenolobium cf petraeum Ducke
Medianamente
0.56-
pesadas
0.75
0.573
Guamo
cerindo
Inga nobilis Willd
Ocotea cf. cymbarum Kunth
0.599
Lauraceae
Nectandra cf. membranaceae (Sw.)
Griseb
Aniba panurensis (Meisn.) Mez
Pesadas
0.556
Pelacara
Clarisia racemosa Ruiz & Pav
0.833
Fono colorado Eschweilera albiflora (DC.) Miers
0.76-
0.803
Fono negro
Eschweilera parvifolia Mart. ex DC
1.00
0.798
Tamarindo
Hymenaea oblongifolia Huber
0.993
Puchico
Dialium guianense (Aubl.) Sandwit
La densidad básica representa el peso seco de la madera encerrado en un volumen invariante (30%
contenido de humedad). Esta densidad toma importancia para las propiedades tecnológicas,
independientemente del uso que se le vaya a dar a la madera, ya que es la variable que mayor
información podría generar en el comportamiento de la misma (Espina, 2006).
35
Tabla 14. Clasificación de las 15 especies según la densidad básica tomada de Puertas et al.
2013
Categoría
Muy Alta
Alta
Rango
Valor
Nombre
(g/cm3)
(g/cm3)
común
>0,75
0.820
Puchico
Dialium guianense (Aubl.) Sandwit
0.722
Fono Negro
Eschweilera parvifolia Mart. ex DC
0,61-
0.601
Arenillo
Qualea acuminata Spruce ex Warm
0,75
0.682
Fono Colorado
Eschweilera albiflora (DC.) Miers
0.699
Tamarindo
Hymenaea oblongifolia Huber
Nombre Científico
Ocotea cf. cymbarum Kunth
0.498
Lauraceae
Nectandra cf. membranaceae (Sw.)
Griseb
Aniba panurensis (Meisn.) Mez
Media
0,410,60
0.497
Amarillo
Endlicheria sp.
0.505
Avichure
Qualea paraensis Ducke
0.508
Baja
0,300,40
Guamo
Cerindo
Inga nobilis Willd
0.544
Aguarráz
Ocotea cf. cymbarum Kunth
0.544
Chocho
Hymenolobium cf petraeum Ducke
0.546
Pelacara
Clarisia racemosa Ruiz & Pav
0.356
Sangretoro
Virola pavonis (A.DC.) A.C.Sm
0.366
Vara Blanca
Croton matourensis Aubl
0.328
Guarango
Parkia nitida Miq
Teniendo en cuenta el conjunto de las densidades (densidad anhidra, densidad seca al aire y
densidad básica) se pudo establecer y corroborar que se tiene una relación directa entre ellas, donde
el aumento en sus valores es directamente proporcional, indicando que si aumenta la densidad
básica aumentan también los otros valores de densidades.
La variable densidad toma importancia por el hecho mismo que es un criterio para determinar el
valor y la utilidad de la madera, permitiendo ser correlacionada con otras propiedades como su
rigidez, resistencia mecánica, conductividad, entre otras (Tuset & Duran, 1986).
36
En la figura 2, se puede observar que las especies que presentan una mayor densidad son: D.
guianense, E. albiflora, e H. oblongifolia. Las especies que presentaron una menor densidad son:
P. nítida, V. pavonis y C. matourensis, correspondientes a las categorías de muy alta y baja
respectivamente (Tabla 14).
Figura 2. Densidad básica de las especies estudiadas.
Contenidos de humedad
El contenido de humedad de la madera se define como la masa o peso del agua contenida en una
pieza de madera, expresada como porcentaje de su peso en estado anhidro Simpson & TenWolde
(1992). El agua en la madera se puede encontrar sea en las cavidades de las células (agua libre), o
puede estar retenida en las paredes celulares (agua fija), por tanto el contenido de humedad varía
de acuerdo a la especie (Spavento et al., 2008).
El contenido de humedad en el punto de saturación de las fibras se alcanza cuando las paredes de
las células están saturadas de agua y el agua libre se ha eliminado del interior de los lúmenes
celulares Ananias (s.f). Autores como Tarkow (1982), citado por Nájera et al. (2005), definen los
valores de este contenido entre 18 y 36% de contenido de humedad, Spavento et al., (2008) en un
37
rango de 22 a 42% y en general se asume un valor teórico de 30%, el cual varia para algunas
especies, obteniendo un valor de psf hasta de 50% para maderas extremadamente ligeras (Glass &
Zelinka, 2010). Para las especies del estudio, el promedio general del contenido de humedad en
punto de saturación de fibras fue de 23.4%, y los valores variaron entre 15.6% para la especie
Dialium guianense y 42.3% para Virola pavonis. (Tabla 10 y 11).
La figura 3 muestra el comportamiento del contenido de humedad en punto saturación de fibras de
las especies objeto de estudio, en la que se puede observar que las que presentaron mayor valor
son V. pavonis y P. nitida, que corresponden a especies muy livianas de acuerdo con su densidad,
seguido de las especies Q. paraensis y Q. acuminata que son especies semi-pesadas, es decir que
estas presentaron valores más altos de contenido de humedad en comparación con especies muy
livianas y livianas como el C. matourensis y las lauráceas.
De igual manera sucede con los valores más bajos de contenido de humedad, encabezado por
especies livianas como C. racemosa con valor de 17.9%, es decir hay baja correlación entre la
densidad y el contenido de humedad en psf. Este resultado es similar al obtenido por Tamarit &
Fuentes (2003), los cuales también encontraron una correlación de bajo nivel entre esta variable y
la densidad básica, esto posiblemente debido a la variabilidad en la presencia, cantidad y tipo de
extractivos presentes en la pared celular, los cuales limitan la atracción entre la madera y las
moléculas de agua, aun cuando son especies de densidades bajas.
Conocer el contenido de humedad en punto de saturación de fibras de cada una de las especies es
importante, ya que éste varía en función de la estructura y composición química Kollman & Côte
(1968), y por debajo de este punto la madera sufre cambios en sus dimensiones y en los valores de
resistencia de las propiedades mecánicas, lo cual es importante a la hora de establecer programas
de horario de secado (Klinger, 1989).
Por su parte, el contenido de humedad libre se refiere a la cantidad de agua que la madera contiene
en las cavidades o lúmenes de las células Ananias (s.f). Para la especies objeto de estudio el
promedio de contenido de humedad libre fue de 107.03%, variando en un rango entre 40.02% para
la especie Dialium guianense y 214.12% para Parkia nitida.
38
Figura 3. Contenido de humedad en punto de saturación de fibras de las especies estudiadas.
De acuerdo a la figura 4 y los resultados obtenidos, se observa que las especies con los menores
valores de contenido de humedad corresponden a las especies más pesadas, como es el caso de D.
guianense con un valor de 40.02%, E. albilfora 54.58%, H. oblongifolia 59.65% y E. parvifolia
58.51% (densidad básicas de 0.820, 0.721, 0.699 y 0.682 g/cm3 respectivamente). De igual manera
las especies muy livianas fueron las que presentaron los valores más altos de contenidos de
humedad como es el caso de V. pavonis con un valor de 179.56%, C. matourensis 182.81% y P.
nitida 214.15% (densidades básicas de 0.356, 0.336 y 0.328 g/cm3) respectivamente (Tabla 11).
39
Figura 4. Contenido de humedad libre de las 15 especies estudiadas.
Estos resultados afirman que el contenido de agua libre varía de acuerdo al específico, es decir que
maderas con alto densidad tienen poca cantidad de agua libre, porque el tamaño de los poros y
espacios libres es menor, Klinger (1989), por tanto hay una correlación entre estas dos variables,
como ya lo habían resaltado en el estudio de Sotomayor & Ramírez (2014), quienes reportaron
una correlación exponencial con un coeficiente de determinación de 0.99. Conocer el contenido
de humedad libre es de gran importancia en los procesos de secado e impregnación de la madera,
ya que permiten conocer la cantidad de agua que se puede eliminar por procesos de capilaridad
(sin necesidad de secado artificial) y permite saber los valores máximos de solución preservante
que pueda absorber la madera (Tamarit & Fuentes, 2003).
40
El contenido de humedad máximo se refiere a la cantidad máxima de agua que una madera puede
contener, es decir, cuando tanto las paredes como los lúmenes celulares se encuentran saturados,
Ananias (s.f). Los resultados obtenidos para las especies objeto de estudio muestran un contenido
de humedad máximo promedio de 130.50%, con un rango entre 55,70% para D. guianense y
247,99% para P. nitida (Tabla 11).
Como se observa en la figura 5, el comportamiento del contenido de humedad máximo, al igual
que el contenido de humedad libre, presenta una relación inversa con la densidad, es decir que las
especies más pesadas presentan los valores más bajos de contenido de humedad, y por contraste,
las más livianas presentan mayor contenido de agua. Al igual que el parámetro anterior, estos
resultados fueron similares con los de Sotomayor & Ramírez (2014), y Tamarit & Fuentes (2003),
quienes resaltan en sus estudios un alto nivel de correlación entre estas variables.
Figura 5. Contenido de humedad máximo de las especies estudiadas
41
Contracciones
La máxima contracción de la madera la experimentó el plano tangencial en cada una de las especies
estudiadas mientras que en el plano radial se observó un comportamiento menos dinámico debido
a la disposición perpendicular de las paredes celulares radiales, en el plano tangencial debido a la
disposición vertical de las fibras y la orientación de las fibrillas de celulosa en la pared secundaria
de las fibras y por la cantidad y anchura de los radios, lo convirtió en el plano más contráctil
(Kolman & Coté, 1968).
Los valores de contracción difirieron entre especies debido a que esta propiedad está sujeta a
factores muy particulares que no fueron evaluados en el presente estudio, como por ejemplo las
condiciones de crecimiento del individuo, los efectos genéticos, el lugar de proveniencia de la
madera dentro del árbol, las características anatómicas como el ángulo microfibrillar de las paredes
celulares, la estructura y espesor de la pared celular, la densidad y tamaño de los poros y radios,
entre otros; lo que resulta dificultoso explicar el comportamiento de las especies frente a la perdida
en su contenido de humedad (Spavento et al., 2008).
Como se expone en la figura 6, las especies Hymenaea oblongifolia, Eschweilera parviflora y
Virola pavonis presentaron un comportamiento más alto frente a la contracción normal en
dirección tangencial y radial. Sin embargo, la contracción radial y tangencial normal cumple un
papel importante durante los procesos industriales de secado, permitiendo la planeación del
aserrado sobredimensionado en espesor y ancho de las tablas, para que después del secado
presenten las dimensiones comerciales requeridas (Fuentes et al. 2012).
Producto de la suma de la contracción total radial y tangencial se calculó la contracción
volumétrica total. De acuerdo a la tabla 15, este índice resultó más bajo para las especies Clarisia
racemosa, Endlicheria sp y Croton matourensis. Dada la relación equivalente de la contracción
total ante la hinchazón total de la madera, las especies con menor índice a la contracción
volumétrica les permite ser más consideras para usos que estén en contacto directo y permanente
con el agua, esto siempre y cuando se tengan en cuenta la durabilidad natural y los tratamientos de
preservación convenientes al caso (Fuentes et al. 2012).
42
Figura 6. Contracción normal tangencial y radial para las 15 especies forestales.
Tabla 15. Clasificación de la contracción volumétrica total para las especies estudiadas. Tomado
como referencia la clasificación presentada por Londoño 2007.
Categoría Rango
Pequeña
<10
Moderada 10-15
Alta
15-20
Valor
9.719
9.369
9.414
10.613
10.947
13.399
11.85
Nombre común
Pelacara
Amarillo
Vara blanca
Guarango
Guamo Cerindo
Fono negro
Chocho
10.283 Lauraceae
14.718
12.394
11.634
12.794
12.522
15.879
15.042
Sangretoro
Tamarindo
Aguarráz
Puchico
Avichure
Arenillo
Fono colorado
Nombre Científico
Clarisia racemosa Ruiz & Pav
Endlicheria sp
Croton matourensis Aubl.
Parkia nitida Miq
Inga nobilis Willd
Eschweilera parvifolia Mart. ex DC
Hymenolobium cf petraeum Ducke
Ocotea cf. cymbarum Kunth
Nectandra cf. membranaceae (Sw.) Griseb
Aniba panurensis (Meisn.) Mez
Virola pavonis (A.DC.) A.C.Sm
Hymenaea oblongifolia Huber
Ocotea cf. cymbarum Kunth
Dialium guianense (Aubl.) Sandwit
Qualea paraensis Ducke
Qualea acuminata Spruce ex Warm
Eschweilera albiflora (DC.) Miers
43
La relación de anisotropía o coeficiente de estabilidad dimensional estuvo entre el rango de 1.589
a 2.713, valor mínimo y máximo respectivamente para las especies Hymenolobium petraeum y
Eschweilera parviflora. En la tabla 16 se presentan los valores de anisotropía clasificados según
Lastra (1986). La clasificación determina el nivel de riesgo a que se presenten rajaduras y
agrietamientos superficiales en la madera durante el proceso de secado, convirtiéndolo en un
criterio técnico para determinar el tipo programa y la velocidad de secado.
Tabla 16. Clasificación de las especies según la relación de anisotropía.
Categoría
Rango
Muy estable
<1,5
Moderadamente
estable
1,5-1,8
Inestable
>1,8
Valor
1,589
1,673
1,594
1,806
1,802
1,944
2,008
1,928
1,917
2,160
1,970
1,966
2,069
Nombre común
Chocho
Puchico
Tamarindo
Arenillo
Pelacara
Avichure
Fono negro
Guamo cerindo
Guarango
Amarillo
Sangre toro
Aguarrás
Vara blanca
1,942
Lauraceae
2,713
Fono colorado
Nombre científico
Hymenolobium cf petraeum Ducke
Dialium guianense (Aubl.) Sandwit
Hymenaea oblongifolia Huber
Qualea acuminata Spruce ex Warm
Clarisia racemosa Ruiz & Pav
Qualea paraensis Ducke
Eschweilera parvifolia Mart. ex DC
Inga nobilis Willd
Parkia nitida Miq
Endlicheria sp
Virola pavonis (A.DC.) A.C.Sm
Ocotea cf. cymbarum Kunth
Croton matourensis Aubl.
Ocotea cf. cymbarum Kunth
Nectandra cf. membranaceae (Sw.) Griseb
Aniba panurensis (Meisn.) Mez
Eschweilera Albiflora (DC.) Miers
Por su parte, la contracción específica total representa la alteración dimensional porcentual que
ocurre en la madera por cada 1% de cambio de su contenido de humedad, posicionándolo como
uno de los índices dimensionales de mayor importancia (Fuentes et al., 2012).
44
7.2.2 Resultado de propiedades mecánicas
En la tabla 17, 18 y 19 se reportan las propiedades mecánicas evaluadas en las especies objeto de
estudio. En esta se puede observar que el promedio general del coeficiente de variación para las
diferentes pruebas varío en un rango entre 15.5% y 32.6%. De igual manera se observa que tales
coeficientes estuvieron muy parecidos a nivel de prueba, salvo compresión paralela que en la
resistencia máxima registró un C.V. de 15.2% y en el módulo de elasticidad un valor de 26%. La
prueba con mayor coeficiente de variación fue impacto radial y tangencial con valores 32.3% y
32.6% respectivamente, y en contraste, la prueba con menor variación fue flexión estática con un
promedio general de 17.2% para todos los ensayos.
45
Tabla 17. Propiedades mecánicas de las especies P. nitida, C. racemosa, I. nobilis, Endlicheria sp y E. albiflora.
Propiedad Mecánica Variable
RLP (kg/cm2)
RM (kg/cm2)
MOE (1000 kg/cm2)
RLP (kg/cm2)
Flexión Estática
RM (kg/cm2)
Tangencial
MOE (1000 kg/cm2)
RM (kg/cm2)
Compresión Paralela MOE (1000 kg/cm2)
RLP (kg/cm2)
Compresión
RLP (kg/cm2)
Perpendicular
Tangencial (kg)
Radial (kg)
Dureza
Extremos (kg)
Cizallamiento Radial EUM (kg/cm2)
Cizallamiento
EUM (kg/cm2)
Tangencial
T (kg-cm/cm2)
Impacto Radial
Impacto Tangencial T (kg-cm/cm2)
Tangencial (kg)
Extracción de Clavos Radial (kg)
Transversal (kg)
Flexión Estática
Radial
Guarango
Pelacara
Guamo cerindo
Media
C.V.
Media
C.V.
Media
C.V.
376,469 15,922 686,301 13,750 600,977 17,096
511,650 18,258 1001,258 12,019 977,044 15,692
63,086 18,116 105,719 10,970 97,530 14,385
363,169 20,996 709,129 12,890 602,722 23,375
530,581 18,558 1031,807 14,273 883,852 25,571
65,234 15,556 114,569 11,103 91,866 17,298
299,934 13,610 558,777 11,262 516,013 18,096
20,655 27,504 45,215 20,961 40,567 36,025
265,494 12,608 518,100 11,852 462,700 19,856
Amarillo
Fono negro
Media
C.V.
Media
C.V.
591,438 12,925 815,694 17,887
876,708 12,937 1323,318 14,110
101,171 11,131 132,990 15,576
643,734 13,021 835,028 18,347
921,426 13,258 1363,564 13,941
110,666 13,123 148,666 13,127
487,289 8,183 593,661 15,700
39,510 18,691 51,981 26,795
453,299 9,643 562,925 16,524
47,850
16,323
93,563
18,166 106,766
35,868
80,603
21,041
153,951
17,081
170,497
151,767
197,819
56,831
20,085
17,182
16,757
17,555
447,451
414,738
473,827
78,820
20,601 467,893
19,049 450,904
15,559 495,161
13,777 86,872
32,039 301,031 19,693
31,497 298,461 19,888
29,074 264,037 17,650
23,645 59,387 14,536
735,424
741,748
607,019
86,084
18,109
17,609
24,469
15,065
61,389
18,012
70,488
16,239
95,088
17,596
63,605
19,296
101,520
17,728
0,325
0,383
39,514
35,355
34,002
43,414
33,626
37,073
36,652
46,126
0,678
0,771
111,457
140,848
93,861
19,713 0,976
24,351 1,041
23,106 189,116
16,499 183,195
20,451 121,700
39,320
36,032
30,972
31,871
28,076
0,600
0,591
97,879
82,190
56,789
31,052
31,954
17,962
26,051
18,793
1,099
1,222
209,594
209,081
147,748
26,183
28,488
16,461
17,038
28,744
El tamaño de muestra (n) mínimo para cada propiedad mecánica fue de 36 probetas
RLP (resistencia en límite proporcional); RM (resistencia máxima); MOE (Módulo de elasticidad); EUM (Esfuerzo unitario máximo); T (Tenacidad u impacto).
46
Tabla 18. Resumen de las propiedades mecánicas de las especies Q. acuminata, H.cf petraeum, Lauraceae (A. panurensis, N. cf membranaceae,
O. cf myriantha), E. parvifolia y V. pavonis.
Propiedad Mecánica
Flexión Estática
Radial
Flexión Estática
Tangencial
RLP (kg/cm2)
Arenillo
Media
C.V.
742,634 15,716
1038,063 18,832
125,917 16,297
722,058 20,718
1017,474 22,410
121,018 24,259
662,856 20,918
53,253 26,470
592,949 23,456
RLP (kg/cm2)
114,621
20,962 101,835 17,759
18,590
149,441
14,732
41,933
24,922
Tangencial (kg)
Radial (kg)
Extremos (kg)
EUM (kg/cm2)
530,697
518,684
528,331
75,974
17,670 425,780 20,578 335,945 27,929
15,935 401,755 21,159 314,932 22,859
18,180 426,358 18,996 269,540 33,987
16,089 91,302 19,109 73,120 19,793
686,461
717,023
595,434
88,145
20,436
18,440
20,219
22,241
183,777
164,156
225,261
47,367
30,450
34,880
26,074
21,286
EUM (kg/cm2)
101,290
15,358
22,917
76,679
24,181
108,676
20,557
50,852
21,826
T (kg-cm/cm2)
0,742
0,752
174,446
198,260
120,543
32,232 0,612 29,097
34,858 0,732 34,997
26,157 122,571 24,381
15,255 154,344 25,391
36,112 114,132 24,185
0,589
0,586
64,792
78,860
61,658
26,156
28,182
28,515
46,804
48,888
0,948
1,051
197,268
219,044
169,368
33,386
35,682
14,296
14,952
20,693
0,283
0,233
65,147
53,975
49,076
47,728
42,271
37,878
40,168
30,622
Variable
RLP (kg/cm2)
RM (kg/cm2)
MOE (1000 kg/cm2)
RLP (kg/cm2)
RM (kg/cm2)
MOE (1000 kg/cm2)
RM (kg/cm2)
Compresión Paralela MOE (1000 kg/cm2)
Compresión
Perpendicular
Dureza
Cizallamiento Radial
Cizallamiento
Tangencial
Impacto Radial
Impacto Tangencial
T (kg-cm/cm2)
Tangencial (kg)
Extracción de Clavos Radial (kg)
Transversal (kg)
Chocho
Media
C.V.
654,833 23,507
965,223 24,426
107,693 20,550
604,759 16,632
900,494 16,834
104,227 17,407
531,821 16,735
47,050 29,882
493,042 17,690
83,582
Lauraceae
Fono colorado
Media
C.V.
Media
C.V.
607,246 17,011 703,916 22,633
902,529 13,521 1094,799 21,158
100,825 10,907 111,607 22,107
688,196 8,137 764,244 14,117
992,936 10,888 1137,361 15,070
105,038 10,285 123,063 16,468
511,352 7,681 522,721 13,127
41,315 25,295 55,191 30,789
443,819 11,795 485,626 14,652
Sangretoro
Media
C.V.
321,430 25,608
480,171 24,656
67,325
25,343
398,429 26,129
540,640 26,176
82,657
24,859
334,582 22,608
26,529
30,367
290,550 24,589
86,724
El tamaño de muestra (n) mínimo para cada propiedad mecánica fue de 36 probetas
RLP (resistencia en límite proporcional); RM (resistencia máxima); MOE (Módulo de elasticidad); EUM (Esfuerzo unitario máximo); T (Tenacidad u impacto).
47
Tabla 19. Resumen de las propiedades mecánicas de las especies H. oblongifolia, O. cf cymbarum, C. matourensi, D. guianense y Q.paraensis
Propiedad
Mecánica
Flexión Estática
Radial
Flexión Estática
Tangencial
Compresión
Paralela
Compresión
Perpendicular
Dureza
Cizallamiento
Radial
Cizallamiento
Tangencial
Impacto Radial
Impacto Tangencial
Extracción de
Clavos
Tamarindo
Aguarráz
Vara blanca
Puchico
Avichure
Media
C.V.
Media
C.V. Media
C.V.
Media
C.V. Media
C.V.
2
RLP (kg/cm )
772,077 15,836 750,215 16,620 361,275 17,253 1187,312 15,330 361,275 17,253
RM (kg/cm2)
1253,507 20,700 1114,903 14,470 527,599 19,469 1699,242 19,683 528,903 18,010
MOE (1000 kg/cm2) 136,810 15,653 114,976 11,516 59,171 18,173 160,156 13,224 59,171
18,173
2
RLP (kg/cm )
785,318 29,708 766,459 15,263 400,645 19,798 1310,525 12,289 400,645 19,798
2
RM (kg/cm )
1254,217 25,098 1122,243 13,773 570,540 15,021 1830,353 14,431 570,540 15,021
2
MOE (1000 kg/cm ) 134,795 13,592 121,426 11,980 67,693 21,803 170,123 11,628 67,693
21,803
RM (kg/cm2)
611,333 16,554 537,103 15,927 318,196 13,333 947,774 18,613 438,103 20,471
MOE (1000 kg/cm2) 63,525
28,362 43,281 23,551 21,361 23,269 71,654 23,765 33,730 23,313
RLP (kg/cm2)
582,784 17,070 465,694 17,613 263,664 15,545 858,742 19,484 395,256 19,226
Variable
RLP (kg/cm2)
169,428
14,551
108,574 19,875 60,335 17,757 300,866 16,782 87,158
22,992
Tangencial (kg)
Radial (kg)
Extremos (kg)
836,293
844,656
830,880
22,435
21,593
18,450
386,730 14,460 217,484 21,650 1371,480 11,640 415,781
391,403 16,122 180,307 21,783 1369,026 11,153 373,996
313,998 17,482 263,845 21,093 1143,103 12,546 434,363
22,342
26,545
19,949
EUM (kg/cm2)
133,647
15,669
81,417
23,607 53,921 25,307 133,659 14,870 81,678
14,264
EUM (kg/cm2)
132,212
16,697
98,511
18,067 62,124 22,462 144,691 14,302 86,234
15,746
T (kg-cm/cm2)
0,891
0,876
219,406
194,364
192,693
37,191
37,074
18,399
20,439
15,240
0,652
0,675
61,251
60,979
47,080
25,201 0,272 24,206 1,476
29,919 0,259 25,854 1,683
23,146 43,066 22,344 230,410
20,554 43,132 24,165 259,299
26,404 48,062 25,557 254,685
35,022
34,854
24,043
30,090
19,100
2
T (kg-cm/cm )
Tangencial (kg)
Radial (kg)
Transversal (kg)
36,031 0,635
31,547 0,592
13,684 87,253
18,190 101,541
21,575 66,333
El tamaño de muestra (n) mínimo para cada propiedad mecánica fue de 36 probetas
RLP (resistencia en límite proporcional); RM (resistencia máxima); MOE (Módulo de elasticidad); EUM (Esfuerzo unitario máximo); T (Tenacidad u impacto).
48
7.2.2.1Análisis propiedades mecánicas
Flexión Estática
La prueba de flexión estática resulta de someter la madera a la combinación de esfuerzos de
tracción, compresión y cizallamiento simultáneamente. En cuanto a la primera, se da en la parte
inferior convexa de la probeta o zona de elongación, la segunda en la zona de compresión o parte
superior cóncava, y finalmente el cizalle, en el eje neutro entre las dos fuerzas opuestas, teniendo
como resultado la deformación hasta la ruptura de la probeta, Guevara (2001). La flexión estática
mide la resistencia que opone la madera ante una carga puntual en el centro de la probeta, y de la
cual se determinan la Resistencia máxima, resistencia al límite proporcional y el módulo de
elasticidad Díaz (2005).
Resistencia máxima
Representa la capacidad de la carga máxima soportada por una pieza en flexión Kretschmann
(2010), es decir el esfuerzo máximo sobre las fibras de la madera hasta que ocasiona falla y ruptura
de la misma (Jiménez & Muñoz, 2007). De acuerdo a los resultados obtenidos, los valores de
resistencia máxima varían en un rango entre 480.17 kg/cm2 y 1830 kg/cm2, siendo la especie V.
pavonis la de menor valor y D. guianense el mayor registro respectivamente (Tabla 17). De igual
manera se puede observar que el 86.7% de las especies reportaron mayor valor de carga en el plano
tangencial. De manera general la diferencia de carga promedio entre planos es de 5.43%,
mostrando una diferencia poco marcada entre el plano tangencial y radial.
De acuerdo a la tabla 20 en la que se encuentran la clasificación de la resistencia máxima promedio
de cada una de las especies de acuerdo a la ASTM, se establece que el 33.33% presentaron baja
resistencia, el 60% resistencia media y tan sólo una especie, resistencia máxima alta. Cabe resaltar
que la especie Amarillo, quedó en la clasificación de resistencia máxima baja, no obstante está
limitando con la categoría de resistencia máxima de tipo mediana.
49
Tabla 20. Clasificación de la Resistencia máxima según ASTM de las especies
Categoría RM (kg/cm2)
549,722
521,115
Bajo
899,067
510,406
549,069
1118,573
1027,768
932,859
947,732
Mediano
Alto
1116,080
1343,441
930,448
1016,532
1253,862
1764,797
N. Común
Avichure
Guarango
Amarillo
Sangretoro
Vara blanca
Aguarráz
Arenillo
Chocho
Nombre científico
Qualea paraensis Ducke
Parkia nítida Miq
Endlicheria sp
Virola pavonis (A. DC.) A.C.Sm.
Croton matourensis Aubl
Ocotea cf. cymbarum Kunth
Qualea acuminata Spruce ex Warm
Hymenolobium cf. petraeum Ducke
Ocotea cf. myriantha (Meisn.) Mez
Lauraceae
Nectandra cf. membranaceae (Sw.) Griseb
Aniba panurensis (Meisn.) Mez
Fono colorado Eschweilera parvifolia Mart. Ex DC
Fono negro
Eschweilera albiflora (DC.) Miers
Guamo
Inga nobilis Willd.
Pelacara
Clarisia racemosa Ruiz & Pav
Tamarindo
Hymenaea oblongifolia Huber
Puchico
Dialium guianense (Aubl.) Sandwith
Resistencia al límite proporcional
La resistencia en el límite proporcional muestra la carga que resiste la madera en el límite de
proporcionalidad, es decir la carga en la cual la madera cambia su comportamiento como material
elástico a material plástico, y no es capaz de recuperar sus dimensiones, propiedades originales y
se producen deformaciones permanentes (Lastra, s.f).
Para los resultados de las especies objeto de estudio, se encontró que la resistencia en el límite
proporcional (RLP) vario en un rango entre 321.43 kg/cm 2 para la especie V. pavonis y 1310.52
kg/cm2 para la especie D. guianense, al igual que con la resistencia máxima. En cuanto a la
diferencia de cargas entre planos fue que el 80% de las especies mostraron mayor resistencia en el
plano tangencial y en general la diferencia de cargas promedio fue de 7.14%, mostrando al igual
que la resistencia máxima, bajo contraste entre ambos planos.
En la tabla 21 se tiene la clasificación de los valores promedio de la resistencia al límite
proporcional de acuerdo a ASTM, en la que se evidencia que aproximadamente el 50% mostraron
50
RLP mediano, 26.7 % RLP bajo, 20% mediando y solo una especie muy alto, correspondiente a
Dialium guinanense.
Tabla 21. Clasificación de la Resistencia al límite proporcional según ASTM de las especies
2
Categoría RLP (kg/cm )
Bajo
Mediano
Alto
Muy alto
N. Común
337,499
369,819
359,929
380,960
732,346
629,796
734,080
601,849
617,586
Avichure
Guarango
Sangretoro
Varablanca
Arenillo
Chocho
Fono colorado
Guamo
Amarillo
647,721
Lauracea
734,080
697,715
758,337
778,698
1248,919
Fono negro
Pelacara
Aguarráz
Tamarindo
Puchico
Nombre científico
Qualea paraensis Ducke
Parkia nítida Miq
Virola pavonis (A. DC.) A.C.Sm.
Croton matourensis Aubl
Qualea acuminata Spruce ex Warm
Hymenolobium cf. petraeum Ducke
Eschweilera parvifolia Mart. Ex DC.
Inga nobilis Willd.
Endlicheria sp
Ocotea cf. myriantha (Meisn.) Mez
Nectandra cf. membranaceae (Sw.) Griseb
Aniba panurensis (Meisn.) Mez
Eschweilera albiflora (DC.) Miers
Clarisia racemosa Ruiz & Pav
Ocotea cf. cymbarum Kunth
Hymenaea oblongifolia Huber
Dialium guianense (Aubl.) Sandwith
Módulo de elasticidad
El Modulo de Elasticidad (MOE) se considera como la relación entre el esfuerzo unitario y la
deformación unitaria, sin sobrepasar el límite de proporcionalidad (Jiménez & Muñoz, 2007;
Villarraga, 2005). Es una medida de la rigidez de la madera, ya que involucra tanto la carga como
la deformación en el límite elástico, por tanto entre más alto es su valor más rígida es la madera, y
de manera contraria, si su valor es más bajo quiere decir que la madera se deforma de manera fácil
(Guevara, 2001).
De acuerdo a los resultados obtenidos para las especies objeto de estudio, los valores de MOE
variaron entre 59.17 kg/cm2 para la especie Croton matourensis Aubl y 170.12 kg/cm2 para
Dialium guianense. El 73.3% de las especies mostraron mayores valores de resistencia a cargas en
el plano tangencial, y en general la diferencia entre estos dos planos fue de 7.56%, mostrando una
gran semejanza entre el MOE en el plano radial y tangencial.
51
De acuerdo a la tabla 22, que clasifica el valor de MOE de acuerdo a la norma ASTM, el 60% de
las especies registró un MOE mediano, 33.3% entre muy bajo y bajo, y sólo el 6.7% equivalente a
una especie catalogada como alto.
Tabla 22. Clasificación del Módulo de elasticidad según ASTM de las 15 especies
Categoría MOE (1000
kg/cm2)
63,432
Muy bajo
64,160
63,432
94,698
Bajo
74,991
118,201
123,467
105,960
117,335
140,828
Mediano
105,919
Alto
N. Común
Nombre científico
Avichure
Guarango
Vara blanca
Guamo Cerindo
Sangretoro
Aguarráz
Arenillo
Chocho
Fono colorado
Fono negro
Amarillo
Qualea paraensis Ducke
Parkia nítida Miq
Virola pavonis (A. DC.) A.C.Sm.
Inga nobilis Willd.
Croton matourensis Aubl
Ocotea cf. cymbarum Kunth
Qualea acuminata Spruce ex Warm
Hymenolobium cf. petraeum Ducke
Eschweilera parvifolia Mart. Ex DC.
Eschweilera albiflora (DC.) Miers
Endlicheria sp
Ocotea cf. myriantha (Meisn.) Mez
Nectandra cf. membranaceae (Sw.) Griseb
Aniba panurensis (Meisn.) Mez
Clarisia racemosa Ruiz & Pav
Hymenaea oblongifolia Huber
Dialium guianense (Aubl.) Sandwith
102,931
Lauraceae
110,144
135,802
165,140
Pelacara
Tamarindo
Puchico
En la figura 7, se muestra el comportamiento general de las variables de RM, RLP y MOE de las
15 especies estudiadas. En esta puede observar que a pesar que la densidad es un indicador de
relación directamente proporcional con los valores de resistencia mencionados, no se cumplió para
todas las especies, ya que tanto para las especies Q. acuminata (densidad básica 0.601 g/cm3) y O.
cymbarum (0.544 g/cm3) presentaron valores similares e incluso superiores a la especie E.
parviflora, a pesar que esta última tuviera mayor valor de densidad que las especies mencionadas
(0.682 g/cm3). Tal situación también se presentó con la especie E. albiflora (densidad básica de
0.721 g/cm3) en los valores de RLP, donde nuevamente la especie O. cymbarum (0.544 g/cm3)
presento mayores valores de esta propiedad, a pesar de tener una densidad inferior. Tal situación
demuestra que la densidad básica o en general, el peso específico, no es una característica
determinística de la flexión estática, sino que a pesar de ésta influyen otras características que
52
pueden ser asociadas a la anatomía propia de cada especie. De igual manera se puede evidenciar
que en general el RLP equivale aproximadamente al 70% del valor de la resistencia máxima.
Conocer los valores de los diferentes esfuerzos de flexión es de gran importancia, ya que de
acuerdo a Ramírez et. al (2001) la flexión estática es la principal propiedad para la evaluación de
la madera con fines estructurales, debido a que estos tipos de esfuerzos se encuentran en vigas de
pisos, techos y en la determinación de esfuerzos de diseño para columnas largas y piederechos,
Villarraga (1995). Por último, las especies que presentes categorías medianas a altas en estas
propiedades son las más adecuadas para estos usos estructurales, ya que significan especies rígidas
con capacidad de resistir cargas altas por unidad de superficie.
Figura 7. Flexión Estática de las especies objeto de estudio, ordenada de acuerdo a los valores
de MOE (1000 kg/cm2).
53
Compresión paralela
La compresión paralela se considera importante para determinar la capacidad de carga de la madera
al ser sometida a un esfuerzo paralelo a sus fibras y así emplearlo como un criterio de diseño para
usos estructurales Puertas et al. (2013).
De acuerdo a la clasificación de ASTM las especies P. nítida, C. matourensis, V. pavonis y Q.
paraensis se ubican en la categoría bajo (Tabla 23); comportamiento acorde a la baja densidad.
Por su parte las especies Endlicheria sp, Lauraceae, I. nobilis, E. parviflora, H. petraeum, O.
cymbarum, C. racemosa E. albiflora, H. oblongifolia y Q. acuminata presentaron valores de
resistencia media. Finalmente, D. guianense es la única especie que se ubicó en la categoría alta.
Tabla 23. Clasificación a la resistencia unitaria máxima
Categoría
Bajo
Mediano
Alto
Valor
438.103
299.934
334.582
318.196
536.500
662.856
531.821
516.013
487.289
N. Común
Avichure
Guarango
Sangretoro
Vara blanca
Aguarráz
Arenillo
Chocho
Guamo Cerindo
Amarillo
511.352 Lauraceae
522.721
593.661
558.777
611.333
947.774
Fono colorado
Fono negro
Pelacara
Tamarindo
Puchico
Nombre científico
Qualea paraensis Ducke
Parkia nítida Miq
Croton matourensis Aubl
Virola pavonis (A. DC.) A.C.Sm
Ocotea cf. cymbarum Kunth
Qualea acuminata Spruce ex Warm
Hymenolobium cf. petraeum Ducke
Inga nobilis Willd
Endlicheria sp
Ocotea cf. myriantha (Meisn.) Mez
Nectandra cf. membranaceae (Sw.) Griseb
Aniba panurensis (Meisn.) Mez
Eschweilera parvifolia Mart. Ex DC.
Eschweilera albiflora (DC.) Miers
Clarisia racemosa Ruiz & Pav
Hymenaea oblongifolia Huber
Dialium guianense (Aubl.) Sandwith
En la figura 8 se destaca la especie D. guianense puesto que por su alta densidad se esperaba la
mayor resistencia, así como para Q. acuminata se estimaba una menor resistencia por su densidad
más baja. Si bien Q. acuminata presenta poros amplios y moderado parénquima, su alta resistencia
se debe probablemente a que puede poseer lumen reducido aumentando relativamente su
resistencia, tal como lo atribuye Rivera & Lenton (1999). Para D. guianense el alto
54
comportamiento a la resistencia se le atribuye a que además de presentar una densidad alta, posee
una estructura estratificada de vasculares y radios, Pulido et al. (2011) lo que favorece la
resistencia para este ensayo, Rivera & Lenton (1999), esperándose una resistencia paralela cercana
a los 922 Kg/cm2 tal como lo reporta (Gutierrez & Silva, s.f).
Cpar_RUM
Cpar_RLP
Cpar_MOEm
Dialium_guianense
Qualea_acuminata
Hymenaea_oblongifolia
Eschweilera_albiflora
Clarisia_racemosa
Ocotea_cymbarum
Hymenolobium_petraeum
Eschweilera_parviflora
Inga_nobilis
Lauraceae
Endlicheria_sp
Qualea_paraensis
Virola_pavonis
Croton_matourensis
Parkia_nitida
0
200
400
600
800
1000
1200
COMPRESIÓN PARALELA (Kgf/cm^2)
Figura 8. Compresión paralela para las 15 especies forestales. Se muestra Resistencia Unitaria
Máxima (RUM), Resistencia al Límite Proporcional (RLP) y Modulo de Elasticidad (MOE x
1000 Kgf/cm2). Las especies se muestran en orden ascendente según valores de RUM .
Por otro lado los valores de Resistencia al Limite Proporcional (RLP) representaron entre el 83 al
95% de la resistencia unitaria máxima, relación mínima para la especie C. matourensis y máxima
para E. parviflora. No obstante, de acuerdo a la clasificación de la ASTM para RLP a la
55
compresión paralela, las especies de madera se encontraron en las categorías: BAJA para P. nítida,
V. pavonis y C. matourensis; MEDIO para Q. paraensis y Lauraceae; ALTO para O. cymbarum,
Q. paraensis, H. petraeum, I. nobilis, Endlicheria sp, E. parviflora y E. albiflora, C. racemosa, D.
guianense; y muy alto para H. oblongifolia.
Finalmente los módulos de elasticidad (MOE x 1000) se encontraron entre los valores de 20.655
y 71.654 kgf/cm2. Estos resultados estuvieron relacionados con la densidad de las especies de
madera, puesto que el comportamiento más bajo (206-265 kgf/cm2) lo obtuvo P. nítida, V. pavonis
y C. matourensis; un desempeño medio (33.7- 47 kgf/cm2) en C. racemosa, I. nobilis, Endlicheria
sp, H. petraeum, Lauraceae y O. cymbarum; con resistencia a la deformación alta (51.9-63.5
kgf/cm2) E. albiflora, Q. acuminata, E. parviflora, H. oblongifolia; y muy alta (71.6 kgf/cm2) D.
guianense.
Compresión perpendicular
Cuando se aplica una carga perpendicular a las fibras, estas sufren un esfuerzo perpendicular a su
eje, ocasionando que se compriman las pequeñas cavidades contenidas en ellas. La madera puede
encontrarse bajo una carga sin llegar a ser distinguible algún tipo de falla. Cuando la carga es
aumentada en compresión perpendicular las fibras se comprimen, generando un aumento en su
densidad y por tanto su capacidad para soportar mayores cargas (Piqué, 1984). Con el fin de poder
caracterizar la madera bajo este ensayo, se toma como base la deformación de la probeta bajo
carga.
La importancia que tiene la compresión perpendicular se ve reflejada por ejemplo en
construcciones donde son transmitidas cargas mediante piezas de apoyo hechas de madera o en el
caso de traviesas en ferrocarriles (Barghoorn, s.f.).
A continuación en la tabla 24 se presentan los valores registrados para las 15 especies en
compresión perpendicular, teniendo en cuenta que bajo la norma COPANT, solo se realizan las
pruebas en el plano radial. Es importante mencionar que para la especie Dialium guianense se
realizaron los ensayos bajo la norma ISO 3132, la cual modifica las dimensiones de las probetas.
56
Tabla 24. Categorización de las 15 especies para el ensayo de Compresión Perpendicular
Categoría
Bajo
Mediano
Alto
Muy alto
Valor
(kg/cm2)
47.850
41.933
60.335
108.574
87.158
114.621
101.835
106.766
N. Común
80.603
Guarango
Sangretoro
Vara blanca
Aguarráz
Avichure
Arenillo
Chocho
Guamo
Cerindo
Amarillo
86.724
Lauraceae
93.563
149.441
153.951
169.428
300.866
Pelacara
Fono colorado
Fono negro
Tamarindo
Puchico
Nombre Científico
Parkia nitida Miq
Virola pavonis (A.DC.) A.C.Sm
Croton matourensis Aubl.
Ocotea cf. cymbarum Kunth
Qualea paraensis Ducke
Qualea acuminata Spruce ex Warm
Hymenolobium cf petraeum Ducke
Inga nobilis Willd
Endlicheria sp.
Ocotea cf. myriantha (Meisn.) Mez
Nectandra cf. membranaceae (Sw.)
Griseb
Aniba panurensis (Meisn.) Mez
Clarisia racemosa Ruiz & Pav
Eschweilera parvifolia Mart. ex DC
Eschweilera albiflora (DC.) Miers
Hymenaea oblongifolia Huber
Dialium guianense (Aubl.) Sandwit
De acuerdo a los resultados presentados en la figura 9, se aprecia que de las quince especies
estudiadas la que presento los valores más altos en resistencia en el límite proporcional (RLP) fue
D. guianense con una valor de 300.866 kg/cm2, sobresaliendo por una diferencia del doble de carga
respecto a especies como H. oblongifolia, E. parvifolia y E. albiflora. Barcenas (1995), reporta
para D. guianense un valor de 202 kg/cm2 que en contraste con la tabla presentada por Sotomayor
(2008) de clasificación de características mecánicas de maderas mexicanas reporta para esta
especie un valor de 585 kg/cm2. En lo que respecta a la especie con menor resistencia se encuentra
V. pavonis con un valor de 41.933 kg/cm2, seguida de las especies P. nítida y C. matourensis.
Varios aspectos son los que hay que tener presente para este tipo de prueba ya que pueden llegar
a incidir en los valores de carga reportados, tal es el caso del ángulo de las fibras y de la dirección
de la carga, que con cada desviación del paralelismo entre fibras y carga se disminuye la resistencia
ejercida por la madera (Barghoorn, s.f.). Otros factores como la presencia de nudos, la temperatura
y el contenido de humedad tienen influencia sobre estos ensayos.
57
Figura 9. Resistencia en el límite proporcional de las 15 especies para el ensayo de Compresión
Perpendicular
Rivera & Lenton (1999), mencionan la relación que tiene el ensayo mecánico de compresión
perpendicular con la estructura anatómica de la madera, donde afirman que las fibras no se rompen
por el esfuerzo, sino por aplastamiento de las capas, provocando la deformación de los lúmenes.
Anatómicamente se relaciona la pared celular (espesor), siendo esta de mayor importancia por
ocupar una mayor área o cantidad de parénquima y contenidos (tílides y cristales), los cuales
impiden la deformación celular.
Cizallamiento
El esfuerzo de cizallamiento es la capacidad que tiene la madera de resistir desplazamiento interno
de una porción de la pieza respecto a la otra a lo largo del grano, Kretschmann (2010). Este
esfuerzo se produce cuando dos fuerzas iguales y opuestas en sentido, tratan de hacer deslizar, una
sobre la otra, las superficies adyacentes de una pieza de madera (Guevara, 2001). El resultado es
58
la ruptura o corte a lo largo del plano de la falla, siendo un indicador de la rigidez de la madera
(Cifuentes et Medina, 2005).
El esfuerzo de cizallamiento se expresa a través del Esfuerzo Unitario Máximo (EUM), el cual
relaciona la carga máxima o de rotura, sobre la superficie de falla. Los resultados obtenidos
muestran que los valores de EUM de las especies estudiadas están en un rango entre 47,37 kg/cm 2
para la especie Virola pavonis y 144.69 kg/cm2 para la especie Dialium guinanense (ver tabla 20).
El 80% de las especies registraron valores de resistencia mayores en el plano tangencial, sólo 3
presentaron valores más altos en el plano radial correspondientes a la especies C. racemosa, H.
petraeum e H. oblongifolia, no obstante, ésta última con una diferencia de 1.07% de la carga entre
los dos planos. Este comportamiento ha sido mencionado en la literatura, ya que por lo general la
resistencia al cizallamiento en general es mayor en el plano tangencial, pero con se presentan
excepciones (Lastra s.f.). En general la diferencia de los valores de EUM entre planos es baja, con
un promedio de 10% de diferencia entre la carga en plano tangencial y plano radial. Sin embargo
las especies Q. acuminata y E. parvifolia presentaron la diferencia más alta con un valor de
25.3kg/cm2 (24.9%) y 20.5 kg/cm2 (18.9%) respectivamente.
En la tabla 25, se encuentra la clasificación de los valores de esfuerzo unitario máximo (EUM)
promedio de la prueba de cizallamiento según la norma ASTM para las especies objeto de estudio.
En este se observa que el 46.7 % de las presentan EUM bajo, con valores inferiores a 85Kg/cm 2;
un 40% presentan EUM mediano, entre 86 y 120 kg/cm 2; y el 13.3% equivalente a dos especies,
tienen EUM alto con valores superiores a 120 kg/cm 2. De igual manera se observa que a pesar de
los resultados similares obtenidos en las especies del género Qualea, estas presentan diferente
categoría ya que la especie Q. paraensis se clasificó como bajo y Q. acuminata como EUM
mediano, no obstante la diferencia entre ambas especies es de 4.7 kg/cm 2.
De igual manera se evidencia que hay una relación directamente proporcional entre la densidad y
los valores de cizallamiento, ya que a medida que aumenta la densidad de las especies, aumenta
los valores de esfuerzo de esta propiedad, tal cual como lo afirma Kreschtmann (2010), al decir
que la densidad influye en el módulo de rigidez. Igualmente Lastra resalta que para cada especie
el aumento de la resistencia al cizallamiento está relacionado lineal o hiperbólicamente con el
59
aumento del peso específico. Por último, conocer los valores de EUM de la prueba cizallamiento
es importante ya que tienen aplicabilidad en el diseño estructural, ya que este tipo de esfuerzos es
normal encontrarlos en la unión de varias piezas en construcciones, como por ejemplo en la unión
de dos vigas (Villarraga, 1995).
Tabla 25. Clasificación del EUM en la prueba de cizallamiento según ASTM
Categoría
Bajo
Mediano
Alto
EUM
N. Común
(kg/cm2)
83.956 Avichure
59.110 Guarango
61.496 Amarillo
Nombre científico
Qualea paraensis Ducke
Parkia nítida Miq
Endlicheria sp
Aniba
panurensis
(Meins.)
Mez
74.900 Lauraceae
Nectandra cf membranaceae (Sw.) Griseb.
Ocotea cf. myriantha (Meisn.) Mez
74.654 Pelacara
Clarisia racemosa Ruiz & Pav
49.110 Sangretoro
Virola pavonis (A. DC.) A.C.Sm.
58.890 Vara blanca
Croton matourensis Aubl
89.964 Aguarráz
Ocotea cf. cymbarum Kunth
88.632 Arenillo
Qualea acuminata Spruce ex Warm
87.442 Chocho
Hymenolobium cf. petraeum Ducke
90.980 Guamo Cerindo Inga nobilis Willd.
93.802 Fono negro
Eschweilera albiflora (DC.) Miers
98.411 Fono colorado Eschweilera parvifolia Mart. Ex DC.
139.175 Puchico
Dialium guianense (Aubl.) Sandwith
132.930 Tamarindo
Hymenaea oblongifolia Huber
Dureza
La determinación de la dureza en la madera permite estimar su capacidad para soportar esfuerzos
puntuales de compresión en un área pequeña y así emplearlo como un criterio de aplicación para
determinar diferentes usos. Los resultados expuestos para esta propiedad se expresaron en unidad
de kilogramo fuerza, pero su comprensión debe radicar en que dicha fuerza es la necesaria para
que la madera sea penetrada por una esfera de 1 centímetro de diámetro.
Para efectos prácticos, la dureza por lo general es valorada desde los planos laterales, donde se
incluye la dirección radial y tangencial. En la figura 9 se observa que la dureza longitudinal fue
mayor en laterales para las especies Parkia nítida, Virola pavonis, Croton matourensis, Qualea
60
paraensis, Hymenolobium paraense, Clarisia racemosa, Inga nobilis y Qualea acuminata,
comportamientos que cumplen con la generalidad conceptualizada por Fuentes, Hernandez, &
Suarez (2012) quienes expresan que la dureza en las maderas en el eje longitudinal es superior a
la dureza de laterales.
No obstante, las especies Endlicheria sp, Lauraceae, Ocotea cymbarum, Eschweilera parviflora,
Eschweilera albiflora, Hymenaea oblongifolia y Dialium guianense, se destacaron por presentar
mayor resistencia lateral frente al plano longitudinal, situación no esperada pero que al igual la
han experimentado Rivera & Vargas (1982) para Dalbergia glauca, Puertas, Guevara, & Espinoza
(2013) para Apuleia leiocarpa, Iglesias & Yaguana (2014) para Terminalia amazonia y Mora
megistosperma.
Figura 10. Dureza para las 15 especies forestales. Dureza tangencial (Durt), Dureza radial
(DurR) y dureza en extremos (DurE). De acuerdo a las barras; 8 de las 15 especies de madera,
presentaron menores resistencias a la penetración en planos laterales.
En la tabla 26 se distinguen las diferentes categorías de esfuerzo a la dureza que fue definida para
cada especie de madera. La mayor categoría la ocupó Dialium guianense, especie que por su parte
registró la más alta densidad; mientras la menor categoría fue compartida por las especies que
obtuvieron las menores densidades. Dicha relación es considerada por Interián-Ku, Borja, Valdez,
61
García, Romero, & Vaquera (2011) quienes mencionan que la dureza depende tanto del espesor
de la pared como de su contenido de lignina, lo cual la relaciona con la densidad, así como influyen
otros factores como la presencia y abundancia de tejidos parenquimaticos y contenidos celulares
que afectan negativamente la dureza.
Tabla 26. Clasificación de dureza lateral según ASTM
Categoría
Valor
161,132
Muy bajo 173,967
198,896
389,067
394,889
299,746
Bajo
Mediano
Alto
Muy alto
N. Común
Guarango
Sangretoro
Vara blanca
Aguarráz
Avichure
Amarillo
Nombre Científico
Parkia nítida Miq
Virola pavonis (A. DC.) A.C.Sm.
Croton matourensis Aubl
Ocotea cf. cymbarum Kunth
Qualea paraensis Ducke
Endlicheria sp
Aniba
panurensis
(Meins.)
Mez
Nectandra cf membranaceae (Sw.)
325,439 Lauraceae
Griseb.
Ocotea cf. myriantha (Meisn.) Mez
524,691 Arenillo
Qualea acuminata Spruce ex Warm
413,768 Chocho
Hymenolobium cf. petraeum Ducke
701,742 Fono colorado
Eschweilera albiflora (DC.) Miers
738,586 Fono negro
Eschweilera parvifolia Mart. Ex DC.
459,399 Guamo Cerindo Inga nobilis Willd.
431,095 Pelacara
Clarisia racemosa Ruiz & Pav
840,475 Tamarindo
Hymenaea oblongifolia Huber Sandwith
1370,253 Puchico
Dialium guianense (Aubl.)
El comportamiento de la dureza en el plano radial presentó una relación directa con la propiedad
de compresión perpendicular (figura 11). Esta correlación de variabilidad compartida o explicada,
se definió como efectiva puesto que indica una probabilidad de ocurrencia muy cercana a uno. Así
mismo, se consideró como una correlación fuerte, ya que el tamaño de la muestra consta de cerca
720 datos para cada una de las dos pruebas y cuenta con una buena representatividad
interespecífica; incluyendo especies latifoliadas con densidades de 0.32 a 0.82 g/cm 3, especies que
también cuentan con características anatómicas diversas como los conductos laticíferos para las
especies de Lauraceae y estructuras estratificadas para Dialium guianense (Pulido et al. 2011).
62
Figura 11. Correlación en términos de variabilidad compartida y explicada entre Compresión
perpendicular (RLP) y Dureza radial. La línea roja punteada indica una correlación teórica
perfecta. Cada una de las cruces representa una especie objeto de estudio; la intersección de las
cruces hace referencia al valor promedio y el largo está relacionado con la variación de los datos.
Tenacidad
Denominada también por Barghoorn, A. (s.f.) como resistencia de la madera a la rotura por golpe,
la resistencia al impacto o tenacidad de la madera, se define como la capacidad que tiene esta para
absorber la energía de un golpe. Su importancia radica en que es una propiedad mecánica que
permite determinar la capacidad que tiene una madera para ser empleada cuando es necesario
absorber o disipar la energía de un impacto, como por ejemplo mangos de herramientas y artículos
deportivos. (Davalos et al., 2010).
De acuerdo a Pazos et al. (2003), la determinación de la tenacidad de la madera resulta fundamental
por dos razones, la primera es mirar la variabilidad que tiene realizar la prueba con diferentes
63
individuos de la misma especie, la segunda, determinar la capacidad máxima que puede tener la
madera para soportar cargas repetidamente y por último, como un medio de evaluar el efecto que
tienen los agentes patógenos en la madera, de igual forma su exposición a temperaturas elevadas
o tratamientos químicos (Davalos et al., 2010).
A continuación en la tabla 27 se presentan los valores registrados para las 15 especies en la prueba
mecánica de tenacidad.
Tabla 27. Categorización de las 15 especies para el ensayo de tenacidad
Valor
(kg.m/cm2)
0.354
0.595
Guarango
Amarillo
Bajo
0.587
Lauraceae
Mediano
0.258
0.265
0.664
0.614
0.747
0.672
1.009
Alto
Muy alto
0.999
0.725
0.883
1.161
1.580
Sangretoro
Vara blanca
Aguarrás
Avichure
Arenillo
Chocho
Guamo
Cerindo
Fono colorado
Pelacara
Tamarindo
Fono negro
Puchico
Categoría
Especie
Nombre Científico
Parkia nitida Miq
Endlicheria sp.
Ocotea cf. myriantha (Meisn.) Mez
Nectandra cf. membranaceae (Sw.)
Griseb
Aniba panurensis (Meisn.) Mez
Virola pavonis (A.DC.) A.C.Sm
Croton matourensis Aubl.
Ocotea cf. cymbarum Kunth
Qualea paraensis Ducke
Qualea acuminata Spruce ex Warm
Hymenolobium cf petraeum Ducke
Inga nobilis Willd
Eschweilera parvifolia Mart. ex DC
Clarisia racemosa Ruiz & Pav
Hymenaea oblongifolia Huber
Eschweilera albiflora (DC.) Miers
Dialium guianense (Aubl.) Sandwit
Se presenta en la figura 12, los valores de resistencia al impacto o tenacidad de la madera de las
quince especies ensayadas en una máquina de péndulo, de la cual se puede deducir que la especie
Inga nobilis y Dialium guianense, denominadas bajo la numeración 3 y 14 respectivamente,
presentan variaciones respecto al comportamiento de las otras especies. Estas variaciones se
justifican por diferentes aspectos, que para el caso de la especie I. nobilis resulta importante el
hecho de mencionar que se presentaron diferencias en uno de los tres individuos, generando
64
oscilaciones en los valores de tenacidad, su valor promedio fue de 1.009 Kgf-m/cm2. En el caso
de la especie D. guianense la presencia en las probetas falladas de albura y duramen pudieron
afectar los valores de carga, siendo su valor promedio de 1.580 009 Kgf-m/cm2.
Figura 12. Relación entre densidad básica y tenacidad de la madera de las 15 especies
A pesar de estas diferencias, en la prueba de tenacidad se afirma que la especie D. guianense es la
especie más tenaz, entendida como la madera que presento la mayor resistencia frente a una carga.
Caso contrario se encuentra la especie C. matourensis, considerada por ser la madera más frágil
dentro del grupo de especies estudiadas. La fragilidad esta atribuida a la misma fragilidad de las
fibras o a los defectos como nudos o grano desviado (Escobar et al., s.f.).
El valor de correlación entre la tenacidad y la densidad básica fue de r 2 = 0.85, significando esto
que existe una relación lineal directa entre estas dos variables y que permite afirmar que entre
menor sea el valor de su densidad básica menor será el valor de resistencia al impacto. Sin embargo
hay que tener en cuenta que existen factores que llegan a influir en la resistencia a la rotura por
65
golpe, uno de ellos es el peso específico, las propiedades anatómicas, donde las fibras más paralelas
al eje del tronco aumentan la resistencia al golpe y la constitución de la pared intercelular influye
en su función de cimiento entre las células. Respecto a la orientación de las fibras se afirma que
si estas se encuentran en dirección oblicua con una desviación de al menos 5º se disminuye la
resistencia de un 10% de la carga (Barghoorn, s.f.)
Resulta también importante destacar que la presencia de factores biológicos llegan a tener una
fuerte influencia en la resistencia que ejerce la madera frente a una carga, ejemplo de esto se pudo
apreciar en algunas especies que presentaron problemas de hongos y ataques de insectos como el
Guarango (Inga nobilis), Sangretoro (Virola pavonis) y Fono Negro (Eschweilera albiflora). Se
aclara que para los ensayos de tenacidad siempre se procuró tener probetas en buen estado y que
cumplieran con las condiciones estipuladas por la norma, pese a ello la falta de material para
algunas especies impidió obtener más probetas.
7.2.3 Resultados de usos
En la tabla 26 se encuentra el reporte de los usos potenciales determinados para cada una de las
especies objeto de estudio. La diferencia de colores relaciona la jerarquización de las especies
posibles que se encontraron para cada uso, la cual fue obtenida a través del segundo filtro con
ayuda de las características organolépticas y otras variables. De esta manera, con el color verde se
denotan las especies prioritarias para cada uso específico, en amarillo especies secundarias o de
segundo orden y por último, en color rojo las especies que de acuerdo a la metodología mostraron
características aptas para los usos, pero, que de acuerdo a las propiedades de las mismas, no se
recomiendan como uso prioritario. Como apoyo a la tabla 26, se presenta en anexos el glosario de
los usos determinados.
66
Lauraceae
Fono Colorado
6
7
8
9 10 11 12 13 14 15
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
1
Acabados de exteriores
2
Acabados interiores
x
3
x
5
Aisladores
Alma de tableros
enlistonados
Andamios
6
Arcos
7
Arcos para violines
8
Armazón de barcos
9
Armazón de buques
4
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
11 Artesanías
x
x
x
x
x
x
x
x
x
x
12 Artículos para escritorio
x
x
x
x
x
x
15 Balsas
x
x
x
x
16 Barriles
x
x
x
x
x
x
x
x
x
x
x
x
x
21 Cañas de pescar
x
x
x
x
x
x
x
x
x
x
x
x
x
x
23 Carrocerías
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
27 Cucharas para helados
x
28 Culatas de armas
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
30 Embalajes
x
x
x
x
x
x
x
x
31 Embarcaciones
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
32 Empaques
x
x
x
x
x
33 Encofrados
x
x
x
x
x
34 Ensambles
x
x
26 Crucetas
29 Ebanistería
x
x
24 Coches de ferrocarril
25 Construcción
x
x
x
x
x
x
x
18 Bates
x
x
x
x
17 Bastones
19 Cabos para herramientas
x
x
13 Ataúdes
14 Bajalenguas
x
x
x
22 Carpintería
x
x
x
10 Armazón para silla
20 Cajonería y gabinetería
x
Avichure
Chocho
5
Puchico
Arenillo
4
Vara Blanca
Fono Negro
3
Aguarráz
Amarillo
2
Tamarindo
Guamo C.
1
Sangretoro
Pelacara
N° USOS
Guarango
Tabla 28. Resumen y priorización de usos de las 15 especies estudiadas
x
x
x
x
x
x
x
67
Lauraceae
Fono Colorado
6
7
8
9 10 11 12 13 14 15
35 Entarimados
x
36 Escaleras
x
x
x
x
x
x
38 Estibas
x
x
39 Estructuras
x
x
40 Formaletas
x
x
x
x
x
x
x
42 Hojas de puertas
x
x
x
37 Estacas
41 Fósforos
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
43 Hormas de zapatos
x
x
x
x
x
x
x
x
45 Implementos agrícolas
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
49 Lomo de cepillos
x
x
51 Marco para ventana y puerta
x
52 Mástiles
x
x
x
x
x
x
x
x
x
x
x
x
x
50 Maquetas
x
x
x
54 Muebles
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
55 Palancas para minas
x
x
x
x
x
x
x
x
x
x
x
56 Palillos
x
x
x
x
x
x
x
x
x
57 Pilones
x
x
58 Pilotes
x
59 Pisos
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
60 Poleas
x
61 Postes para cercas
x
x
x
x
x
x
x
x
x
x
62 Postes para líneas aéreas
x
x
x
x
x
x
x
x
x
x
63 Productos moldurados
x
x
x
x
x
x
x
x
x
x
64 Puentes
x
x
x
x
x
65 Quillas
x
66 Reglas
x
x
x
x
x
67 Remos
x
x
x
x
53 Modelos para fundición
x
x
x
48 Lápices
x
x
x
x
x
x
x
47 Juguetería
x
x
44 Huacales
46 Instrumentos musicales
x
x
x
Avichure
Chocho
5
Puchico
Arenillo
4
Vara Blanca
Fono Negro
3
Aguarráz
Amarillo
2
Tamarindo
Guamo C.
1
Sangretoro
Pelacara
N° USOS
Guarango
Tabla 29. Resumen y priorización de usos de las 15 especies estudiadas (continuación)
x
x
x
x
68 Tacones para zapatos
x
x
69 Techos
x
x
x
x
x
x
x
70 Durmientes
x
x
x
x
x
x
x
71 Vigas
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
68
Tabla 29. Resumen y priorización de usos de las 15 especies (continuación)
x
x
x
Especies Prioritarias
Especies Secundarias
Especies Terciarias
7.2.3.1 Análisis de determinación de usos
Para la interpretación de los resultados se recurrió a la técnica de análisis multivariante de
conglomerados (Cluster), con el objetivo de agrupar especies con usos semejantes, tratando de
lograr la mayor similitud en cada grupo de especies de madera y el mayor contraste entre ellos.
El análisis partió de una matriz base de información conteniendo las observaciones de frecuencia
por especie sobre uso considerado, para dar lugar a una segunda matriz con medidas de similitud
de distancia euclidiana al cuadrado (Ver tabla 27). Como representación gráfica se obtuvo un
dendrograma, donde se pudieron identificar 4 cluster con 14 etapas.
Figura 13. Dendrograma de usos de las 15 especies forestales
69
GRUPO A
Las especies que se encuentran en este grupo de usos presentan una densidad básica de 0.497 g/cm 3
y 0.498 g/cm3, pertenecientes a las especies Endlicheria sp. y el grupo de Lauraceae
respectivamente. Por su densidad anhidra se encuentran catalogadas entre livianas y medianamente
pesadas. Teniendo presente las propiedades mecánicas, los valores de resistencia de este grupo se
catalogaron entre bajos a medianos.
De acuerdo a la figura 13, estas dos especies presentan la mayor relación o similitud de las 15
especies, esto debido a la totalidad de usos compartidos que tienen en el grupo, el cual corresponde
al 81.81% siendo nueve usos en total. Se destaca la asociación entre balsas, embalajes y estibas
como usos de protección y transporte de carga ligera por lo mismo de su densidad y resistencia;
juguetería e instrumentos musicales asociados a la industria manufacturera y por último se
encuentran artesanías, ebanistería, muebles y alma de tableros enlistonados.
GRUPO B
Las especies pertenecientes a este grupo de usos se caracterizan en general por presentar una
densidad básica entre 0.328 g/cm3 y 0.505 g/cm3. Teniendo en cuenta su densidad anhidra la
mayoría de las especies se encuentran catalogadas por ser livianas y tan solo una como
medianamente pesada. De igual forma sus propiedades mecánicas reflejan los valores más bajos
de las especies en estudio, teniendo un rango entre muy bajo a bajo.
Teniendo en cuenta la figura 13, se presenta una relación o semejanza de usos entre las especies
P. nítida y V. pavonis para un primer nivel, seguido de la especie C. matourensis y terminando con
la especie Q. paraensis que presenta una mayor distancia respecto al primer nivel de este grupo.
La especie que tiene mayor cantidad de usos para este caso es la especie C. matourensis.
Finalmente los usos más destacados en este grupo por asociaciones son huacales y ataúdes,
fósforos, aisladores y modelos para fundición, de igual forma se distinguen los usos para
carpintería, maquetas y encofrados.
70
GRUPO C
Este grupo contempla la particularidad, desde un primer plano de exponer cuatro de las cinco
especies de madera con mayor cantidad de usos asignados por el estudio, los cuales son Clarisia
racemosa, H. petraeum, O. cymbarum y Q. acuminata, y en segunda medida contiene las especies
de madera que poseen las características organolépticas más atractivas como lo es el olor de O.
cymbarum y los llamativos diseños flameados por contraste de tejidos de las especies de C.
racemosa e H. petraeum.
A nivel esquemático, el dendrograma presenta la mayor semejanza entre las especies C. racemosa
e H. petraeum, seguidas por una segunda etapa de similitud con O. cymbarum, tercera y cuarta
etapa con Q. acuminata e I. nobilis respectivamente. Los valores de similitud entre dichas especies
se encuentran relacionados tanto con la cantidad de usos como la cantidad de usos comunes entre
ellos, por lo tanto a menor distancia entre especies de madera, mayor registro de usos y mayor
cantidad de usos compartidos con las especies de madera que conformaron la primera etapa del
conglomerado.
Por último, en este grupo de especies cuyas densidades básicas se encuentran entre el rango de
0.508 g/cm3 y 0.601 g/cm3, se destacan los usos estructurales y de construcción en los que se
incluyen vigas, escaleras y techos; usos que contemplan operaciones de torneado, tallado y el
taraceo como muebles, culatas para armas, instrumentos musicales y armazón de sillas; usos de
producción artesanal como pilones; y otros usos de manufacturas como barriles y entarimados.
GRUPO D
Las especies pertenecientes a este grupo de usos se caracterizan en general por presentar una
densidad básica entre 0.628 g/cm3 y 0.820 g/cm3, siendo los valores registrados más altos dentro
del estudio, y que de acuerdo a su densidad anhidra se catalogan como pesadas. De igual manera
con las propiedades mecánicas fueron los valores de resistencia más altos presentados, catalogados
entre medianos a muy altos.
De acuerdo al dendrograma se presenta una relación de mayor semejanza de usos entre las especies
E. albiflora y E. parvifolia en un primer nivel, seguido de la especie D. guianense hasta finalizar
71
con H. oblongifolia, con un mayor valor de distancia. Los valores de distancias están relacionados
tanto con la cantidad de usos de cada especie, como por los usos comunes entre ellas. De esta
manera la especie H. oblongifolia presenta el mayor valor debido a que tiene el mayor número de
usos potenciales de este grupo.
Finalmente los usos más destacados para este grupo se asocian en la industria de la manufactura
como bates, bastones, lomo de cepillos, implementos agrícolas, poleas, arco para violines, cañas
de pescar, remos, crucetas y quillas. Usos asociados al tráfico pesado como durmientes y pisos; y
usos de armazones en general como armazón de buques, carrocerías y coches de ferrocarril.
72
8. Conclusiones y Recomendaciones
8.1 Conclusiones
Las especies de la familia Lauraceae, Aniba panurensis, Ocotea myriantha y Nectandra
membranaceae, presentaron los más bajos coeficientes de variación en sus propiedades físicas y
mecánicas, mientras que la especie Inga nobilis presentó una alta heterogeneidad en su
comportamiento físico-mecánico. Por su parte, las especies Eschweilera albiflora y Eschweilera
parviflora a pesar de pertenecer a un mismo género taxonómico, contrastaron notoriamente en los
coeficientes de estabilidad dimensional, en el contenido de humedad en el punto de saturación de
las fibras y en los esfuerzos sometidos bajo compresión paralela a la fibra y flexión estática.
La elección de metodologías para la determinación de usos potenciales están sesgadas a la
comparación de propiedades físico-mecánicas de especies cuyos usos son conocidos, sin embargo
se vio la necesidad de emplear otros criterios de evaluación a partir de otras evaluaciones obtenidas
en laboratorio.
Se definieron 72 tipos de usos categorizados para cada una de las especies de madera. Las especies
Clarisia racemosa, Hymenaea oblongifolia e Hymenolobium petraeum se destacaron por presentar
la mayor cantidad de usos potenciales, mientras que las especies Virola pavonis y Qualea
paraensis presentaron el menor número de usos asignados por el estudio.
Los usos determinados para las 15 especies forestales maderables se agruparon en 4 grupos de
similitud. Para el grupo de las especies de madera liviana (V.pavonis, P.nitida, C.matourensis y
Q.paraensis) se asociaron usos de poca transformación como huacales, encofrados, aisladores y
otros de transformación de mejor acabado como maquetas y modelos para fundición. En el
segundo grupo conformado por especies de la familia Lauraceae (Endlicheria sp, A. panaurensis,
O. myriantha, N. membranaceae) presentan maderas livianas a medianamente pesadas, se destacan
usos como balsas, muebles y alma de tableros enlistonados. Para el tercer grupo sobresalen
especies de madera como I. nobilis, Q. acuminata, O. cymbarum, C. racemosa e H. petraeum, de
estas especies se pueden diferenciar dos subgrupos, el primero siendo de torneado y tallado como
muebles, artesanías, culatas para armas, instrumentos musicales y el segundo enfocado más a nivel
estructural y de construcción. El último grupo se destacó por presentar las especies de madera con
densidades altas (E.parviflora, E.albiflora, D.guianense e H.oblongifolia), en donde se destacan
73
los usos de tráfico pesado como pisos y durmientes, armazones en general estructura de buques y
otros que se relacionan con la manufactura como quillas, arco para violines, entre otros.
8.2 Recomendaciones
Son numerosos los usos asignados que contemplan una relación con los criterios de trabajabilidad
de la madera .La trabajabilidad considerada como un aspecto muy importante por su relación con
la elaboración de productos de valor agregado. Para ello es fundamental desarrollar estudios con
pruebas de cepillado, corte longitudinal y transversal con sierra circular, barrenado, escoplado,
moldurado, torneado y tallado, así como la evaluación al corte con herramientas de diente
reforzado para especies muy duras, tal el caso de Dialium guianense.
Es prescindible realizar estudios para el ciclo de presecado y secado artificial con el fin de dar un
manejo adecuado a las maderas estudiadas y obtener una manufactura estable y de calidad. Para el
presecado se pueden plantear estudios en horno solar y para ciclos de secado técnico se puede
hacer uso de programas para maderas de clima templado como los establecidos por la JUNAC,
1984.
Algunos de los usos definidos ponen en condiciones de riesgo a la madera por factores ambientales
y agentes biológicos. Conocer el riesgo orienta la aplicación más apropiada de la madera, por lo
que se justifica realizar estudios de durabilidad natural aplicando método de bloque-agar como
método de bloque suelo.
Las especies como Hymenolobium petraeum, Clarisia racemosa, Ocotea cymbarum y Qualea
acuminata, comparten usos estructurales y de construcción en general, por tanto se recomienda el
desarrollo de estudios de encolado que evalúen la resistencia al deslizamiento a lo largo de la fibra
por medio de ensayos de tracción. Algunos adhesivos a considerar pueden ser melanina urea
formaldehido (MUF), fenol resorcinol formaldehido (PRF), emulsión polímero de isocianato (EPI)
y poliuretano (PUR).
La aplicación de tratamientos de preservación es fundamental para dirigir el empleo de una madera
de densidad anhidra media y que está sometida a algún nivel de afectación por diferentes
74
condiciones atmosféricas y biológicas. Por lo tanto, es importante evaluar el comportamiento de
absorción, penetración y retención de la madera ante la acción de persevantes como bórax, ácido
bórico y otros menos dañinos como Azaconazde, Pyrethrum, Pyretroides, entre otros.
Para que los usos posibles de cada una de las especies de madera estudiadas transciendan a una
posición de mercado establecido, se debe culminar con estudios que contemplen la dinámica
económica del producto ante una situación nacional como posiblemente internacional.
Las condiciones de oferta maderera para las 15 especies forestales, ante un mercado de
transformación secundaria o de manufactura, debe estar soportada por evaluaciones periódicas de
la estructura horizontal ecológica, que permitan dar lineamientos de manejo sostenible y a su vez
aseguren la constante producción de madera desde el bosque, por medio de prácticas de manejo
silvicultural bajo una ordenación forestal.
75
9. Bibliografía
Ananias R. (s.f). Física de la madera. Departamento ingeniería en maderas. Universidad del BíoBío. Chile.
Arostegui, A. & Sato, A. (1970). Propiedades físico mecánicas y usos de dos especies de
Podocarpus (P. rospigliosi Pilger; P. montanus varMeridensis y Gray). Revista Forestal del Perú.
Vol. 4 (1-2): 1 -10.
Aróstegui A. (1982). Recopilación y análisis de estudios tecnológicos de maderas peruanas. Lima,
Perú.
Aristizábal M., Vergel, J., & Góngora, H. (2003). Plan de Ordenación Forestal de la zona Yarí
- Caguán. Caracterización General. Corpoamazonia. Florencia 160 pp.
Baradit E., Niemz P., & Fernández A. (2013). Propiedades físico-mecánicas de algunas maderas
nativas chilenas coníferas y latifoliadas por ultrasonido. Maderas, Ciencia y tecnología. 15 (2):235244 p.
Barcenas, G. (1995). Caracterización tecnológica de veinte especies maderables de la Selva
Lacandona. Madera y Bosques 1 (1). Pp. 9 - 38.
Barghoorn, A. (s.f.). Conferencias de Tecnología de Maderas. Parte A: Físicas y Propiedades
Mecánicas. Universidad Distrital Francisco José de Caldas. Facultad de Ingeniería Forestal.
Benavides B., Zubieta M., Vargas G., & Barrera J.A. (2013). Bases técnicas para el desarrollo
forestal en el departamento del Guaviare, Amazonia colombiana.
Cárdenas, D. & López, R. (2000). Plantas útiles de la amazonia colombiana. Departamento del
Amazonas. Perspectivas de los productos no maderables. Instituto Amazónico de Investigaciones
Científicas SINCHI. 133 pp. Bogotá D.C.
Cárdenas L., D. & Salinas N. (2007). Libro rojo de plantas de Colombia. Volumen 4. Especies
maderables amenazadas. Primera parte. Serie libros rojos de especies amenazadas de Colombia.
Bogotá, Colombia. Instituto Amazónico de Investigaciones Científicas SINCHI - Ministerio de
Medio Ambiente, Vivienda y Desarrollo Territorial. 232 pp.
Cifuentes F., & Media J. (2005). Determinación de las Propiedades físicas, Mecánicas y
Durabilidad Natural de Teca (Tectona grandis) y Eucalipto (Eucalyptus tereticornis) Procedencia
Fundación (Magdalena). Laboratorio de tecnología de maderas. Universidad Distrital Francisco
José de Caldas.
76
Cisternas, P. A. (1994). Conversión de densidades de la madera. Ciencia e investigación
forestal, 8(2), 300-315.
Dávalos-Sotelo, R., Pérez-Olvera, P., & Bárcenas Pazos, G. M. (2010). Resistencia al impacto
de la madera de diez encinos (Quercus) mexicanos. Revista Chapingo. Serie ciencias forestales y
del ambiente, 16(2), 207-214.
Díaz, Paola P. (2005). Evaluación de Propiedades Físicas y Mecánicas de madera de Nothofagus
glauca (Hualo) proveniente de la zona de Cauquenes. Universidad de Talca. Escuela de Ingeniería
en Industrias de la Madera. Talca, Chile.
Espina, A. (2006). Densidad básica de la madera de Eucalyptus globulus en dos sitios en Chile.
Universidad Austral de Chile. Faculta de Ciencias Forestales.
Fritz, D. (2004). A. Manual: La construcción de viviendas en Madera. Corporación Chilena de la
Madera (CORMA).
Fuentes, F., Hernández, J., & Suarez, E. (2012). Industrialización, Comercialización y Manejo
sostenible de 10 especies nativas mexicanas. Centro Universitario de Ciencias
Exactas e Ingenierías. Departamento de Madera, celulosa y papel.
Glass V. S. & Zelinka L.S. (2010). Moisture Relations and Physical Properties of Wood. In:
Wood Handbook: Wood as an engineering materail. Centennial Edition. Forest Productos
Laboratory. Madison, Wisconsin. U.S: Department of Agriculture.
Guevara, H. (2001). Propiedades físico - mecánicas de la madera. Bogotá D.C. Universidad
Distrital Francisco José de Caldas. Pp. 64.
Gutiérrez, V., & Silva, J. (s.f). Información técnica para el procesamiento industrial de 134
especies maderables de Bolivia. La Paz: FAO. Organización de las Naciones Unidas para la
Agricultura y la Alimentación.
IGAC. (1993). Instituto Geográfico Agus Aspectos ambientaless para el ordenamiento territorial
del occidente del departamento del Caquetá (Vol. VI A). Colombia: Tercer mundo editores
Igartúa, D. V. (2013). Propiedades xilotecnológicas de Acacia melanoxylon implantada en el
sudeste de la provincia de Buenos Aires, Argentina (Doctoral dissertation, Facultad de Ciencias
Agrarias y Forestales).
Iglesias, J., & Yaguana, C. (2014). Propiedades anatómicas, físicas y mecánicas de 93 especies
forestales. Quito: Tallpa Publicidad Impresa.
77
Interián-Ku, V., Borja, M., Valdez, J., García, E., Romero, A., & Vaquera, H. (2011).
Caracteristicas anatómicas y propiedades fisicas de la madera de Caesalpinia gaumeri Greenm en
Dzan, Yucatán. Madera y Bosques 17 (1), 23-26.
Jiménez, J. & Muñoz, V. (2007). Metodología del Estudio de las propiedades físico - mecánica,
y usos posibles de las especies florísticas Castaño (Scleronema Nº 2) y Creolino (Clathrotropis cf
macrocarpa), de los bosques naturales del corregimiento de Tarapacá, Jurisdicción del
Departamento del Amazonas. CORPOAMAZONIA. 2007.
JUNAC, 1984. Manual de Diseño para maderas del Grupo Andino. Proyectos andinos de
desarrollo tecnológico en el área de los recursos forestales tropicales. PADT-REFOREST.
Klinger W. (1989). Ejercicios Sobre Propiedades Físicas de la Madera. Universidad Distrital
Francisco José de Caldas.
Klinger, W. & Y. Talero. (2001). Propuesta metodológica para la determinación de usos
potenciales de la madera a partir de parámetros físico-mecánicos cuantitativos. Universidad
Distrital Francisco José de Caldas. Bogotá. Pg. 7- 24.
Kollmann F.P., & Côte W.A. (1968). Principles of wood science and technology. Vol. l Solid
wood. New York, USA. 592 p.
Kretschmann E. D. (2010). Mechanical Properties of Wood. In: Wood Handbook: Wood as an
engineering materail. Centennial Edition. Forest Products Laboratory. Madison, Wisconsin. U.S:
Department of Agriculture.
Laboratorio Nacional de productos forestales (1936). Resultados de 47 maderas de la Guayana
Venezolana. Merida, Venezuela.
Laboratorio Nacional de productos forestales (1971). Clasificación de usos y esfuerzos de
trabajo para maderas Venezolanas. Merida, Venezuela.
Lastra, R. (s.f).Compilación de las propiedades físico-mecánicas y usos posibles de 178 maderas
de Colombia.
León H. W. (2014). Anatomía de Maderas de 108 Especies de Venezuela. Pittieria, Revista del
Departamento de Botánica y Ciencias Básicas.
Londoño, A. (2007). Introducción a la ingenieria de la madera. Ibagué: Universidad del Tolima.
78
López, R. & Cárdenas D. (2002). Manual de Identificación de especies maderables objeto de
comercio en la Amazonia Colombiana. Instituto Amazónico de Investigaciones Científicas
SINCHI. Bogotá, Colombia. Pp. 99.
Moglia G.J., Giménez A. M. & Bravo S. (2014). Serie didáctica de dendrología. Tomo II:
Macroscopía de madera orientada. Universidad de Santiago de Chile, Facultad de Ciencias
forestales.
Nájera A. B., Zacarías V. A., Méndez J., Graciano J. (2005). Propiedades físicas y mecánicas
de la madera en Quercus laeta liemb de el Salto, Durango. Universidad Autónoma Indígena de
México. Ra Ximhai 1(3):559-576.
Núñez, C. (2007). Relaciones de Conversión entre densidad básica y densidad seca de madera.
Revista de Ciencia y Tecnología. Pág. 44- 50.
Otavo E., (2008). Estado de los Recursos Naturales en el área de jurisdicción de
CORPOAMAZONIA. Pp. 211.
Pazos, G. B., Morales, R. P. Z., Candelaria, V. R. O., Báez, A. G., & Salazar, J. A. H. (2003).
Correlación de los resultados de impacto o tenacidad de 16 maderas mexicanas utilizando dos
métodos de prueba. Revista Madera y Bosques, 9(1), 55-70.
Pereyra, O & Gelid, M. (2002). Estudio de la variabilidad de la densidad básica de la madera de
Pinus taeda para plantaciones de Misiones y norte de Corrientes.
Piqué, J., & Junta del Acuerdo de Cartagena. (1984). Manual de diseño para maderas del grupo
andino.
PBOT. (2010). Plan Básico de Ordenamiento Territorial 2010-2023. Cartagena del Chairá.
Puertas, P., Guevara, C., & Espinoza, M. (2013). Utilización industrial y mercado de diez
especies maderables potenciales de bosques secundarios y primarios residuales. Lima, Perú:
Asociación para la Investigación y Desarrollo integral.
Pulido, E., Mateus, D., & Lozano, I. (2011). ANATOMÍA XILEMATICA DE
CAESALPINIACEAE REGISTRADAS EN LA XILOTECA DE LA UNIVERSIDAD
DISTRITAL FRANCISCO JOSÉ DE CALDAS. Colombia Forestal, 145-171.
Quevedo, N. M. (2010). Diversificación de productos y estudio de prototipos de valor agregado.
Proyecto PD 512/08. Asociación para la investigación y Desarrollo Integral. Lima, Perú.
79
Ramírez M., Valenzuela H., & Díaz C. (2001). Propiedades mecánicas en flexión de la madera
de Pinus radiata, creciendo en un sistema silvopastoril. Elasticidad y resistencia. Maderas, Ciencia
y tecnología. 3 (1-2):45-43 p.
Rivera H., & Vargas G. (1982). Determinación de las propiedades físicas y mecánicas de 14
maderas de Caquetá, Colombia.
Rivera, S., & Lenton, M. (1999). La xilología y las propiedades mecánicas de cinco maderas
nativas argentinas. Quebracho N° 7, 72-78.
Rodríguez, R. M. & Sibille, M. A (1996). Manual de Identificación de especies forestales de la
subregión andina. Instituto Nacional de Investigación Agraria. Lima, Perú.
Roussy, L.et al. (2013). Propiedades tecnológicas de la madera de Citharexylum montevidense
(Spreng.) Mol. "Espina de bañado". Facultad de Ciencias Forestales. Universidad Nacional de
Santiago del Estero. Quebracho Vol. 21 (1,2): 58-66.
Schultes, R., E. (1978). DE PLANTIS TOXICARIIS E MUNDO NOVO TROPICALE
COMMENTATIONES XXIII: ETHNOPHARMACOLOGICAL NOTES FROM NORT.
Botanical Museum leaflets, Harvard University. Pag 231
Simpson W. & TenWolde A. (1992). Physical properties and mositure relation of Wood. In:
Wood Handbook: Wood as an engineering materail. Forest Prodcutos Laboratory. Agric.
Handb.72. Washington, DC. U.S: Departmen of Agriculture.
Sotomayor, J.R. (2008). Tabla Fitemac de clasificación de características mecánicas de maderas
mexicanas. Universidad Michoacana de San Nicolás de Hidalgo. Facultad de Ingeniería en
Tecnología de la Madera.
Sotomayor R. J., & Ramírez M. (2014). Investigación e Ingeniería de la Madera. Revista del
Laboratorio de Mecánica de la Madera 10 (1). Universidad Michoacana de San Nicolás de Hidalgo.
Spavento E., Keil G.D. & Monteoliva S. (2008). Propiedades físicas de la madera. Curso de
Xilotecnología. Departamento de Ingeniería Agrícola y Forestal. Universidad Nacional de la Plata.
Tamarit J.C. & Fuentes M. (2003). Parámetros de humedad de 63 maderas latifoliadas
mexicanas eb función de su densidad básica. Rev. Chapingo Serie Ciencias Forestales y del
Ambiente 9(2):155-164.
80
Triana, M. et al. (2008). Estudio de las propiedades mecánicas de la madera de Palosangre
(Brosimun rubescens Taub.) Procedencia: Leticia, Amazonas. Revista Colombia Forestal Vol: 11:
149 -164.
Tuset R, F Durán (1986) Manual de la Madera Comercial, Equipos y Procesos de Utilización.
Ed. Hemisferio Sur. Montevideo, Uruguay: 688 p.
Villarraga L. F. (1995). Usos Potenciales de las Maderas del Árbol de Pan y Jaca. Universidad
Distrital Francisco José de Caldas. Facultad del Medio Ambiente y Recursos Naturales. Programa
de Ingeniería Forestal. Bogotá D.C.
WWF-Colombia (2013). Maderas de Colombia. WWF-Colombia, Programa Subregional
Amazonas Norte & Choco Darién.
81
9. Anexos
Anexo1. Información del formato de colecta de las 15 especies estudiadas
NOMBRE
ESPECIE
Guarango Parkia nítida Miq.
Pelacara
Clarisia racemosa
Ruiz & Pav
Guamo
cerindo
Inga nobilis Willd.
Amarillo
Fono
negro
Endlicheria sp.
Eschweilera
albiflora
Miers
(DC.)
Arenillo
Qualea acuminata
Spruce ex Warm
Chocho
Hymenolobium cf.
petraeum Ducke
Ind.
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
Ubicación
DAP
(cm)
938244
587429
Cumarales
938320
587423
Cumarales
938402
587676
Cumarales
938260
587443
Cumarales
938279
587401
Cumarales
938385
588148
Cumarales
938262
587480
Cumarales
938250
587496
Cumarales
938428
587463
Cumarales
935506
591292
El Barrito
935548
591184
El Barrito
935541
591246
El Barrito
934434
590951
El barrito
934412
590961
El barrito
934406
590966
El barrito
938430
588230
Cumarales
0°33´49,6´´ 75°15´22,8´´ Llanada
0°33´50,2´´ 75°15´22,7´´ Llanada
938405
588239
Cumarales
935449
591242
El Barrito
935624
591185
El Barrito
52,5
63
50,5
53,5
49,9
44,3
65,2
52,5
73,2
47,2
41,5
49,7
63,4
72,5
49,8
62,8
45,6
47,6
49,5
71,9
53,3
N
W
Diámetro
Altura
Altura
Trozas (cm)
Comercial
Total (m)
(m)
A
B
C
52,5 50,3 47,9
11,7
19
63 57,8 54,6
8
22
52 46,7 44
8,49
22
53,5 49,2 46,8
11,1
25
65,6 58 53,7
11,8
22
45
41
37
13,6
23
68,5 59 54,9
115,5
23
55,8 48 43,5
11,6
17
65,2 58,2 53,5
16,6
25
46,3 44,3 43,3
16,3
21
41,5 39,7 38,5
10,9
19
49,7 42,7 41,7
13,4
20
63,4 45,1 41,4
12,5
23
53,5 44,8 40,4
10,3
20
50,5 45 41,3
10,5
19
62,7 59,4 53,3
12,4
23
49,4 40,6 38,4
11
14
50,9 45,3 42,6
13,8
18
46 41,5 40
11
23
61,1 53,6 50,5
13,8
22
54,2 46,3 44,2
14,4
20
Copas
1
12
10
18
12
10
14
8
10
12
8
7
8
7
8
9
14
8
14
11
10
9
2
10
11
12
8
11
13
11
7
10
10
9
11
6
9
8
10
11
13
12
12
8
82
Anexo1. Información del formato de colecta de las 15 especies estudiadas
NOMBRE
ESPECIE
Ind.
Ocotea cf. myriantha (Meisn.)
Mez
Lauraceae Nectandra cf. membranaceae
(Sw.) Griseb
Aniba panurensis (Meisn.) Mez
Fono
colorado
Sangretoro
Eschweilera parvifolia Mart.
Ex DC.
Virola pavonis
A.C.Sm.
(A.
DC.)
Tamarindo Hymenaea oblongifolia Huber
Aguarráz
Vara
Blanca
Ocotea cf. cymbarum Kunth
Croton matourensis Aubl
N
W
Ubicación
DAP
(cm)
Diámetro Trozas
(cm)
A
B
C
Altura Altura
Comerci Total
al (m)
(m)
Copas
1
2
1
0°52´13,1´´ 74°37´53,7´´
Cumarales
61,3
61,3
44,7
42,4
11,7
20
15
13
2
0°52´13,5´´ 74°37´52,2´´
Cumarales
45,6
45,6
41,4
40,2
12,5
18
9
10
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
0°33´41,2´´ 75°15´30,8´´
Llanada
934006
589856
El Barro
933989
589723
El Barro
934221
589693
El Barro
934031
589805
El Barro
933981
589727
El Barro
934002
589612
El Barro
934340
589838
El Barro
934365
589711
El Barro
934352
589719
El Barro
934219
589617
El Barro
934224
589643
El Barro
934253
589723
El Barro
913577
638873
La Hacienda
913581
638872
La Hacienda
913577
638866
La Hacienda
40,8
66,1
56,7
50,2
67,3
58,2
60,5
58
72,1
68,2
53,5
62,4
49,6
61,2
49,2
63,3
37,2
63,7
52,8
48
61,2
54,1
62,4
58,4
71,8
48,7
55,2
65,3
49,3
63
49,4
62,2
34,5
48,9
44,6
46,1
53,6
52,7
58,3
50,3
59,5
43,3
47,3
43,7
46,4
62,1
46,3
47,6
43,2
44,5
43,8
43,8
48,8
51,2
55,2
46,5
56,5
42,9
46
42,1
44,2
42,4
46
43,2
11,5
14
11
12
15
14
12
15
12
12
13
12
12
7,8
10
11,2
14
25
22
21
24
20
25
22
26
25
18
22
16
15
17
19
8
12
6
7
7
8
10
6
83
Anexo1. Información del formato de colecta de las 15 especies estudiada
NOMBRE
ESPECIE
Puchico
Dialium guianense (Aubl.)
Sandwith
Avichure
Qualea paraensis Ducke
Ind.
1
2
3
1
2
3
N
0°33´45,8´´
0°33´47,7´´
0°33´41,3´´
0°33´42,5´´
0°33´41,6´´
0°33´41,9´´
W
75°15´26,7´´
75°15´26´´
75°15´30,9´´
75°15´30,3´´
75°15´30,3´´
75°15´30,5´´
Ubicación
Pto leguizamo
Pto leguizamo
Pto leguizamo
Pto leguizamo
Pto leguizamo
Pto leguizamo
DAP
(cm)
58
53,1
64,4
48,1
50
45,2
Diámetro Trozas
(cm)
A
B
C
58
53
52,8
46,8 42,5 42,3
64,4 60,5
61
49,7 44,8 43,3
52,6
46
45,6
44,9 41,9 40,3
Altura Altura
Comercial Total
(m)
(m)
8,8
15
12
17
10
18
12,53
17
12
19
13,7
16
Copas
1
15
8
13
11
10
12
2
18
9
15
12
9
8
84
Anexo 2. Registro fitosanitario del estado de la madera
ESPECIE
SECCIÓN
A
1. Guarango
(Parkia nitida)
B
C
A
2. Pelacara
(Clarisia racemosa)
B
C
A
3. Guamo Cerindo
(Inga nobilis)
B
C
4. Amarillo
(Endlicheria sp)
5. Fono negro
(Eschweilera albiflora)
6. Arenillo
(Qualea acuminata)
A
B
C
A
B
C
A
B
C
A
7. Chocho
(Hymenolobium petraeum)
B
C
DEFECTOS
Afectación leve por agentes biológicos
(comején);aristas faltantes y grietas en
uno de sus extremos menores a 15 cm
Afectación leve por agentes biológicos
(comején); aristas faltantes; nudos y
grietas en uno de sus extremos hasta
de 60 cm
Afectación moderada por agentes
biológicos (comején); nudos y grietas
en uno de sus extremos
Sin afectación
Presencia de nudos con diámetro <
5cm
Presencia de nudos y grietas en
algunos de sus extremos no mayores a
20 cm
Bloques con pudriciones puntuales
leves por comején
Bloques con pudriciones circulares y
puntuales leves por comején; aristas
faltantes; perforaciones y manchas por
hongos cromógenos
Bloques con pudriciones circulares y
puntuales moderadas por comején;
aristas faltantes; perforaciones por
barrenadores
Sin afectación
Sin afectación
Bloques con grietas en uno de sus
extremos por media agua
Pudriciones leves puntuales y
longitudinales no mayores a 30 cm por
agentes biológicos.
Pudrición puntual y aristas faltantes.
Aristas faltantes
Aristas faltantes
Aristas faltantes
Aristas faltantes y presencia de nudos
Afectaciones leves por agentes
biológicos y presencia de nudos
Presencia de nudos con aristas
faltantes
Aristas faltantes y presencia de nudos
85
8. Laurel (Ocotea cf myriantha;
Nectandra cf membranaceae; Aniba
panurensis)
A
B
C
A
9. Fono colorado
(Eschweilera parvifolia Mart. Ex DC.)
B
C
A
10. Sangretoro
(Virola pavonis (A. DC.) A.C.Sm.)
11. Tamarindo
(Hymenaea oblongifolia Huber)
12. Aguarráz
(Ocotea cf. cymbarum Kunth)
B
C
A
B
C
A
B
C
A
13.Vara blanca
(Croton matourensis)
B
C
A
14. Puchico
(Dialium guianense)
B
C
A
15. Avichure
(Qualea paraensis)
B
C
Grietas en los dos extremos del bloque
no mayores a 20 cm
Aristas faltantes y presencia de nudos
Aristas faltantes; presencia de nudos y
pudrición periférica leve por comején
Pudrición periférica moderada;
rajaduras en los extremos
Afectación severa por comején,
pudrición longitudinal con cavidades
de 1 a 2 cm de profundidad
Presencia de nudos; afectación leve
por comején
Grietas y rajaduras en sus extremos;
pudrición blanca moderada
Pudrición blanca moderada; manchas
por hongos cromógenos
Pudrición blanca leve
Sin afectaciones ni defectos
Sin afectaciones ni defectos
Sin afectaciones ni defectos
Sin afectaciones ni defectos
Sin afectaciones ni defectos
Sin afectaciones ni defectos
Afectación leve por comején;
presencia de nudos con diámetros
entre 2 a 10 cm; aristas faltantes
Pudrición puntual moderada por
comején; Medula incluida; Aristas
faltantes y presencia de nudos <2 cm
Medula incluida; arista faltante;
Pudrición puntual severa
Aristas faltantes; rajaduras media
agua; Afectación leve por comején;
presencia de nudos
Afectación longitudinal leve por
comején; presencia de nudos y arista
faltante
Sin afectación
Afectación leve por comején; rajadura
por media agua;
Pudrición puntual y longitudinal por
comején; presencia de nudos
Afectación leve y moderada puntual y
longitudinal por barrenadores;
presencia de nudos; arista faltante.
Descargar