UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERIA E.A.P. INGENIERIA DE SISTEMAS E INFORMATICA LABORATORIOS DE ELECTRONICA DIGITAL GUIAS DE PRÁCTICAS ING. CARLOS GUERRA CORDERO CIUDAD UNIVERSITARIA 2010 CONTENIDO LABORATORIO Nº1: USOS Y CUIDADOS EN EL MANEJO DE LOS EQUIPOS ELECTRONICOS DEL LABORATORIO LABORATORIO Nº2: EL TRANSISTOR CONMUTACION LABORATORIO Nº3: EL AMPLIFICADOR OPERACIONAL LABORATORIO Nº4: GENERADOR DE PLUSOS LABORATORIO Nº5: SISTEMAS DE NUMERACION, REPRESENTACIONES NUMERICAS, CONVERSIONES LABORATORIO Nº6: FUNCIONES Y COMPUERTAS LOGICAS LABORATORIO Nº7: LOGICA COMBINACIONAL LABORATORIO Nº8: LOGICA SECUENCIAL LABORATORIO Nº9: CONVERTIDOR DIGITAL - ANALOGO LABORATORIO Nº10: CONVERTIDOR ANALOGO - DIGITAL BIPOLAR, POLARIZACION, LABORATORIO Nº1: USOS Y CUIDADOS EN EL MANEJO DE LOS EQUIPOS ELECTRONICOS DEL LABORATORIO I. Objetivos II. Fundamento Teórico III. Uso del Protoboard, Multímetro, Fuente de Alimentación DC. Uso del Generador de Señales, Osciloscopio Equipos y Materiales IV. Adiestrar al estudiante en el manejo de los diferentes instrumentos y equipos del laboratorio. Indicar al estudiante los cuidados que debe tener en cuenta cuando utiliza los diversos instrumentos y equipos del laboratorio. 1 Osciloscopio digital 1 Multímetro digital 1 Fuente DC 1 Protoboard 1 Transformador de 220V/18V (1A) 4 Resistencias (220 Ohm, 330K, 680K, 1K a 1/2W) 2 Diodos 1N4004 1 Diodo LED Procedimiento 1) Usando el código de colores indicar los valores y tolerancia de las resistencias. 2) Utilizando el multímetro obtener el valor real de las resistencias 3) Armar el circuito de la figura. 4) Medir el valor de V con el multímetro. 5) Colocar el multímetro en la escala de amperios y medir la corriente que circula por el circuito 6) Conectar el transformador a la red de 220V y mida las tensiones entre los terminales del secundario, anotando sus mediciones. 7) Armar el circuito de la figura adjunta. 8) Medir los valores de V1 en AC y V2 en DC, Usando el osciloscopio observar la forma de onda en secundario del transformador y en la carga 9) Armar el circuito de la figura adjunta. 10) Encender el LED, cerrando el circuito con S1. Probar el encendido con otro valor de resistencia 11) Observaciones y Conclusiones LABORATORIO Nº2: EL TRANSISTOR BIPOLAR, POLARIZACION, CONMUTACION I. Objetivos II. Fundamento Teórico III. Obtener las especificaciones del transistor bipolar (BJT) 2N2222 y 2N3904. Determinar el punto de operación del transistor (BJT) Dibujar los símbolos de los transistores Equipos y Materiales IV. Estudiar en forma experimental el transistor bipolar, formas de polarización y conmutación. 1 Osciloscopio digital 1 Multímetro digital 1 Fuente DC 1 Protoboard 2 Transistor 2N3904 o 2N2222 9 Resistencias (2x220 Ohm, 6.8K, 2x22K, 1K, 3.9K, 10K, 2.2K a 1/2W) 2 Condensadores electrolíticos 10uF y 100uF 2 Diodo LED Procedimiento 1) Armar el circuito de la figura con los valores sugeridos. 2) Medir las tensiones de los terminales del transistor respecto a tierra. Así se determina el punto de operación Q. 3) Armar el circuito de la figura 4) Cuando acciones S1 llegará una cierta cantidad de corriente a la base del transistor, esta controlará la cantidad de corriente que pasa del Colector al Emisor, lo cual puedes notar en el brillo de los LED’s. Este es el proceso de Amplificación. Entonces a mayor corriente de base mayor corriente de colector. 5) Armar el circuito de la figura adjunta. 6) Este circuito se iluminara alternativamente D1 o D2. Los dos transistores trabajan en conmutación es decir cuando uno conduce (saturación) el otro no conduce (corte) y viceversa. 7) Observaciones y Conclusiones LABORATORIO Nº3: EL AMPLIFICADOR OPERACIONAL I. Objetivos II. Fundamento Teórico III. Analizar las características de los OP-AMP. Determinar el comportamiento en DC y AC del OP-AMP. Equipos y Materiales IV. Implementar y analizar circuitos con amplificadores operaciones. Comprobar las diversas configuraciones en las que puede ser usado el amplificador operacional 1 Osciloscopio digital 1 Multímetro digital 1 Generador de señales 2 Fuente DC 1 Protoboard 1 OP-AMP LM741 Resistencias (1x5K, 3x100K, 1x20K, 1x200K, 4x10K, 1Xpot.10k, 2x400K, 1x50K, 2x47K, 1x68K, 1x33K a 1/2W) Procedimiento A. AMPLIFICADOR INVERSOR 1) Armar el Circuito de la figura mostrada. 2) Conectar la entrada Vi a Tierra y medir con el Voltímetro la tensión continua en Vo: esta debe ser cero. Si la tensión Vo no es cero, conecte un potenciómetro entre el pin 1 y el pin 5 del 741 y el terminal variable del potenciómetro conecte a la fuente negativa, accione el potenciómetro hasta lograr que Vo sea cero 3) Seleccione en el generador de señales una tensión sinusoidal de 200mV pico a pico, con una frecuencia de 100Hz y conecte dicha señal entre Vi y tierra. 4) Utilizando el osciloscopio, observar la forma de onda de salida Vo, y compare con la señal Vi. Grafique ambas señales. 5) Hallar experimentalmente la ganancia del amplificador 6) Observaciones y conclusiones B. AMPLIFICADOR NO INVERSOR 1) Armar el circuito de la figura mostrada. 2) Repetir el paso 2 de la parte A. 3) Seleccione en el generador de señales una tensión sinusoidal de 200mV pico a pico con una frecuencia de 1Khz y conectar entre Vi y tierra. 4) Repetir el paso 4 y 5 de la parte A. 5) Observaciones y conclusiones C. AMPLIFICADOR SEGUIDOR EMISIVO 1) Armar el circuito de la figura mostrada 2) Seleccione en el generador de señales una tensión sinusoidal de 500mV pico a pico con una frecuencia de 2Khz y conecte entre Vi y Tierra. 3) Con el osciloscopio observar la forma de onda en Vo y comparar con la señal que ingresa en Vi, grafique ambas señales 4) ¿Qué relación hay entre la salida y la entrada? 5) Observaciones y conclusiones D. SUMADOR Y RESTADOR 1) Armar el circuito de la figura mostrada. 2) Hallar en forma teórica V1 y V2, Así mismo hallar Vo en función de Va y Vb para los siguientes casos: Si: Va = V1 y Va = V2 Va = V2 y Vb = V1 3) Usando el osciloscopio medir Vo para los casos del paso 2, ¿hay diferencia? Mida con el multímetro V1 y V2 y compare con los valores hallados en el paso 2. 4) ¿Cual de los casos del paso 2, es sumador y cual es restador?. 5) Observaciones y conclusiones. E. INTEGRADOR. 1. Armar el circuito de la figura y aplicar una señal Vin de onda rectangular de 250mV a una frecuencia de 10Khz. 2. Medir el voltaje de salida y dibujar la forma de onda en los pines 2, 3 y 6. 3. Repetir el caso anterior cambiando C1 por 0.00022uF. 4. Con Vin = 1V pico, llenar la tabla observando la forma de onda en la salida. Fr. 50Hz 100Hz 800Hz 1Khz 5Khz 10Khz 50Khz 100Khz 150Khz Vo 5. Observaciones y conclusiones. F. DIFERENCIADOR. 1. Armar el circuito de la figura adjunta y aplicar una señal Vin de onda triangular de 250mV a una frecuencia de 10Khz. 2. Medir el voltaje de salida y dibujar la forma de onda en los pines 2, 3 y 6. 3. Repetir el paso anterior cambiando la resistencia de realimentación de 10K por 1M. 4. Con Vin = 1V pico, llenar la tabla observando la forma de onda en la salida. Fr. 50Hz 100Hz 800Hz 1Khz 5Khz 10Khz 50Khz 100Khz 150Khz Vo 5. Observaciones y conclusiones. LABORATORIO Nº4: GENERADOR DE PLUSOS I. Objetivos II. Fundamento Teórico III. Estudio del circuito integrado 555, y sus aplicaciones. Equipos y Materiales IV. Familiarizar al alumno en el uso del IC – 555 (Timer) Conocer los elementos y técnicas de los generadores de pulsos para poder aplicarlos en circuitos digitales. 1 Osciloscopio digital 1 Multímetro digital 1 Fuente DC 1 Protoboard 1 IC. – 555 2 LED’S Resistencias las que se indican en el circuito Condensador las que se indica en el circuito Procedimiento 1. Armar el circuito de la figura. 2. Con el osciloscopio observar las formas de onda en el terminal 3 del IC – 555, graficar y anotar las mediciones. Comprobar si es un generador de pulsos. 3. Si variamos el potenciómetro aumentando la resistencia observar que sucede con el ancho de pulso. LABORATORIO Nº5: SISTEMAS DE NUMERACION, REPRESENTACIONES NUMERICAS, CONVERSIONES I. Objetivos II. Conocer los diferentes tipos de sistemas de numeración lógica Representar los tipos de sistemas de numeración básicos. Efectuar las conversiones entre sistemas de numeración lógica Fundamento Teórico III. Equipos y Materiales IV. Estudio de los sistemas de numeración lógica. Conversión de sistemas de numeración Un software de simulación Procedimiento 1. Use un software de simulación, para visualizar la conversión de los sistemas de numeración, que se presentan en el diagrama de flujo. Hexadecimal Binario Decimal Octal BCD 2. Los campos serán de 10 dígitos como mínimo, para el ingreso del sistema de numeración, las conversiones serán de cualquier sistema de base. 3. Observaciones y conclusiones. LABORATORIO Nº6: FUNCIONES Y COMPUERTAS LOGICAS I. Objetivos II. Fundamento Teórico III. Estudio de las funciones y circuitos lógicos digitales. Implementar circuitos lógicos. Equipos y Materiales IV. Conocer las funciones y puertas lógicas digitales Representar los símbolos lógicos ANSI/IEEE y sus tablas de verdad. Implementar circuitos lógicos y verificar las funciones respectivas. 1 Multímetro digital 1 Fuente DC 1 Protoboard IC’s – 7432 – 7408 – 7404 – 7486 – 7400 LED’S (3) Procedimiento 1. Los teoremas del algebra booleana se usan en la simplificación de funciones con variables lógicas. Haciendo uso de esta algebra seremos capaces de establecer la expresión de la función booleana a la salida de un circuito lógico. 2. Compruebe la operación de cada puerta haciendo uso del indicador visual indicando el estado de salida, según su tabla de verdad, del siguiente circuito. 3. Compruebe la operación de cada puerta haciendo uso de la tabla de verdad. Use un indicador visual para la salida. Estas son llamadas funciones lógicas secundarias. 4. Representar los simbolos ANSI/IEEE y sus tablas de verdad 5. Para los circuitos que se muestran a continuación, escriba en cada caso la expresión booleana para la salida Y, implemente el circuito y verifique su funcionamiento completando la tabla de verdad para cada caso Caso 1: Caso 2: Caso 3: Caso 4: . LABORATORIO Nº7 LOGICA COMBINACIONAL I. Objetivos II. Fundamento Teórico III. Procedimiento de diseño de los circuitos lógicos combinacionales Formas canónicas de funciones lógicas El mapa de Karnaugh Equipos y Materiales IV. Procedimiento de diseño de los circuitos combinacionales Evaluar e implementar circuitos lógicos combinacionales 1 Multímetro digital 1 Fuente DC 1 Protoboard IC’s – 7432 – 7408 – 7404 – 7486 – 7400 LED’S Procedimiento Problema 1: 1. Se enuncia el problema: (Diseñar un circuito lógico que tenga tres entradas A, B, C, y cuya salida sea alta solo cuando la mayor parte de las entradas sean altas.) 2. Determinar el número de las variables de entradas disponibles y de las variables requeridas. 3. Derivar la tabla de verdad que define las relaciones requeridas entre las entradas y las salidas 4. Se obtiene la función booleana simplificada para cada salida. 5. Se dibuja el diagrama lógico. Problema 2: 1. Se enuncia el problema: (Evaluar e implementar las funciones: F1 = xy’z F2 = y + x’z F3 = x’yz + x’y’z + xy’ F4 = xy’ + x’z ) 2. Determinar el número de las variables de entradas disponibles y de las variables requeridas. 3. Derivar la tabla de verdad que define las relaciones requeridas entre las entradas y las salidas 4. Se obtiene la función booleana simplificada para cada salida. 5. Se dibuja el diagrama lógico. Problema 3: 1. 2. 3. 4. 5. Se enuncia el problema: (Diseñe un circuito combinacional que acepte un numero de 3 bit’s y que genere un numero de salida igual al cuadrado del numero de entrada. Determinar el número de las variables de entradas disponibles y de las variables requeridas. Derivar la tabla de verdad que define las relaciones requeridas entre las entradas y las salidas Se obtiene la función booleana simplificada para cada salida. Se dibuja el diagrama lógico. Problema 4: 1. Se enuncia el problema: (Diseñe un circuito que multiplique por 5 un numero BCD y se obtenga otro BCD Demuestre que no necesita compuertas. 2. Determinar el número de las variables de entradas disponibles y de las variables requeridas. 3. Derivar la tabla de verdad que define las relaciones requeridas entre las entradas y las salidas 4. Se obtiene la función booleana simplificada para cada salida. 5. Se dibuja el diagrama lógico. LABORATORIO Nº8 LOGICA SECUENCIAL I. Objetivos II. Fundamento Teórico III. El Flip Flop Tipos de Flip Flop: FF-SR, FF-D, FF-JK, FF-T El Registro: registro de corrimiento El Contador: síncronos y asincronos Equipos y Materiales IV. Procedimiento de diseño de los circuitos secuenciales Evaluar e implementar circuitos lógicos secuenciales 1 Multímetro digital 1 Fuente DC 1 Protoboard IC’s – 7404 – 7400 – 7474 – 7495 – 74174 – 7493 – 7492 - 7490 LED’S Procedimiento 1. Implementar los circuitos FF – SR con compuertas NAND y NOR y obtener sus tablas de verdad. a) Con compuertas NAND (circuito LATCH – SR) b) Con compuertas NOR (circuito LATCH – SR) 2. Implementar los circuitos FF – D y obtener su tabla de verdad. a) FF-D con entrada de reloj b) FF-D maestro – esclavo 3. Implementar el circuito FF – JK y obtener su tabla de verdad 4. Implementar el circuito FF – T y obtener su tabla de verdad 5. Implementar un circuito registro de corrimiento con FF-JK 6. Implementar un circuito contador síncrono y asíncrono a) Contador síncrono ascendente b) Contador síncrono descendente c) Contador asíncrono ascendente d) Contador asíncrono descendente LABORATORIO Nº9 CONVERTIDOR DIGITAL - ANALOGO V. Objetivos VI. Procedimiento de diseño del convertidor digital – análogo Implementar el convertidor digital - análogo Fundamento Teórico VII. Convertidor DAC, con redes resistivas Convertidor DAC, con red escalera 2R Equipos y Materiales 1 Multímetro digital 1 Fuente DC 1 Protoboard Resistencias de 1K, 2K, 4K, 8K de 1/2W VIII. Procedimiento a) Implementar un circuito convertidor digital – análogo; con redes resistivas b) Implementar un circuito convertidor digital – análogo; con red escalera 2R LABORATORIO Nº10 CONVERTIDOR ANALOGO - DIGITAL IX. Objetivos X. Procedimiento de diseño del convertidor análogo - digital Implementar el convertidor análogo - digital Fundamento Teórico XI. Convertidor ADC, tipo escalera Convertidor ADC, de seguimiento Convertidor ADC, de aproximaciones sucesivas Equipos y Materiales XII. 1 Multímetro digital 1 Fuente DC 1 Protoboard IC – DAC 0808LCN; 7493; 741; 555 Procedimiento a) Implementar un circuito convertidor análogo – digital tipo escalera b) Implementar un circuito convertidor análogo – digital de seguimiento c) Implementar un circuito convertidor análogo – digital de aproximaciones sucesivas RAS: Registro de aproximaciones sucesivas