Magnitud física: Una magnitud física es una propiedad o cualidad medible de un sistema físico, es decir, a la que se le pueden asignar distintos valores como resultado de una medición. Las magnitudes físicas se miden usando un patrón que tenga bien definida esa magnitud, y tomando como unidad la cantidad de esa propiedad que posea el objeto patrón. Por ejemplo, se considera que el patrón principal de longitud es el metro en el Sistema Internacional de Unidades. Las primeras magnitudes definidas estaban relacionadas con la medición de longitudes, áreas, volúmenes, masas patrón, y la duración de periodos de tiempo. Existen magnitudes básicas y derivadas, y constituyen ejemplos de magnitudes físicas: la masa, la longitud, el tiempo, la carga eléctrica, la densidad, la temperatura, la velocidad, la aceleración, y la energía. En términos generales, es toda propiedad de los cuerpos que puede ser medida. De lo dicho se desprende la importancia fundamental del instrumento de medición en la definición de la magnitud.1 La Oficina Internacional de Pesos y Medidas, por medio del Vocabulario Internacional de Metrología (International Vocabulary of Metrology, VIM), define a la magnitud como un atributo de un fenómeno; un cuerpo o sustancia que puede ser distinguido cualitativamente y determinado cuantitativamente.2 A diferencia de las unidades empleadas para expresar su valor, las magnitudes físicas se expresan en cursiva: así, por ejemplo, la "masa" se indica con "m", y "una masa de 3 kilogramos" la expresaremos como m = 3 kg. Tipos de magnitudes físicas Las magnitudes físicas pueden ser clasificadas de acuerdo a varios criterios: Según su expresión matemática, las magnitudes se clasifican en escalares, vectoriales y tensoriales. Según su actividad, se clasifican en magnitudes extensivas e intensivas. Magnitudes escalares, vectoriales y tensoriales Las magnitudes escalares son aquellas que quedan completamente definidas por un número y las unidades utilizadas para su medida. Esto es, las magnitudes escalares están representadas por el ente matemático más simple, por un número. Podemos decir que poseen un módulo, pero que carecen de dirección. Su valor puede ser independiente del observador (v.g.: la masa, la temperatura, la densidad, etc.) o depender de la posición (v.g.: la energía potencial), o estado de movimiento del observador (v.g.: la energía cinética). Las magnitudes vectoriales son aquellas que quedan caracterizadas por una cantidad (intensidad o módulo),una dirección y un sentido. En un espacio euclidiano, de no más de tres dimensiones, un vector se representa mediante un segmento orientado. Ejemplos de estas magnitudes son: la velocidad, la aceleración, la fuerza, el campo eléctrico, intensidad luminosa, etc. Además, al considerar otro sistema de coordenadas asociado a un observador con diferente estado de movimiento o de orientación, las magnitudes vectoriales no presentan invariancia de cada uno de los componentes del vector y, por tanto, para relacionar las medidas de diferentes observadores se necesitan relaciones de transformación vectorial. En mecánica clásica también el campo electrostático se considera un vector; sin embargo, de acuerdo con la teoría de la relatividad esta magnitud, al igual que el campo magnético, debe ser tratada como parte de una magnitud tensorial. Las magnitudes tensoriales son las que caracterizan propiedades o comportamientos físicos modelizables mediante un conjunto de números que cambian tensorialmente al elegir otro sistema de coordenadas asociado a un observador con diferente estado de movimiento (marco móvil) o de orientación. De acuerdo con el tipo de magnitud, debemos escoger leyes de transformación (por ej. la transformación de Lorentz) de las componentes físicas de las magnitudes medidas, para poder ver si diferentes observadores hicieron la misma medida o para saber qué medidas obtendrá un observador, conocidas las de otro cuya orientación y estado de movimiento respecto al primero sean conocidos. Magnitudes extensivas e intensivas Una magnitud extensiva es una magnitud que depende de la cantidad de sustancia que tiene el cuerpo o sistema. Las magnitudes extensivas son aditivas. Si consideramos un sistema físico formado por dos partes o subsistemas, el valor total de una magnitud extensiva resulta ser la suma de sus valores en cada una de las dos partes. Ejemplos: la masa y el volumen de un cuerpo o sistema, la energía de un sistema termodinámico, etc. Una magnitud intensiva es aquella cuyo valor no depende de la cantidad de materia del sistema. Las magnitudes intensivas tiene el mismo valor para un sistema que para cada una de sus partes consideradas como subsistemas. Ejemplos: la densidad, la temperatura y la presión de un sistema termodinámico en equilibrio. En general, el cociente entre dos magnitudes extensivas da como resultado una magnitud intensiva. Ejemplo: masa dividida por volumen representa densidad. Sistema Internacional de Unidades El Sistema Internacional de Unidades se basa en dos tipos de magnitudes físicas: Las siete que toma como unidades fundamentales, de las que derivan todas las demás. Son longitud, tiempo, masa, intensidad de corriente eléctrica, temperatura, cantidad de sustancia e intensidad luminosa. Las unidades derivadas, que son las restantes y que pueden ser expresadas con una combinación matemática de las anteriores. Unidades básicas o fundamentales del Sistema Internacional de Unidades Artículo principal: Unidades básicas del SI. Las magnitudes básicas no derivadas del SI son las siguientes: Longitud: metro (m). El metro es la distancia recorrida por la luz en el vacío en 1/299 792 458 segundos. Este patrón fue establecido en el año 1983. Tiempo: segundo (s). El segundo es la duración de 9 192 631 770 períodos de la radiación correspondiente a la transición entre los dos niveles hiperfinos del estado fundamental del cesio-133. Este patrón fue establecido en el año 1967. Masa: kilogramo (kg). El kilogramo es la masa de un cilindro de aleación de Platino-Iridio depositado en la Oficina Internacional de Pesas y Medidas. Este patrón fue establecido en el año 1887. Intensidad de corriente eléctrica: amperio (A). El amperio o ampere es la intensidad de una corriente constante que, manteniéndose en dos conductores paralelos, rectilíneos, de longitud infinita, de sección circular despreciable y situados a una distancia de un metro uno de otro, en el vacío, produciría una fuerza igual a 2×10-7 newton por metro de longitud. Temperatura: kelvin (K). El kelvin es la fracción 1/273,16 de la temperatura del punto triple del agua. Cantidad de sustancia: mol (mol). El mol es la cantidad de sustancia de un sistema que contiene tantas entidades elementales como átomos hay en 12 gramos de carbono-12. Intensidad luminosa: candela (cd). La candela es la unidad luminosa, en una dirección dada, de una fuente que emite una radiación monocromática de frecuencia 540×1012 Hz y cuya intensidad energética en dicha dirección es 1/683 vatios por estereorradián. Unidades Fundamentales en el Sistema Cegesimal C.G.S. Artículo principal: Sistema Cegesimal de Unidades. Longitud: centímetro (cm): 1/100 del metro (m) S.I. Tiempo: segundo (s): La misma definición del S.I. Masa: gramo (g): 1/1000 del kilogramo (kg) del S.I. Unidades Fundamentales en el Sistema Gravitacional Métrico Técnico Artículo principal: Sistema Técnico de Unidades. Longitud: metro (m). La misma definición del Sistema Internacional. Tiempo: segundo (s).La misma definición del Sistema Internacional. Fuerza: kilogramo-fuerza (kgf). El peso de una masa de 1 kg (S.I.), en condiciones normales de gravedad (g = 9,80665 m/s2). Magnitudes físicas derivadas Una vez definidas las magnitudes que se consideran básicas, las demás resultan derivadas y se pueden expresar como combinación de las primeras. Las unidades derivadas se usan para las siguientes magnitudes: superficie, volumen, velocidad, aceleración, densidad, frecuencia, periodo, fuerza, presión, trabajo, calor, energía, potencia, carga eléctrica, diferencia de potencial, potencial eléctrico, resistencia eléctrica, etcétera. Algunas de las unidades usadas para esas magnitudes derivadas son: Fuerza: newton (N) que es igual a kg·m/s2 Energía: julio (J) que es igual a kg·m2/s2 CIFRAS SIGNIFICATIVAS Las cifras significativas (o dígitos significativos) representan el uso de una escala de incertidumbre en determinadas aproximaciones. Se dice que 2,7 tiene 2 cifras significativas, mientras que 2,70 tiene 3. Para distinguir los ceros que son significativos de los que no son, estos últimos suelen indicarse como potencias de 10. El uso de éstas considera que el último dígito de aproximación es incierto, por ejemplo, al determinar el volumen de un líquido con una probeta cuya precisión es de 1 ml, implica una escala de incertidumbre de 0,5 ml. Así se puede decir que el volumen de 6 ml será realmente de 5,5 ml a 6,4 ml. El volumen anterior se representará entonces como (6,0 ± 0,5) ml. En caso de determinar valores más próximos se tendrían que utilizar otros instrumentos de mayor precisión, por ejemplo, una probeta de divisiones más finas y así obtener (6,0 ± 0,1) ml o algo más satisfactorio según la precisión requerida. Guía de uso En un trabajo o artículo científico siempre se debe tener cuidado con que dichas cifras sean adecuadas. Para conocer el número correcto de cifras significativas se siguen las siguientes normas: Cualquier dígito diferente de cero es significativo, ya sea 643 l (tiene tres cifras significativas) o 9,873 kg (que tiene cuatro). Los ceros situados en medio de números diferentes son significativos, ya sea 901 cm (que tiene tres cifras significativas) o 10.609 kg (teniendo cinco cifras significativas). Eso significa que la hipótesis es correcta. Los ceros a la izquierda del primer número distinto a cero no son significativos, ya sea 0,03 (que tiene una sola cifra significativa) ó 0,0000000000000395 (este tiene sólo tres), y así sucesivamente. Para los números mayores que uno, los ceros escritos a la derecha de la coma decimal también cuentan como cifras significativas, ya sea 2,0 dm (tiene dos cifras significativas) o 10,093 cm (que tiene cinco cifras).[cita requerida] En los números enteros, los ceros situados después de un dígito distinto de cero, pueden ser o no cifras significativas, ya sea como 600 kg, puede tener una cifra significativa (el número 6), tal vez dos (60), o puede tener los tres (600). Para saber en este caso cual es el número correcto de cifras significativas necesitamos más datos acerca del procedimiento con que se obtuvo la medida (división de escala del instrumento de medición, por ejemplo) o bien podemos utilizar la notación científica, indicando el número 600 como 6·102 (seis multiplicado por diez elevado a dos) teniendo solo una cifra significativa (el número 6) ó 6,0·102, tenemos dos cifras significativas (6,0) ó 6,00·102, especificando tener tres cifras significativas . Procedimiento en operaciones matemáticas básicas En adición y sustracción las cifras decimales no deben superar el menor número de cifras decimales que tengan los sumandos. Si por ejemplo hacemos la suma 92,396 + 2,1 = 94,496, el resultado deberá expresarse como 94,5, es decir, con una sola cifra decimal como la cantidad 2,1. Otro ejemplo: 102,061 - (1,03) <------- Tenemos dos cifras después de la coma decimal = 101,031 <------- esto se redondeará a 101,03 Cálculos en cadena Para los cálculos en cadena, es decir, que su procedimiento se derive a más de un paso, se utiliza un seguimiento modificado. Considere el siguiente cálculo en dos pasos: 1. A × B = C 2. C × D = E Supongamos que A = 3,66 B = 8,45 D = 2,11. Dependiendo si C se redondea a tres o cuatro cifras significativas, se obtiene un valor diferente para E: Metodología Método 1 Los números después del punto son los decimales que se dejan después de la multiplicación para que sea una cifra significativa 3,66 × 8,45 = 30,9 30,9 × 2,11 = 65,2 Método 2 3,66 × 8,45 = 30,927 ; luego 30,927 × 2,11 = 65,25597 ~ 65,3 Se redondea en 65,3 porque tenemos tres cifras significativas en los factores del producto. Sin embargo, si se ha hecho el cálculo como 3,66 × 8,45 × 2,11 en una calculadora sin redondear el resultado intermedio, se habrá obtenido 65,3 como resultado para E. En general, cada paso del cálculo presentará números exactos de cifras significativas. En algunos casos se redondea la respuesta final con el número correcto de cifras significativas. En las respuestas para todos los cálculos intermedios se añade una cifra significativa más. NOTACIÓN CIENTÍFICA La notación científica (o notación índice estándar) es una manera rápida de representar un número utilizando potencias de base diez. Esta notación se utiliza para poder expresar muy fácilmente números muy grandes o muy pequeños. Los números se escriben como un producto: siendo: un número entero o decimal mayor o igual que 1 y menor que 10, que recibe el nombre de coeficiente. un número entero, que recibe el nombre de exponente u orden de magnitud. La notación científica utiliza un sistema llamado coma flotante, o de punto flotante en países de habla inglesa y en algunos hispanohablantes. Escritura 00 = 1 101 = 10 102 = 100 103 = 1 000 104 = 10 000 105 = 100 000 106 = 1 000 000 107 = 10 000 000 108 = 100 000 000 109 = 1 000 000 000 1010 = 10 000 000 000 1020 = 100 000 000 000 000 000 000 1030 = 1 000 000 000 000 000 000 000 000 000 000 10 elevado a una potencia entera negativa –n es igual a 1/10n o, equivalentemente 0, (n–1 ceros) 1: 10–1 = 1/10 = 0,1 10–2 = 1/100 = 0,01 10–3 = 1/1 000 = 0,001 10–9 = 1/1 000 000 000 = 0,000 000 001 Por tanto, un número como: 156 234 000 000 000 000 000 000 000 000 puede ser escrito como 1,56234×1029, y un número pequeño como 0,000 000 000 000 000 000 000 000 000 000 910 939 kg (masa de un electrón) puede ser escrito como 9,10939×10–31kg. Operaciones matemáticas con notación científica Suma y resta Siempre que las potencias de 10 sean las mismas, se deben sumar los coeficientes (o restar si se trata de una resta), dejando la potencia de 10 con el mismo grado. En caso de que no tengan el mismo exponente, debe convertirse el coeficiente, multiplicándolo o dividiéndolo por 10 tantas veces como se necesite para obtener el mismo exponente. Ejemplos: 2×105 + 3×105 = 5×105 3×105 - 0.2×105 = 2.8×105 2×104 + 3 ×105 - 6 ×103 = (tomamos el exponente 5 como referencia) = 0,2 × 105 + 3 × 105 - 0,06 ×105 = 3,14 ×105 Multiplicación Para multiplicar cantidades escritas en notación científica se multiplican los coeficientes y se suman los exponentes. Ejemplo: (4×1012)×(2×105) =8×1017 División Para dividir cantidades escritas en notación científica se dividen los coeficientes y se restan los exponentes. Ejemplo: (48×10-10)/(12×101) = 4×10-11 Potenciación Se eleva el coeficiente a la potencia y se multiplican los exponentes. Ejemplo: (3×106)2 = 9×1012. Radicación Se debe extraer la raíz del coeficiente y se divide el exponente por el índice de la raíz. Ejemplos: Discrepancia de nomenclatura A pesar que la notación científica pretende establecer pautas firmes sobre la referencia numérica en materia científica, se presentan discrepancias de lenguaje. Por ejemplo en Estados Unidos 109 se denomina «billion» (billón, en español). Para los países de habla hispana y en la mayor parte de los países de Europa, 109 es mil millones o millardo (del francés millard), en tanto que el billón es 1012. Llegamos a un caso práctico donde para los estadounidenses one billion dollars, para los hispanohablantes será un millardo de dólares (poco usado) o mil millones de dólares (más usado). Otra particularidad del mundo hispano es que, aunque el prefijo miria significa 'diez mil' en el Sistema Métrico Decimal (ejemplo, Miriámetro), esto es, 104 (10 000 unidades), se prefiere el uso de diez mil, reservándose el término miríada en el sentido de 'innumerables' o 'muy numerosos' (ejemplo, miriápodo). ORDEN DE MAGNITUD Un orden de magnitud es la clase de escala o magnitud de cualquier cantidad, en la que cada clase contiene valores en una proporción fija respecto de la clase anterior. La relación de proporción más utilizada es 10. Por ejemplo, se dice que dos números difieren 3 órdenes de magnitud si uno es 1000 veces más grande que el otro. El uso más extendido de describir los órdenes de magnitud es mediante la notación científica y las potencias de diez. Una forma de clasificar los objetos del mundo físico es por su tamaño. Las páginas que se mencionan a continuación contienen listas de objetos que son del mismo orden de magnitud en tiempo, longitud, área, volumen, masa o energía. Su utilidad es que permiten captar de forma intuitiva el tamaño relativo de las cosas y la escala del universo. Se utilizan unidades básicas del SI (Sistema Internacional de Unidades) y prefijos del SI: éstos se han diseñado pensando en los órdenes de magnitud. En cada página individual, a su vez, se mencionan otras unidades; véase también conversión de unidades. En la tabla siguiente las distintas cantidades se han dispuesto de forma que queden en la misma línea: distancia y tiempo que tarda la luz en cubrir esa distancia, área y lado de un cuadrado, volumen de un cubo y área de una cara, masa de agua y su volumen. Véase también las tablas independientes de longitud, área, volumen, masa, tiempo, energía y números sin dimensión.