Solucion al Problema #5 de la Asignacion #2 Definimos los parametros conocidos mass := 1 kg v1 := 2 s m d1 := 6in s 3 Vt := 1m P2 := 20Pa d2 := 2in Dens := 1000 ang := 25deg kg 3 m 1. Calculamos la velocidad de salida (v2) Q1 Q2 v1⋅ A1 v2 v2⋅ A2 v1⋅ d1 π ⋅ 2 v1⋅ A1 A2 d2 π 2 2 2 v1⋅ 2 v2 := v1⋅ d1 d1 2 d2 2 d2 v2 = 18 m s 2. Calculamos la Presion de entrada (P1), utilizamos Bernoulli. La altura de entrada y salida no varian, asumimos. P1 := 30Pa Given P1 + 1 2 2 Dens ⋅ v1 P2 + 1 2 2 Dens ⋅ v2 5 P1 = 1.6 × 10 Pa P1 := Find ( P1) 3. Buscamos las Fuerzas (Fx y Fy): Formato 1 usando el masico Fx := 100N Given Fx + P1⋅ π ⋅ d1 2 2 − P2⋅ π ⋅ Fy := 100N d2 2 cos ( ang ) 2 Fy − Vt⋅ Dens ⋅ g − P2⋅ π ⋅ d2 2 ⋅ sin ( ang ) 2 Fx := Find ( Fx, Fy ) Fy mass ⋅ ( −v1 + v2⋅ cos ( ang ) ) mass ⋅ v2⋅ sin ( ang ) Fx = −2.905⋅ kN Fy = 9.814⋅ kN 3a. Buscamos las Fuerzas: Formato 2 usando las velocidades Fy := 100N Fx := 100N Given Fx + P1⋅ π ⋅ 2 2 d2 − P2⋅ π ⋅ cos ( ang ) 2 2 d1 Fy − Vt⋅ Dens ⋅ g − P2⋅ π ⋅ d2 2 Fx := Find ( Fx, Fy ) Fy 2 ⋅ sin ( ang ) −v1⋅ v1⋅ π ⋅ 2 2 d2 ⋅ Dens + v2⋅ v2⋅ π ⋅ ⋅ Dens ⋅ cos ( ang ) 2 2 v2⋅ v2⋅ π ⋅ Fx = −2.397⋅ kN d1 d2 2 ⋅ Dens ⋅ sin ( ang ) 2 Fy = 10.084⋅ kN Ambos resultados son similares, los ordenes de magnitud son en kN. El programa hace las conversiones correctas y analiza matematicamente las ecuaciones, por tanto los resultados dados aqui son finales.