COMPATIBILIDAD ELECTROMAGNÉTICA (EMC) Conceptos, Normativas y Técnicas de diseño Disertante: Ing. Luciano S. Blas Jefe de Laboratorio Compatibilidad Electromagnética “Una mirada desde el laboratorio, orientada a equipamiento electromédico” Agenda I. Introducción. II. Términos y Definiciones. III. Fuentes, acoplamientos y receptores de EMI. IV. Modos o medios de propagación de las interferencias. V. Instalaciones para ensayos de EMC. VI. Normas aplicables a EMC en equipamiento electromédico. VII. Ensayos de EMC aplicables a equipamiento electromédico. VIII. Técnicas de Diseño, ejemplos. IX. Conclusiones. I. Introducción Preguntas frecuentes relacionadas con problemas de EMC ¿Por qué en algunos canales de TV se observan rayas o se escucha mal la radio? ¿Por qué debo apagar el celular en un Hospital? I. Introducción ¿QUÉ TIPOS DE ONDAS EXISTEN? Ondas Mecánicas Ondas Electromagnéticas Necesitan un medio físico para propagarse Se propagan rápidamente por el aire sin necesidad de un medio físico I. Introducción ¿QUÉ TIPOS DE ONDAS ELECTROMAGNÉTICAS EXISTEN? Ionizantes NO Ionizantes I. Introducción I. Introducción • Ejemplos de aplicaciones de las radiaciones ionizantes en la salud I. Introducción • Ejemplos de aplicaciones de las radiaciones NO ionizantes en la salud II. Términos y Definiciones Compatibilidad Electromagnética (CEM): Aptitud de un aparato o sistema para funcionar satisfactoriamente en su entorno electromagnético, sin introducir perturbaciones electromagnéticas intolerables para todo aquello que se encuentre en dicho entorno. Entorno Electromagnético: Totalidad de los fenómenos electromagnéticos existentes en una localización dada. Perturbación Electromagnética: Cualquier fenómeno electromagnético que puede degradar el funcionamiento de un dispositivo, equipo o sistema. II. Términos y Definiciones Inmunidad (a una perturbación): Capacidad de un equipo o sistema para funcionar sin degradación en presencia de una perturbación electromagnética. Emisión (Electromagnética): Fenómeno por el cual la energía electromagnética emana desde una fuente. Degradación (del funcionamiento): Desviación no deseada en las características de funcionamiento de un equipo o sistema respecto al funcionamiento previsto. III. Fuentes, acoplamientos y receptores de EMI ¿Cómo se generan las Interferencias Electromagnéticas? IV. Modos o medios de propagación de las interferencias Impedancia Común Radiación electromagnética: Radiación magnética (acoplamiento inductivo) Radiación eléctrica (acoplamiento capacitivo) IV. Modos o medios de propagación de las interferencias 1. Radiación directa de la fuente al receptor -> mecanismo conducido 2. Radiado desde la fuente y transferido a los cables de I/O del receptor -> mecanismo electromagnético 3. Radiado por los cables de la fuente a los cables del receptor -> mecanismo campo dominante magnético 4. Conducido por cables comunes de la fuente y del receptor -> mecanismo campo dominante eléctrico V. Instalaciones para ensayos de EMC Cámaras Anecoicas para mediciones de campo electromagnético V. Instalaciones para ensayos de EMC • Semianecoicas: Se desea simular un espacio abierto sobre un plano de tierra metálico. V. Instalaciones para ensayos de EMC • OATS: Open Área Test Site V. Instalaciones para ensayos de EMC Materiales Anecoicos La clave de un material anecoico es que absorba la energía electromagnética y la transforme en otro tipo de energía. espuma de poliuretano cargada de partículas de carbón. loseta de ferrite. V. Instalaciones para ensayos de EMC Antenas Antena para ensayos de Emisión Antena para ensayos de Inmunidad V. Instalaciones para ensayos de EMC Antenas Antena Loop para baja frecuencia Antena piramidal para alta frecuencia VI. Normas aplicables a EMC en equipamiento electromédico. Si quiero registrar mi producto en ANMAT, o exportarlo … ¿Qué normas debo cumplir? ¿Qué ensayos de EMC debo realizar? VI. Normas aplicables a EMC en equipamiento electromédico. IEC 60601-1:2005 Norma general de equipos electromédicos IEC 60601-1-2:2007 Norma colateral: Compatibilidad Electromagnética Establece las normas básicas de EMC para los ensayos Normas particulares IEC 60601-2-XX Establece criterios de conformidad Especifica los requisitos generales para la seguridad básica y funcionamiento esencial VI. Normas aplicables a EMC en equipamiento electromédico. IEC 60601-1-2:2007 60601 2:2007 Responsabilidad compartida Responsabilidad compartida FABRICANTES, ORGANIZACIONES RESPONSABLES y OPERADORES VI. Normas aplicables a EMC en equipamiento electromédico. IEC 60601-1-2:2007 Fabricantes, Organizaciones Responsables y Operadores: Asegurar que el equipo electromédico y sistema electromédico este diseñado y funcione según lo previsto. Responsabilidad del fabricante: Diseñar y fabricar para satisfacer los requisitos de esta norma y revelar la información a la Organización responsable. VI. Normas aplicables a EMC en equipamiento electromédico. Puede ser necesario que los requisitos de la norma colateral se modifiquen por los requisitos especiales de una norma particular. IEC 60601-2-x o IRAM 4220-2-x ¿Mi equipo tendrá norma particular? ¿Dónde la puedo buscar? International Electrotechnical Commission http://webtore.iec.ch Asociación Española de Normalización y Certificación www.aenor.es/aenor/normas/buscadornormas/buscadornormas.asp VI. Normas aplicables a EMC en equipamiento electromédico. VI. Normas aplicables a EMC en equipamiento electromédico. VI. Normas aplicables a EMC en equipamiento electromédico. IEC 60601-2-x o IRAM 4220-2-x IEC 60601-1-2 O IRAM 4220-1-2 IEC 60601-1 O IRAM 4220-1 Se aplica directamente si no existe norma particular. VII. Ensayos de EMC aplicables a equipamiento electromédico. Requisitos de Compatibilidad Electromagnética CONDUCIDA EMISIÓN RADIADA EMC CONDUCIDA INMUNIDAD RADIADA VII. Ensayos de EMC aplicables a equipamiento electromédico. Ensayos de Emisión Norma Básica Emisión radiada CISPR 11 Emisión conducida contínua CISPR 11 Armónicos IEC 61000-3-2 Flicker IEC 61000-3-3 Ensayos de Inmunidad Norma Básica Descargas electrostáticas (ESD) IEC 61000-4-2 Inmunidad radiada (IR) IEC 61000-4-3 Transitorios rápidos en ráfagas (BURST) IEC 61000-4-4 Ondas de choque (SURGE) IEC 61000-4-5 RF en modo común IEC 61000-4-6 Campo magnético IEC 61000-4-8 Interrupciones y huecos de tensión (PQT) IEC 61000-4-11 VII. Ensayos de EMC aplicables a equipamiento electromédico. No perturbar a otros equipos (no emitir perturbaciones por encima de un valor dado) VII. Ensayos de EMC aplicables a equipamiento electromédico. EMISIONES Clasificación de los equipos: El fabricante del equipo debe asegurar que el usuario está informado sobre la clase y el grupo de equipo, ya sea por el marcado o por la documentación del mismo. GRUPO 1 GRUPO CLASE A CLASE GRUPO 2 CLASE B VII. Ensayos de EMC aplicables a equipamiento electromédico. Grupo 1 Grupo 2 Clase A Clase B Aquellos Aquellos La energía La energía equipos equipos electromagnética electromagnética diseñados para diseñados para de RF es de RF es funcionar en ser utilizados generada y generada y un entorno con en entornos utilizada para el utilizada para el la red de con red de funcionamiento tratamiento de alimentación alimentación interno del pacientes. controlada de uso común equipo. (entorno (entorno hospitalario) domiciliario) VII. Ensayos de EMC aplicables a equipamiento electromédico. ENSAYOS REQUERIDOS - IEC 6060160601-1-2: EMISIONES Protección de los servicios de radio: (Los ( equipos ME [1] o sistemas ME se deben clasificar como Grupo 1 o Grupo 2 y Clase A o Clase B conforme a la norma CISPR 11) Emisión electromagnética Radiada [30 MHz a 1000 MHz] Emisión electromagnética conducida [150 kHz a 30 MHz] Protección de las redes de alimentación públicas: Distorsión Armónica, según requisitos de la IEC 61000-3-2 Fluctuaciones de tensión y flickers, según requisitos de la IEC 61000-3-3 [1] Electromédico VII. Ensayos de EMC aplicables a equipamiento electromédico. Ensayos: EMISIONES EMISIÓN ELECTROMAGNÉTICA CONDUCIDA Banda de frecuencias: 150 KHz a 30 MHz Configuración del ensayo VII. Ensayos de EMC aplicables a equipamiento electromédico. Ensayos: EMISIONES EMISIÓN ELECTROMAGNÉTICA CONDUCIDA Circuito eléctrico equivalente y LISN (Red estabilizadora de impedancia) VII. Ensayos de EMC aplicables a equipamiento electromédico. Ensayos: EMISIONES EMISIÓN ELECTROMAGNÉTICA CONDUCIDA Software de adquisición de datos: VII. Ensayos de EMC aplicables a equipamiento electromédico. Ensayos: EMISIONES EMISIÓN ELECTROMAGNÉTICA RADIADA Banda de frecuencias: 30 MHz a 1 GHz Configuración del ensayo VII. Ensayos de EMC aplicables a equipamiento electromédico. Ensayos: EMISIONES EMISIÓN ELECTROMAGNÉTICA RADIADA Banda de frecuencias: 30 MHz a 1 GHz Configuración del ensayo VII. Ensayos de EMC aplicables a equipamiento electromédico. Ensayos: EMISIONES EMISIÓN ELECTROMAGNÉTICA RADIADA Software de adquisición de datos: VII. Ensayos de EMC aplicables a equipamiento electromédico. No ser perturbado por otros equipos (tener un nivel de protección suficiente para no ser perturbado fácilmente) VII. Ensayos de EMC aplicables a equipamiento electromédico. SUSCEPTIBILIDAD o INMUNIDAD MODO DE FUNCIONAMIENTO Y CONFIGURACIÓN: Durante los ensayos de Inmunidad, cada función del equipo ME o sistema ME que está asociada a la seguridad básica y al funcionamiento esencial, se debe ensayar en el modo que es más crítico desde una perspectiva del paciente, usando las opciones del equipo, cables y accesorios en una configuración típica coherente con la utilización normal. VII. Ensayos de EMC aplicables a equipamiento electromédico. SUSCEPTIBILIDAD o INMUNIDAD CRITERIO DE CONFORMIDAD: El equipo ME o sistema ME debe proporcionar el funcionamiento esencial y permanecer seguro durante y después de los ensayos, o mostrar una degradación admisible según los requerimientos de las normas o declaración del fabricante en su Gestión de Riesgos (Mitigación del riesgo). Punto 6.2.1.10 “Criterios de conformidad” según especifica la norma IEC 60601-1-2:2007. Análisis de riesgo del equipo, declarado por el fabricante y bajo responsabilidad del director técnico. VII. Ensayos de EMC aplicables a equipamiento electromédico. ENSAYOS REQUERIDOS IEC 6060160601-1-2: INMUNIDAD Descarga Electrostática (ESD), según IEC 61000-4-2 Campos electromagnéticos radiados de RF, según IEC 61000-4-3 Transitorios y ráfagas rápidas (EFT/BURST), según IEC 61000-4-4 Onda de Choque (SURGE), según IEC 61000-4-5 Perturbaciones conducidas, inducidas por campos de RF, según IEC 61000-4-6 Campos magnéticos a frecuencia de red, según IEC 61000-4-8 Caídas de tensión, interrupciones y variaciones de tensión sobre las líneas de entrada de alimentación de red, según IEC 61000-4-11 VII. Ensayos de EMC aplicables a equipamiento electromédico. Ensayos: INMUNIDAD DESCARGA ELECTROSTÁTICA (ESD), SEGÚN IEC 61000-4-2 Se aplican los métodos y equipos de ensayo especificados en la norma IEC 61000-4-2. Con modificaciones según el punto 6.2.2 de la IEC 60601-1-2. Simula descargas electrostáticas del acercamiento entre dos cuerpos de distinta carga eléctrica. VII. Ensayos de EMC aplicables a equipamiento electromédico. Ensayos: INMUNIDAD DESCARGA ELECTROSTÁTICA (ESD), SEGÚN IEC 61000-4-2 VII. Ensayos de EMC aplicables a equipamiento electromédico. Ensayos: INMUNIDAD DESCARGA ELECTROSTÁTICA (ESD), SEGÚN IEC 61000-4-2 Por las características del pulso aplicado, puede: Producir fatiga de componentes Quemaduras en el PCB Quemaduras de componentes VII. Ensayos de EMC aplicables a equipamiento electromédico. Ensayos: INMUNIDAD CAMPOS ELECTROMAGNÉTICOS RADIADOS DE RF, SEGÚN IEC 61000-4-3 Se aplican los métodos y equipos de ensayo especificados en la norma IEC 61000-4-3. Con modificaciones según el punto 6.2.3 de la IEC 60601-1-2. VII. Ensayos de EMC aplicables a equipamiento electromédico. Ensayos: INMUNIDAD CAMPOS ELECTROMAGNÉTICOS RADIADOS DE RF, SEGÚN IEC 61000-4-3 Calibración del campo a aplicar en un área uniforme según norma. Se utiliza una sonda de campo para monitorear las mediciones. VII. Ensayos de EMC aplicables a equipamiento electromédico. Ensayos: INMUNIDAD CAMPOS ELECTROMAGNÉTICOS RADIADOS DE RF, SEGÚN IEC 61000-4-3 Frecuencia de modulación Nivel de campo 2 Hz 10 V/m (Asistencia vital) (Asistencia vital) Otros: 1 kHz Otros: 3 V/m VII. Ensayos de EMC aplicables a equipamiento electromédico. Ensayos: INMUNIDAD CAMPOS ELECTROMAGNÉTICOS RADIADOS DE RF, SEGÚN IEC 61000-4-3 VII. Ensayos de EMC aplicables a equipamiento electromédico. Ensayos: INMUNIDAD TRANSITORIOS Y RÁFAGAS RÁPIDAS (EFT/BURST), SEGÚN IEC 61000-4-4 Se aplican los métodos y equipos de ensayo especificados en la norma IEC 61000-4-4. Con modificaciones según el punto 6.2.4 de la IEC 60601-1-2. Simula la conmutación de cargas inductivas en la línea de alimentación, apertura y/o cierre de contactos, etc. VII. Ensayos de EMC aplicables a equipamiento electromédico. Ensayos: INMUNIDAD TRANSITORIOS Y RÁFAGAS RÁPIDAS (EFT/BURST), SEGÚN IEC 61000-4-4 VII. Ensayos de EMC aplicables a equipamiento electromédico. Ensayos: INMUNIDAD TRANSITORIOS Y RÁFAGAS RÁPIDAS (EFT/BURST), SEGÚN IEC 61000-4-4 Configuración del ensayo VII. Ensayos de EMC aplicables a equipamiento electromédico. Ensayos: INMUNIDAD ONDA DE CHOQUE (SURGE), SEGÚN IEC 61000-4-5 Se aplican los métodos y equipos de ensayo especificados en la norma IEC 61000-4-5. Con modificaciones según el punto 6.2.5 de la IEC 60601-1-2. Simula descargas atmosféricas directas o indirectas en proximidad de los conductores externos. VII. Ensayos de EMC aplicables a equipamiento electromédico. Ensayos: INMUNIDAD ONDA DE CHOQUE (SURGE), SEGÚN IEC 61000-4-5 Por las características del pulso aplicado, puede: Producir fatiga de componentes Quemaduras en el PCB Quemaduras de componentes VII. Ensayos de EMC aplicables a equipamiento electromédico. Ensayos: INMUNIDAD ONDA DE CHOQUE (SURGE), SEGÚN IEC 61000-4-5 Aplicación: Modo común Modo diferencial VII. Ensayos de EMC aplicables a equipamiento electromédico. Ensayos: INMUNIDAD PERTURBACIONES CONDUCIDAS, INDUCIDAS POR CAMPOS DE RF, SEGÚN IEC 61000-4-6 Se aplican los métodos y equipos de ensayo especificados en la norma IEC 61000-4-6. Con modificaciones según el punto 6.2.6 de la IEC 60601-1-2. Simula corrientes inducidas de RF provenientes de transmisores intencionales de RF. VII. Ensayos de EMC aplicables a equipamiento electromédico. Ensayos: INMUNIDAD PERTURBACIONES CONDUCIDAS, INDUCIDAS POR CAMPOS DE RF, SEGÚN IEC 61000-4-6 VII. Ensayos de EMC aplicables a equipamiento electromédico. Ensayos: INMUNIDAD CAMPOS MAGNÉTICOS A FRECUENCIA DE RED, SEGÚN IEC 61000-4-8 Se aplican los métodos y equipos de ensayo especificados en la norma IEC 61000-4-8. Con modificaciones según el punto 6.2.8 de la IEC 60601-1-2. Simula campos magnéticos generados por las corrientes de frecuencia industrial que circulan por los conductores cercanos al equipo. VII. Ensayos de EMC aplicables a equipamiento electromédico. Ensayos: INMUNIDAD CAMPOS MAGNÉTICOS A FRECUENCIA DE RED, SEGÚN IEC 61000-4-8 VII. Ensayos de EMC aplicables a equipamiento electromédico. Ensayos: INMUNIDAD CAÍDAS DE TENSIÓN, INTERRUPCIONES Y VARIACIONES DE TENSIÓN SOBRE LAS LÍNEAS DE ENTRADA DE ALIMENTACIÓN DE RED, SEGÚN IEC 61000-4-11 Se aplican los métodos y equipos de ensayo especificados en la norma IEC 61000-4-11. Con modificaciones según el punto 6.2.7 de la IEC 60601-1-2. VII. Ensayos de EMC aplicables a equipamiento electromédico. Ensayos: INMUNIDAD CAÍDAS DE TENSIÓN, INTERRUPCIONES Y VARIACIONES DE TENSIÓN SOBRE LAS LÍNEAS DE ENTRADA DE ALIMENTACIÓN DE RED, SEGÚN IEC 61000-4-11 Simula fallas en la red de C.A. o variaciones de cargas repentinas. VIII. Técnicas de Diseño UN BUEN DISEÑO… ¿Por dónde empezamos? VIII. Técnicas de Diseño EMC desde el inicio del diseño “No existe una única solución para desarrollar productos que cumplan los ensayos de EMC” Deberemos aplicar diferentes técnicas para conseguirlo, como pueden ser: Técnicas de Filtrado Técnicas de Blindaje Técnicas de Masa Técnicas de Desacoplos Técnicas de control de Impedancia Técnicas de segregación de circuitos en el PCB VIII. Técnicas de Diseño EMC desde el inicio del diseño Durante el desarrollo del esquema: Definir los valores de los capacitores de desacoplo Definir las estrategias de filtrado Elegir las protecciones a las ESD Clasificar los circuitos Trazado del circuito impreso: Planificar las masas y formas de conexión Agrupar los componentes electrónicos Evitar mezcla de circuitos ruidosos con circuitos sensibles VIII. Técnicas de Diseño EMC desde el inicio del diseño Cada una de las fases del diseño tiene consecuencias en la etapa final del producto. Segregación de circuitos Sistema de alimentación Estructura de masas Entradas y Salidas Osciladores Desacoplos de los circuitos integrados Buses de datos Software VIII. Técnicas de Diseño Impacto de EMC VIII. Técnicas de Diseño Diseño del esquema Plantear el circuito a nivel de bloques: Alimentaciones necesarias Circuitos analógicos Microcontrolador Drivers Buses Conectores VIII. Técnicas de Diseño Diseño de cableados y conectores En esta etapa será clave: Definir la zona de ubicación de los distintos circuitos. Definir la ubicación de los conectores. Definir la ubicación del cableado a través de los circuitos. VIII. Técnicas de Diseño Diseño de cableados y conectores Emplear cables trenzados o blindados. Esto es para evitar la interferencia que éstos capturan y atenuar las radiaciones que emiten a su entorno. Eligir el tipo de conector adecuado y la agrupación de señales para evitar el crosstalk entre pines. VIII. Técnicas de Diseño Diseño del PCB Es la actividad IMPORTANTE. SE DEBERÁN LLEVAR A CABO TODAS LAS TÉCNICAS EXPUESTAS ANTERIORMENTE PARA LOGRAR UN BUEN DISEÑO. más VIII. Técnicas de Diseño Segregación de circuitos VIII. Técnicas de Diseño Condensadores de desacoplo Los componentes que conmutan estados lógicos deben estar desacoplados de RF, ya que la energía desarrollada puede introducirse en los distintos circuitos. CAPACITOR DE DESACOPLO: Almacena una carga eléctrica que es liberada en la línea de alimentación cuando existe una demanda puntual por parte de un circuito integrado. Provee una baja impedancia a la fuente de alimentación minimizando el ruido generado por la conmutación de las salidas del CI. Se coloca en paralelo, lo más próximo posible al integrado, entre alimentación y masa. VIII. Técnicas de Diseño Condensadores de desacoplo VIII. Técnicas de Diseño ¿Cómo minimizar los efectos de los acoplamientos? VIII. Técnicas de Diseño Modo de acoplo Impedancia común ¿Dónde se manifiesta? Fuente y receptor comparten un camino con una impedancia común. Radiado – campo magnético Inductancia mútua de dos lazos de corriente. Radiado – campo eléctrico Diferencia de potencial entre dos conductores. Forma de minimizarlo - Prevenir el ruido en la línea que se comparte. - Reducir al mínimo la inductancia entre las interconexiones. Entre cables: - Limitar longitud de cables corriendo en paralelo. - Aumentar la distancia entre el cable perturbador y el cable víctima. Entre cable y campo: -Mantener el cable junto a la superficie metálica. -Utilizar cables trenzados. - Utilizar juntas, ferrites y filtros EMI. Minimizar la impedancia de masa. VIII. Técnicas de Diseño Ruido en la masa Son producidos por transitorios en la alimentación y en las corrientes de retorno. Los ruidos en el plano de masa no pueden ser desacoplados. Los transitorios de corriente en la masa son la principal fuente de ruido dentro del sistema, de emisiones radiadas y conducidas. ¿Cómo los minimizo? Minimizando la impedancia de la masa. VIII. Técnicas de Diseño Puesta a masa VIII. Técnicas de Diseño Puesta a masa VIII. Técnicas de Diseño Cancelación del flujo magnético “La técnica de cancelación de flujo es la más importante en el diseño del PCB” VIII. Técnicas de Diseño Recomendaciones para la cancelación del flujo magnético Control de la impedancia en la estructura de capas del circuito impreso multicapa o capa simple. Trazar las pistas de reloj adyacentes al plano de referencia. Colocar un plano de masa al componente que pueda causar radiaciones con la finalidad de reducirlas. Utilizar familias lógicas con flancos lentos para minimizar la distribución espectral de RF. Reducir las corrientes en las pistas, reduciendo los voltajes ( TTL vs. CMOS) VIII. Técnicas de Diseño Recomendaciones para la cancelación del flujo magnético Reducir el ruido entre los planos de alimentación y masa. Colocar capacidades de desacoplo. Terminar correctamente las pistas de reloj para evitar sobreimpulsos y subimpulsos. Utilizar condensadores de paso en interconexiones. Conectar a masa los radiadores. Situar los integrados con señales rápidas lo más próximo al microcontrolador. No pasar pistas por debajo del micro. Si el PCB es multicapa, colocar en la capa superior pistas del cristal y asociados, buses, señal de reloj y señales rápidas. VIII. Técnicas de Diseño Crosstalk o diafonía Forma no intencionada de acoplo entre señales, debido a la interacción entre pistas, cables y componentes. VIII. Técnicas de Diseño Crosstalk o diafonía Crosstalk debido a impedancia común: se hace presente cuando dos o más circuitos comparten conductores o caminos comunes, ya sea en la alimentación o en el retorno. VIII. Técnicas de Diseño Crosstalk o diafonía Crosstalk capacitivo: se produce por las capacidades parásitas entre las diferentes pistas o elementos del circuito. VIII. Técnicas de Diseño Crosstalk o diafonía Otra técnica para reducir el crosstalk capacitivo VIII. Técnicas de Diseño Crosstalk o diafonía Crosstalk inductivo: siempre que existen dos lazos de corriente, existe inductancia mutua. La corriente en uno de los lazos crea un campo magnético, ese campo magnético afecta al segundo lazo. VIII. Técnicas de Diseño Técnicas de diseño para reducir el crosstalk Maximizar la distancia física entre componentes Minimizar las pistas que transcurren paralelas Separar la distancia entre pistas paralelas para evitar el acoplo inductivo En capas adyacentes trazar las pistas perpendiculares entre si, para evitar el acoplo capacitivo Reducir la separación entre la capa de señal y la del plano de masa Aislar los circuitos generadores de ruido( reloj, I/O,etc.) en una capa interna VIII. Técnicas de Diseño Supresores de Ferrite ¿Cómo selecciono el más adecuado? VIII. Técnicas de Diseño Tipo de material, material, Impedancia, Resistencia y Reactancia VIII. Técnicas de Diseño Tipo de material, Impedancia, Resistencia y Reactancia VIII. Técnicas de Diseño Conexión de los ferrites VIII. Técnicas de Diseño Utilización de Filtros de RFI ( Interferencia de RF) Reducir el nivel de las perturbaciones emitidas por un aparato en la banda de 150 kHZ a 30 MHz. No son eficientes contra perturbaciones tales como sobretensiones e impulsos tipo rayo. Están formados por elementos pasivos (condensadores e inductancias). Debe estar situado lo más cerca posible de la fuente de perturbaciones. VIII. Técnicas de Diseño Filtros de RFI de grado médico VIII. Técnicas de Diseño Protección con Varistores Se utilizan en paralelo con las bobinas de relés, motores o cualquier otro tipo de carga inductiva. Cuando aparece un transitorio, el varistor cambia su resistencia de un valor alto a otro valor muy bajo. El transitorio es absorbido por el varistor, protegiendo de esa manera los componentes sensibles del circuito. VIII. Técnicas de Diseño Técnicas de Blindaje VIII. Técnicas de Diseño Técnicas de Blindaje Emisión Inmunidad VIII. Técnicas de Diseño Técnicas de Blindaje VIII. Técnicas de Diseño Aberturas El diámetro de los agujeros de las aberturas no debe ser mayor a 16 mm. Si es posible colocar a todas las aberturas paneles mallados. VIII. Técnicas de Diseño Casos prácticos… Empleo de técnicas Rezo a los dioses Vs.. Vs VIII. Técnicas de Diseño Problemas reales de diseño… VIII. Técnicas de Diseño Posible solución… VIII. Técnicas de Diseño Problemas reales de diseño… VIII. Técnicas de Diseño Posible solución… VIII. Técnicas de Diseño Ejemplo N° 1 VIII. Técnicas de Diseño Ejemplo N° 2 VIII. Técnicas de Diseño Ejemplo N° 3 VIII. Técnicas de Diseño Ejemplo N° 4 VIII. Técnicas de Diseño Ejemplo N° 5 IX. Conclusiones No existe una única solución para desarrollar productos que cumplan los ensayos de EMC. La compatibilidad se debe considerar en el momento del diseño. La experiencia demuestra que la supresión de las EMI en el momento del diseño puede solventar entre el 80% y 90% de los problemas antes de las primeras pruebas. IX. Conclusiones A medida que se desarrolla un equipo, la posibilidad de aplicar ciertas técnicas para la eliminación de interferencias se reduce y al mismo tiempo el costo de su reducción se incrementa. IX. Conclusiones “La sombra aguanta la casa y el día que está nublado, ésta se cae al suelo... suelo ...” ” Ing. Luciano S. Blas [email protected] Jefe de Laboratorio Compatibilidad Electromagnética