Finite element analysis of a pressure-stress

Anuncio
XXV COMCA
Congreso de Matemática Capricornio
2,3,4 y 5 de Agosto de 2016, Antofagasta, Chile
Finite element analysis of a pressure-stress
formulation for the time-domain
fluid-structure interaction
Carlos García∗
CI MA and Departamento de Ingeniería Matemática
Universidad de Concepción
Concepción, Chile
2
Abstract
We present a convergence analysis for the space discretization of a time-dependent system
of partial differential equations modeling an elasto-acoustic interaction problem. We use the
Arnold-Falk-Winther mixed finite element method with weak symmetry in the solid and the
usual Lagrange finite element method in the acoustic medium. The error analysis of the resulting global semi-discrete scheme relies essentially on the mapping properties of an adequate
projector. We show that the method is stable uniformly with respect to the space discretization
parameter and the Poisson modulus and we prove asymptotic error estimates.
Joint work with:
Gabriel N. Gatica1 , Centro de Investigación en Ingeniería Matemática CI2 MA and Departamento
de Ingeniería Matemática, Universidad de Concepción, Concepción, Chile.
Salim Meddahi2 , Department, University, City, Country.
References
[1] C. García, G. N. Gatica, S. Meddahi, A new mixed finite element analysis of the elastodynamic equations, Applied Mathematics Letters, vol. 59, pp. 48–55,(2016).
[2] G. N. Gatica, A Simple Introduction to the Mixed Finite Element Method. Theory and Applications, Springer Briefs in Mathematics. Springer, Cham, (2014).
∗ Partially supported by CONICYT-Chile through BASAL project CMM, Universidad de Chile; by project Anillo
ACT1118 (ANANUM), e-mail: [email protected]
1 Partially supported by CONICYT-Chile through BASAL project CMM, Universidad de Chile; by project Anillo
ACT1118 (ANANUM), e-mail: [email protected]
2 Partially supported by Ministery of Education of Spain through the project MTM2013-43671-P, e-mail:
[email protected]
1
Descargar