EXPLORACION DE GLACIARES Octubre 2010 Ing. BENJAMIN MORALES ARNAO N TEMAS DE EXPLORACION DE GLACIARES 1 Cartas Topográficas 2 Imagen de Satélite 3 Levantamientos Topográficos 4 GPS 5 Levantamiento LIDAR 6 Fotogrametría 7 Sondajes 8 Exploración Sísmica 9 Exploración Gravimétrica 10 Exploración Electromagnética 11 Interferometría SAR IMAGEN DE SATÉLITE IMÁGENES DE SATÉLITE LANDSAT Se caracterizan por la variedad de bandas que las componen. Se separan en 2 tipos: Landsat 7 (sensor ETM+) y Landsat 5 (sensor TM); ambas poseen 7 bandas multiespectrales que van desde el visible hasta el infrarrojo medio, con una resolución de 30 metros, en la mayoría de ellas. La diferencia entre ellas radica en que las Landsat 7 poseen una banda pancromática de 15 metros y en el caso de la banda termal, aumenta la resolución de 120 a 60 metros. Cada escena cubre 180*175 Km2. Las principales aplicaciones de estas imágenes se centran en la identificación y clasificación de las distintas cubiertas que existen en la superficie terrestre, determinación de humedad del suelo, clasificación de la vegetación, mapas hidrotermales y estudios multitemporales. Existen imágenes de archivo desde 1982. Las imágenes ALOS, son captadas por 3 sensores: VNIR, PRISM y PALSAR. En el caso del sensor VNIR, este capta imágenes multiespectrales, que poseen las bandas del visible y el infrarrojo cercano, con una resolución de 10 metros. Cada imagen tiene una extensión de 70*70 Km2. Tiene aplicación en el área medioambiental, clasificación de suelos y seguimiento de desastres naturales, por su alta capacidad de revisita (2 días). A diferencia del sensor anterior, el PRISM capta imágenes pancromáticas y se destaca por la resolución espacial que estas poseen de 2.5 metros y porque cada escena contiene 3 perspectivas (nadir, hacia atrás y hacia delante), con una superficie común de 35*35 Km2, de manera que permite hacer estereoscopía y generar modelos digitales de elevación de alta precisión. Estas imágenes son captadas desde 1999 por el satélite Terra. Poseen 14 bandas separadas en 3 grupos, el primero con una resolución de 15 metros, en donde están las bandas del visible y del infrarrojo cercano; el segundo con una resolución de 30 metros compuesto por 6 bandas del infrarrojo; y un tercer grupo termal, con una resolución de 90 metros. Sus principales aplicaciones están en el análisis de suelos, cuerpos de agua, geología, medio ambiente, usos de suelo, entre otros. Además, cuenta con 2 bandas estereoscópicas, a partir de las cuales se puede generar modelos digitales de elevación. Cada escena ASTER, tiene una extensión de 60 * 60 Km2. El sensor PALSAR, es un sensor activo de RADAR, con una resolución variable de 10 a 100 metros. Este sensor permite captar escenas a través de las nubes, bruma, niebla o humo, tanto de día como de noche. Por lo tanto, es ideal para realizar estudios en áreas tropicales o polares. También son utilizadas en la geología, movimientos en masa, aplicaciones marítimas, entre otros. Estas imágenes son denominadas de alta resolución, se componen de una imagen multiespectral, que posee las bandas visibles y la infrarroja cercana, con una resolución espacial de 2.4 metros; y una imagen pancromática, con una resolución de 0.6 metros. Cada escena QuickBird tiene una extensión de 16.5*16.5 Km2. Las aplicaciones que se pueden realizar con estas imágenes son variadas, como por ejemplo: generación de cartografía urbana, aplicaciones agrícolas, forestales, de recursos hídricos, medioambiente, seguridad, entre otros. Este es un nuevo satélite puesta en órbita a fines del 2007, la principal característica es que capta imágenes pancromáticas con una resolución de 0,5 metros. Próximamente, se espera el lanzamiento del satélite WorldView – 2, para la adquisición de imágenes multiespectrales. Tabla resumen – Imágenes Satelitales: Tipos Fundamentales de Imágenes Pancromáticas Se captan mediante un sensor digital que mide la reflectancia de energía en una amplia parte del espectro electromagnético. Identifican y miden accidentes superficiales y objetos, principalmente por su apariencia física. Identifican y cartografían con precisión la situación de los elementos generados por la acción del hombre, como edificios, carreteras, veredas, casas, etc. Actualizan las características físicas de los mapas existentes. Trazan los límites entre tierra y agua. Identifican y cuantifican el crecimiento y desarrollo urbano. Permiten generar modelos digitales de elevación de gran exactitud. Catalogan el uso del suelo. Tipos Fundamentales de Imágenes Mutliespectrales Se captan mediante un sensor digital que mide la reflectancia en muchas bandas de espectro. Estos distintos valores de reflectancia se combinan para crear imágenes de color. Distinguen las rocas superficiales y el suelo por su composición y consolidación. Delimitan los terrenos pantanosos. Estiman la profundidad del agua en zonas litorales. Catalogan la cubierta terrestre. LEVANTAMIENTOS TOPOGRÁFICOS LEVANTAMIENTO TOPOGRÁFICO CON TEODOLITO T2 1967 LEVANTAMIENTO TOPOGRÁFICO CON ESTACIÓN TOTAL 2010 PROCESO DEL LEVANTAMIENTO TOPOGRAFICO CON PRISMAS GPS • Los equipos de GPS utilizan algunos de los numerosos satélites GPS que orbitan la tierra, cada uno dos veces al día, en trayectorias conocidas con alta precisión. • Sirven para determinar la posición de puntos en la superficie de la tierra a partir de las señales emitidas por los satélites y recibidas por los equipos GPS en el terreno. • La actual precisión de los levantamientos con GPS es del orden de 20 milímetros en las coordenadas horizontales, y del orden de 40 milímetros en las verticales LIDAR Light Detection and Ranging “Detección y medición a través de la luz” LIDAR Es una tecnología que permite determinar la distancia desde un emisor láser a un objeto o superficie utilizando un haz de luz pulsado. En términos simples, funciona como un sistema que permite registrar las diferentes altitudes que hay en un terreno, de tal manera que éstas puedan reproducirse en un mapa. La importancia fundamental del barrido LIDAR es que permite hacer estudios cuantificables de elementos territoriales, volúmenes, catastro de ejemplares, entre otras opciones. Incluso, modelamiento 3D con fines civiles, monitoreando riesgos Geológicos, Sismológicos, Erupciones Volcánicas, Aluviones, Control de Faenas Mineras, sin necesidad de estar en contacto directo con el territorio en cuestión. APLICACIONES Dentro de las aplicaciones más frecuentes para lo que se utiliza este sensor se encuentran: Usos en faenas mineras Planificación de rutas óptimas Localización de botaderos y/o piscina de decantación Monitoreo de erosión Mapeo de drenaje; forestales/agrícolas Estudio de infraestructura y planificación urbana Aplicaciones en geografía física Monitoreo de áreas sensibles, entre muchas otras. De estas aplicaciones se pueden obtener cuantificaciones precisas de distintos elementos. El producto principal, con especialización de elementos, es la cartografía temática en toda la amplitud del concepto y la obtención de curvas de nivel de gran precisión. FOTOGRAMETRIA Fotogrametría Aérea Consiste en la utilización de fotogramas aéreos de eje vertical tomados desde un avión que sobrevuela la zona de estudio, recubriendo el territorio con fotogramas que se solapen tanto longitudinal como transversalmente. Usos: Posteriormente, a partir de estos fotogramas y realizando una serie de procesos se pueden trazar mapas. Fotogrametría Terrestre Puede dividirse en: Es una medición en fotogramas obtenidos desde la superficie terrestre. Los ejes de las cámaras son horizontales , paralelos entre si y perpendiculares a la base • Fotogrametría de objeto cercano: D=300 m a 10cm • Macrofotogrametría: D= 1 a 10cm • Microfotogrametría: D ‹ 10cm SONDAJES TALADRO MANUAL SIPRE PERFORACIÓN ROTATIVA EN EL GLACIAR DE ALECH - SUIZA PERFORACIÓN MANUAL PARA SACAR MUESTRAS DE ACUMULACIÓN DE NIEVE PERFORACION TERMICA PARA BALIZAS DE ABLACION EN EL GLACIAR BROGGI EQUIPOS PARA PERFORACION TERMICA EXPLORACION SISMICA GEOFÍSICA POR REFRACCIÓN SÍSMICA EXPLORACION ELECTROMAGNETICA EXPLORACION CON GEORADAR INTERFEROMETRIA SAR Interferometría desde radares en el espacio Ilustración cortesía del Prof. Howard Zebker, Universidad de Stanford • Dos satélites toman una imagen de la superficie de la Tierra • O un satélite adquiere 2 imágenes de una región en particular, en un periodo de varios días • Se procesa la información para generar imágenes de SAR con formato de valores complejos • La diferencia de la fase entre las dos imágenes se procesa para obtener información de la altura y/o del movimiento de la superficie de la Tierra LAGUNAS DE SAFUNA EXPLORACION GEOFISICA Y DE PERFORACIONES CUENCA GLACIAR DE LA LAGUNA DE PARÓN EXPLORACIONES POR GEOFISICA Y PERFORACIONES INVESTIGACIONES DE PALEOCLIMA EN EL GLACIAR QUELCCAY, PERU 1977 PROYECTO DE EXPLORACION MINERA EN CUENCA GLACIAR CHAUPIJANCA SUR – FARALLÓN DE HIELO PERFORACIONES TÉRMICAS CHAUPIJANCA SUR – FARALLÓN DE HIELO PERFORACIONES TÉRMICAS ACELERÓGRAFO INSTALADO PARA CONTROL DE VIBRACIONES