PRÁCTICA DE LABORATORIO ME APROXIMO AL CONOCIMIENTO COMO CIENTÍFICO NATURAL La velocidad de salida del agua a través de un agujero El teorema de Torricelli establece que la velocidad con que sale el líquido por un agujero practicado a una profundidad h es igual a la velocidad que alcanzará si cayera desde una altura h. En esta práctica nos proponemos analizar la variación de la velocidad del agua que sale a través del agujero de un recipiente cuando se varía la profundidad a la cual este se practica. Conocimientos previos Ecuación de continuidad, ecuación de Bernoulli, presión atmosférica y densidad. Procedimiento Materiales ■ ■ ■ ■ ■ ■ Colorantes Recipiente plástico en forma de cilindro recto Dos puntillas de diferente diámetro Una vela Una cuchilla Una pequeña lámina de cartón 1 2 h h 3 x 4 h 1. Calienta un poco la puntilla de menor diámetro y con ella haz un agujero cerca del fondo del recipiente (fig. 1). Retira con la cuchilla los residuos de plástico del borde del agujero. 2. Llena el recipiente con agua hasta el borde superior. Describe la trayectoria que sigue el agua al salir del agujero. Mide la distancia x que alcanza el agua con respecto a la pared del recipiente. 3. Haz otro agujero a la misma altura y hacia un lado, con una puntilla de mayor diámetro. Llena nuevamente el recipiente hasta el borde superior. Compara la trayectoria del agua que sale por el agujero con respecto a la del agua que sale por el agujero más pequeño. Observa en qué caso es mayor la distancia horizontal x, que alcanza el agua con respecto a la pared del recipiente. 4. Con la puntilla de menos diámetro, haz en el recipiente otro agujero, a una altura mayor con respecto al fondo. Llena el recipiente hasta el borde. 5. Por debajo del agujero que acabas de abrir coloca un cartón en posición horizontal, de manera tal que la distancia entre el hueco y el cartón sea la misma que entre el primer agujero y la superficie sobre la cual se encuentra el recipiente (fig. 2). Observa la distancia horizontal con respecto a la pared del recipiente a la cual llega el agua sobre el cartón. 6. Con la puntilla de menor diámetro, practica otro agujero en el recipiente, pero esta vez a una mayor altura que las dos anteriores. Llena nuevamente el recipiente hasta el borde. Coloca un cartón de la misma forma que se explicó en pasos anteriores, teniendo en cuenta que la distancia h, entre el agujero y el cartón debe ser la misma que en otros casos (fig. 3). Observa la distancia a la que llega el agua sobre el cartón, con respecto a la pared del recipiente. 7. Con todos los agujeros abiertos, determina a qué altura está el agujero por el cual el agua obtiene el mayor alcance horizontal en la superficie sobre la que se encuentra el recipiente (fig. 4). Análisis de resultados 1. Si la altura h se mantiene constante, ¿cómo se relaciona la velocidad de salida con la distancia que alcanza el agua con respecto a la pared del recipiente? 2. ¿La velocidad de salida del agua depende del área del agujero? © Santillana 239