Trigonometric Sum and Difference Theorems 1. Prove the Basic Formula (The Formula for Cosine of a Difference) (cosα, sin α) A A B (cosβ , sin β ) α β O (0, 0) Consider any 2 points, A and B, on the unit circle. The radius segments to these points form angles of measure α and measure β as shown in the figure. Point O(0, 0) is at the origin and the center of the unit circle. Since points A and B are on the unit circle, we know their coordinates to be: A(cos α, sin α) and B(cos β, sin β) In the triangle OB = OA = 1, since the radius of the unit circle is 1. By the Distance Formula: AB = (cos α - cos β)2 + (sin α - sin β)2 (AB)2 = (cos α - cos β)2 + (sin α - sin β)2 (AB)2 = cos2 α - 2 cos α cos β + cos2 β + sin2 α - 2 sin α sin β + sin2 β (AB)2 = 2 - 2(cos α cos β + sin α sin β) By the Law of Cosines: (AB)2 = (OA)2 + (OB)2 - 2(OA)(OB) cos(α - β) (AB)2 = 1 + 1 - 2 • 1 • 1 • cos(α - β) (AB)2 = 2 - 2 cos(α - β) Since both of the above equations have (AB)2 on the left, then we can say: 2 - 2 cos(α - β) = 2 - 2(cos α cos β + sin α sin β) Subtracting 2 from both sides, then dividing both sides by -2, we get: cos(α - β) = cos α cos β + sin α sin β Q.E.D. 2. Prove that cosine is an even function: ie cos(-x) = cos x cos(-x) = cos(0 - x) = cos 0 cos x + sin 0 sin x = 1 * cos x + 0 * sin x = cos x + 0 = cos x Q.E.D. 3. Prove the formula regarding the cosine cos (π/2 - x) = cos (π/2) cos x + sin (π/2) sin x of a compliment. = 0 * cos x + 1 * sin x = 0 + sin x = sin x Q.E.D. 4. Prove the formula regarding the sine of a complement. sin (π/2 - x) = cos [π/2 - (π/2 - x)] = cos [(π/2 - π/2) + x] = cos x Q. E. D. 5. Prove that sine is an odd function. sin (-x) = cos [π/2 - (-x)] = cos (π/2 + x) = cos (- π/2 - x) = cos (- π/2) cos x + sin (- π/2) sin x = 0 cos x - 1 sin x = - sin x Q. E. D. 6. Prove the formula for cosine of a sum. cos (x + y) = cos (x - -y) = cos x cos (-y) + sin x sin (-y) = cos x cos y - sin x sin y Q. E. D. 7. Prove the formula for sine of a sum. sin (x + y) = cos [π/2 - (x + y)] = cos [(π/2 - x) - y] = cos (π/2 - x) cos y + sin (π/2 - x) sin y = sin x cos y + cos x sin y Q. E. D. 8. Prove the formula for the sine of a difference. sin (x - y) = sin [x + (-y)] = sin x cos (-y) + cos x sin (-y) = sin x cos y - cos x sin y Q. E. D. 9. Prove the formula for tangent of a sum. 10 Prove the formula for tangent of a . difference. 11 Prove that tangent is an odd . function. sin(x + y) tan(x + y) = cos(x + y) sin x cos y + cos x sin y = cos x cos y - sin x sin y sin x cos y + cos x sin y cos x cos y = cos x cos y - sin x sin y cos x cos y tan x + tan y = 1 - tan x tan y Q.E.D. sin(x - y) tan(x - y) = cos(x - y) sin x cos y - cos x sin y = cos x cos y + sin x sin y sin x cos y - cos x sin y cos x cos y = cos x cos y + sin x sin y cos x cos y tan x - tan y = 1 + tan x tan y Q.E.D. sin(-x) tan(-x) = cos(-x) - sin x = cos x = -tan x Q.E.D.