CVN - Rafael Molina Monterrubio

Anuncio
Date of the CVA
Section A. PERSONAL DATA
Name and Surname
Rafael Molina Monterrubio
DNI
50204761Q
Researcher's
Researcher ID
identification number
Código Orcid
08/10/2015
Age
38
A1. Current professional situation
Institution
Consejo Superior de Investigaciones Científicas
Dpt. / Centre
Crystallography / Instituto de Química Física Rocasolano
Address
C/ Euskalduna, 1, Portal G, 1ºC, 28021, Madrid
Phone
(+34)
Email
[email protected]
606192304
Professional category Investigador Senior Post-Doctoral
Start date
UNESCO spec. code
240300 - Biochemistry
Keywords
Structural biology
A.2 Academic education (Degrees, institutions, dates)
Bachelor/Master/PhD
University
Programa Oficial de Doctorado en
Universidad Complutense de
Bioquímica y Biología Molecular
Madrid
Master en Bioquimica y Biologia Molecular
Universidad Complutense de
Madrid
Licenciado en Bioquimica
Universidad Complutense de
Madrid
2015
Year
2009
2005
2002
Section B. SUMMARY OF THE CURRICULUM
Protein Engineering and Structural Biology of Bacterial Pathogenesis
During the PhD stay my research work was dealing with protein characterization
and engineering of biotechnologically relevant enzymes as well as with the structural
characterization of pneumococcal surface proteins, key players both in virulence processes
and in the development of novel combat strategies against antibiotic resistance. Concerning
the first topic, my implication on the structural characterization of biotechnologically relevant
proteins such as reductases, lipases and esterases, was object of five high quality publications.
Concerning the second topic, we characterized a new modular protein, CbpF, (Molina et al.,
EMBO Reports, 2009) involved in the regulation of the virulence mechanism named fratricide
in Streptococcus pneumoniae. In addition, from the methodological point of view, we used a
novel series of Gd complexes to develop a new phasing protocol based on the SAD technique
(Molina et al., Acta Cryst. Sect. D., 2009 and Stelter et al., Acta Cryst. Sect. D., 2014). Molecular Scissors for in situ cellular repair
During my long-term postdoctoral stay at Spanish National Cancer Research Centre I
have been involved in the study and development of two types of molecular scissors for
genome modification: Homing Endonucleases (HEs) and Transcription Activator-Like Effector
Nucleases (TALENs) (project awarded with Juan de la Cierva programme funding). The
engineering of protein–DNA interactions in these protein scaffolds has shown the potential of
these approaches to create new specific tools for the inactivation or repair of certain target
genes. In that sense we analysed the mechanism of target discrimination by the HEs I-CreI
along the central substrate region (Molina et al., Nucleic Acids Research, 2012) as well as
we visualised, for the first time, all the reaction steps occurring during the DNA cleavage as
snapshots revealing the catalytic mechanism of the HEs I-DmoI (Molina et al., Nature Structural
& Molecular Biology, 2015). These studies allowed us to redesign new enzymes for therapeutic
and biotechnological applications (Molina et al., JBC., 2015). In addition, we also characterised
novel HE scaffolds for genome engineering as shown with the HE I-CvuI (Molina et al., JBC,
1
2015). Concerning the novel TALEN systems, we unravelled some key questions in the TALEDNA recognition (Stella et al., Acta Cryst. Sect. D., 2013), recently characterizing a novel DNAbinding domain TALE-related for genome modification: BuD (Molina et al., Acta Cryst. Sect.
D., 2014). Microfilaments as a target for developing novel antitumor therapeutic approaches
At the Spanish Council Research I am currently working in the structural biology of
microfilaments as a target to develop antitumor drugs. Cytoskeletal-directed agents have been
a mainstay in chemotherapeutic protocols due to their ability to readily interfere with the rapid
mitotic progression of neoplastic cells. However, despite the diversity of cytoskeletal-directed
agents available to oncologists, all currently approved cytoskeletal directed agents used in the
clinical setting are all microtubule-based drugs, and there has yet to be any microfilament or
intermediate filament-directed agents approved for clinical use. My idea is to characterise novel
compounds that altering the dynamics of microfilaments induce cytotoxic processes of tumor
cells.
Section C. MOST RELEVANT MERITS (ordered by typology)
C.1. Publications
1 Scientific paper. Rafael Molina; et al. 2015. Crystal structure of the homing endonuclease
I-CvuI provides a new template for genome modification. Journal of Biological Chemistry.
2 Scientific paper. Rafael Molina; et al. 2015. Engineering a Nickase on the Homing
Endonuclease I-DmoI Scaffold. Journal of Biological Chemistry. 290-30, pp.18534-18544.
3 Scientific paper. Afredo De Biasio; et al. 2015. Structure of p15PAF–PCNA
complex and implications for clamp sliding during DNA replication and repair. Nature
Communications. Nature. 6-6439, pp.1-12.
4 Scientific paper. Rafael Molina; et al. 2015. Visualizing phosphodiester-bond hydrolysis by
an endonuclease. Nature Structural & Molecular Biology. Nature. 22-1, pp.65-72.
5 Scientific paper. Rafael Molina; et al. 2014. BuD, a helix–loop–helix
DNA-binding domain for genome modification. Acta Crystallographica D. Acta
Crystallographica. 70, pp.2042-2052.
6 Scientific paper. Meike Stelter; et al. 2014. A complement to the modern crystallographer’s
toolbox: caged gadolinium complexes with versatile binding modes. Acta Crystallographica
D. Acta Crystallographica. 70, pp.1506-1516.
7 Scientific paper. Pilar Redondo; et al. 2014. Crystallization and preliminary X-ray diffraction
analysis of the homing endonuclease I-CvuI from Chlorella vulgaris in complex with its target
DNA. Acta Crystallographica F. Acta Crystallographica. 70, pp.256-259.
8 Scientific paper. Stefano Stella; et al. 2013. Expression, purification, crystallization and
preliminary X-ray diffraction analysis of the novel modular DNA-binding protein BurrH
in its apo form and in complex with its target DNA. Acta Crystallographica F. Acta
Crystallographica. 70, pp.87-91.
9 Scientific paper. Stefano Stella; et al. 2013. The crystal structure of AvrBs3-DNA complex
provides new insight into the initial thymine recognition mechanism. Acta Crystallographica
D. Acta Crystallographica. 69, pp.1707-1716.
10 Scientific paper. Nada Lallous; et al. 2012. Expression, purification, crystallization and
preliminary X-ray diffraction analysis of the dihydroorotase domain of human CAD. Acta
Crystallographica F. Acta Crystallographica. 68, pp.1341-1345.
11 Scientific paper. Julien Valton; et al. 2012. 5’-Cytosine-Phosphoguanine (CpG)
Methylation Impacts the Activity of Natural and Engineered Meganucleases. Journal
of Biological Chemistry. The American Society for Biochemistry and Molecular
Biology. 287-36, pp.30139-30150.
12 Scientific paper. Jesus Prieto; Rafael Molina; Guillermo Montoya. 2012. Molecular scissors
for in situ cellular repair. Critical Reviews in Biochemistry and Molecular Biology. Informa
Healthcare. 47-3, pp.207-221.
2
13 Scientific paper. Rafael Molina; et al. 2012. Non-specific protein-DNA interactions
control I-CreI target binding and cleavage. Nucleic Acids Research. Informa
Healthcare. 40-14, pp.6936-6945.
14 Scientific paper. Rafael Molina; Guillermo Montoya; Jesus Prieto. 2011. Meganucleases
and Their Biomedical Applications. Encyclopedia of Life Sciences. John Wiley & Sons, Ltd.
15 Scientific paper. Noella Silva-Martin; et al. 2010. Crystallization and preliminary
crystallographic analysis of the catalytic module of endolysin Cp-7, a
phage infecting Streptococcus pneumoniae. Acta Crystallographica F. Acta
Crystallographica. 66, pp.670-673.
16 Scientific paper. Rafael Molina; et al. 2009. Characterization of gadolinium complexes
for SAD phasing in Macromolecular Crystallography: application to CbpF. Acta
Crystallographica D. Acta Crystallographica. 65, pp.823-831.
17 Scientific paper. Rafael Molina; et al. 2009. Crystal Structure of CbpF, a Bifunctional
Choline-Binding Protein and Autolysis Regulator from Streptococcus pneumoniae. EMBO
Reports. Nature Publishing Group. 10-3, pp.246-251.
18 Scientific paper. Aurelio Hidalgo; et al. 2008. A one-pot, simple methodology for cassette
randomisation and recombination for focused directed evolution. Protein Engineering,
Design & Selection (PEDS). Oxford Journals. 21-9, pp.567-576.
19 Scientific paper. Susana Frago; et al. 2007. Tuning of the FMN binding and oxido-reduction
properties by neighboring side chains in Anabaena flavodoxin. Archives of Biochemistry and
Biophysics. Oxford Journals. 467-2, pp.206-217.
20 Scientific paper. Mirella Di Lorenzo; et al. 2007. Enhancement of the Stability of a
Prolipase from Rhizopus oryzae toward Aldehydes by Saturation Mutagenesis. Applied and
Environmental Microbiology. American Society for Microbiology. 73-22, pp.7291-7299.
21 Scientific paper. Rafael Molina; et al. 2007. Crystallization and preliminary X-ray diffraction
studies of choline-binding protein F from Streptococcus pneumoniae. Acta Crystallographica
F. Acta Crystallographica. 63, pp.742-745.
22 Scientific paper. Richard Kahn; et al. 2005. Comparative Study of the Binding
of Different Gd Complexes in Protein Crystals. Acta Crystallographica A. Acta
Crystallographica. 61-C154.
23 Scientific paper. Craig. B Faulds; et al. 2005. Probing the determinants of
substrate specificity of feruloyl esterase, AnFaeA, from Aspergillus niger. FEBS
Journal. 272, pp.4362-4371.
24 Scientific paper. Juan Antonio Hermoso; et al. 2004. The crystal structure of feruloyl
esterase A from Aspergillus Niger suggests evolutive functional convergence in feruloyl
esterase family. Journal of Molecular Biology. Elsevier. 338, pp.495-506.
C.2. Participation in R&D and Innovation projects
1 INTERACTOMICS. Comunidad de Madrid. Guillermo Montoya Blanco. (FUNDACION
CENTRO NACIONAL DE INVESTIGACIONES ONCOLOGICAS CARLOS III). 01/01/201530/09/2015.
2 Desarrollo de bisturíes moleculares para la reparación de genes implicados en
enfermedades monogénicas. Fundación Ramón Areces. (FUNDACION CENTRO
NACIONAL DE INVESTIGACIONES ONCOLOGICAS CARLOS III). 01/01/201231/12/2014.
3 Structures of Molecular Machines involved in Chromosomic Dynamic during Cell
Cycle. Ministerio de Ciencia e Innovación. Investigación. (FUNDACION CENTRO
NACIONAL DE INVESTIGACIONES ONCOLOGICAS CARLOS III). 01/01/201131/12/2014.
4 INTELLICUTTER. Collaborative Project Seven Framework Programme- UE. (FUNDACION
CENTRO NACIONAL DE INVESTIGACIONES ONCOLOGICAS CARLOS III). 02/01/200931/12/2012.
5 Combating Antibiotics Resistant Pneumococci by Novel Strategies Based on in vivo
and in vitro Host Pathogen Interactions (CAREPNEUMO). (Instituto de Química Física
Rocasolano). 01/01/2008-31/12/2010.
3
6 New targets for combating pathogen bacterias. Comunidad de Madrid. (Instituto de Química
Física Rocasolano). 01/01/2007-31/12/2010.
7 Crystallization Factory. Ministerio de Ciencia e Innovación. Investigación. (Laboratorio de
Estudios Cristalográficos). 01/01/2006-31/12/2010.
8 Innovative Tools for Membrane and Structural Proteomics (IMPS). Education STREP
project, Sixth Framework Programme UE (513770). (European Union). 01/01/200531/12/2008.
9 X-ray Structural Characterization of modular proteins involved in pneumococcal pathogenic
diseases (II). Ministerio de Ciencia e Innovación. Investigación. (Consejo Superior de
Investigaciones Científicas). 01/01/2005-31/12/2008.
10 Methodological Development using lanthanides complexes for solving biological
macromolecule structures. Ministerio de Ciencia e Innovación. Investigación. (Consejo
Superior de Investigaciones Científicas). 01/01/2005-31/12/2006.
11 X-ray Structural Characterization of modular proteins involved in pneumococcal pathogenic
diseases (I). Ministerio de Ciencia e Innovación. Investigación. (Consejo Superior de
Investigaciones Científicas). 01/01/2003-31/12/2005.
C.3. Participation in R&D and Innovation contracts
Meganucleases Design. Cellectis. 01/03/2009-01/03/2012.
4
Descargar