THE H++D2 REACTION: A COMPARISON BETWEEN THEORY AND EXPERIMENT E. Carmona-Novillo(a), T. González-Lezana(a), O. Roncero(a), P. Honvault(b), J.-M. Launay(c), N. Bulut(d), F.J. Aoiz(d), L. Bañares(d), A. Trottier(e) and E. Wrede(e) (a) IMAFF (CSIC), Serrano 123 Madrid (Spain); (b) LPM, UMR CNRS 6624 and Univ. of Franche-Comté, Campus de la Bouloie, 25030 Besançon Cedex, (France); (c) PALMS, UMR CNRS 6627 and Univ. of Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, (France); (d) Departamento de Química Física I, Facultad de Química, Univ. Complutense, 28040 Madrid, (Spain); (e) Department of Chemistry, Univ. of Durham, Durham, DH1 3LE (UK) Recent experimental work [1-3] has allowed to investigate the dynamics of the H(n)+D2 HD+D(n) reaction where H(n) is a hydrogen atom in a highly excited Rydberg state (n~45-50). The HD+D+ strong similitudes presented with the ion-diatom H++D2 reaction suggests that the electron of the Rydberg atom behaves as a spectator. Analogously to a previous study on the H++H2(v=0,j=0) process [4], the dynamics of the H++D2(v=0,j=0) reaction on the potential energy surface by Aguado et al. [5] has been theoretically analysed by means of a time-independent exact quantum mechanical (EQM) method [6], a quantum wave packet (QWP) approach [7], a statistical quantum model (SQM) [8] and a quasi-classical trajectory (QCT) method [9]. A detailed comparison with previous experimental data at the Ec = 0.524 eV collision energy has been completed with Ec = 0.524 eV theoretical predictions at a lower energy, Ec = 0.1 eV, in an attempt to observe possible changes on the reaction mechanism. → + + H +D2(v=0,j=0) → HD+D Probability → EQM QCT SQM QWP 0.5 Ec = 524 meV 0.0 3 2 Ec=0.524 eV 1 0 20 40 60 80 100 10 20 25 30 35 40 45 50 120 140 15 10 5 0 01 2 3 CM scattering angle (deg.) 5 15 20 Θ =17 deg lab 15 10 5 + Signal [arb. units] 2 DCS [Å /sr] 2 DCS [Å /sr] 20 EQM SQM QCT EXP QWP 0 Total angular momentum, J 25 4 + H +D2(v=0,j=0) → HD+D 1.0 4 0 5 6 7 0.6 8 4 *2 0.5 0.4 0.3 0.2 10 Θlab=32 deg 0 20 40 60 80 100 120 140 160 180 Signal [arb. units] 0 CM scattering angle (deg.) EQM SQM QCT EXP QWP 2 0.2 j'=1 4 Ec=0.524 eV 0.3 2 j'=0 2 0.4 DCS [Å /sr] DCS [Å /sr] 2 DCS [Å /sr] 4 3 0.2 0.1 2 0.0 1 0 0 30 30 60 60 90 angle [deg] 90 120 0.0 120 30 60 90 120 150 CM scattering angle [deg] 5 0 angle [deg] 0 180 0 01 2 3 H* + D2(1, j' )0 30 60 90 120 EXP QCT SQM EQM 150 180 0.6 CM scattering angle [deg] 4 5 6 HD(0, j' ) + D* 7 0.5 8 4 *2 0.4 0.3 0.2 D atom kinetic energy [eV] 1.0 Ec = 0.1 eV EQM SQM QCT QWP 0.6 + 70 60 2 Probability 0.8 + DCS [Å /sr] + H +D2(v=0,j=0) → HD+D 0.4 0.2 50 40 H +D2(v=0,j=0) → HD(v'=0)+D Ec=0.1 eV + References EQM SQM QCT QWP 30 20 10 0.0 0 5 10 15 20 25 30 Total angular momentum, J 0 0 30 60 90 120 150 CM scattering angle (deg.) 180 [1] D. Dai et al., Phys. Rev. Lett. 95, 013201 (2005). [2] E. Wrede et al., Phys. Chem. Chem. Phys. 7, 1577 (2005). [3] H. Song et al., J. Chem. Phys. 123, 074314 (2005). [4] T. González-Lezana et al., J. Chem. Phys. 125, 094314 (2006). [5] A. Aguado et al., J. Chem. Phys. 112, 1240 (2000). [6] P. Honvaul et al., In Theory of Chemical Reaction Dynamics, Laganá A,, Lendvay G., Eds.; Kluwer: Dordrecht, The Netherlands (2004). [7] T. González-Lezana et al. J. Chem. Phys. 123, 194309 (2005). [8] E.J. Rackham et al., Chem. Phys. Lett. 343, 356 (2001); E.J. Rackham et al., J. Chem. Phys. 119, 12895 (2003). [9] F.J. Aoiz et al., J. Chem. Soc. Faraday Trans. 94, 2483 (1998).