Derivada de productos y cocientes

Anuncio
CAPÍTULO 5
FÓRMULAS DEL PRODUCTO Y DEL COCIENTE
5.1 FÓRMULA DE LA RAÍZ CUADRADA
Antes de practicar las fórmulas (7) y (8) del producto y del cociente, conviene deducir
una fórmula para la raíz cuadrada, en virtud de que en muchas funciones aparece la necesidad de
derivarlas.
Si y =
u , para derivarla debe hacerse primero y = u1 / 2 y entonces emplear la fór-
mula de la potencia un. Haciéndolo se llega a que
y = u1 / 2
dy
1
u
=
dx N
2 N
1
−1
2
N
du
dx
N
n-1
n
du
dx
u
75
Fórmulas
del producto y del cociente
dy
1 −
= u
2
dx
dy
=
dx
1
2
1
2u
du
dx
du
dx
1
2
du
dy
= dx
dx
2 u
La derivada de una raíz cuadrada es la derivada del subradical (lo
que está adentro del radical) entre dos veces el radical original.
Por ejemplo, si y =
x 2 − 3 x + 7 , su derivada se puede obtener rápidamente emplean-
do la fórmula anterior, colocando en el numerador la derivada de x2 - 3x + 7 (la derivada del subradical), o sea 2x - 3, y en el denominador dos veces el radical original, esto es
dy
=
dx
2
2x − 3
x 2 − 3x + 7
Debe tenerse cuidado de que esta fórmula solamente puede emplearse para raíces cuadradas, no para raíces cúbicas o de otro orden.
76
Fórmulas
del producto y del cociente
5.2 FÓRMULA DEL PRODUCTO
(7)
d
dv
du
uv = u
+v
dx
dx
dx
fórmula del producto
en donde u representa a uno de los factores y v representa al otro factor.
(
)(
Ejemplo 1: Hallar la derivada de y = x 2 + 5 x − 11 x3 − 7 x 2 − 9
Solución:
)
Empleando la fórmula (7) del producto, en donde u representa el primer factor y v representa el segundo factor, o sea
u = x2 + 5x ! 11
v = x3 ! 7x2 ! 9
entonces empleando dicha fórmula:
dy
dv
du
=u
+v
dx
dx
dx
dy
d
d
= ( x 2 + 5 x − 11)
x3 − 7 x 2 − 9 ) + ( x3 − 7 x 2 − 9 )
(
( x2 + 5 x − 11)
dx dx dx
u
dv
dx
v
du
dx
dy
= ( x 2 + 5 x − 11)( 3 x 2 − 14 x ) + ( x 3 − 7 x 2 − 9 ) ( 2 x + 5 )
dx
77
Fórmulas
del producto y del cociente
(
Ejemplo 2: Calcular la derivada de y = x 2 − 5 x − 9
Solución:
)
5x + 4
En este caso los dos factores son
u = x 2 - 5x - 9
v=
5x + 4 = (5x + 4)
1/ 2
Empleando la fórmula (7), página 77, del producto, se obtiene:
dy
d
1/ 2
1/ 2 d
5x + 4)
= ( x2 − 5x − 9)
x2 − 5x − 9)
( 5 x + 4 ) + (
(
dx dx dx u
dv
dx
v
du
dx
Para derivar (5x + 4)1/2 debe emplearse la fórmula (6) de un de la potencia, página 69:
1
⎡⎛ 1 ⎞
⎤
dy
1/ 2
−1 d
= ( x 2 − 5 x − 9 ) ⎢⎜ ⎟ ( 5 x + 4 ) 2
( 5x + 4 )⎥ + ( 5x + 4 ) ( 2 x − 5)
dx
dx
⎣⎝ 2 ⎠
⎦
⎡⎛ 1 ⎞
⎤
dy
− 1/ 2
1/ 2
= ( x 2 − 5 x − 9 ) ⎢⎜ ⎟ ( 5 x + 4 )
( 5)⎥ + ( 5 x + 4 ) ( 2 x − 5)
dx
⎣⎝ 2 ⎠
⎦
5 ( x2 − 5x − 9)
dy
1/ 2
=
+ ( 5x + 4 ) ( 2 x − 5)
1/ 2
dx
2 (5x + 4)
o bien
78
Fórmulas
del producto y del cociente
5 ( x2 − 5x − 9)
dy
=
+ ( 2 x − 5) 5x + 4
dx
2 5x + 4
(
Ejemplo 3: Hallar la derivada de y = 7 x 2 − 3
Solución:
) ( 9 − 3x )
8
5
En este caso los dos factores son
u = (7x2 - 3)8
v = (9 - 3x)5
Empleando la fórmula (7), página 77, del producto, se obtiene:
8 d
8
dy
5
5 d
= ( 7 x 2 − 3)
9 − 3x )
7 x 2 − 3)
( 9 − 3x ) + (
(
dx dx dx u
dv
dx
v
du
dx
Para calcular las derivadas de (9 - 3x)5 y de (7x2 - 3)8 debe emplearse en ambas la fórmula
(6) de un de la potencia de la página 69:
8 ⎡
7 d
dy
4 d
5
⎤
= ( 7 x 2 − 3 ) ⎢5 ( 9 − 3 x )
7 x 2 − 3) ⎥
( 9 − 3x )⎤⎥ + ( 9 − 3x ) ⎡⎢8 ( 7 x 2 − 3)
(
dx
dx
dx
⎣
⎦
⎣
⎦
8
7
dy
4
5
= ( 7 x 2 − 3) ⎡5 ( 9 − 3 x ) ( − 3) ⎤ + ( 9 − 3 x ) ⎡⎢8 ( 7 x 2 − 3) (14 x ) ⎤⎥
⎣
⎦
⎣
⎦
dx
79
Fórmulas
del producto y del cociente
8
7
dy
4
5
= − 15 ( 7 x 2 − 3) ( 9 − 3 x ) + 112 x ( 9 − 3 x ) ( 7 x 2 − 3)
dx
5.3 FÓRMULA DEL COCIENTE
(8)
d ⎛ u ⎞
⎜ ⎟=
dx ⎝ v ⎠
v
du
dv
−u
dx
dx
2
v
fórmula del cociente
en donde u representa al numerador y v representa al denominador.
Ejemplo 4: Hallar la derivada de y =
Solución:
6x + 7
8x − 9
Cuando la función a derivar es una fracción, debe emplearse la fórmula (8) del cociente, en
donde u simboliza el numerador y v simboliza el denominador. En este caso:
u = 6x + 7
v = 8x - 9
Recordando la fórmula (8) del cociente y sustituyendo después:
d ⎛ u ⎞
⎜ ⎟=
dx ⎝ v ⎠
dy
=
dx
v
du
dv
−u
dx
dx
2
v
(8x − 9 )
d
d
( 6 x + 7 ) − ( 6 x + 7 ) (8x − 9 )
dx
dx
2
(8x − 9 )
80
Fórmulas
del producto y del cociente
(8 x − 9 )( 6 ) − ( 6 x + 7 )(8)
dy
=
2
dx
(8x − 9 )
En este caso, aunque no es indispensable, conviene realizar las multiplicaciones indicadas en
el numerador, pues así habrá reducción de términos:
dy
48 x − 54 − 48 x − 56
=
2
dx
(8x − 9 )
dy
− 110
=
2
dx
(8x − 9 )
Ejemplo 5: Derivar y =
Solución:
(5x
2
− 7 x − 9)
4
9x − 1
Cuando la función a derivar es una fracción, debe emplearse la fórmula (8) del cociente, en
donde u simboliza el numerador y v simboliza el denominador. En este caso:
u = (5x2 - 7x - 9)4
v = 9x - 1
Recordando la fórmula (8) del cociente y sustituyendo después:
d ⎛ u ⎞
⎜ ⎟=
dx ⎝ v ⎠
v
du
dv
−u
dx
dx
2
v
81
Fórmulas
dy
=
dx
dy
=
dx
( 9 x − 1)
del producto y del cociente
4
4 d
d
5x2 − 7 x − 9 ) − ( 5x2 − 7 x − 9 )
( 9 x − 1)
(
dx
dx
2
( 9 x − 1)
( 9 x − 1) ⎡⎢ 4 ( 5 x 2 − 7 x − 9 )
4
d
⎤
5x2 − 7 x − 9 ) ⎥ − ( 5x2 − 7 x − 9 ) ( 9 )
(
dx
⎦
3
⎣
( 9 x − 1)
2
( 9 x − 1) ⎡⎣⎢ 4 ( 5 x 2 − 7 x − 9 ) ( 20 x − 7 ) ⎤⎦⎥ − 9 ( 5 x 2 − 7 x − 9 )
3
dy
=
dx
( 9 x − 1)
4
2
Y ordenando conforme a las reglas de escritura para cada término: Primero se escribe el signo; después el coeficiente numérico; a continuación los factores monomios (letras solas) en
orden alfabético; luego los factores polinomios y en seguida los radicales:
4 ( 9 x − 1) ( 5 x 2 − 7 x − 9 ) ( 20 x − 7 ) − 9 ( 5 x 2 − 7 x − 9 )
dy
=
2
dx
( 9 x − 1)
3
4
Ejemplo 6: Calcular la derivada del ejemplo anterior utilizando la fórmula del producto.
Solución:
La función original y =
(
(5x
4
birse como y = 5 x 4 − 7 x − 9
− 7 x − 9)
4
que tiene la forma de un cociente puede escri-
9x − 1
) ( 9 x − 1)
4
−1
para que adquiera la forma de un producto. De
esta forma, u = (5x4 - 7x - 9)4 y v = (9x - 1)- 1
82
Fórmulas
del producto y del cociente
Entonces, recordando la fórmula del producto:
d
dv
du
uv = u
+v
dx
dx
dx
Sustituyendo:
4 d
4
dy
−1
−1 d
= (5x4 − 7 x − 9)
9 x − 1)
5x4 − 7 x − 9)
( 9 x − 1) + (
(
dx dx dx dv
dx
u
+
du
dx
v
4 ⎡
dy
−2 d
= ( 5 x 4 − 7 x − 9 ) ⎢ − 1( 9 x − 1)
( 9 x − 1)⎤⎥ +
dx
dx
⎣
⎦
3 d
−1 ⎡
⎤
5 x4 − 7 x − 9 )⎥
+ ( 9 x − 1) ⎢ 4 ( 5 x 4 − 7 x − 9 )
(
dx
⎣
⎦
4
dy
−2
= ( 5 x 4 − 7 x − 9 ) ⎡ − 1( 9 x − 1) ( 9 ) ⎤ +
⎣
⎦
dx
3
−1
+ ( 9 x − 1) ⎡⎢ 4 ( 5 x 4 − 7 x − 9 ) ( 20 x 3 − 7 ) ⎤⎥
⎣
⎦
Finalmente ordenando de acuerdo con las reglas de escritura:
9 (5x4 − 7 x − 9)
4 ( 5 x 4 − 7 x − 9 ) ( 20 x 3 − 7 )
dy
=−
+
2
dx
9x − 1
( 9 x − 1)
4
83
3
Fórmulas
del producto y del cociente
Para verificar que es el mismo resultado que el obtenido en el ejemplo anterior cuando se
derivó con la fórmula del cociente, debe efectuarse la suma de fracciones de este último
resultado sacando común denominador:
dy
=
dx
4
3
− 9 ( 5 x 4 − 7 x − 9 ) + ( 9 x − 1) ⎡ 4 ( 5 x 4 − 7 x − 9 ) ( 20 x 3 − 7 ) ⎤
⎢⎣
⎥⎦
2
( 9 x − 1)
4 ( 5 x 4 − 7 x − 9 ) ( 20 x 3 − 7 ) ( 9 x − 1) − 9 ( 5 x 4 − 7 x − 9 )
dy
=
2
dx
( 9 x − 1)
3
84
4
Fórmulas
del producto y del cociente
EJERCICIO 11 (Áreas 1, 2 y 3)
Hallar la derivada de las siguientes funciones:
1)
y = ( 6 x 2 + 11x − 9 )( 5 x 2 − 13 x + 21)
2)
y = ( x 3 − 7 x + 3)( 5 x 4 − x 2 + 11)
3)
y = ( 7 x5 + 7 x 4 )( 4 x 2 − 4 x + 17 )
4)
y = ( 6 x 6 − 2 x3 + 8 x )( 9 x3 + 7 x )
5)
y = ( 6 − 18 x − x 2 )( x 2 + 19 x − 5 )
6)
⎛ 3x 7
2 x5 ⎞ ⎛ 2 x3
9x ⎞
y=⎜
−
+
⎟⎜
⎟
7 ⎠ ⎝ 11
19 ⎠
⎝ 8
7)
y = ( 3 x 7 − 6 x 2 + 6 ) 4 x − 11
8)
y = 4 x2
9)
y = x5
10)
y = 3x 2
11)
y = ( 6 x − 5)
12)
y = (1 − x 2 )
13)
y = 5x7
14)
y = ( 4 x + 7 ) ( x2 − 5x + 8)
15)
y=
7 x + 11
x5 − x
16)
y=
5 x − 11
5 x + 11
17)
9 − x2
y=
5 x3 + x
18)
y=
x
7x − 6
19)
3x 4 + x − 7
y=
x
20)
y=
x +1
x2 + 1
21)
y=
4x + 7
9
(5 − 8x )
11
( 5 − 3x )
5 8
6x
22)
(6x − 7)
8
85
(x
3
2
( 2x
5
5
( 2 x + 3)
5x2
3
7
5
y=
+ 2x − 7)
4
5
+ 3x 2 − 6 x − 9 )
(1 + x )
2 4
7
7
Fórmulas
23)
y=
25)
y=
27)
y=
(7x
3
− x2 )
del producto y del cociente
5
11x 3
x
x −1
x7
3
y=
26)
y=
2x
x +x
y=
(x
(x
28)
2x + 1
86
6x2 + x
24)
( 2x + 9)
7
2
2
2
− 7 x + 9)
+ 7 x − 9)
4
3
Descargar