Determinación de imágenes de espejos Espejos planos Un espejo (del lat. specullum) es una superficie pulida en la que al incidir la luz, se refleja siguiendo las leyes de la reflexión.El ejemplo más sencillo es el espejo plano. En este último, un haz de rayos de luz paralelos puede cambiar de dirección completamente en conjunto y continuar siendo un haz de rayos paralelos, pudiendo producir así una imagen virtual de un objeto con el mismo tamaño y forma que el real. La imagen resulta derecha pero invertida en el eje normal al espejo.También existen espejos curvos que pueden ser cóncavos o convexos. En un espejo cóncavo cuya superficie forma un paraboloide de revolución, todos los rayos que inciden paralelos al eje del espejo, se reflejan pasando por el foco, y los que inciden pasando por el foco, se reflejan paralelos al eje.Los espejos son objetos que reflejan casi toda la luz que choca contra su superficie debido a este fenómeno podemos observar nuestra imagen en ellos. Espejos esféricos Un espejo esférico está caracterizado por su radio de curvatura R. En el caso de los espejos esféricos solo existe un punto focal F=F´=R/2 cuya posición coincide con el punto medio entre el centro del espejo y el vértice del mismo. Se encontrará a la izquierda del vértice para los espejos cóncavos y a la derecha para los espejos convexos.El aumento del espejo será A =y´/y y dependerá de la curvatura del espejo y de la posición del objeto. La construcción de imágenes es muy sencilla si se utilizan los rayos principales: •Rayo paralelo: Rayo paralelo al eje óptico que parte de la parte superior del objeto. Después de refractarse pasa por el foco imagen. •Rayo focal: Rayo que parte de la parte superior del objeto y pasa por el foco objeto, con lo cual se refracta de manera que sale paralelo . Después de refractarse pasa por el foco imagen. •Rayo radial: Rayo que parte de la parte superior del objeto y está dirigido hacia el centro de curvatura del dioptrio. Este rayo no se refracta y continúa en la mismas dirección ya que el ángulo de incidencia es igual a cero. Construcción de imágenes Los rayos de luz que se reflejan en espejos planos, forman con el espejo el mismo ángulo que forman los rayos incidentes con el espejo. Esta propiedad de la reflexión de la luz en los espejos planos tiene interesantes consecuencias. Todas las imágenes que se ven en los espejos planos y en los espejos divergentes y algunas de las formadas por espejos convergentes parecen estar "al otro lado del espejo". Estas imágenes se forman por la prolongación de rayos de luz y no por rayos de luz reales. Por este motivo, este tipo de imágenes se llaman imágenes virtuales. Por ejemplo, es fácil ver que las imágenes de los objetos se forman detrás de los espejos de tal modo que la recta que une al objeto y la imagen es perpendicular a la superficie del espejo y la distancia entre el objeto y el espejo es igual a la distancia entre la imagen y el espejo. ECUACIONES DE LOS ESPEJOS ESFERICOS Es posible encontrar una ecuación que relacione la distancia de la imagen al espejo d1, distancia de objeto al espejo d0, tamaño o altura de la imagen h1, tamaño o altura del objeto h0, y la distancia focal f , esta ecuaciones son practicas en la construcción de los espejos. En la siguiente figura se representa un espejo cóncavo, un objeto su imagen y dos rayos con sus respectivos reflejosCONSTRUCCIÓN DE IMÁGENES EN ESPEJOS CONVEXOS En los espejos convexos la imagen formada siempre tiene la misma característica:virtual (porque la observamos detrás del espejo).Derecha y mas pequeña que el objeto. •cuando el rayo incide en forma paralela, se refleja como si proviniera del foco, detrás del espejo • E l segundo rayo se traza como si viniera del centro de curvatura y se reflejara hasta el objeto CONSTRUCCIÓN DE IMÁGENES EN ESPEJOS CÓNCAVOS La superficie interna de una cuchara es un espejo cóncavo. cada rayo que incide sobre su superficie cumple la ley de refleccion. es como si un numero muy grande de espejos pequeños y planos se montaran sobre la superficie esférica en donde, cada espejo plano es perpendicular al radio de la circuferencia a la que pertenece. Para determinar las imágenes de objetos en los espejos cóncavo resulta practico trazar los rayos notables que provienen del extremo superior de la persona tal como se muestra en la figura anterior. ESPEJOS ESFÉRICOS Los espejos esféricos son casquetes de superficies esféricas regularmente reflectoras. de acuerdo con la cara del casquete por donde incida la luz. el espejo puede ser cóncavo o convexo.En un espejo cóncavo la superficie reflectora es la parte interior de la superficie esférica. En uno convexo, la luz incide por la parte exterior de la superficie esférica. Tal como lo muestra la siguiente figura. Aberraciones: se dice que un sistema óptico, y en particular un espejo esférico, produce aberraciones cuando da imágenes que no son semejantes al objeto, es decir, cuando da imágenes deformadas de los objetos. En los espejos esféricos estas deformaciones se presentan siempre, salvo para ciertas posiciones particulares del objeto reducido a un punto, pero la perfección de las imágenes aumenta reduciendo la abertura del espejo y limitando los rayos que inciden sobre el a los que e inclinan muy poco respecto al eje. Estos rayos, que distando poco del eje, don paralelos a el, o están muy poco inclinados, se llaman rayos centrales; todo otro rayo se llama no central. Algunos llaman periféricos a los paralelos al eje principal que inciden en el borde del espejo, es decir, en la periferia. Cuando la imagen es exactamente igual al objeto el sistema óptico se llama estigmatico; si en cambio la imagen no es igual al objeto, o produce, a veces, dos imágenes de un objeto, el sistema se llama astigmático. La diferencia que existe entre la imagen y el objeto se llama aberración. En los espejos planos el objeto es igual a la imagen. O sea que estos espejos son estigmaticos. Determinación en imágenes en lebtes Las lentes son objetos transparentes (normalmente de vidrio), limitados por dos superficies, de las que al menos una es curva. Las lentes más comunes están basadas en el distinto grado de refracción que experimentan los rayos al incidir en puntos diferentes del lente. Entre ellas están las utilizadas para corregir los problemas de visión en gafas, anteojos o lentillas. También se usan lentes, o combinaciones de lentes y espejos, en telescopios y microscopios. El primer telescopio astronómico fue construido por Galileo Galilei usando una lente convergente (lente positiva) como objetivo y otra divergente (lente negativa) como ocular. Existen también instrumentos capaces de hacer converger o divergir otros tipos de ondas electromagnéticas y a los que se les denomina también lentes. Por ejemplo, en los microscopios electrónicos las lentes son de carácter magnético. En astrofísica es posible observar fenómenos de lentes gravitatorias, cuando la luz procedente de objetos muy lejanos pasa cerca de objetos masivos, y se curva en su trayectoria. Una lente es un medio transparente limitado por dos superficies de las cuales al menos una es curva. Una onda incidente sufre dos refracciones al pasar a través de la lente. Una lente delgada es una lente cuyo grosor es pequeño comparado con los radios de curvatura de sus superficies. Hay dos tipos de lentes: convergentes y divergentes. Convergentes: son más gruesas en el centro que en los extremos. Se representan esquemáticamente con una línea con dos puntas de flecha en los extremos. Según el valor de los radios de las caras pueden ser: biconvexas (1), plano convexas (2) y menisco convergente (3). Divergentes: Son más delgadas en la parte central que en los extremos. Se representan esquemáticamente por una línea recta acabada en dos puntas de flecha invertidas. Se define además la potencia de una lente como la inversa de su distancia focal imagen P=1/f´ y mide la mayor o menor convergencia de los rayos emergentes, a mayor potencia mayor convergencia de los rayos. La unidad de potencia de una lente es la dioptría, que se define como la potencia de una lente cuya distancia focal es de un metro. Partiendo de la ecuación fundamental del dioptrio y teniendo en cuenta que al pasar un rayo por una lente atraviesa dos dioptrios, suponemos siempre que la lente está en el aire (n = 1) y llamaremos n al índice de refracción del material con el que está construida la lente. Centro óptico de una lente El centro óptico de un lente es el punto donde la luz pasa a través del lente y no se desvía, sino viaja en línea recta. Los lentes para gafas son cóncavos para corregir la miopía o convexos para ayudar con la hipermetropía. Ambos tipos de lentes tienen un centro óptico que se coloca directamente frente a la pupila. Se debe tener cuidado cuando se determina el centro óptico del lente. Foco de una lente En óptica geométrica un foco es el punto donde convergen los rayos de luz originados desde un punto en el objeto observado.1 Aunque el foco es conceptualmente un punto, físicamente el foco tiene una extensión espacial, llamada círculo borroso. Este enfoque no ideal puede ser causado por aberraciones ópticas en la imagen. En ausencia de aberraciones de importancia, el menor círculo borroso posible es el disco de Airy, el cual es causado por difracción de la apertura del sistema óptico. Las aberraciones tienden a hacerse peores en la medida en que aumenta el diámetro de la apertura, mientras que el disco de Airy es menor en aperturas grandes. Una imagen, o punto de imagen, se dice que está en foco si la luz de los puntos del objeto es convergida lo más posible en la imagen, y fuera de foco si la luz no es bien convergida. El límite entre esto es algunas veces definido usando un criterio denominado círculo de confusión. Si un haz de rayos estrecho que se propaga en la dirección del eje óptico incide sobre la superficie esférica de un espejo o una lente delgada, los rayos se reflejan o refractan de forma que se cortan, o parecen cortarse, en un punto situado sobre el eje óptico. La distancia entre ese punto (foco) y el espejo o lente se denomina distancia focal. Si las dos superficies de una lente no son iguales, ésta puede tener dos distancias focales, según cuál sea la superficie sobre la que incide la luz. Potencia de un lente En Óptica, se denomina potencia, potencia óptica, potencia de refracción, o convergencia a la magnitud física que mide la capacidad de una lente o de un espejo para hacer converger o divergir un haz de luz incidente. Es igual al inverso de la distancia focal del elemento medida en metros. Al igual que ocurre con la focal, la potencia es positiva para lentes convergentes y negativa para las divergentes. Suele medirse en dioptrías, unidad igual al inverso del metro proyector Proyector de TRC El proyector de tubo de rayos catódicos típicamente tiene tres tubos catódicos de alto rendimiento, uno rojo, otro verde y otro azul, y la imagen final se obtiene por la superposición de las tres imágenes (síntesis aditiva) en modo analógico. Ventajas: es la más antigua, pero es la más extendida en aparatos de televisión. Inconvenientes: al ser la más antigua, está en extinción en favor de los otros sistemas descritos en este punto. Los proyectores de TRC son adecuados solamente para instalaciones fijas ya que son muy pesados y grandes, además tienen el inconveniente de la complejidad electrónica y mecánica de la superposición de colores Cámara foyografica Una cámara fotográfica o cámara de fotos es un dispositivo utilizado para capturar imágenes o fotografías. Es un mecanismo antiguo para proyectar imágenes, en el que una habitación entera desempeñaba las mismas funciones que una cámara fotográfica actual por dentro, con la diferencia que en aquella época no había posibilidad de guardar la imagen a menos que ésta se trazara manualmente. Las cámaras actuales pueden ser sensibles al espectro visible o a otras porciones del espectro electromagnético y su uso principal es capturar la imagen que se encuentra en el campo visual. Las cámaras fotográficas constan de una cámara oscura cerrada, con una abertura en uno de los extremos para que pueda entrar la luz, y una superficie plana de formación de la imagen o de visualización para capturar la luz en el otro extremo. La mayoría de las cámaras fotográficas tienen un objetivo formado de lentes, ubicado delante de la abertura de la cámara fotográfica para controlar la luz entrante y para enfocar la imagen, o parte de la imagen. El diámetro de esta abertura (conocido como apertura) suele modificarse con un diafragma, aunque algunos objetivos tienen apertura fija. Mientras que la apertura y el brillo de la escena controlan la cantidad de luz que entra por unidad de tiempo, en la cámara durante el proceso fotográfico, el obturador controla el lapso en que la luz incide en la superficie de grabación. Por ejemplo, en situaciones con poca luz, la velocidad de obturación será menor (mayor tiempo abierto) para permitir que la película reciba la cantidad de luz necesaria para asegurar una exposición correcta. microscopio El microscopio (de micro-, pequeño, y scopio, σκοπεω, observar) es un instrumento que permite observar objetos que son demasiado pequeños para ser vistos a simple vista. El tipo más común y el primero que se inventó es el microscopio óptico. Se trata de un instrumento óptico que contiene dos o más lentes que permiten obtener una imagen aumentada del objeto y que funciona por refracción. La ciencia que investiga los objetos pequeños utilizando este instrumento se llama microscopía.Microscopio compuesto fabricado hacia 1751 por Magny. Proviene del laboratorio del duque de Chaulnes y pertenece al Museo de Artes y Oficios, París. El microscopio fue inventado por Zacharias Janssen en 1590. En 1665 aparece en la obra de William Harvey sobre la circulación sanguínea al mirar al microscopio los capilares sanguíneos y Robert Hooke publica su obra Micrographia.En 1665 Robert Hooke observó con un microscopio un delgado corte de corcho y notó que el material era poroso, en su conjunto, formaban cavidades poco profundas a modo de celditas a las que llamó células. Se trataba de la primera observación de células muertas. Unos años más tarde, Marcello Malpighi, anatomista y biólogo italiano, observó células vivas. Fue el primero en estudiar tejidos vivos al microscopio. A mediados del siglo XVII un holandés, Anton van Leeuwenhoek, utilizando microscopios simples de fabricación propia, describió por primera vez protozoos, bacterias, espermatozoides y glóbulos rojos. El microscopista Leeuwenhoek, sin ninguna preparación científica, puede considerarse el fundador de la bacteriología. Tallaba él mismo sus lupas, sobre pequeñas esferas de cristal, cuyos diámetros no alcanzaban el milímetro (su campo de visión era muy limitado, de décimas de milímetro). Con estas pequeñas distancias focales alcanzaba los 275 aumentos. Observó los glóbulos de la sangre, las bacterias y los protozoos; examinó por primera vez los glóbulos rojos y descubrió que el semen contiene espermatozoides. Durante su vida no reveló sus métodos secretos y a su muerte, en 1723, 26 de sus aparatos fueron cedidos a la Royal Society de Londres. Durante el siglo XVIII continuó el progreso y se lograron objetivos acromáticos por asociación de Chris Neros y Flint Crown obtenidos en 1740 por H. M. Hall y mejorados por John Dollond. De esta época son los estudios efectuados por Isaac Newton y Leonhard Euler. En el siglo XIX, al descubrirse que la dispersión y la refracción se podían modificar con combinaciones adecuadas de dos o más medios ópticos, se lanzan al mercado objetivos acromáticos excelentes.Durante el siglo XVIII el microscopio tuvo diversos adelantos mecánicos que aumentaron su estabilidad y su facilidad de uso, aunque no se desarrollaron por el momento mejoras ópticas. Las mejoras más importantes de la óptica surgieron en 1877, cuando Ernst Abbe publicó su teoría del microscopio y, por encargo de Carl Zeiss, mejoró la microscopía de inmersión sustituyendo el agua por aceite de cedro, lo que permite obtener aumentos de 2000. A principios de los años 1930 se había alcanzado el límite teórico para los microscopios ópticos, no consiguiendo estos aumentos superiores a 500X o 1,000X. Sin embargo, existía un deseo científico de observar los detalles de estructuras celulares (núcleo, mitocondria, etc.). El microscopio electrónico de transmisión (TEM) fue el primer tipo de microscopio electrónico desarrollado. Utiliza un haz de electrones en lugar de luz para enfocar la muestra consiguiendo aumentos de 100.000X. Fue desarrollado por Max Knoll y Ernst Ruska en Alemania en 1931. Posteriormente, en 1942 se desarrolla el microscopio electrónico de barrido Telescopio Se denomina telescopio (gr. τηλε 'lejos' y σκοπέω, 'observar') al instrumento óptico que permite ver objetos lejanos con mucho más detalle que a simple vista al captar radiación electromagnética, tal como la luz. Es una herramienta fundamental de la astronomía, y cada desarrollo o perfeccionamiento del telescopio ha sido seguido de avances en nuestra comprensión del Universo.Gracias al telescopio —desde que Galileo Galilei en 1610 lo usó para ver a la Luna, el planeta Júpiter y las estrellas— el ser humano pudo, por fin, empezar a conocer la verdadera naturaleza de los objetos astronómicos que nos rodean y nuestra ubicación en el Universo.