1/5.3/EN/3 Multi-Jet Nozzles Type DUE-M TROX España, S.A. Polígono Industrial La Cartuja E-50720 Zaragoza Teléfono 976 50 02 50 Teléfax 976 50 09 04 E-mail [email protected] www.trox.es Contents · Description Description Preliminary Selection Constructions · Dimensions Installation · Materials Nomenclature Selection Method Technical Data Acoustic Data Order Details 2 3 4 6 7 8 9 14 15 Quite often it is necessary to air-condition spaces (very different ones) where large supply air volume flows are concentrated into small areas. In addition to this, there may be large distances from the nozzles to the occupied zone. In these cases jet nozzles can be used to solve the problem. Being a multiple array of small units, these can be used to easily replace a larger single jet nozzle. Multi-jet nozzles are located in the side wall areas of the airconditioned space. When the temperature difference between the supply air and the room air changes, the supply air stream is deflected upwards (warm air) or downwards (cold air). 2 On the other hand, the direction of the supply air flow is also affected by other influences such as local convention effects or draughts within the space. To deal with this situation, the TROX multi-jet nozzles can be adjusted in any direction. The direction of the air stream from the jet nozzle can be easily adjusted manually to suit particular site conditions. The well-designed, aerodynamically efficient shape of TROX jet nozzles results in low noise characteristics. For this reason, and because of the sophisticated design, they can be used in critical areas such as concerts halls, theatres, museums etc. Preliminary Selection The table below gives a guide for selecting the size of a multi-jet nozzle array. The data shown is determined for an isothermal, single free horizontal air stream. According to our extensive experience, air velocities of 0.25 m/s for example, with a throw of 30 m. are only possible in theory as many room parameters must be taken into account with such throw distances. If the supply air temperature difference changes, the air stream deflection in diagram 2, must be taken into account. The noise levels are determined for the number of jet nozzles incorporated into the multi-jet nozzle assembly. In the table below no data is given for effective discharge velocities below 2 m/s nor are values given above a sound power level rating of 55 db(A). If the values required lie outside the limits of this table then diagram 7 on page 14 should be used . Technical data with axial air flow DUE-S-M Throw 10 m Size 20 m Air velocity 30 m LWA ∆pt LWA ∆pt LWA ∆pt VL l/s m3/h dB(A) Pa l/s m3/h dB(A) Pa l/s m3/h dB(A) Pa m/s DUE-050-M2...6 10-18 36-66 <20 <20 20-36 72-136 28-18 100-40 30-54 108-198 38-32 200-90 DUE-075-M2...6 11-23 40-84 <20 <20 22-46 80-168 18-10 40-20 33-69 120-252 28-23 100-50 DUE-100-M2...6 15-27 56-96 <20 <20 30-54 112-192 18-10 40-15 45-81 168-288 23-10 70-30 DUE-125-M2...6 19-33 70-120 <20 <20 38-66 140-240 13-10 25-10 57-99 210-360 13-10 50-20 DUE-160-M2...6 23-42 82-150 <20 <20 46-84 164-300 <20 <20 69-126 243-450 13-10 20-10 DUE-200-M2...6 30-55 110-198 <20 <20 60-110 220-396 <20 <20 90-165 330-594 13-17 20-15 DUE-250-M2...6 39-67 140-240 <20 <20 78-134 280-480 <20 <20 117-201 420-720 <20 <20 DUE-315-M2...6 50-100 180-360 <20 <20 100-200 360-720 <20 <20 150-300 540-1080 <20 <20 DUE-400-M2...4 67-116 240-420 <20 <20 134-232 480-840 <20 <20 201-348 720-1260 <20 <20 DUE-050-M2...6 25-45 90-162 33-23 150-50 50-90 180-334 - - DUE-075-M2...6 28-58 100-210 27-18 80-30 56-116 200-420 - - DUE-100-M2...6 39-67 140-240 25-10 60-20 78-134 280-480 -31 -70 DUE-125-M2...6 48-83 175-300 15-10 30-15 96-166 350-600 38-33 158-70 144-249 525-900 - - DUE-160-M2...6 57-104 205-375 <20 20-10 114-208 410-750 28-18 60-20 171-312 615-1125 -28 -45 DUE-200-M2...6 76-138 275-495 <20 <20 152-276 550-990 28-18 50-20 228-414 825-1485 33-30 80-40 DUE-250-M2...6 97-167 350-600 <20 <20 194-334 700-1200 25- 30- 291-501 1050-1800 35-23 70-20 DUE-315-M2...6 125-250 450-900 <20 <20 250-500 900-1800 <20 <20 375-750 1350-2700 30-23 40-20 DUE-400-M2...4 167-292 600-1050 <20 <20 334-584 1200-2100 <20 <20 501-876 1800-3150 28-10 28-10 - - 100-180 360-648 - - 150-270 540-972 - - VTOTAL VTOTAL VTOTAL 75-135 270-486 - - 84-174 300-630 - - 117-201 420-720 - - DUE-050-M2...6 50-90 180-324 DUE-075-M2...12 55-117 200-420 - - 110-234 400-840 - - 165-351 600-1260 - - DUE-100-M2...6 78-133 280-480 -32 -70 156-266 560-960 - - 234-399 840-1440 - - DUE-125-M2...6 97-167 350-600 38-28 150-50 194-334 700-1200 - - 291-501 1050-1800 - - DUE-160-M2...6 114-208 410-750 28-18 60-20 228-416 820-1500 43-40 200-100 342-624 1230-2250 - - DUE-200-M2...6 153-275 550-990 25-20 40-20 306-550 1100-1980 45-30 110-70 459-825 1650-2970 -46 -150 DUE-250-M2...6 194-333 700-1200 23-10 30-10 388-666 1400-2400 43-28 150-30 582-999 2100-3600 -42 -80 DUE-315-M2...6 250-500 900-1800 20-10 20-10 500-1000 1800-3600 35-33 70-30 750-1500 2700-5400 48-43 -70 DUE-400-M2...4 333-583 1200-2100 <20 <20 666-1166 2400-4200 37-28 50-20 999-1750 3600-6300 48-38 -40 0,2 0,5 1,0 3 Constructions · Dimensions ØD2 L1 T1 H 50 30 81 52 105 115 501) 2) 30 52 105 220 75 40 107 55 125 160 751) 2) 40 107 55 125 290 100 50 128 70 150 170 1001) 50 128 70 150 310 125 65 158 73 175 200 160 87 194 85 215 235 200 113 242 90 260 290 250 141 300 106 320 345 315 181 376 120 405 405 400 235 474 145 500 500 1) Arrangement in 2 rows 2) Only for construction QR L2 T2 C1 C2 56 56 76,5 76,5 91 91 105 133 148 173 204 245 125 125 155 180 215 260 320 405 500 60 60 65 65 80 80 95 112,5 140 165 202,5 250 85 85 95 115 127,5 155 180 220 267,5 Min. nos. Max. nos. nozzles nozzles 2 4 2 2 2 4 2 2 2 2 2 2 15 30 14 28 10 20 10 10 9 7 6 4 Possible circular duct diameters Ø A 200 250 250 315 500 630 800 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 60º L2 ØD2 H1 Multi-jet nozzles type DUE-S-QR-M and DUE-V-QR-M fitted on a flat plate with curved flanges for installation into a circular duct Construction depending on duct diameter B + 60 T1 C1 N x T1 B L1 B + 60 ØD2 ØD1 H1 Multi-jet nozzles types DUE-S-QR-M and DUE-V-QR-M in two rows L1 C1 L2 T1 N x T1 B* *B = (nos. nozzles - 1xT1) + 2C1 L2 ØD2 Multi-jet nozzles types DUE-S-RR-M and DUE-V-RR-M fitted on a curved plate for installation on to a circular duct Construction depending on duct diameter B** **B = (nos. nozzles - 1xT2) + 2C2 T2 C2 4 N x T2 ØD1 ØD1 60º Size The basic jet nozzles can be one of three types, DUE-S-M, DUEV-M and DUE-F-M. The jet nozzles in the type DUE-S-M can be manually adjusted angularly up to a maximum of 30ºup or down. The type DUE-V-M can be in addition be manually rotated. The type DUE-F-M has an array of fixed nozzles The variations on these basic types are shown in the order codes on page 15. ØD1 The multi-jet nozzles type DUE-M are suitable for almost all situations because of the wide range of variants available. Because of their low height they are suitable for all types of space and can be easily installed. The multi-jet nozzles consist of spherical discharge nozzles fitted into a plate complete with a face mounting flange, the plate can either be curved or flat depending on whether the array is to be fitted to a rectangular or circular duct, the linear nozzle array can be in one or two rows. Constructions · Dimensions The multi jet nozzles type DUE-S-Q-M can be installed on a wall or directly on the side of a rectangular duct, and consist of a flat plate and jet nozzles in one or two rows. The multi jet nozzles should be DUE-S, if they are to be with angular adjustment or DUE-V with angular and rotational adjustment. Size ØD1 ØD2 L3 T3 H C1 50 75 100 1001) 125 160 200 250 315 400 30 40 50 50 65 87 113 141 181 235 82 107 128 128 158 194 242 300 376 474 52 55 70 70 73 85 90 106 120 145 105 125 150 150 175 215 260 320 405 500 140 160 185 335 220 250 300 360 435 540 65 80 92,5 92,5 100 135 150 180 220 270 Min. Max. nos. nos. nozzles nozzles 2 17 2 14 2 14 4 28 2 10 2 12 2 10 2 6 2 5 2 4 1) Arrangement in 2 rows T3 110 Multi jet nozzle DUE-F-25 in flat rectangular plate 55 62 N x 62 B H L3 N x T3 Ø23 C1 ØD1 H Multi jet nozzles DUE-S-Q-M and DUE-V-Q-M in flat rectangular plate ØD2 B 8 55 36,5 H Multi jet nozzles DUE-S-Q and DUE-V-Q in two rows T3 ØD2 ØD1 B T3 L3 N x T3 (*) Opening size: B - 36 and H - 36 B = (nos. nozzles - 1 x T3) + 2 C1 62 Multi jet nozzle DUE-F-25 in two rows 172 Ø23 C1 55 62 N x 62 B 55 5 Installation · Materials Materials TROX multi jet nozzles are suitable for installation on rectangular or circular ducts. The types DUE-S-QR-M, DUE-V-QR-M and DUE-S-RR-M are used for installation into circular ducts. The type DUE-S-RR-M is supplied with a predrilled plate and the types DUE-S-QR-M and DUE-V-QR-M, are supplied with predrilled flanges for screw fixing to the duct work. These types are suitable for fitting to most commonly used circular duct diameters. On the other hand, multi jet nozzles types DUE-S-Q-M and DUE-V-Q-M are suitable for installation on rectangular duct work or on a wall. For this reason, the face plate is supplied predrilled for screw fixing. It is advised to fit a seal between the flange/plate and the mounting surface. The set is composed of a spherical casing, an inner piece of nozzle, a face sheet and some duct connection flanges. Spherical casing is made of aluminium. Face plate and duct connection flanges are made of galvanized steel sheet, or aluminium under request. The complete set is powder coated in white (RAL 9010) or any other RAL colour under request. Inner piece of the nozzle is made of plastic ABS V0 (black colour). The set could also be provided by a perforated sheet steel plate for flow rate control, power coated in black (RAL 9005). 60º 60º Installation Predrilled Ø 6 mm. for screws 5,5 x 22, DIN 7982 Example of installation on a circular duct type DUE-S-QR-M Example of installation on a rectangular duct types DUE-S-Q-M and DUE-V-Q-M Protective cover 60º 60º Ø 5,5 Example of installation on a circular duct types DUE-S-RR-M and DUE-V-RR-M Example of wall installation 6 Nomenclature A y in m: Air stream deflection due to temperature difference from isothermal conditions. in m/s: Effective air discharge velocity at nozzle. V eff in m/s: Air velocity in duct. Vk in m/s: Time average air stream velocity at distance L. VL -V H1 in m/s: Time average air velocity entering occupied zone. ∆t Z in K: Temperature difference between supply air and room air. ∆t L Height of collision point of two air streams above in K: Temperature difference between core and room at distance L. mounting position of nozzles, for isothermal conditions. in K: Temperature difference between core Distance from nozzle array for isothermal conditions. ∆t H1 at occupied zone and room air. Max. penetration depth of warm air stream ∆pt in Pa: Total pressure drop. directed vertically downwards. L WA in dB(A): A-weighted sound power level. Discharge angle for cold air. L WNC : Noise criteria rating of sound power level spectrum. Discharge angle for warm air. L WNR : L WNR = LWNC + 1,5 Air induction ratio at distance L. L pA , L pNC : A-weighting or NC-rating respectively Volume flow rate of room sound pressure level. Volume flow rate L pA » LWA - 8 dB , LpNC » LWNC - 8 dB in m: Horizontal distance from nozzles to the air stream collision point. B in m: Spacing distance between two nozzle arrays. C, T, S : Variables function of αK H in m: Nozzle installation height above occupied zone. H1 in m: Height of collision point of two air streams above the occupied zone. H2 in m: L in m: L max in m: . V in m: in m3/h: in l/s: Cold air supply L H2 L y VL ∆tL H A H1 V H1 ∆ t H1 VL ∆tL Occupied zone V H1 ∆ t H1 1,80m Isotherm air supply L L VL ∆ tL H1 V H1 ∆ t H1 VL ∆tL Occupied zone V H1 ∆ t H1 1,80m Warm air supply H VL ∆tL L y VL ∆ tL L i . V αK αw in º: in º: αW αk 1,80m 7 Selection Method Given: Table 1 A, H, ∆ t Z Heating , ∆ t Z Cooling ,VW , VK Preliminary selection from table on page 3: Volume flow rate V Size of multi jet nozzle DUE-M Table 3 αK C αK T αK S 0 5 10 15 20 25 30 35 40 45 50 55 60 1,00 1,00 0,98 0,97 0,94 0,91 0,87 0,82 0,77 0,71 0,64 0,57 0,50 0 5 10 15 20 25 30 35 40 45 50 55 60 0,00 0,09 0,18 0,27 0,36 0,47 0,58 0,70 0,84 1,00 1,19 1,43 1,73 0 5 10 15 20 25 30 35 40 45 50 55 60 0,00 0,09 0,17 0,26 0,34 0,42 0,50 0,57 0,64 0,71 0,77 0,82 0,87 H1 is calculated: H1 = H + H2 - y Cold air A selection: e.g. αk = 30º αk = …º L is calculated: L = A/C (C from table 1) H2 is calculated: H2 = T · A (T from table 2) L=…m vL from diagram 1 vL = …m/s y from diagram 2 Table 2 H2 = …m vH1 from diagram 3 H1 = …m vH1 =…m/s If vH1 differs from set value, procedure must be repeated with revised αK! ∆ tH1 from diagram 4: ∆ tH1 = (∆ tH1 / ∆ tZ) · ∆ tZ ∆ tH1=…K y = …m Isothermal air vH1 from diagram 3 Horizontal discharge at α = 0º vL from diagram 1 (L=A) vL = ... m/s 8 If vH1 deviates from the specific value, must be corrected upwards or downwards. L and H1 are changed as a result. Repeat the analysis. αW is calculated: S = (H + y) / L (αw from table 3) Note: αW + αK = Max. 60º Warm air vL is specified: e.g. vL = 0,3 m/s vL = …m/s L from diagram 1 L = …m y from diagram 2 y = …m vH1=…m/s αK = …º Motorised adjustement of the discharge angle on a change of supply air temperature is only possible up to a max. αW + αK = 60º ∆ tL from diagram 4: ∆ tL = (∆ tL / ∆ tZ) · ∆ tZ ∆ tL = …K Technical Data Cold air αk = 20º L = A/C = 15/0,94 = 16,0 m. (C from table 1) H2 = T · A = 0,36 · 15 = 5,4 m. (T from table 2) from diagram 1: L = 0,91 m/s from diagram 2: y = 0,9 m. H1 = H + H2 – y = 5,8 + 5,4 - 0,9 = 10,3 m. from diagram 3: H1 < 0,05 m/s Example Data given: 2 multi jet nozzles are to be fitted at a spacing of 30 m (A = 15 m) and at a height of H = 4 m above the occupied zone, dischar ging towards each other. For cooling, for each nozzle w = 100 l/s con ∆tw = +4 K. k = 200 l/s with ∆ tk =-8K and for heating Warm air data given: L = 0,45 m/s from diagram 1: L = 14,5 m. from diagram 2: y = 1,1 m. S = (H + y)/L = (5,8 + 1,1)/14,5 = 0,48 from table 3: αw = 30º from diagram 7: with = 200 l/s LWA = 43 dB(A) ∆pt = 155 Pa with = 100 l/s LWA = 23 dB(A) ∆pt = 38 Pa Solución Procedure (see page 8) From preliminary selection table on page 3 selection is a multi jet nozzle, composed of 4 nozzles size 125. 1.1 Core Velocity and throw (plates with 2-4 nozzles) V L in m/s Plate Plate Plate 4 nozzles 3 nozzles 2 nozzles 4 3,2 3,4 3 2,4 2,3 2 1,6 1,43 1,2 1 1 0,8 0,85 0,74 0,60 0,7 0,61 0,5 0,43 0,37 0,3 0,29 0,25 0,20 0,21 0,18 0,15 0,14 0,12 0,10 25 12 ,5 16 ,5 8 1,14 6 5 4 L = 3 m 4,6 Air volume flow l/s Size 400 315 2000 3000 4000 250 1400 2100 2800 1000 1500 2000 800 600 1200 900 1600 1200 400 600 800 300 450 600 200 160 125 100 75 50 25 2 Tob 3 Tob 4 Tob 3 4,5 6 6 9 12 10 14 20 30 40 60 100 140 200 15 21 30 45 60 90 150 210 300 20 28 40 60 80 120 200 280 400 Air volume flow V in l/s 9 Technical data Result Multi jet nozzle DUE-M, size 200 with 4 jet nozzles, must be installed horizontally with the motorised movement set such that an angular movement of 30º upwards occurs with cold air and 30º downwards from warm air. 1.2 Core velocity and throw (plates with 5-14 nozzles) VL in m/s Plate Plate Plate Plate Plate Plate Plate 14 12 10 8 7 6 5 nozzles nozzles nozzles nozzles nozzles nozzles nozzles 7,9 7,2 6,5 6 5,6 5 6,4 5,9 5,4 4,85 4,5 4,2 3,8 4,8 3,95 3,6 3,2 3,7 2,8 2,5 2,67 2,47 2,25 2 1,9 1,75 1,6 2,13 2,0 1,8 1,6 1,5 1,4 1,3 1,6 1,5 1,35 1,2 1,12 1,05 0,95 1,3 1,23 1,13 1 0,94 0,9 0,8 0,8 0,74 0,68 0,6 0,56 0,52 0,5 0,53 0,5 0,45 0,40 0,38 0,35 0,32 0,4 0,27 0,37 0,25 0,34 0,22 0,3 0,2 0,28 0,19 0,26 0,17 0,24 0,16 25 16 ,5 12 , 5 8 6 4 3 5 8,5 Volume flow l/s 400 315 250 200 160 125 100 75 50 5000 6000 7000 8000 10000 12000 14000 3500 4200 4900 5600 7000 8400 9800 2500 3000 3500 4000 5000 6000 7000 2000 2400 2800 3200 4000 4800 5600 1500 1800 2100 2400 3000 3600 4200 1000 1200 1400 1600 2000 2400 2800 750 25 5 Tob. 6 Tob. 7 Tob. 8 Tob. 10 Tob. 12 Tob. 14 Tob. 7,5 9 10,5 12 15 18 21 15 18 21 24 30 36 42 25 30 35 40 50 60 70 35 42 49 56 70 84 98 50 60 70 80 100 120 140 75 90 105 120 150 180 210 Volume flow l/s 10 100 120 140 160 200 240 280 150 180 210 240 300 360 420 250 300 350 400 500 600 700 350 420 490 560 700 840 980 500 600 700 800 1000 1200 1400 900 1050 1200 1500 1800 2100 Technical data 2. Air stream deflection Air stream "Y" is upwards for warm air and downwards for cold air. 20 ∆tZ is for warm air (+) and for cold air (-) = 12 K 8K 10 7 5 3 4K ∆ tZ Volume flow l/s 14 Plates 12 Plates 10 Plates 8 Plates 6 Plates 7 Plates 5 Plates 0,3 0,2 4 Plates 2 Plates 1 0,7 0,5 3 Plates 2K Air stream deflection "y" in m 2 600 400 900 1200 600 800 300 200 450 300 600 400 750 500 900 1050 600 700 800 1000 1200 1400 100 150 200 250 300 350 400 500 600 700 60 90 120 150 180 210 240 300 350 420 40 30 60 45 80 60 100 75 120 90 140 105 160 120 200 150 240 180 280 210 20 30 40 50 60 70 80 100 120 140 10 15 20 25 30 35 40 50 60 70 6 3 9 4,5 12 6 15 7,5 18 9 21 10,5 24 12 30 15 36 18 42 21 2000 3000 4000 1400 2100 2800 1000 1500 2000 4 5 7 10 15 20 Distance L in m Size 30 25 75 125 200 315 50 100 160 250 400 11 Technical data 3. Air steam velocity 15 10 8 VL = 2 6 H1 in m /s m 6 1, 2 1, 0 1, ,9 0 ,8 0 7 0, ,6 0 ,5 0 5 4 3 2 1,5 0,05 0,07 0,1 0,15 0,2 0,3 0,5 0,7 1 VH1 in m/s 4. Temperature quotient Correction factor Temperature quotient 0,2 0,15 añ m Ta o 0,1 40 5 0 31 20 0 25 0 0,07 0 16 5 12 0 10 75 0 5 5 2 Temperature quotient ∆tL / ∆tZ or ∆tH1 / ∆tZ 0,3 0,05 0,04 0,03 3 4 5 7 10 15 20 30 40 Nos. Nozzles Factor 2 1,4 3 1,7 4 2 5 2,25 6 2,4 7 2,5 8 2,8 10 3,1 12 3,4 14 3,7 Distance L or (L + H) in m 5. Induction 80 Correction factor Induction 50 Tam añ o 10 75 25 1 0 16 25 20 0 25 0 31 0 40 5 0 60 40 30 Induction 20 15 10 5 2 3 5 7 Distance 12 10 15 20 30 40 m Nos. Nozzles Factor 2 0,71 3 0,58 4 0,5 5 0,45 6 0,41 7 0,4 8 0,35 10 0,32 12 0,3 14 0,27 Technical Data Lmax is the maximum penetration depth to which a warm air stream can penetrate vertically downwards as a function of the temperature difference. ∆t Z L max Plate 14 nozzles Plate 12 nozzles Plate 10 nozzles Plate 8 nozzles Plate 7 nozzles Plate 6 nozzles Plate 5 nozzles Plate 4 nozzles Plate 3 nozzles 111 102 93 84 78 72 67 60 51 42 74 68 62 56 52 48 45 40 34 28 55 51 46 42 39 36 34 30 25 21 37 34 31 28 26 24 22 20 17 14 30 27 25 22 21 19 18 16 13 11 22 18 20 17 18 15 17 14 15 13 14 12 13 11 12 10 10 8 8 7 15 13 12 11 10 10 9 8 7 5 11 10 9 8 8 7 7 6 5 Plate 2 nozzles ∆t Z =+ 0K 5K ∆t Z =+ 0K +1 K 5 +1 0K +2 4 Volume flow l/s 400 Size Maximum penetration L max. in m 6. Maximum penetration depth of a warm air stream discharging vertically downward 315 1400 2100 2800 3500 4200 4900 5600 7000 8400 9800 250 1000 1500 2000 2500 3000 3500 4000 5000 6000 7000 800 1200 1600 2000 2400 2800 3200 4000 4800 5600 200 160 125 100 75 50 25 2 Nozzles 3 Nozzles 4 Nozzles 5 Nozzles 6 Nozzles 7 Nozzles 8 Nozzles 10 Nozzles 12 Nozzles 14 Nozzles 10 15 20 25 30 35 40 50 60 70 14 21 28 35 42 49 56 70 84 98 20 30 40 50 60 70 80 100 120 140 30 45 60 75 90 105 120 150 180 210 40 60 80 100 120 140 160 200 240 280 60 90 120 150 180 210 240 300 360 420 80 120 160 200 240 280 320 400 480 560 100 150 200 250 300 350 400 500 600 700 600 500 400 300 900 750 600 450 1200 1500 1800 2100 2400 1000 1250 1500 1750 2000 800 1000 1200 1400 1600 600 750 900 1050 1200 3000 2500 2000 1500 200 300 400 1000 1200 1400 500 600 700 800 3600 3000 2400 1800 4200 3500 2800 2100 140 210 280 350 420 490 560 700 840 980 13 Acoustic Data 25 900 700 500 300 200 50 75 100 125 160 200 250 315 400 15 20 25 30 35 40 45 50 55 Pressure drop ∆pt in Pa 7. Sound power and pressure drop 100 70 50 30 20 10 3 5 7 10 15 20 30 150 300 700 50 70 100 200 500 900 l/s V 25 11 18 36 54 108 252 540 1080 2520 3600 72 180 360 720 1800 3240 4500 m3/h Correction to diagram 7: Size Number of jet nozzles per plate 2 3 4 5 6 7 8 9 10 11 12 13 14 25 5 7 8 9 10 11,5 12 12,5 13 13,5 13,8 14 14,5 50 5 7 8 9 10 11,5 12 12,5 13 13,5 13,8 14 14,5 75 5 7 8 9 10 11,5 12 12,5 13 13,5 13,8 14 14,5 100 5 7 8 9 10 11,5 12 12,5 13 13,5 13,8 14 14,5 125 5 7 8 9 10 11,5 12 12,5 13 13,5 13,8 14 14,5 160 5 7 8 9 10 11,5 12 12,5 13 13,5 13,8 14 14,5 200 5 7 8 9 10 11,5 12 12,5 13 13,5 13,8 14 14,5 250 4 6 7 8 9 9,5 10 10,5 11 11,5 11,8 12 12,5 315 3 5 6 7 8 8,5 9 9,5 10 10,5 10,8 11 11,5 400 2 4 5 6 7 7,5 8 8,5 9 9,5 9,8 10 10,5 Based on sound power per plate. For angular adjustement of α=±30 For adjustement of angle no additional correction is necessary 14 Size Aeff = in m2 25 0,000314 50 0,00070686 75 0,001257 100 0,001744 125 0,00294 160 0,00469 200 0,00813 250 0,01289 315 0,02110 400 0,03686 Vef = Vef = 1000 · Aef 3600 · Aef in m3/h, Aef in m2 (m/s) (m/s) Order details Order code DUE - S - QR - M3 - LB Fixed Angular adjustment Rotational and angular adjustment F S V Fitted on a rectangular plate / 0 / S1 / RAL 9003 State colour Q Fitted on a rectangular plate QR with curves flanges for installation into a circular duct Fitted on a rectangular plate for installation onto a circular duct / 100 / / 870X170 / Ø RR 25* 50 75 100 125 160 200 250 315 400 0 Standard finish RAL 9010 S1 Powder coated to RAL ... No used Ø duct for constructions QR y RR Plate dimensions B x H (mm) Size .... 2 Number of nozzles in a row 15 LB Perforated plate for control of air volume flow * Just for construction DUE-F *1) The construction V is not possible with RR plate Specification text Materials Multi jet nozzles type DUE-M are used for preference where the supply air from the diffuser has to travel a large distance to a small occupied zone. They are suitable for long throw distances with optimum acoustic properties, preferably used for heating and cooling in critical areas. The manual adjustment allows variation to compensate for changing temperature differences. Adjustment angular range 30º upwards to 30º downwards for construction S. It can also be rotated through 360º with construction V. DUE-M jet nozzles are recommended for circular, rectangular ducts or for direct wall mounting. The set is composed of a spherical casing, an inner piece of nozzle, a face sheet and some duct connection flanges. Spherical casing is made of aluminium. Face plate and duct connection flanges are made of galvanized steel sheet, or aluminium under request. The complete set is powder coated in white (RAL 9010) or any other RAL colour under request. Inner piece of the nozzle is made of plastic ABS V0 (black colour). The set could also be provided by a perforated sheet steel plate for flow rate control, power coated in black (RAL 9005). Order example: Maker : Type : All rights reserved. TROX Spain (01/2012) TROX DUE-S-QR-M3/100/870X170/0/S1/RAL 9005 15