Multi-Jet Nozzles

Anuncio
1/5.3/EN/3
Multi-Jet Nozzles
Type DUE-M
TROX España, S.A.
Polígono Industrial La Cartuja
E-50720 Zaragoza
Teléfono 976 50 02 50
Teléfax
976 50 09 04
E-mail [email protected]
www.trox.es
Contents · Description
Description
Preliminary Selection
Constructions · Dimensions
Installation · Materials
Nomenclature
Selection Method
Technical Data
Acoustic Data
Order Details
2
3
4
6
7
8
9
14
15
Quite often it is necessary to air-condition spaces (very different
ones) where large supply air volume flows are concentrated into
small areas. In addition to this, there may be large distances from
the nozzles to the occupied zone.
In these cases jet nozzles can be used to solve the problem.
Being a multiple array of small units, these can be used to easily
replace a larger single jet nozzle.
Multi-jet nozzles are located in the side wall areas of the airconditioned space. When the temperature difference between
the supply air and the room air changes, the supply air stream
is deflected upwards (warm air) or downwards (cold air).
2
On the other hand, the direction of the supply air flow is also
affected by other influences such as local convention effects or
draughts within the space.
To deal with this situation, the TROX multi-jet nozzles can be
adjusted in any direction. The direction of the air stream from the
jet nozzle can be easily adjusted manually to suit particular site
conditions.
The well-designed, aerodynamically efficient shape of TROX jet
nozzles results in low noise characteristics. For this reason, and
because of the sophisticated design, they can be used in critical
areas such as concerts halls, theatres, museums etc.
Preliminary Selection
The table below gives a guide for selecting the size of a
multi-jet nozzle array.
The data shown is determined for an isothermal, single free
horizontal air stream.
According to our extensive experience, air velocities of 0.25 m/s
for example, with a throw of 30 m. are only possible in theory as
many room parameters must be taken into account with such
throw distances.
If the supply air temperature difference changes, the air stream
deflection in diagram 2, must be taken into account. The noise
levels are determined for the number of jet nozzles incorporated
into the multi-jet nozzle assembly.
In the table below no data is given for effective discharge velocities
below 2 m/s nor are values given above a sound power level
rating of 55 db(A). If the values required lie outside the limits of
this table then diagram 7 on page 14 should be used .
Technical data with axial air flow DUE-S-M
Throw
10 m
Size
20 m
Air
velocity
30 m
LWA
∆pt
LWA
∆pt
LWA
∆pt
VL
l/s
m3/h
dB(A)
Pa
l/s
m3/h
dB(A)
Pa
l/s
m3/h
dB(A)
Pa
m/s
DUE-050-M2...6
10-18
36-66
<20
<20
20-36
72-136
28-18
100-40
30-54
108-198
38-32
200-90
DUE-075-M2...6
11-23
40-84
<20
<20
22-46
80-168
18-10
40-20
33-69
120-252
28-23
100-50
DUE-100-M2...6
15-27
56-96
<20
<20
30-54
112-192
18-10
40-15
45-81
168-288
23-10
70-30
DUE-125-M2...6
19-33
70-120
<20
<20
38-66
140-240
13-10
25-10
57-99
210-360
13-10
50-20
DUE-160-M2...6
23-42
82-150
<20
<20
46-84
164-300
<20
<20
69-126
243-450
13-10
20-10
DUE-200-M2...6
30-55
110-198
<20
<20
60-110
220-396
<20
<20
90-165
330-594
13-17
20-15
DUE-250-M2...6
39-67
140-240
<20
<20
78-134
280-480
<20
<20
117-201 420-720
<20
<20
DUE-315-M2...6
50-100
180-360
<20
<20
100-200 360-720
<20
<20
150-300 540-1080
<20
<20
DUE-400-M2...4
67-116
240-420
<20
<20
134-232 480-840
<20
<20
201-348 720-1260
<20
<20
DUE-050-M2...6
25-45
90-162
33-23
150-50
50-90
180-334
-
-
DUE-075-M2...6
28-58
100-210
27-18
80-30
56-116
200-420
-
-
DUE-100-M2...6
39-67
140-240
25-10
60-20
78-134
280-480
-31
-70
DUE-125-M2...6
48-83
175-300
15-10
30-15
96-166
350-600
38-33
158-70
144-249 525-900
-
-
DUE-160-M2...6
57-104
205-375
<20
20-10
114-208 410-750
28-18
60-20
171-312 615-1125
-28
-45
DUE-200-M2...6
76-138
275-495
<20
<20
152-276 550-990
28-18
50-20
228-414 825-1485
33-30
80-40
DUE-250-M2...6
97-167
350-600
<20
<20
194-334 700-1200
25-
30-
291-501 1050-1800
35-23
70-20
DUE-315-M2...6
125-250 450-900
<20
<20
250-500 900-1800
<20
<20
375-750 1350-2700
30-23
40-20
DUE-400-M2...4
167-292 600-1050
<20
<20
334-584 1200-2100
<20
<20
501-876 1800-3150
28-10
28-10
-
-
100-180 360-648
-
-
150-270 540-972
-
-
VTOTAL
VTOTAL
VTOTAL
75-135
270-486
-
-
84-174
300-630
-
-
117-201 420-720
-
-
DUE-050-M2...6
50-90
180-324
DUE-075-M2...12
55-117
200-420
-
-
110-234 400-840
-
-
165-351 600-1260
-
-
DUE-100-M2...6
78-133
280-480
-32
-70
156-266 560-960
-
-
234-399 840-1440
-
-
DUE-125-M2...6
97-167
350-600
38-28
150-50
194-334 700-1200
-
-
291-501 1050-1800
-
-
DUE-160-M2...6
114-208 410-750
28-18
60-20
228-416 820-1500
43-40
200-100 342-624 1230-2250
-
-
DUE-200-M2...6
153-275 550-990
25-20
40-20
306-550 1100-1980
45-30
110-70
459-825 1650-2970
-46
-150
DUE-250-M2...6
194-333 700-1200
23-10
30-10
388-666 1400-2400
43-28
150-30
582-999 2100-3600
-42
-80
DUE-315-M2...6
250-500 900-1800
20-10
20-10
500-1000 1800-3600
35-33
70-30
750-1500 2700-5400
48-43
-70
DUE-400-M2...4
333-583 1200-2100
<20
<20
666-1166 2400-4200
37-28
50-20
999-1750 3600-6300
48-38
-40
0,2
0,5
1,0
3
Constructions · Dimensions
ØD2
L1
T1
H
50
30
81
52
105
115
501) 2)
30
52
105
220
75
40
107
55
125
160
751) 2)
40
107
55
125
290
100
50
128
70
150
170
1001)
50
128
70
150
310
125
65
158
73
175
200
160
87
194
85
215
235
200
113
242
90
260
290
250
141
300
106
320
345
315
181
376
120
405
405
400
235
474
145
500
500
1) Arrangement in 2 rows 2) Only for construction QR
L2
T2
C1
C2
56
56
76,5
76,5
91
91
105
133
148
173
204
245
125
125
155
180
215
260
320
405
500
60
60
65
65
80
80
95
112,5
140
165
202,5
250
85
85
95
115
127,5
155
180
220
267,5
Min. nos. Max. nos.
nozzles nozzles
2
4
2
2
2
4
2
2
2
2
2
2
15
30
14
28
10
20
10
10
9
7
6
4
Possible circular duct diameters Ø A
200
250
250
315
500
630
800
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
60º
L2
ØD2
H1
Multi-jet nozzles type
DUE-S-QR-M and
DUE-V-QR-M fitted
on a flat plate with
curved flanges for
installation into a
circular duct
Construction depending
on duct diameter
B + 60
T1
C1
N x T1
B
L1
B + 60
ØD2
ØD1
H1
Multi-jet nozzles types
DUE-S-QR-M and
DUE-V-QR-M in two rows
L1
C1
L2
T1
N x T1
B*
*B = (nos. nozzles - 1xT1) + 2C1
L2
ØD2
Multi-jet nozzles types
DUE-S-RR-M and
DUE-V-RR-M fitted on a
curved plate for installation
on to a circular duct
Construction depending
on duct diameter
B**
**B = (nos. nozzles - 1xT2) + 2C2
T2
C2
4
N x T2
ØD1
ØD1
60º
Size
The basic jet nozzles can be one of three types, DUE-S-M, DUEV-M and DUE-F-M. The jet nozzles in the type DUE-S-M can be
manually adjusted angularly up to a maximum of 30ºup or down.
The type DUE-V-M can be in addition be manually rotated. The
type DUE-F-M has an array of fixed nozzles
The variations on these basic types are shown in the order codes
on page 15.
ØD1
The multi-jet nozzles type DUE-M are suitable for almost all
situations because of the wide range of variants available.
Because of their low height they are suitable for all types of space
and can be easily installed.
The multi-jet nozzles consist of spherical discharge nozzles fitted
into a plate complete with a face mounting flange, the plate can
either be curved or flat depending on whether the array is to be
fitted to a rectangular or circular duct, the linear nozzle array can
be in one or two rows.
Constructions · Dimensions
The multi jet nozzles type DUE-S-Q-M can be installed on a wall
or directly on the side of a rectangular duct, and consist of a flat
plate and jet nozzles in one or two rows.
The multi jet nozzles should be DUE-S, if they are to be with
angular adjustment or DUE-V with angular and rotational
adjustment.
Size
ØD1
ØD2
L3
T3
H
C1
50
75
100
1001)
125
160
200
250
315
400
30
40
50
50
65
87
113
141
181
235
82
107
128
128
158
194
242
300
376
474
52
55
70
70
73
85
90
106
120
145
105
125
150
150
175
215
260
320
405
500
140
160
185
335
220
250
300
360
435
540
65
80
92,5
92,5
100
135
150
180
220
270
Min.
Max.
nos.
nos.
nozzles nozzles
2
17
2
14
2
14
4
28
2
10
2
12
2
10
2
6
2
5
2
4
1) Arrangement in 2 rows
T3
110
Multi jet nozzle DUE-F-25
in flat rectangular plate
55
62
N x 62
B
H
L3
N x T3
Ø23
C1
ØD1
H
Multi jet nozzles DUE-S-Q-M
and DUE-V-Q-M in flat
rectangular plate
ØD2
B
8
55
36,5
H
Multi jet nozzles DUE-S-Q
and DUE-V-Q in two rows
T3
ØD2
ØD1
B
T3
L3
N x T3
(*) Opening size: B - 36 and H - 36
B = (nos. nozzles - 1 x T3) + 2 C1
62
Multi jet nozzle DUE-F-25
in two rows
172
Ø23
C1
55
62
N x 62
B
55
5
Installation · Materials
Materials
TROX multi jet nozzles are suitable for installation on rectangular
or circular ducts.
The types DUE-S-QR-M, DUE-V-QR-M and DUE-S-RR-M are
used for installation into circular ducts.
The type DUE-S-RR-M is supplied with a predrilled plate and the
types DUE-S-QR-M and DUE-V-QR-M, are supplied with predrilled
flanges for screw fixing to the duct work. These types are suitable
for fitting to most commonly used circular duct diameters. On
the other hand, multi jet nozzles types DUE-S-Q-M and
DUE-V-Q-M are suitable for installation on rectangular duct work
or on a wall. For this reason, the face plate is supplied predrilled
for screw fixing. It is advised to fit a seal between the flange/plate
and the mounting surface.
The set is composed of a spherical casing, an inner piece of
nozzle, a face sheet and some duct connection flanges.
Spherical casing is made of aluminium. Face plate and duct
connection flanges are made of galvanized steel sheet, or
aluminium under request. The complete set is powder coated in
white (RAL 9010) or any other RAL colour under request.
Inner piece of the nozzle is made of plastic ABS V0 (black colour).
The set could also be provided by a perforated sheet steel plate
for flow rate control, power coated in black (RAL 9005).
60º
60º
Installation
Predrilled Ø 6 mm. for screws
5,5 x 22, DIN 7982
Example of installation
on a circular duct type DUE-S-QR-M
Example of installation on a rectangular
duct types DUE-S-Q-M and DUE-V-Q-M
Protective cover
60º
60º
Ø 5,5
Example of installation
on a circular duct types DUE-S-RR-M and DUE-V-RR-M
Example of wall installation
6
Nomenclature
A
y
in m: Air stream deflection due to temperature
difference from isothermal conditions.
in m/s: Effective air discharge velocity at nozzle.
V eff
in m/s: Air velocity in duct.
Vk
in m/s: Time average air stream velocity at distance L.
VL
-V H1 in m/s: Time average air velocity entering occupied zone.
∆t Z
in K: Temperature difference between supply air
and room air.
∆t L
Height of collision point of two air streams above
in K: Temperature difference between core
and room at distance L.
mounting position of nozzles, for isothermal conditions.
in K: Temperature difference between core
Distance from nozzle array for isothermal conditions. ∆t H1
at occupied zone and room air.
Max. penetration depth of warm air stream
∆pt
in
Pa:
Total pressure drop.
directed vertically downwards.
L WA in dB(A): A-weighted sound power level.
Discharge angle for cold air.
L WNC
: Noise criteria rating of sound power level spectrum.
Discharge angle for warm air.
L WNR
: L WNR = LWNC + 1,5
Air induction ratio at distance L.
L pA , L pNC
: A-weighting or NC-rating respectively
Volume flow rate
of room sound pressure level.
Volume flow rate
L pA » LWA - 8 dB , LpNC » LWNC - 8 dB
in m: Horizontal distance from nozzles
to the air stream collision point.
B
in m: Spacing distance between
two nozzle arrays.
C, T, S
: Variables function of αK
H
in m: Nozzle installation height above occupied zone.
H1
in m: Height of collision point of two air streams
above the occupied zone.
H2
in m:
L
in m:
L max
in m:
.
V
in m:
in m3/h:
in l/s:
Cold air supply
L
H2
L
y
VL
∆tL
H
A
H1
V H1
∆ t H1
VL
∆tL
Occupied zone
V H1
∆ t H1
1,80m
Isotherm air supply
L
L
VL
∆ tL
H1
V H1
∆ t H1
VL
∆tL
Occupied zone
V H1
∆ t H1
1,80m
Warm air supply
H
VL
∆tL
L
y
VL
∆ tL
L
i
.
V
αK
αw
in º:
in º:
αW
αk
1,80m
7
Selection Method
Given:
Table 1
A, H, ∆ t Z Heating , ∆ t Z Cooling ,VW , VK
Preliminary selection from table on page 3:
Volume flow rate V
Size of multi jet nozzle DUE-M
Table 3
αK
C
αK
T
αK
S
0
5
10
15
20
25
30
35
40
45
50
55
60
1,00
1,00
0,98
0,97
0,94
0,91
0,87
0,82
0,77
0,71
0,64
0,57
0,50
0
5
10
15
20
25
30
35
40
45
50
55
60
0,00
0,09
0,18
0,27
0,36
0,47
0,58
0,70
0,84
1,00
1,19
1,43
1,73
0
5
10
15
20
25
30
35
40
45
50
55
60
0,00
0,09
0,17
0,26
0,34
0,42
0,50
0,57
0,64
0,71
0,77
0,82
0,87
H1 is calculated: H1 = H + H2 - y
Cold air
A selection: e.g. αk = 30º
αk = …º
L is calculated: L = A/C
(C from table 1)
H2 is calculated: H2 = T · A
(T from table 2)
L=…m
vL from diagram 1
vL = …m/s
y from diagram 2
Table 2
H2 = …m
vH1 from diagram 3
H1 = …m
vH1 =…m/s
If vH1 differs from set value, procedure
must be repeated with revised αK!
∆ tH1 from diagram 4:
∆ tH1 = (∆ tH1 / ∆ tZ) · ∆ tZ
∆ tH1=…K
y = …m
Isothermal air
vH1 from diagram 3
Horizontal discharge at α = 0º
vL from diagram 1 (L=A)
vL = ... m/s
8
If vH1 deviates from the specific value,
must be corrected upwards or downwards.
L and H1 are changed as a result.
Repeat the analysis.
αW is calculated: S = (H + y) / L
(αw from table 3)
Note: αW + αK = Max. 60º
Warm air
vL is specified: e.g. vL = 0,3 m/s
vL = …m/s
L from diagram 1
L = …m
y from diagram 2
y = …m
vH1=…m/s
αK = …º
Motorised adjustement of the discharge angle on a
change of supply air temperature is only possible up
to a max. αW + αK = 60º
∆ tL from diagram 4:
∆ tL = (∆ tL / ∆ tZ) · ∆ tZ
∆ tL = …K
Technical Data
Cold air
αk = 20º
L = A/C = 15/0,94 = 16,0 m. (C from table 1)
H2 = T · A = 0,36 · 15 = 5,4 m. (T from table 2)
from diagram 1: L = 0,91 m/s
from diagram 2: y = 0,9 m.
H1 = H + H2 – y = 5,8 + 5,4 - 0,9 = 10,3 m.
from diagram 3: H1 < 0,05 m/s
Example
Data given:
2 multi jet nozzles are to be fitted at a spacing of 30 m (A = 15 m)
and at a height of H = 4 m above the occupied zone, dischar ging
towards each other.
For cooling, for each nozzle
w = 100 l/s con ∆tw = +4 K.
k
= 200 l/s with ∆ tk =-8K and for heating
Warm air
data given: L = 0,45 m/s
from diagram 1: L = 14,5 m.
from diagram 2: y = 1,1 m.
S = (H + y)/L = (5,8 + 1,1)/14,5 = 0,48
from table 3: αw = 30º
from diagram 7:
with = 200 l/s
LWA = 43 dB(A)
∆pt = 155 Pa
with = 100 l/s
LWA = 23 dB(A)
∆pt = 38 Pa
Solución
Procedure (see page 8)
From preliminary selection table on page 3 selection is a multi jet
nozzle, composed of 4 nozzles size 125.
1.1 Core Velocity and throw (plates with 2-4 nozzles)
V L in m/s
Plate
Plate
Plate
4 nozzles 3 nozzles 2 nozzles
4
3,2
3,4
3
2,4
2,3
2
1,6
1,43
1,2
1
1
0,8
0,85
0,74
0,60
0,7
0,61
0,5
0,43
0,37
0,3
0,29
0,25
0,20
0,21
0,18
0,15
0,14
0,12
0,10
25
12
,5
16
,5
8
1,14
6
5
4
L
=
3
m
4,6
Air volume flow l/s
Size
400
315
2000 3000
4000
250
1400 2100
2800
1000 1500
2000
800
600
1200
900
1600
1200
400
600
800
300
450
600
200
160
125
100
75
50
25
2 Tob
3 Tob
4 Tob
3
4,5
6
6
9
12
10
14 20
30
40
60
100 140 200
15
21 30
45
60
90
150 210 300
20
28 40
60
80
120
200 280 400
Air volume flow V in l/s
9
Technical data
Result
Multi jet nozzle DUE-M, size 200 with 4 jet nozzles, must be
installed horizontally with the motorised movement set such that
an angular movement of 30º upwards occurs with cold air and
30º downwards from warm air.
1.2 Core velocity and throw (plates with 5-14 nozzles)
VL in m/s
Plate
Plate
Plate
Plate
Plate
Plate
Plate
14
12
10
8
7
6
5
nozzles nozzles nozzles nozzles nozzles nozzles nozzles
7,9
7,2
6,5
6
5,6
5
6,4
5,9
5,4
4,85
4,5
4,2
3,8
4,8
3,95
3,6
3,2
3,7
2,8
2,5
2,67
2,47
2,25
2
1,9
1,75
1,6
2,13
2,0
1,8
1,6
1,5
1,4
1,3
1,6
1,5
1,35
1,2
1,12
1,05
0,95
1,3
1,23
1,13
1
0,94
0,9
0,8
0,8
0,74
0,68
0,6
0,56
0,52
0,5
0,53
0,5
0,45
0,40
0,38
0,35
0,32
0,4
0,27
0,37
0,25
0,34
0,22
0,3
0,2
0,28
0,19
0,26
0,17
0,24
0,16
25
16
,5
12
,
5
8
6
4
3
5
8,5
Volume flow l/s
400
315
250
200
160
125
100
75
50
5000 6000 7000 8000 10000 12000 14000
3500 4200 4900 5600 7000 8400 9800
2500 3000 3500 4000 5000 6000 7000
2000 2400 2800 3200 4000 4800 5600
1500 1800 2100 2400 3000 3600 4200
1000 1200 1400 1600 2000 2400 2800
750
25
5 Tob.
6 Tob.
7 Tob.
8 Tob.
10 Tob.
12 Tob.
14 Tob.
7,5
9
10,5
12
15
18
21
15
18
21
24
30
36
42
25
30
35
40
50
60
70
35
42
49
56
70
84
98
50
60
70
80
100
120
140
75
90
105
120
150
180
210
Volume flow l/s
10
100
120
140
160
200
240
280
150
180
210
240
300
360
420
250
300
350
400
500
600
700
350
420
490
560
700
840
980
500
600
700
800
1000
1200
1400
900 1050 1200 1500 1800 2100
Technical data
2. Air stream deflection
Air stream "Y" is upwards for warm air
and downwards for cold air.
20
∆tZ is for warm air (+) and for cold air (-)
=
12
K
8K
10
7
5
3
4K
∆
tZ
Volume flow l/s
14 Plates
12 Plates
10 Plates
8 Plates
6 Plates
7 Plates
5 Plates
0,3
0,2
4 Plates
2 Plates
1
0,7
0,5
3 Plates
2K
Air stream deflection "y" in m
2
600
400
900 1200
600 800
300
200
450
300
600
400
750
500
900 1050
600 700 800 1000 1200 1400
100
150
200
250
300
350
400
500
600
700
60
90
120
150
180
210
240
300
350
420
40
30
60
45
80
60
100
75
120
90
140
105
160
120
200
150
240
180
280
210
20
30
40
50
60
70
80
100
120
140
10
15
20
25
30
35
40
50
60
70
6
3
9
4,5
12
6
15
7,5
18
9
21
10,5
24
12
30
15
36
18
42
21
2000 3000 4000
1400 2100 2800
1000 1500 2000
4
5
7
10
15 20
Distance L in m
Size
30
25 75 125 200 315
50 100 160 250 400
11
Technical data
3. Air steam velocity
15
10
8
VL
=
2
6
H1 in m
/s
m
6
1,
2
1, 0
1, ,9
0 ,8
0 7
0, ,6
0 ,5
0
5
4
3
2
1,5
0,05 0,07
0,1
0,15 0,2
0,3
0,5
0,7
1
VH1 in m/s
4. Temperature quotient
Correction factor
Temperature quotient
0,2
0,15
añ
m
Ta
o
0,1
40
5
0
31
20
0
25
0
0,07
0
16 5
12 0
10
75 0
5 5
2
Temperature quotient ∆tL / ∆tZ or ∆tH1 / ∆tZ
0,3
0,05
0,04
0,03
3
4
5
7
10
15
20
30
40
Nos. Nozzles
Factor
2
1,4
3
1,7
4
2
5
2,25
6
2,4
7
2,5
8
2,8
10
3,1
12
3,4
14
3,7
Distance L or (L + H) in m
5. Induction
80
Correction factor
Induction
50 Tam
añ
o
10 75
25
1 0
16 25
20 0
25 0
31 0
40 5
0
60
40
30
Induction
20
15
10
5
2
3
5
7
Distance
12
10
15
20
30
40 m
Nos. Nozzles
Factor
2
0,71
3
0,58
4
0,5
5
0,45
6
0,41
7
0,4
8
0,35
10
0,32
12
0,3
14
0,27
Technical Data
Lmax is the maximum penetration depth to which a warm air stream
can penetrate vertically downwards as a function of the temperature
difference.
∆t Z
L max
Plate
14
nozzles
Plate
12
nozzles
Plate
10
nozzles
Plate
8
nozzles
Plate
7
nozzles
Plate
6
nozzles
Plate
5
nozzles
Plate
4
nozzles
Plate
3
nozzles
111
102
93
84
78
72
67
60
51
42
74
68
62
56
52
48
45
40
34
28
55
51
46
42
39
36
34
30
25
21
37
34
31
28
26
24
22
20
17
14
30
27
25
22
21
19
18
16
13
11
22
18
20
17
18
15
17
14
15
13
14
12
13
11
12
10
10
8
8
7
15
13
12
11
10
10
9
8
7
5
11
10
9
8
8
7
7
6
5
Plate
2
nozzles
∆t Z
=+
0K
5K
∆t Z
=+
0K
+1 K
5
+1 0K
+2
4
Volume flow l/s
400
Size
Maximum penetration L max. in m
6. Maximum penetration depth of a warm air stream discharging vertically downward
315
1400 2100 2800 3500 4200 4900 5600 7000 8400 9800
250
1000 1500 2000 2500 3000 3500 4000 5000 6000 7000
800 1200 1600 2000 2400 2800 3200 4000 4800 5600
200
160
125
100
75
50
25
2 Nozzles
3 Nozzles
4 Nozzles
5 Nozzles
6 Nozzles
7 Nozzles
8 Nozzles
10 Nozzles
12 Nozzles
14 Nozzles
10
15
20
25
30
35
40
50
60
70
14
21
28
35
42
49
56
70
84
98
20
30
40
50
60
70
80
100
120
140
30
45
60
75
90
105
120
150
180
210
40
60
80
100
120
140
160
200
240
280
60
90
120
150
180
210
240
300
360
420
80
120
160
200
240
280
320
400
480
560
100
150
200
250
300
350
400
500
600
700
600
500
400
300
900
750
600
450
1200 1500 1800 2100 2400
1000 1250 1500 1750 2000
800 1000 1200 1400 1600
600 750 900 1050 1200
3000
2500
2000
1500
200
300
400
1000 1200 1400
500
600
700
800
3600
3000
2400
1800
4200
3500
2800
2100
140
210
280
350
420
490
560
700
840
980
13
Acoustic Data
25
900
700
500
300
200
50 75 100 125 160 200 250 315 400
15
20
25
30
35
40
45
50
55
Pressure drop ∆pt in Pa
7. Sound power and pressure drop
100
70
50
30
20
10
3
5 7 10 15 20 30
150
300 700
50 70 100 200
500 900
l/s
V
25
11 18
36
54 108
252
540 1080 2520 3600
72
180 360 720
1800 3240 4500
m3/h
Correction to diagram 7:
Size
Number of jet nozzles per plate
2
3
4
5
6
7
8
9
10
11
12
13
14
25
5
7
8
9
10
11,5
12
12,5
13
13,5
13,8
14
14,5
50
5
7
8
9
10
11,5
12
12,5
13
13,5
13,8
14
14,5
75
5
7
8
9
10
11,5
12
12,5
13
13,5
13,8
14
14,5
100
5
7
8
9
10
11,5
12
12,5
13
13,5
13,8
14
14,5
125
5
7
8
9
10
11,5
12
12,5
13
13,5
13,8
14
14,5
160
5
7
8
9
10
11,5
12
12,5
13
13,5
13,8
14
14,5
200
5
7
8
9
10
11,5
12
12,5
13
13,5
13,8
14
14,5
250
4
6
7
8
9
9,5
10
10,5
11
11,5
11,8
12
12,5
315
3
5
6
7
8
8,5
9
9,5
10
10,5
10,8
11
11,5
400
2
4
5
6
7
7,5
8
8,5
9
9,5
9,8
10
10,5
Based on sound power per plate.
For angular adjustement of α=±30
For adjustement of angle
no additional correction
is necessary
14
Size
Aeff = in m2
25
0,000314
50
0,00070686
75
0,001257
100
0,001744
125
0,00294
160
0,00469
200
0,00813
250
0,01289
315
0,02110
400
0,03686
Vef =
Vef =
1000 · Aef
3600 · Aef
in m3/h, Aef in m2
(m/s)
(m/s)
Order details
Order code
DUE - S - QR - M3 - LB
Fixed
Angular adjustment
Rotational and
angular adjustment
F
S
V
Fitted on a rectangular plate
/
0
/ S1 / RAL 9003
State colour
Q
Fitted on a rectangular plate
QR
with curves flanges
for installation into a circular duct
Fitted on a rectangular plate
for installation onto
a circular duct
/ 100
/ / 870X170 / Ø
RR
25*
50
75
100
125
160
200
250
315
400
0
Standard finish
RAL 9010
S1 Powder coated to RAL ...
No used
Ø duct for constructions
QR y RR
Plate dimensions B x H (mm)
Size
....
2
Number of nozzles
in a row
15
LB
Perforated plate
for control of air volume flow
* Just for construction DUE-F
*1) The construction V is not possible with RR plate
Specification text
Materials
Multi jet nozzles type DUE-M are used for preference where
the supply air from the diffuser has to travel a large distance
to a small occupied zone. They are suitable for long throw
distances with optimum acoustic properties, preferably
used for heating and cooling in critical areas. The manual
adjustment allows variation to compensate for changing
temperature differences. Adjustment angular range 30º
upwards to 30º downwards for construction S. It can also
be rotated through 360º with construction V. DUE-M jet
nozzles are recommended for circular, rectangular ducts or
for direct wall mounting.
The set is composed of a spherical casing, an inner piece
of nozzle, a face sheet and some duct connection flanges.
Spherical casing is made of aluminium. Face plate and duct
connection flanges are made of galvanized steel sheet, or
aluminium under request. The complete set is powder
coated in white (RAL 9010) or any other RAL colour under
request.
Inner piece of the nozzle is made of plastic ABS V0 (black
colour).
The set could also be provided by a perforated sheet steel
plate for flow rate control, power coated in black (RAL 9005).
Order example:
Maker :
Type :
All rights reserved. TROX Spain (01/2012)
TROX
DUE-S-QR-M3/100/870X170/0/S1/RAL 9005
15
Descargar