Design of Tsunami Vertical Evacuations Structures in Puerto Rico Puerto Rico Tsunami Resilient Planning and Construction Practices: May 18-20, 2012 Presented by: Rafael Jimenez-Perez, PhD, PE RJA Engineers, PSC Introduction • Review Design Procedures for Vertical Evacuation Structures for Tsunamis (TVES). • Review FEMA, ASCE 7 and other publications Guidelines. • Select Site and Assess Tsunami Design Parameters. • Perform Load Calculations for selected site. – Site Selection – Parameter Definition – Determination of forces induced by Tsunami FEMA P646 ASCE 7-05 Background • Tsunami Protection is required in seismic prone areas and in zones subject to marine landslides. • Protection has been typically provided by hydraulic structures placed near the shoreline. Historical Background • More than 50 tsunamis have occurred in the Caribbean area. • Oct. 11, 1918- 40 deaths caused on the western coast of PR. 20 feet (6.1 mts) high. • Nov. 18, 1867-12 deaths on the island of St. Thomas and St. Croix. : 4.5 to 6.1 mts high. • June 7, 1692- 2,000 deaths in Jamaica due to landslide caused by 7.5Mw Earthquake. • References: • “A Brief History of Tsunamis in the Caribbean Sea”, by Lander, Whiteside and Lockridge, published in Science of Tsunami Hazards, Vol. 20, No. 1, 2002. • “US States and Territories National Tsunami Hazard Assessment: Historical Record and Sources of Waves“, by Dunbar and Weaver, August 2008, . Historical Facts • Lander, Whiteside and Lockridge: – Documents 91 tsunamis of which 27 are considered true and 9 are considered likely true. – Remaining events could not be verified or are associated with storm surges. – In the Caribbean Sea, travel times from tsunamis to coastlines range between 30 to 60 minutes. • Dunbar and Weaver: – Qualitative Tsunami Hazards for Puerto Rico and US Virgin Islands based on NGDC and USGS: • High hazard to runups • High hazard based on frequencies • High Hazard base on local earthquake Historical Facts • : Tsunami Observed Runup Undertermined Runup Runup < 0.5m Runup < 1.0m Runup < 3.0m Runup> 3.0 m Total Puerto Rico 9 1 3 2 2 1 33 US Virgin Islands 7 2 1 1 1 2 15 Table 2.1 from Dunbar and Weaver PR and VI Totals 16 3 4 3 3 3 48 Dunbar and Weaver Travel Times Nov. 1, 1755 Lisbon Earthquake Dunbar and Weaver Travel Times • Caribbean – Tsunami travel time ranges from 30 to 60 minutes. Site Selection • Guanajibo Ward in Mayaguez, PR on PR-102. Site Selection Schematic Building Site Analysis • Topography: – Flat with elevations varying between 3 and 5 feet. – Terrain sloping to the East. • Area: – 120 meters wide by 220 meters deep. – 30,800 square meters. • Minimum size for 2,000 people=20,000 square feet. • Building Section: – Ground Elevation – 10’, – Ground to Second Floor Height = 20’ – Third Floors at 10-0” heights=40 feet • Incoming Velocity of water=20 ft/sec=13.6 mph. • Runup=20 feet. Loads • Dead – Self Weight of the Structure • Live – Assembly. Use 100 psf. • Earthquake Loads: PR Building Code 2011 – Adopts IBC 2009 – Mayaguez has Sd=1.18g and S1=0.31g – Seismic Design Category D Tsunami Loads Hydrostatic Forces Buoyant Forces Hydrodynamic Forces Impulsive Forces Debris Impact Forces Debris Impact Velocity Impulsive Forces Dam Effects Buoyant Force Water Drawdown Load Combinations • U=1.2*D+1.0*Ts+1.0*Lref+0.25*L • U=0.9*D+1.0*Ts Sample Calculations Hydrostatic Forces • • • • • Fh=1/2*(77)*hmax^2 If hmax=20*1.3-10=16 ft Then Fh=1/2*77*16^2 Fh=9,856 lbs/ft. Fh=9.9 Kips/ft of wall. Hydrostatic Forces • Fh=9,856 lbs/ft. • Breakaway walls connections to the structure should be designed for 10 psf so that they do not exert any hydrostatic resistance. Buoyant Forces • • • • Fb=77*Vw Vw=A*16 Fb/A =77*16 Fb/A= 1,232 psf • Factor of Safety for Buoyancy varies between 1.1 to 1.5.Where A is the building footprint Hydrodynamic Forces Hydrodynamic Forces Hydrodynamic Forces • (hu2)max=1,107 cf/sec^2 • Fd=1/2*77*2*1,107 • Fd= 85.24 Kips/ft of wall • Compare with ASCE 7-05 • Ft=37.9 k/ft of wall, ASCE 7-05 Impulsive Forces Debris Impact Forces Debris Impact Forces • Umax=(2*g*R(1-z/R))^0.5 • Umax= 32.1 ft/sec • Unknown values of debris stiffness parameters. Debris Impact Forces Buoyancy THE END Questions? Martinez • • Estuve leyendo sobre las velocidades del tsunami que fueron registrada en el Tsunami del 11 de marzo en Japón. Estas variaron mayormente entre 5 y 8 m/s (16.4 a 26.2 ft/s) pero dice que en ocuasiones llegó hasta 10 m/s (32.8 ft/s). Lo normal era alrededor de 22 ft/s. Yo te había dicho de utilizar para diseño 30 ft/s a lo que a ti te pareció un poco alto. Esto está claro que puede suceder pero para ciertas circunstancias especiales como hay gargantas generadas dentro de la ciudad. De modo que reducirlo a 25 ft/s me parecería bien razonable y del lado conservador. ¿Qué te parece? En cuanto la altura del tsunami entiendo que hemos estado usando 20 pies lo cual parece razonable para lo que he visto en los mapas de tsunamis dpara PR de 10 y 12 pies de altura. Sin embargo, me preocupa que en Japón en una tabla de 11 maremotos con la altura máxima de la ola, la máxima más pequeña es de 5 metros. Anyway, hay quebregar con lo que hay. Muchas gracias por tu email. Disculpa que no te haya contestado antes. Estoy en Vieques bregando el proyecto de Tsunami Ready y la Internet en el Guest House tiene mala señal y por ende no había cotejado los emails. Te cuento que había separado 1 hora 45 minutos para ti. Sin embargo, tengo tiempo adicional que te puedo facilitar. Por lo que veo necesitas media hora adicional lo cual te la puedo bringar sin ningún problema. Veo que has incluido los temas de combinaciones de carga y colapso progresivo. Esos dos temas se lo he asignado a Pepe Izquierdo. Por ahora te voy a poner una charla de 75 minutos a primera hora el miércoles 20. Luego vendrá el Coffe Break de 15 minutos y entonces te doy una hora para que des el ejemplo. Quizás lo más sabio sería que también des el tema de Combinaciones de carga. Sin embargo, el tema de colapso progresivo entiendo que puede hacerse totalmente independiente y ese se lo dejamos a Pepe. ¿te parece bien? Por otro lado, sería bueno que se utilizara una estructura similar a la que luce como un faro, que hicieron los japoneses. Si la Red Sísmica (Aurelio y su equipo de trabajo) no me dan datos más específicos debemos usar los siguientes datos: 1. Altura máxima de la ola 30 pies o 10 metros. 2. Velocidad del agua a 30 pies/segundo 3. Impacto de un barco de 2 ton a 10 pies por segundo. 4. Capacidad para 2,500 personas (caben 2.5 personas por metro cuadrado) 5. Acceso por Rampa con descansos y escaleras para los más jóvenes. 6. Considerar helipuerto. 7 La estructrua deberá tener usos más allá que para desalojo vertical pues de otra manera será un elefante blanco.Pudieramos considerar que fuera en Centro Comunitario en la planta bajo. Pudiera tener un mirador en la cima con quizás un buen restaurante... Veo que piensas usar un caso en Playa Santa. Aunque ahi no es necesario este tipo de estructura pues se toma altura rápidamente es un caso hipotético para que la gente vea como se hace y no hacerle el trabajo a nadie en particular lo cual me parece prudente. Las comunidades de mayor población y con riesgo grande son las del Bo. Islote de Arecibo (5,783), Verde Mar en Humacao (2,734) y le sigue el Bo Maní de Mayagüez con 2,490 habitantes. Aunque en mayor riesgo están Guanajibo Homes (682) y Punta Santiago en Humacao (1,982). Si necesitas algún otro dato adicional por favor déjame saber. Saludos, José Antonio FEMA P646a ASCE 7-05 Breakaway Walls Loads shall be designed for the largest of the following loads acting normal to the wall: Wind Load Earthquake Load 10 psf Hydrostatic Forces shall be calculated on DFE plus 1 ft. DFE is the Elevation of the Design Flood including wave height.