U.T.N. F.R.C.U. Seminario Universitario – Matemática Módulo 4 Geometría La Geometría es la ciencia que estudia las propiedades de las figuras y las relaciones que existen entre ellas. El hombre está rodeado de objetos y mediante una operación mental adquiere las formas de estos y los idealiza. Así, surgen los triángulos, los cuadriláteros, los polígonos en general, los poliedros, los cuerpos redondos, etc. En realidad ninguno de estos entes geométricos tiene existencia real, sólo existen perfectos en la mente del hombre, y son aproximaciones del mundo real. La abstracción sustituye al objeto observado por una figura ideal, que se llama figura geométrica. ENTES GEOMÉTRICOS FUNDAMENTALES Los entes geométricos fundamentales son: el punto, la recta y el plano. Ellos son los conceptos primitivos, o sea elementos cuya existencia se acepta sin definir. Representación y notación El punto se representa por el cruce de dos pequeños trazos, o bien por la señal que deja la punta del lápiz. Los puntos se designan con una letra mayúscula de imprenta. Los puntos se marcan. Por ejemplo, los puntos A, B y C de la figura. La recta se representa por el dibujo de un trozo de recta, suponiendo que se extiende indefinidamente. Las rectas se denotan con una letra minúscula en cursiva. Las rectas se trazan. Por ejemplo, las rectas a, b y c en la figura. El plano se representa por el dibujo de un trozo de plano con la forma de un paralelogramo, suponiendo que se extiende indefinidamente. A los planos se los nombra designándolos con una letra griega minúscula. Los planos se dibujan. Por ejemplo los planos , , y de la figura. 1 Módulo 4: Geometría Espacio geométrico El conjunto de todos los puntos se llama espacio geométrico. Es el conjunto universal con que se trabaja en geometría. Tanto las rectas como los planos son subconjuntos del espacio geométrico. Las figuras son conjuntos de puntos. Si todos los puntos están en el mismo plano, la figura se llama plana, pero si la figura pertenece a distintos planos la figura se llama espacial o más comúnmente cuerpo. A partir de aquí, las demás figuras geométricas se definen. Semirrecta Dada una recta y un punto que pertenece a ella; este punto separa a la recta en dos figuras, cada una de las cuales se llama semirrecta. El punto dado se llama origen de la semirrectas. Cada punto de una recta determina dos semirrectas de las cuales es origen; esas dos semirrectas se denominan semirrectas opuestas. Para denotar las semirrectas se utiliza el origen y otro punto que le pertenezca. Se simboliza OA : que se lee: semirrecta de origen O que contiene al punto A. Segmento Dados dos puntos P y Q en una recta, se denomina segmento PQ, y se simboliza como PQ , a la intersección de las semirrectas PQ y QP . En símbolos: PQ = PQ QP a P s Q Notación. El segmento PQ se indica: PQ , que se lee: “segmento PQ”; también se puede denotar como: a , y en este caso se lee: "segmento a”. Los puntos P y Q son los extremos del segmento. Cualquier otro punto perteneciente al PQ y distinto de sus extremos se denomina punto interior al segmento. Todo punto que no pertenezca al segmento se llama punto exterior a dicho segmento. Dos segmentos son consecutivos cuando sólo tienen en común un extremo. Punto medio de un segmento Dado un segmento AB y un punto interior M, M es el punto medio del AB si y sólo si AM = MB . Analíticamente, las coordenadas del punto medio de un segmento de extremos A (x1; x x2 y1 y2 , y1) y B (x2; y2) son: M 1 2 2 2 U.T.N. F.R.C.U. Seminario Universitario – Matemática Mediatriz de un segmento Se llama mediatriz de un segmento a la recta perpendicular al segmento trazada por su punto medio. Semiplano Dado un plano y una recta que está incluida en él; esta recta separa al plano en dos figuras, cada una de las cuales se llama semiplano. La recta dada se llama recta de división, de borde, o frontera de los dos semiplanos que ella determina. Se comprende que cualquier otra recta de dicho plano determinará otros dos semiplanos distintos de los primeros. Para denotar los semiplanos se utiliza la recta frontera y un punto que pertenezca al semiplano. Así, por ejemplo, se simboliza Spl(a, A), que se lee: Semiplano de frontera a que contiene al punto A. Ángulo plano Es una cualquiera de las dos regiones del plano determinadas por dos semirrectas de un mismo origen. Las dos semirrectas que limitan el ángulo reciben el nombre de lados, por ejemplo OP y OQ , y el punto común de origen, O, se llama vértice. El ángulo considerado se marca con un arco que abarca la abertura del mismo. Ángulos consecutivos Dos ángulos son consecutivos cuando tienen un lado común y ningún otro punto común fuera de los de ese lado. Así, los ángulos y son consecutivos. Semirrecta interior Se llama semirrecta interior a un ángulo a toda semirrecta que tiene como origen el vértice del ángulo y sus demás puntos son interiores al mismo. ˆ . Por ejemplo, BM es una semirrecta interior al ABC 3 Módulo 4: Geometría Bisectriz de un ángulo Es la semirrecta interior al ángulo que lo divide en dos ángulos congruentes. OR es bisectriz del MON MOR = RON Ángulo convexo Es cada una de las regiones de un plano que quedan determinadas por dos rectas que se cortan. Ángulo cóncavo Si a un plano se le suprime un ángulo convexo queda determinado un ángulo cóncavo. Ángulo llano Cuando los dos lados de un ángulo son semirrectas opuestas, el ángulo se denomina llano. Por tanto, el ángulo llano es un semiplano. Todo ángulo convexo es menor que un ángulo llano. Todo ángulo cóncavo es mayor que un ángulo llano. Ángulos agudos, rectos y obtusos Cuando dos rectas al cortarse determinan cuatro ángulos congruentes, cada uno de ellos se llama ángulo recto. Un ángulo menor que el ángulo recto se llama ángulo agudo. Un ángulo mayor que el ángulo recto se llama ángulo obtuso. DBC es un ángulo agudo. GBC es un ángulo obtuso. ABC es un ángulo recto. Ángulos complementarios Dos ángulos son complementarios si su suma es el ángulo recto. 4 U.T.N. F.R.C.U. Seminario Universitario – Matemática Ángulos suplementarios Dos ángulos son suplementarios si su suma es el ángulo llano. Ángulos adyacentes Dos ángulos son adyacentes si son consecutivos y los lados no comunes son semirrectas opuestas. ̂ y ̂ adyacentes Consecuencia de la definición: Los ángulos adyacentes son suplementarios. Circunferencia Una circunferencia es el conjunto de todos los puntos P en el plano que están a una distancia fija r dada, llamada radio, de un punto fijo O dado, llamado centro. La circunferencia de centro O y radio r se denota como: C (O; r) Simbólicamente: C (O; r) = {P a un mismo plano que pasa por O / PO = r} Puntos interiores Todos los puntos del plano de una circunferencia, tales que sus distancias al centro son menores que el radio, se llaman puntos interiores a dicha circunferencia. Así, en la figura anterior, F es un punto interior porque el segmento OF , que es la distancia de F al centro de la circunferencia, es menor que el radio. Círculo Se llama círculo de centro O y radio r a la figura formada por los puntos de la circunferencia de centro O y radio r, y por los interiores a ella. El círculo de centro O y radio r simbólicamente como: C(O; r) se expresa 5 Módulo 4: Geometría Obsérvese que, el círculo es una parte del plano que tiene por contorno, por borde, o por frontera, a la circunferencia de igual centro y radio, mientras que la circunferencia es una curva. El círculo es la porción de plano interior a la circunferencia, más ésta. Angulo central En una circunferencia, o en un círculo, se llama ángulo central a todo ángulo, perteneciente a su plano, cuyo vértice es el centro de la circunferencia, o del círculo. Ejemplo: El ángulo ̂ es un ángulo central, pues su vértice es el centro de la circunferencia O. Arco Se llama arco a la parte de la circunferencia determinada por dos de sus puntos, denominados extremos del arco. Notación: Para distinguir a uno de estos arcos del otro, se elige en uno de ellos un punto cualquiera, el M por ejemplo; y se lee: “arco de extremos A y B que contiene al punto M”, o sólo “arco AB que contiene al punto M”. Esto se indica como: AB que contiene a M, o bien AMB El otro arco de extremos A y B, el de trazo grueso, se dice: AB que no contiene al punto M El ángulo central tal que sus lados pasan por los extremos de un arco y todos los demás puntos del arco son interiores al ángulo, se dice ángulo central correspondiente a dicho arco, o que abarca ese arco. En la figura, ̂ es el ángulo central correspondiente al arco RS . También se puede decir: RS es el correspondiente al ángulo central ̂ (no habitual). arco Se llama semicircunferencia al arco cuyo ángulo central correspondiente es un ángulo llano. El arco tal que su ángulo central correspondiente es un ángulo recto se llama cuadrante. Cuerda Se llama cuerda al segmento determinado por dos puntos cualesquiera de la circunferencia. 6 U.T.N. F.R.C.U. Seminario Universitario – Matemática Ejemplo: Los segmentos AB y CD , de la figura, son cuerdas de la circunferencia O. Los extremos de una cuerda dividen a la circunferencia en dos arcos que se llaman arcos correspondientes a la cuerda o arcos subtendidos por la cuerda. Diámetro Se llama diámetro a toda cuerda que pasa por el centro de la circunferencia. Consecuencias de la definición: Consecuencia 1: El diámetro es igual al duplo del radio. Designando con D al diámetro RS , resulta: D=2r Consecuencia 2: Todos los diámetros de una circunferencia son congruentes. Entonces, de acuerdo a esta segunda conclusión se puede decir “el diámetro” de una circunferencia para referirse a un diámetro cualquiera de la misma. Polígono Poligonal: es aquella figura que se compone de dos o más segmentos dados en un cierto orden de modo que dos consecutivos no estén alineados Si los extremos coinciden, la poligonal se denomina cerrada; y si no, abierta. Se llama polígono a la porción de plano limitada por una poligonal cerrada. En todo polígono hay por lo menos tres ángulos, pues etimológicamente la palabra está formada por los vocablos: poli = muchos y gonos = ángulos. Notación: El polígono se designa por los puntos que lo determinan. Las letras correspondientes a los vértices se escriben consecutivamente a partir de uno cualquiera de ellos. Así, el polígono convexo de la figura anterior se puede designar como: políg ABCDE, que se lee polígono ABCDE. Elementos de los polígonos Los segmentos dados que determinan la poligonal se llaman lados. Los extremos de los segmentos de la poligonal, se llaman vértices. Los segmentos determinados por cada par de vértices no consecutivos se llaman diagonales. 7 Módulo 4: Geometría Los ángulos interiores, o simplemente ángulos, son los ángulos convexos determinados por cada par de lados consecutivos del polígono. Los ángulos formados por un lado y la prolongación de otro consecutivo se llaman ángulos exteriores del polígono. Es decir, son los ángulos adyacentes a los ángulos interiores del polígono. La quebrada o poligonal constituida por todos los lados del polígono se llama contorno, y su suma perímetro. Es evidente que todo polígono tiene tantos lados y ángulos como vértices posee. Se llaman ángulos consecutivos de un correspondientes a vértices consecutivos. polígono a los ángulos interiores Nombres de los polígonos Los polígonos reciben distintos nombres según sea el número de lados que posean. 8 U.T.N. F.R.C.U. Seminario Universitario – Matemática Número de diagonales de un polígono El número de diagonales que se pueden trazar desde cada vértice de un polígono de n lados es: n – 3. Entonces, el número total de diagonales que pueden trazarse en un n (n 3) polígono de n lados es: 2 Suma de los ángulos interiores de un polígono La suma de los ángulos interiores de un polígono convexo de n lados es igual a (n – 2) veces el ángulo llano. SINT = 2 R (n – 2) Suma de los ángulos exteriores de un polígono La suma de los ángulos exteriores de un polígono es igual a cuatro rectos. SEXT = 4 R C TRIÁNGULOS Todo polígono de tres lados se llama triángulo. b a Clasificación de los triángulos A c B Se pueden clasificar de acuerdo a dos aspectos, no totalmente excluyentes: Atendiendo a sus lados Equilátero: es el triángulo que tiene los tres lados congruentes. Isósceles: es el triángulo que tiene dos lados congruentes. Escaleno: es el triángulo que tiene los tres lados desiguales (no congruentes). Atendiendo a sus ángulos Rectángulo: es el que tiene un ángulo recto. Oblicuángulo: es el que no tiene ningún ángulo recto. Este se divide a su vez en obtusángulo y acutángulo. Triángulo obtusángulo es el que tiene un ángulo obtuso; y triángulo acutángulo es el que tiene los tres ángulos agudos. Relaciones que vinculan los ángulos de un triángulo Suma de los ángulos interiores de un triángulo En todo triángulo, la suma de los ángulos interiores es igual a dos rectos. En el ABC : ˆ ˆ ˆ 2 R 9 Módulo 4: Geometría Propiedad de los ángulos exteriores de un triángulo Todo ángulo exterior de un triángulo es igual a la suma de los ángulos interiores no adyacentes al mismo. En el ABC : ˆ ˆ ˆ Relaciones que vinculan los lados con los ángulos de un triángulo En un triángulo a lados congruentes se oponen ángulos congruentes; y a lados desiguales le corresponden ángulos opuestos desiguales en el mismo sentido. Recíprocamente, en un triángulo a ángulos congruentes se oponen lados congruentes; y a ángulos desiguales le corresponden lados opuestos desiguales en el mismo sentido. Relaciones que vinculan los lados de un triángulo En todo triángulo cada lado es menor que la suma de los otros dos y mayor que la diferencia entre los mismos, efectuada en el sentido en que ésta sea posible. Así, en el ABC : a < b + c a > b – c;… Alturas de un triángulo Se llama altura del triángulo correspondiente a un lado, o a un vértice, al segmento de perpendicular trazado desde dicho vértice hasta la recta que contiene al lado opuesto. Se las representa por una letra h, con un subíndice igual a la letra del vértice correspondiente, o del lado correspondiente. Medianas de un triángulo Las medianas de un triángulo son los segmentos determinados por un vértice y el punto medio del lado opuesto. Simbólicamente, las medianas se representan por la letra m con un subíndice coincidente con: la letra del vértice correspondiente, o con el nombre del lado correspondiente. 10 U.T.N. F.R.C.U. Seminario Universitario – Matemática Bisectrices de un triángulo Se llaman bisectrices de un triángulo a los segmentos de las bisectrices correspondientes a sus ángulos interiores comprendidos entre el vértice de dicho ángulo y el lado opuesto. Simbólicamente, las bisectrices de un triángulo se representan por una letra b con un subíndice coincidente con la letra del vértice del ángulo correspondiente. Mediatrices de un triángulo Las mediatrices de un triángulo son las mediatrices correspondientes a cada uno de sus lados. Por lo tanto, de acuerdo a esta definición NO es un segmento, es una recta. Triángulos Rectángulos Dado el BAC , es un triángulo rectángulo, porque el ángulo  es recto. Los lados que forman el ángulo recto se llaman catetos, y el lado opuesto al ángulo recto se llama hipotenusa. El triángulo rectángulo se denota de modo que el vértice correspondiente al ángulo recto aparezca en el medio, y que las dos letras de los extremos indiquen la hipotenusa. Así, al indicar que el BAC es rectángulo, se da por sobreentendido que el ángulo  es el ángulo recto, y que BC es la hipotenusa. Propiedad de los ángulos agudos de un triángulo rectángulo Los ángulos agudos de un triángulo rectángulo son complementarios. Dado el BAC rectángulo: B̂ + Ĉ = 1 R Propiedad de la hipotenusa de un triángulo rectángulo En todo triángulo rectángulo la hipotenusa es mayor que cualquiera de los catetos. a > b a > c Teorema de Pitágoras En todo triángulo rectángulo el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos. a2 = b2 + c 2 11 Módulo 4: Geometría Propiedad de los triángulos isósceles En todo triángulo isósceles la altura correspondiente a la base es a la vez mediana correspondiente a la base, bisectriz del ángulo opuesto, y está incluida en la mediatriz correspondiente a la base. En el BAC isósceles: hA = mA hA = bA AM mediatriz del BC CUADRILÁTEROS Todo polígono de cuatro lados se llama cuadrilátero. Propiedades de los cuadriláteros por ser polígonos 1º . Un cuadrilátero tiene dos diagonales. 2º . La suma de los ángulos interiores es: SINT = 2 R (4 – 2) = 2 R · 2 = 4 R En todo cuadrilátero la suma de los ángulos interiores es igual a 4 rectos. 3º . La suma de los ángulos exteriores, como en todo polígono, es igual a cuatro rectos: SEXT = 4 R. Es decir, que los cuadriláteros son los únicos polígonos para los cuales la suma de los ángulos exteriores es igual a la suma de los ángulos interiores. Clasificación de los cuadriláteros La clasificación de los cuadriláteros se sintetiza en el siguiente cuadro: Generales Paralelogramos Rectángulos Particulares Rombos Cuadrados Cuadriláteros Trapecios No Paralelogramos Generales Trapezoides Particulares 12 Romboides U.T.N. F.R.C.U. Seminario Universitario – Matemática Paralelogramos Paralelogramo es el cuadrilátero que tiene sus dos pares de lados opuestos paralelos. Se indica: ABCD , se lee: paralelogramo ABCD. Se llama base a uno cualquiera de sus lados y, altura a la distancia de la base al lado opuesto, o a su prolongación. Por ejemplo, si se considera al lado AB como h h h la base del ABCD , h es su altura. Propiedades de los paralelogramos: En todo paralelogramo: a) Los lados opuestos son congruentes; b) Los ángulos opuestos son congruentes; y c) Las diagonales se cortan mutuamente en partes congruentes. También son válidos los recíprocos. Sea el ABCD : a) AB = CD y AD = BC ; b)  = Ĉ c) AM = MC y DM = MB . y B̂ = D̂ ; Rectángulo Se llama rectángulo al paralelogramo que tiene sus cuatro ángulos rectos. El rectángulo es equiángulo, pero no equilátero. Se indica: ABCD , y se lee: “rectángulo ABCD”. Siendo el rectángulo un paralelogramo especial, hereda todas las propiedades de los paralelogramos en general, y además el rectángulo tiene otras propiedades particulares, entre ellas: Las diagonales de un rectángulo son congruentes. 13 Módulo 4: Geometría Rombo Se llama rombo al paralelogramo que tiene sus cuatro lados congruentes. El rombo es equilátero, pero no equiángulo. Se indica: ABCD , y se lee: “rombo ABCD”. Siendo el rombo un paralelogramo especial, hereda todas las propiedades de los paralelogramos en general y además el rombo tiene otras propiedades particulares, entre ellas: Las diagonales de un rombo son perpendiculares y bisectrices de los ángulos cuyos vértices unen. Cuadrado Se llama cuadrado al paralelogramo que tiene sus cuatro ángulos rectos y sus cuatro lados congruentes. El cuadrado es equiángulo y equilátero. Se indica: ABCD , y se lee: “cuadrado ABCD”. Por ser el cuadrado un paralelogramo tiene, evidentemente, las propiedades de los paralelogramos en general. Por ser el cuadrado un caso particular del rectángulo, tiene las propiedades particulares de éste. Por ser el cuadrado un caso particular del rombo, tiene las propiedades particulares de éste. Los cuadriláteros que no son paralelogramos se clasifican en trapecios y trapezoides. Trapecio Se llama trapecio al cuadrilátero que tiene únicamente dos lados opuestos paralelos. Así, el cuadrilátero de la figura es un trapecio, pues únicamente tiene paralelos los lados opuestos AB y CD . Los lados paralelos se llaman bases del trapecio; los lados oblicuos, o lados no paralelos, se llaman simplemente lados; y la distancia entre las bases se denomina altura. 14 U.T.N. F.R.C.U. Seminario Universitario – Matemática En el trapecio de la figura, AB es la base mayor del trapecio, por ser el segmento mayor de los lados paralelos, y CD es la base menor del trapecio. Se indica: trap ABCD , y se lee: “trapecio ABCD”. Clasificación de los trapecios Los trapecios se clasifican en: Trapecio isósceles: es aquel que tiene los lados (oblicuos) congruentes. Trapecio escaleno: es aquel que tiene los lados desiguales. Dentro de los trapecios escalenos, puede ocurrir que uno de los dos ángulos adyacentes a cada base sea recto, en cuyo caso recibe el nombre de trapecio rectángulo. Trapecio isósceles Trapecio escaleno propiamente dicho Trapecio rectángulo Trapecios escalenos Propiedades de los trapecios isósceles En todo trapecio isósceles: a) Los ángulos opuestos son suplementarios. b) Los ángulos interiores adyacentes a cada una de las bases son respectivamente congruentes. c) Las diagonales son congruentes. Romboide Se llama romboide al trapezoide particular que tiene dos lados consecutivos congruentes y los otros dos lados distintos de los anteriores, pero también congruentes entre sí. La diagonal del romboide que une los vértices a los cuales concurren los pares de lados congruentes se llama diagonal principal. Propiedades del romboide La diagonal principal del romboide es bisectriz de los ángulos cuyos vértices une, y corta perpendicularmente a la otra diagonal en el punto medio. 15 Módulo 4: Geometría Polígonos regulares Un polígono se denomina regular cuando tiene todos sus lados y todos sus ángulos respectivamente congruentes. Todo polígono regular es equilátero y equiángulo. Un polígono está inscripto en una circunferencia cuando sus vértices están sobre la circunferencia y los lados son cuerdas de la misma; también se dice que la circunferencia está circunscripta al polígono. Un polígono está circunscripto a una circunferencia cuando sus lados son tangentes a la circunferencia y los lados son cuerdas de la misma; también se dice que la circunferencia está inscripta en el polígono. En un polígono regular el centro de la circunferencia inscripta y el centro de la circunferencia circunscripta coinciden. Centro, radio y apotema de un polígono regular Se llama centro del polígono regular el centro común de la circunferencia inscripta y circunscripta. Se llama radio de un polígono regular al radio de la circunferencia circunscripta al polígono. Se llama apotema de un polígono regular al radio de la circunferencia inscripta en el polígono. O sea, la apotema es la distancia del centro a uno cualquiera de los lados del polígono regular. O también, la apotema de un polígono regular es el segmento de perpendicular trazado por su centro a uno de sus lados; y por consiguiente es el segmento determinado por su centro y el punto medio de dicho lado. La apotema de un polígono regular de n lados se designa con la letra a seguida de un subíndice igual al número de lados del polígono regular, an, al que pertenece. Medida de los ángulos de los polígonos regulares El ángulo que tiene por vértice el centro del polígono regular y que abarca un lado del mismo se llama ángulo central del polígono regular. En todo polígono regular de n lados la suma de los n ángulos en el centro es igual a 2 llanos, y como todos ellos son congruentes, el valor del ángulo central es: = 360º 3 16 120º 360º 4 90º 2 llanos n = 4R n 360º 5 72º 360º 6 60º U.T.N. F.R.C.U. Seminario Universitario – Matemática Perímetro de figuras geométricas El perímetro de una figura geométrica plana es la longitud de su contorno. En las figuras poligonales el perímetro se calcula sumando la longitud de todos sus lados. La longitud de la circunferencia es igual al duplo del producto del número por el valor del radio de la misma. Área de figuras geométricas planas La medida de la región o superficie encerrada por una figura geométrica plana.es el área de la misma. A continuación se presenta un resumen de fórmulas de cálculo de área y perímetro de las figuras geométricas más utilizadas. Triángulo Triángulo rectángulo b ·h A= 2 P=a+b+c b ·c A= 2 P=a+b+c Rectángulo Rombo Paralelogramo A=bh P = 2 (a + b) Cuadrado A=bh A=l P = 2 (b + h) D .d 2 P=4a A= 2 P=4l 17 Módulo 4: Geometría Trapecio A= B+b h 2 P=B+b+c+d Polígono regular A= Romboide P .a 2 D .d 2 P = 2 (a + b) Cuadrilátero A = suma de las áreas de los dos triángulos A= Circunferencia P=a+b+c+d Círculo L=2r A = r2 P=nl 18 U.T.N. F.R.C.U. Seminario Universitario – Matemática Figuras geométricas en el espacio La geometría del espacio estudia los cuerpos que tienen tres dimensiones: largo, ancho y alto. Un cuerpo es “un objeto” que ocupa un lugar en el espacio. La cantidad de espacio que ocupa un cuerpo es el volumen del mismo. La suma de las superficies de sus “caras externas” es la superficie de un cuerpo. Poliedros Se llama poliedro a un cuerpo delimitado por polígonos Estos polígonos se denominan caras, y sus lados aristas. Estos se clasifican en: Prismas: son aquellos poliedros que tienen dos caras paralelas e iguales llamadas bases y las caras laterales son paralelogramos. La altura de un prisma es la distancia entre las bases. Los lados de las bases constituyen las aristas básicas, y los lados de las caras laterales aristas laterales; estas son respectivamente iguales y paralelas entre sí. las El área lateral AL de un prisma es igual al perímetro de la base PB por la altura h. En símbolos: AL = PB · h. El área total de un prisma AT es el área lateral del mismo AL más el duplo del área de la base AB. En símbolos: AT = AL + 2 AB. El volumen V es igual al producto del área de la base AB por la altura h. En símbolos: V = AB · h. Pirámides: son aquellos poliedros cuya base es un polígono cualquiera y cuyas caras laterales son triángulos con un vértice común llamado vértice de la pirámide. 19 Módulo 4: Geometría La altura de la pirámide es el segmento perpendicular a la base, que une la base con el vértice. Las aristas de la base se llaman aristas básicas y las aristas que concurren en el vértice, aristas laterales. La apotema lateral de una pirámide regular es la altura de cualquiera de sus caras laterales. Es importante distinguir entre la apotema lateral de la pirámide y la apotema de su base. Calculamos la apotema lateral AP, conociendo la altura h y la apotema de la base aP, aplicando el teorema de Pitágoras en el triángulo sombreado. Calculamos la arista lateral de la pirámide, conociendo la altura y el radio de la base o radio de la circunferencia circunscripta, aplicando el teorema de Pitágoras en el triángulo sombreado. El área lateral AL de una pirámide es igual al semiproducto del perímetro de la base P A PB por la apotema lateral AP. En símbolos: AL = B P . 2 El área total de una pirámide AT es el área lateral de la misma AL más el área de la base AB. En símbolos: AT = AL + AB. El volumen V es la tercera parte del producto del área de la base AB por la altura h. A h En símbolos: V = B . 3 Cuerpos redondos o de revolución Son los cuerpos geométricos que se generan al girar una recta o curva llamada generatriz alrededor de otra llamada eje de revolución. Se clasifican en: Cilindro: Un cilindro es un cuerpo geométrico engendrado por un rectángulo que gira alrededor de uno de sus lados. El eje del cilindro es el lado fijo alrededor del cual gira el rectángulo. Las bases son los círculos que engendran los lados perpendiculares al eje. La altura la distancia entre las dos bases. La generatriz es el lado opuesto al eje, es el lado que engendra el cilindro, la cual es igual a su altura. es El área lateral AL del cilindro es igual al producto entre la longitud de la base por la altura. En símbolos: AL = 2 · r · h. El área total del cilindro AT es igual a la suma entre el área lateral del mismo y el duplo del área de la base En símbolos: AT = AL + 2 AB = 2 · r · (h + r). 20 U.T.N. F.R.C.U. Seminario Universitario – Matemática El volumen V es el producto del área de la base AB por la altura h. En símbolos: V = AB · h = · r2 · h. Cono: El cono es el cuerpo de revolución obtenido al hacer girar un triángulo rectángulo alrededor de uno de sus catetos. El eje del cono es el cateto fijo alrededor del cual gira el triángulo. La base es el círculo que forma el otro cateto. La altura es la distancia del vértice a la base. La generatriz es la hipotenusa del triángulo rectángulo. Aplicando el teorema de Pitágoras en el triángulo sombreado se relacionan la generatriz, la altura y el radio de la base. El área lateral AL del cono es igual al producto entre por el radio por la generatriz. En símbolos: AL = · r · g. El área total del cono AT es igual a la suma entre el área lateral del mismo y el área de la base En símbolos: AT = AL + AB = · r · (g + r). El volumen V del cono es un tercio del área de la base AB por la altura h. En AB h r2 h símbolos: V = = . 3 3 Esfera: Superficie esférica: Una superficie esférica es la superficie engendrada por una circunferencia que gira sobre su diámetro. Esfera: Una esfera es la región del espacio que se encuentra en el interior de una superficie esférica. El centro de la esfera es el punto interior que equidista de cualquier punto de la superficie de la esfera. El radio es la distancia del centro a un punto de la superficie de la esfera. Una cuerda es un segmento que une dos puntos de la superficie esférica. El diámetro es una cuerda que pasa por el centro. Los polos son los puntos del eje de giro que quedan sobre la superficie esférica. El área de la superficie esférica es A = 4 · r2. El volumen de la esfera es V = = 4 3 · r 3. 21 Módulo 4: Geometría Resumen de fórmulas de los cuerpos: Figura Esquema Área Volumen AL = PB · h Prisma V = AB · h AT = AL + 2 AB. AL = 4 a2 V = a3 Cubo AT = 6 a2 a AP Pirámide AL = PB AP 2 V= AB h 3 AT = AL + AB. AL = 2 · r · h Cilindro AT = AL + 2 AB = 2 · r · (h + r) AL = · r · g Cono Esfera 22 AT = AL + AB = · r · (g + r) A = 4 · r2 V = AB · h = · r2 · h V= AB h 3 = r2 h 3 V== 4 3 · r 3.