capitulo 4_metodologias convencionales

Anuncio
Diseño geodésico 1
I ciclo, 2014
José Francisco Valverde Calderón
Email: [email protected]
Sitio web: www.jfvc.wordpress.com
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Capítulo 4
Metodologías convencionales
Medición electrónica de distancias
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
•Energía: “capacidad de realizar un trabajo”. Se expresa en Julios (J).
•Trabajo: en física, el trabajo se define como “el producto de una
fuerza por la distancia que esta fuerza recorre”. Se da en Julios (J).
Julio =
•Energía electromagnética: es la cantidad de energía almacenada en
una región del espacio que podemos atribuir a la presencia de un
campo electromagnético.
•La E.E.M se refiere a toda la energía que se mueve a la velocidad de la
luz, en un patrón ondular armónico (onda electromagnética)
•Onda electromagnética: una onda EM es la forma de propagación de
la radiación electromagnética a través del espacio.
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Relación entre campo eléctrico y campo magnético
•Onda electromagnética: los componentes incluyen una onda
eléctrica (E) y una onda magnética (M); ambas son perpendiculares a
la dirección de propagación.
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
•Frecuencia (f): número de picos
(o valles) pasando por un punto
fijo, por unidad de tiempo. Se
expresa en Hertz (Hz)
c= fλ
c = velocidad de la luz
f = frecuencia
λ = longitud de onda
•Longitud de onda (λ): Distancia entre dos valles o dos crestas. La
unidad es en metros
Tomado de: http://www.visionlearning.com/library/module_viewer.php?mid=102&l=s&c3
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
•Para una onda periódica, se define el periodo (P) de la onda como el
tiempo que tarda la señal el realizar un ciclo completo
•Amplitud (A): distancia que existe entre el punto del equilibrio y la
cresta o el valle de la señal.
•Fase (Φ): es una parte fraccional del periodo de la onda.
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
4.1 Medición electrónica de distancias
•Para este apartado se tomó como referencia el material preparado
por el Ing. Jorge Moya, Profesor de la ETCG.
•Los equipos EDM determinan distancias con base al tiempo que
requiere la energía radiante electromagnética para viajar de un
extremo a otro de una línea y regresar.
•El primer EDM fue presentado en 1948 por Eric Bergstrand y se llamó
Geodímetro (Geodimeter por GEOdetic Distance METER)
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
•La ecuación fundamental para el cálculo de la distancia se basa en el
tiempo que dura la señal en recorrer la distancia de ida y vuelta:
2D = c⋅t
•La dificultad que se tiene es la medición del tiempo, ya que para
garantizar una exactitud 30 cm en la distancia se necesita medir el
tiempo con una exactitud de un nanosegundos (10-9 segundos).
•Los instrumentos EDM tienen un transmisor que envía una onda
continua.
•La selección de la frecuencia se basa en el espectro EM.
•El espectro EM es un conjunto de radiaciones de origen
electromagnético que se viajan a la velocidad de la luz.
•La luz, las microondas y los rayos X por ejemplo son O.E.M de la
misma naturaleza, que se propagan a la misma velocidad; lo que varía
es su λ y por consiguiente su frecuencia.
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Espectro
Electromagnético
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
•Por eso se trabaja con
fase de la señal para
deducir la distancia.
• Las
señales
de
medición emitidas se
obtienen
por
modulación de la señal
portadora
(luz,
infrarrojo, microonda).
•La modulación puede
ser por amplitud o por
frecuencia
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
•En la mayoría de EDM se usa la modulación por frecuencia.
•Con la modulación por frecuencia se obtienen señales con longitudes
de onda enteras, por ejemplo 10 m.
• La señal modulada que se emite recorre la distancia de ida o de ida y
vuelta. El receptor capta la señal y se determina su desfase.
•El desfase o diferencia de fase [∆ϕ] es lo que procesa el
distanciómetros y es el resultado de la medición.
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
•El tiempo de recorrido de una señal
oscilante se calcula con:
•a: es la cantidad de ciclos completos de
la señal;
• f: la frecuencia;
• ∆ϕ: el desfase.
•La velocidad (c) de la luz depende del índice de refracción (n) del
medio de propagación.
 a + ∆ϕ 
t =

 f 
co
n=
c
co
c=
n
•co= 298 792,5 km/s
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
E = (λ / 2)
D = a⋅E + ∆ϕ⋅E
D = a⋅E + r
• La ecuación fundamental se compone de un valor desconocido que
es la cantidad (a) de ciclos completos de la onda y de un valor
conocido que es el resto de la onda ∆ϕ.
• El resto r se puede medir en el distanciómetro.
•Al no conocer el número de ciclos la distancia es ambigua.
• Para eliminar la ambigüedad el distanciómetro genera varias escalas
de medición E, que son cada vez mayores en una potencia de diez.
•La ambigüedad se elimina cuando E es mayor que la distancia a medir.
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
4.1.1 Equipo, exactitudes y tolerancias
•De acuerdo con [Blachut, 1979], los instrumentos EDM se pueden
clasificar en dos grupos, dependiendo del tipo de radiación EM
que transportan las señales moduladoras:
• EDM de microondas que emplean ondas de λo = 3 cm
• EDM electroópticos con radiaciones visibles, casi infrarrojas para
el transporte de señales medidoras. Por ejemplo instrumentos con
λo =0,63 μm y 0,9 μm.
•Generalmente cuanto más corta es la λ de la portadora, mayor es
la precisión del EDM, por lo tanto los instrumentos electroópticos
son más precisos que los instrumentos a microondas.
•Entre mayor sea la λ de la portadora, mayor es la penetración en
la niebla y la bruma, por lo que los EDM a microondas se usan en la
medición de distancias largas en condiciones desfavorables.
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
•La precisión de un distanciómetro o EDM está dado por la relación:
•La constante aditiva a, que corresponde con la diferencia, cada vez
menor actualmente, entre los centros de emisión de los
distanciómetros y el propio centro del instrumentos (eje principal).
•Es un valor constante expresado generalmente en [mm]
•La constante multiplicativa b o error kilométrico, asociado
fundamentalmente a factores atmosféricos que afectan a la portadora
y que se reúnen en este valor expresado generalmente en [ppm].
•Practica: calcular, para los equipos indicados en la dispositiva 16, los
errores para las distancias máximas que podía medir cada
instrumento.
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
•Cálculo de la constante aditiva de un prima
•Método 1: Comparación de distancias parciales
•Se miden las distancias AB, BC y AC. Teóricamente la suma de las
distancias AB y BC deber ser igual a la distancia AC.
•La constante aditiva a es un valor que no cambia durante de las
mediciones pues es una diferencia geométrica. Este control se puede
hacer en el campo.
AC − AB − BC = 0 AC − AB − BC = a
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
•Método 2: Comparación con una distancia patrón
a = Dp − Dm
•Donde:
•Dp = Distancia patrón.
•Dm = Distancia medida.
•a = constante aditiva.
•Método 3: Usando el valor indicado por el
fabricante**
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
•Bases de calibración
•Una base calibración consta de una
serie de puntos alineados cuyas
distancias parciales han sido muy bien
determinadas.
•La medición de las distancias patrón
con el instrumento a calibrar implica la
determinación de la constante aditiva
[a] y la multiplicativa [b] por medio de
ajuste de mínimos cuadrados.
•La “desventaja” es que dependiendo
de la longitud de la base se deben
realizar (n(n-1)/2) mediciones en una
base de n puntos.
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
•Determinación de la constante aditiva y
multiplicativa en una base de calibración por ajuste
Donde:
a = constante aditiva
m = constante
multiplicativa
Dpi = Distancias patrón
Li = observaciones
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
•Determinación de la constante aditiva y
multiplicativa de forma gráfica
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
•Determinación de la constante aditiva y
multiplicativa a partir de un sistema de ecuaciones
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
•La constante multiplicativa también se puede determinar midiendo
la frecuencia del instrumento.
• Se necesita un instrumento llamado frecuencímetro calibrado y la
posibilidad de conectarlo al instrumento.
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Reconstrucción
de una base de
calibración
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Establecimiento de
bases de calibración, de
acuerdo a las normas
del NGS
http://www.ngs.noaa.gov/CBLINES/calibration.html
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
•La configuración estándar de la línea base consiste en cuatro
monumentos alineados.
•Comúnmente la longitud total de la línea base es de 1400 m
•Para ser considerada una línea recta, los puntos intermedio no se
puede salir de la alineación mas de dos minutos.
•La longitud de la base no debe ser menor a 1 km; en distancias
menores no se determina la escala adecuadamente.
•En total se pueden medir 12 distancias.
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
•Comúnmente la línea base esta definida por puntos a 150 m, 430 m
y 1400 m del punto inicial.
•En caso de que el punto intermedio (430 m) y/o el terminal (1400
m) no se puedan colocar a esa distancia, se deben colocar a una
distancia que sea múltiplo de 10 m (450 m por ejemplo).
•Es
Es motivo de esos rangos de distancia es que comúnmente las
longitudes de onda base en los EDM son 10 m o 20 m.
•Comúnmente se agrega otro punto a 100 pies (30,40 m) para
efectos de calibración de cintas.
•La situación ideal para la selección de los sitios es que del punto
inicial al punto intermedio la pendiente sea negativa y del punto
intermedio al punto terminar sea positiva.
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
•Se trata también de que la altura del punto inicial y del punto final
sean la misma.
•Esta configuración es para facilitar la medición y no tener que
colocar los primas muy bajos.
•Se recomienda que del punto inicial al punto a 150 m la pendiente
sea menor o igual al 1% y que en los otros puntos no exceda el 3%.
•En caso de no lograrse esto, se tiene que efectuar nivelaciones para
reducir la distancia inclinada a una distancia horizontal.
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
4.1.2 Correcciones y reducciones
•Correcciones
•Se debe diferenciar entre correcciones y reducciones a las distancias
medidas con instrumentos electromagnéticos.
•La primera se refiere a la parte atmosférica o física e implica que el
rayo se ve afectado por la atmosfera.
•La parte de reducciones contempla lo relacionado a la parte
geométrica, es decir las funciones que permiten llevar o calcular las
distancias medidas a una cierta superficie.
•La frecuencia de la onda portadora del distanciómetros es
aprovechada para la medición, por lo que ésta deber ser estable; esta
estabilidad depende de la temperatura.
•Por eso en el distanciómetro se eleva internamente la temperatura, a
una temperatura normalmente mayor a la externa, para mantener
estable la frecuencia.
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
•El rayo de medición se ve afectado por la condición meteorológica
imperante (valores de temperatura, humedad presión), los cuales
comúnmente son diferentes a las condiciones durante la calibración.
• Para corregir el efecto de las condiciones meteorológicas se aplica la
corrección meteorológica (o atmosférica).
•La corrección meteorológica se basa en modelos meteorológicos que
contemplan la temperatura del aire y presión atmosférica en el
momento de la medición, con los cuales se calcula el índice de
refracción.
•En lugar de utilizar el índice de refracción n se usa la constante de
refracción N = n⋅10-6
•Con esto la corrección por meteorología es:
k = ( no − n ) ⋅10 D
'
Diseño Geodésico I
I Ciclo, 2014
−6
K’:
corrección
meteorológica
(primera corrección de velocidad)
Profesor:
José Francisco Valverde C
•no : constante de refracción interno.
• n : constante de refracción calculado.
• D : distancia cruda.
•Para ondas del rango óptico: fórmula de Barrel y Sears.
•nGR : índice de refracción grupal de la luz en aire seco a 0° C y
760 mmHg de presión del aire.
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
•nL : índice de refracción imperante.
• t : temperatura del aire en grados centígrados.
• p : presión atmosférica en mmHg.
• e: presión parcial del vapor de agua en mmHg.
e = 10 − 0, 000583 p ( t − t
x
'
)
'
7,5t
x=
+ 0, 7857
'
273,3 + t
•a : coeficiente de dilatación del aire = 0,00367.
•λ: longitud de onda de la señal en micrómetros.
•t’: temperatura húmeda.
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
•Para microondas: fórmula de L. Essen y K.D. Froome.
•T = t (°C)+ 273,15.
•P: en milibares.
•e: definido como en el caso de ondas del rango óptico.
•La humedad afecta muy poco a la propagación de la onda
del rango electroóptico.
•Por eso en el cálculo de la presión parcial del vapor (e) se
puede entrar con la temperatura seca en lugar de la húmeda.
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
•El cálculo de la corrección meteorológica implica medir
temperatura y presión durante la medición de distancias.
• Por razones prácticas, la temperatura y la presión no se pueden
medir a lo largo de todo el recorrido de la onda.
•Lo que se generalmente se hace es realizar una medición de
temperatura y de presión en los extremos de la línea a medir,
promediando luego ambos valores.
•Dependiendo de la exactitud y de la homogeneidad del medio
puede ser suficiente medir temperatura y presión solo en uno de
los extremos.
•Aunque en distanciómetros electroópticos la influencia de la
humedad es muy pequeña, en los distanciómetros de
microondas es 120 veces mayor que en los electroópticos.
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
•Para una variación de DD de ± 1 ppm, se deben contemplar las
exactitudes en la medición meteorológica, que se muestran en la
tabla siguiente:
•La segunda corrección o segunda
corrección por velocidad que se aplica
es debido a la trayectoria curva del
rayo, ya que éste tiene un radio de
curvatura diferente a la de Tierra.
Diseño Geodésico I
I Ciclo, 2014
3
D
k " = −(k − k )
2
12 R
2
Profesor:
José Francisco Valverde C
•K”: Segunda corrección por velocidad.
•D : distancia medida.
•k: coeficiente de refracción (luz:0,13; microondas: 0,25).
•R: radio medio de la Tierra.
•La distancia corregida es:
Dc = D + k '+ k "
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Reducción al plano cartográfico CRTM05
Variación del
factor de escala
con respecto a la
longitud
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Reducción al plano cartográfico CRTM05
Cálculo del factor de escala (m) a partir de coordenadas elipsoídicas
"
"
"
m = 0,9999 + a02
∆λ 2 + a12" ∆ϕ∆λ 2 + a22
∆ϕ 2 ∆λ 2 + a04
∆λ 2
Donde:
∆λ = λ0 − λ
∆λ = 84° − λ
∆ϕ = ϕ − ϕ0
∆ϕ = ϕ − 10°
La longitud λ se introduce con signo positivo
Constantes para el cálculo
del factor de escala con
coordenadas elipsoídicas
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Reducción al plano cartográfico CRTM05
Cálculo del factor de escala (m) a partir de coordenadas cartográficas
m = 0,9999 + b ⋅ E ' + b ⋅ ∆N '⋅ E ' + b ⋅ ∆N '⋅ E ' + b ⋅ E '
"
02
Donde:
2
"
12
2
N
∆N =
− G10°
0,9999
"
22
2
"
04
4
E − 500000, 00
E'=
0,9999
G10º = 1 105 854,833 m
Constantes para el cálculo
del factor de escala con
coordenadas cartográficas
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Reducción al plano cartográfico CRTM05
Reducciones
geométricas
de distancias
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Reducción al plano cartográfico CRTM05
•Al medir distancias por medio de ondas electromagnéticas (Do) y
una vez aplicada la corrección por temperatura y presión, el
resultado es un arco.
•Este arco, comprendido entre la estación y la señal, en distancias
cortas se puede considerar como una recta (D1).
•Esta distancia inclinada (D1) se transforma en una distancia
horizontal (D2) aplicando la siguiente corrección:
•Donde H1 y H2 corresponde a las alturas ortométricas de los
puntos 1 y 2 respectivamente y D es la distancia inclinada.
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Reducción al plano cartográfico CRTM05
•Si la distancia se mide con una estación total, esta tiene la
posibilidad de dar la distancia ya reducida al horizonte.
•Este horizonte puede estar a una altura considerable con respecto
al nivel medio del mar, por lo que es necesaria una nueva
corrección, para llevar este horizonte al nivel medio del mar:
•Donde H1 y H2 corresponde a las alturas ortométricas de los
puntos 1 y 2 respectivamente, D es la distancia inclinada entre los
puntos 1 y 2 y R corresponde con el radio medio terrestre. Para
llevar la distancia al elipsoide (D4), se aplica la siguiente fórmula:
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Reducción al plano cartográfico CRTM05
•Una vez calculada la distancia sobre el elipsoide de referencia
(D4), se multiplica esta por el factor de escala, de forma que
se obtendrá la distancia proyectada
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
•4.2 Medición de ángulos
•De acuerdo con [Dörries, E. et al. 1994], la medición de ángulos en el
espacio topográfico se realiza con un instrumentos llamado teodolito,
el cual por su principio de construcción descompone los ángulos
espaciales en sus componentes hz y v.
• El eje principal permite la rotación de la alidada y la proyección del
eje de colimación sobre el limbo hz, la medición de direcciones hz.
• El eje secundario permite la rotación del anteojo y la proyección del
eje de colimación sobre el limbo v, la medición de ángulos verticales.
•Clasificación de los teodolitos:
•Obra: ±1’
•Ingeniería: ±0,1’
•Precisión: ± 1”
•Universal: ± 0,1”
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Componentes básicos
de un teodolito
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Requerimientos mínimos para instrumentos
que miden ángulos:
•Sistema de centrado.
•Sistema de puntería.
•Sistema de horizontalidad.
•Sistema de lectura de direcciones
horizontales.
•Sistema de lectura de ángulos verticales.
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Controles y ajustes de un teodolito
•Error de verticalidad de PP
•Error del eje de colimación (CC ⊥ PP)
•Desvió del trazo vertical del retículo
•Error del índice del circulo vertical
•Error de puntería
•Error de graduación
•Control del eje secundario
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Imágenes varias
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
4.2.1 Equipo, exactitudes y tolerancias
•Fuentes de error en las mediciones angulares
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
4.2.2 Reducciones elipsoídicas
•La elaboración de las observaciones de distancias, direcciones,
ángulo y desniveles se trabajan en tres etapas: primero se
promedian con base en la cantidad de repeticiones efectuadas,
luego se reducen y por último se ajustan.
•Recordar que las distancias también deben ser corregidas.
•Reducciones a los valores de ángulos son generalmente muy
pequeñas. Se consideran reducciones por:
• Divergencia angular
• Altura del punto visado
• Desviación de la vertical
• Por la proyección geodésica
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
•Sección normal: curva
formada por la intersección
de un plano que contiene
la normal de un punto
conocido en la superficie
del elipsoide.
•Si tenemos dos puntos A y
B, habrá una sección
normal especifica formada
por la intersección de un
plano
conteniendo
la
normal al punto A y que
pasa a través del punto B.
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
•En general, el plano de la
sección
normal
es
perpendicular
al
punto
dependiendo de la dirección
de observación.
•Por ejemplo, si estamos en el
punto A y visamos al punto B,
el plano normal pasa por A y
B, pero únicamente es
perpendicular al elipsoide en
A, no en B.
•Para que el plano normal sea
perpendicular el B, debemos
visar de B hacia A.
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
•Existe una curva, la cual es única entre dos puntos, que tiene la
característica de que todos los puntos que contiene si son
perpendiculares al elipsoide y que además, es la distancia mas corta
entre dos puntos. Esta curva es la “CURVA GEODÉSICA” o “GEODÉSICA”
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
•En la geodesia clásica, el hecho de que entre dos puntos hayan dos
secciones normales, representa un problema cuando en los cálculos
se usan direcciones.
•De la figura siguiente, los ángulos medidos son θ1, θ2 y θ3. Del análisis
de la figura, se desprende que no se midió una figura cerrada.
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Separación entre secciones normales reciprocas
1 2 s  2
f = e 
 cos φm sin 2α AB
2  NA 
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Separación entre secciones normales reciprocas
•La separación lineal entre dos secciones normales reciprocas se
calcula a partir de la siguiente fórmula:
2
d max
Diseño Geodésico I
I Ciclo, 2014
3
e s
=
cos
φ
sin
2
α
m
AB
2
16 N A
Profesor:
José Francisco Valverde C
Separación entre secciones normales reciprocas
•La separación angular
entre
dos
secciones
normales reciprocas se
calcula a partir de la
siguiente fórmula:
 s  2 
e
tan φ A s 
∆ = sin α AB 
 cos φ A  cos α AB −

2
2 NA 
 NA 

2
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Curva geodésica
•Se ha dado la definición de sección normal y se ha destacado el
hecho de que tiene la desventaja de que en general no es única entre
dos puntos
•Nos interesa la curva geodésica.
•Entre dos puntos, únicamente hay una línea geodésica, con la
característica que su longitud es la distancia mas corta.
•Curva geodésica entre dos puntos (A y B)
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Comparación de la geodésica con la sección normal
•α1 = azimut en A de la
sección normal AB
•α2 = azimut en A de la
geodésica AB
•α3 = azimut en B de la
sección normal BA
α AB − αɶ AB
2
 s 

e'
1
s 
1
≈
sin α AB 
 cos ϕ A  cos α AB − tan ϕ A
 ≈ (α AB − α ' AB )
6
4
NA 
3
 NA 

Diseño Geodésico I
I Ciclo, 2014
2
Profesor:
José Francisco Valverde C
4.2.3 Reducciones cartográficas
α:
acimut
elipsoídico
o
geodésico: Ángulo entre el norte
geodésico, en dirección del
meridiano de P1, y la línea
geodésica de P1 a P2.
T:
acimut
elipsoídicos
proyectado: Ángulo entre el
norte de cuadrícula y la línea
geodésica de P1 a P2.
t : acimut de cuadrícula: Ángulo
entre el norte de cuadrícula y la
línea geodésica proyectada al
plano cartográfico.
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
•Convergencia de los meridianos: diferencia angular entre
el norte geográfico y el norte de cuadrícula
•Se debe considerar este valor cuando se tienen azimut
elipsoídicos y se desea calcular coordenadas de
cuadricula.
•Para el sistema oficial, se puede calcular este valor a
partir de coordenadas geodésicas o de cuadrícula.
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Cálculo a partir de coordenadas geodésicas
'
'
c = a '01 ∆ λ+a 11
∆ ϕ ∆ λ+a '21∆ ϕ 2 ∆ λ+a '03 ∆ λ 3 +a '31∆ ϕ 3 ∆ λ+a 13
∆ ϕ ∆ λ 3 +...
∆λ = 84º −λ
Diseño Geodésico I
I Ciclo, 2014
∆ϕ = ϕ −10º
Profesor:
José Francisco Valverde C
Cálculo a partir de coordenadas de cuadrícula
'
'
'
c=b '01 E'+b 11
∆N' E'+b '21 ∆N'2 E'+b '03 E'+b 31
∆N'3 E'+b 13
∆N' E'3 +...
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Reducción de ángulos en la proyección
cartográfica CRTM05
T=α-c
( T1 -t1 )
"
(E1 -FE) ρ  (E1 -FE) 2 
ρ  3(E1 -FE) 2 
=
 1 ( N 2 -N1 ) + 2 1 ( E 2 -E1 )( N 2 -N1 )
2
2
2
2 R1 
3R1 
6R1 
2R1

180º
ρ=
×
π
3600
 E 2 -E1 
t =arctan 

N
-N
 2 1
Diseño Geodésico I
I Ciclo, 2014
R1 = M1 N1
FE= 500 000,00 m
Profesor:
José Francisco Valverde C
•M1 y N1 son los radios meridiano y normal sobre el elipsoide
correspondiente a la estación P1.
•c = convergencia de los meridianos
•R1 = radio gaussiano
•FE = Falso Este
•N1 y N2 = coordenada norte del punto 1 y 2 respectivamente en el
sistema de coordenadas planas
•E1 y E2 = coordenada este del punto 1 y 2 respectivamente en el
sistema de coordenadas planas
Diseño Geodésico I
I Ciclo, 2014
Profesor:
José Francisco Valverde C
Descargar