A quick review of some of the main points and techniques: d x a = ax ln a dx d u du a = au ln a dx dx loga (x) = ln(x) ln(a) Problem 30: Find y 0 given y = log5 r ( 7x ln 5 ) 3x + 2 Solution: y = log5 r ( 7x ln 5 7x ln 5 ln 5 7x ) = log5 ( ) 2 =( ) log5 ( ) 3x + 2 3x + 2 2 3x + 2 7x =( ln 5 ln( 3x+2 ) 1 7x ) = ( ) ln( ) 2 ln(5) 2 3x + 2 y0 = 1 1 3 1 ( − )= 2 x 3x + 2 x(3x + 2) Problem: Find y 0 given y = (sin x)cos x Solution: ln(y) = ln((sin x)cos x ) = cos x ln(sin x) 1 1 0 y = cos x( ) cos x + ln(sin x)(− sin x) y sin x y 0 = y cos x( 1 1 )(cos x + ln(sin x)(− sin x) = (sin x)cos x (cos x( ) cos x + ln(sin x)(− sin x)) sin x sin x Find Z 10 1 10 log 10(10x) dx x Answer: First note that log10x = log10 (10) + log10 x = 1 + Z 10 1 10 log10 (10x) dx = x Z 10 ( 1 10 ln x ln(10) 1 ln x 1 ln2 x x=10 1 + ) dx = (ln(x) + )|x= 1 10 x ln(10) x ln(10) 2 = ln(10) − ln(10−1 ) + = 2 ln(10)) + ln2 (10) ln2 (10−1 ) 1 ( − ) ln(10) 2 2 1 (0) = ln(100) ln(10)