Resolución de integrales Caso A M 1 ( x) = − x l M 0 ( x) = ql q x − x2 2 2 q 1 1 l 1 l ql 2 ql 2 x x M max 1 =1 M l δ10 = ∫ M 1 ( x)κ 0 ( x)dx = 0 I10 EI max 0 ql 2 = 8 l I10 = ∫ M 1 ( x) M 0 ( x)dx 0 l q l q l q x3 q x4 + I10 = − ∫ x 2 dx + ∫ x 3 dx = − 2 0 2l 0 2 3 0 2l 4 l 0 ql ⎛1 1⎞ = − ql 3 ⎜ − ⎟ = − 24 ⎝6 8⎠ 1 = − M 1max M 0max l (fórmula de tablas) 3 3 Caso B M 1 ( x) = − x≤l 2 ⎧P 2 ⋅ x M 0 ( x) = ⎨ ⎩P 2 ⋅ x − P ( x − l 2) l 2 ≤ x ≤ l x l P 1 1 l 1 l P 2 P 2 x x M max 1 =1 M 0max = l δ10 = ∫ M 1 ( x)κ 0 ( x)dx = 0 I10 EI Pl 4 l I10 = ∫ M 1 ( x) M 0 ( x)dx 0 l P l P l xl P x3 P x 3 x 2l I10 = − ∫ x 2 dx + ∫ ( x 2 − )dx = − + − l l2 2l 0 2 2l 3 0 l 3 4 l l 2 ( 8 − 16 + 12 + 2 − 3) = − 3 Pl 2 ⎛1 1 1 1 1 ⎞ = − Pl 2 ⎜ − + + − ⎟ = − Pl 2 48 48 ⎝ 6 3 4 24 16 ⎠ 1 = − 1.5 ⋅ M 1max M 0max l (fórmula de tablas) 6 Caso C x l M 1 ( x) = − κ 0 ( x) = α 1 1 l (∆T S − ∆T I ) = −κ 0 h ∆T S ∆T I 1 l x x M 1max = 1 l κ0 0 l δ10 = ∫ M 1 ( x)κ 0 ( x)dx = = 1 max max M1 κ 0 l 2 ∫ l 0 xdx = κ 0max = κ 0 κ 0 x2 l 2 l = 0 κ 0l 2 (fórmula de tablas) Caso D x l M 1 ( x) = − M 0 ( x) = − M 0 x l 1 1 l M0 1 l M0 l M0 l x x M 0max = M 0 M 1max = 1 l δ10 = ∫ M 1 ( x)κ 0 ( x)dx = 0 I10 = M0 l2 ∫ l 0 x 2 dx = 1 = M 1max M 0max l 3 I10 EI 3 l M0 x l2 3 0 l I10 = ∫ M 1 ( x) M 0 ( x)dx 0 = M 0l 3 (fórmula de tablas) Caso E M 1 ( x) = − ⎛ x⎞ M 0 ( x) = − M 0 ⎜1 − ⎟ ⎝ l⎠ x l 1 1 l M0 1 l M0 l x x M 0max = M 0 M 1max = 1 l δ10 = ∫ M 1 ( x)κ 0 ( x)dx = 0 M I10 = 0 l = I10 EI l I10 = ∫ M 1 ( x) M 0 ( x)dx 0 l ⎛ M 0 x 2 x3 x2 ⎞ ⎛1 1⎞ M l x dx − = − = M 0l ⎜ − ⎟ = 0 ∫0 ⎜⎝ l ⎟⎠ l 2 3l 0 6 ⎝ 2 3⎠ l 1 max max M1 M 0 l 6 (fórmula de tablas) M0 l