Medición y comparación del coeficiente de atenuación lineal

Anuncio
XII JORNADAS DE INVESTIGACIÓN
Revista Investigación Científica, Vol. 4, No. 2, Nueva época. Mayo - Agosto 2008
ISSN 1870-8196
Medición y comparación del coeficiente de atenuación
lineal de líquidos (con y sin gas)
Marlen Hernández Ortiz
Héctor Antonio Durán Muñoz
Eduardo Manzanares Acuña
Héctor René Vega Carrillo
Unidad de Académica de Estudios Nucleares
Universidad Autónoma de Zacatecas
Introducción
La radiación gamma es parte del espectro electromagnético cuya energía la
ubica en el grupo de la radiación ionizante. Esto indica que las ondas
electromagnéticas tienen una alta frecuencia, lo que hace que los rayos
gammas tengan mayor facilidad de penetrar a la mayoría de los materiales,
excepto al hormigón o concreto. En su transporte a través de la materia los rayos
gamma experimentan varios procesos que producen una reducción en su
intensidad. Es decir, la intensidad de radiación que entra a tal material es mayor
que la intensidad que sale. Un modelo matemático sería la ecuación
de
intensidad de radiación en la materia, la cual dice que la intensidad de la
radiación que sale de un material con espesor x es igual a la intensidad de
radiación que entra por una función exponencial decreciente con respecto al
coeficiente de atenuación del material por el espesor de este ( I ( x) = I 0 e − μ x ).
Por lo tanto, la capacidad de atenuación de los rayos gamma depende de
la energía de los fotones y del medio con el que interactúan que se traducen en
el coeficiente de atenuación del medio. La definición formal dice que el
coeficiente de atenuación lineal es la suma de tres probabilidades, una por
cada mecanismo de interacción: el efecto fotoeléctrico, la dispersión Compton
y la producción de pares. El efecto fotoeléctrico es aquel choque entre un fotón
y un electrón enlazado a su orbita, de tal manera que la energía del átomo
1 XII JORNADAS DE INVESTIGACIÓN
Revista Investigación Científica, Vol. 4, No. 2, Nueva época. Mayo - Agosto 2008
ISSN 1870-8196
ionizante es mayor a la del electrón, ocasionando la liberación de este último
con una energía cinética igual a la diferencia entre la energía del fotón y la
ionización potencial (ver Fig. 2). EL mecanismo de interacción de la dispersión
Compton se ocasiona cuando existe un choque elástico entre un fotón y un
electrón libre, aquí el electrón tiene menor energía de amarre que la energía del
fotón, lo que ocasiona una dispersión de ambos (ver Fig. 1). Por último, la
producción de pares se da cuando la energía del fotón excede 1.02 MeV,
cuando este pasa cerca del núcleo desaparece espontáneamente y su energía
reaparece
como
un
positrón
y
un
electrón
con
energía
de
0.51
MeV cada uno (ver Fig. 3). La capacidad de atenuación de la radiación de
diferentes materiales se utiliza bastamente en los procesos industriales como la
determinación del nivel de un recipiente, o bien para determinar la densidad de
los materiales en la industria minera.
Fig. 1.- Dispersión Comptón.
Fig. 2.- Efecto Fotoeléctrico..
Fig. 3.- Producción de Pares.
A diario, el ser humano esta expuesto a la radiación ambiental, llamada
radiación de fondo, y en algunas ocasiones, a radiaciones nucleares que son
dañinas para él. Esta última frase nos interesa. El ser humano esta constituido por
más del 50% en agua, puesto que el tejido humano es similar a este líquido vital.
Debido a la importancia de este líquido para todo ser viviente en nuestro
2 XII JORNADAS DE INVESTIGACIÓN
Revista Investigación Científica, Vol. 4, No. 2, Nueva época. Mayo - Agosto 2008
ISSN 1870-8196
planeta, me di a la tarea de medir el coeficiente de atenuación lineal del agua
y del refresco (como primera parte de este ensayo). Ya que estas bebidas son
las de mayor consumo humano.
El coeficiente de atenuación lineal del agua se encuentra reportado en la
literatura, mientras que el coeficiente lineal del refresco aún no se determina.
Aunque los compuestos de un refresco no se conocen con exactitud, se sabe
que es más denso que el agua.
Por lo tanto, en este trabajo se miden tres coeficientes de atenuación lineal
de distintos líquidos para rayos gamma de 662 KeV. Los líquidos son el agua,
refresco normal (con gas) y el mismo refresco sin gas. Se comienza con la
medición de los dos primeros líquidos. Con el fin de determinar el líquido con
mayor atenuación ante la radiación gamma. La hipótesis correspondiente a esta
medición se le atribuye al refresco normal, debido a su mayor densidad. El
resultado conlleva a realizar la segunda medición únicamente con el líquido
correspondiente al refresco sin gas.
Palabras clave: Rayos gamma, Atenuación, Líquidos
Materiales y métodos.
Para la medición se utiliza una fuente de Cs-137 cuya actividad original era de
30 mCi. Esta se coloca en un embalaje de plomo con un colimador y sobre esté
se ubica una probeta graduada. Sobre la línea del colimador se coloca el
centro de un detector Geiger-Mueller. El cual se encarga de recibir los fotones
gamma de la fuente y enviarla a un inversor de pulsos que a su vez presenta las
cuentas por cada 20 segundos en un gabinete con voltaje de 600 Volts (ver Fig.
4).
3 XII JORNADAS DE INVESTIGACIÓN
Revista Investigación Científica, Vol. 4, No. 2, Nueva época. Mayo - Agosto 2008
ISSN 1870-8196
Fig. 4. Visualización general de la posición de
los instrumentos utilizados en el experimento.
Para cada caso se midieron, en 5 ocasiones, las tasas de conteo que sobre el
detector producen la radiación gamma. El primer caso fue medir las tasas de
conteo con la probeta sin líquido; luego se fueron agregando cantidades de
líquido que en forma regular incrementaban el espesor del líquido y en cada
caso se midieron las tasas de conteo resultantes. Éstas se utilizaron para calcular
el promedio (N) y la desviación estándar (σN). Los valores promedio fueron
corregidos por la tasa de conteo debida a la radiación del fondo (B). El conteo
de la radiación de fondo B se considera para obtener la tasa de conteo
corregida N = C- B, donde C representa a la tasa de conteo promedio sin
corregir. También se considera la incertidumbre del conteo de fondo (σB) y del
conteo de la radiación (σC). Por lo tanto, la incertidumbre de la tasa de conteo
corregida depende de ambas, σ N =
σ B2 + σ C2 .
Con lo que se obtuvo una expresión de las tasas de conteo corregidas en
función del espesor del líquido (la ecuación de la intensidad de radiación en la
materia). Luego los valores se normalizan al valor de las tasas de conteo sin
ningún espesor del líquido y se obtutiene una función logarítmica. Cuyos valores
resultantes se ajustan a una función lineal utilizando los mínimos cuadrados
ponderados. En la función lineal resultante la pendiente (μ) es el coeficiente de
atenuación lineal que se anda buscando. Esto es
4 XII JORNADAS DE INVESTIGACIÓN
Revista Investigación Científica, Vol. 4, No. 2, Nueva época. Mayo - Agosto 2008
ISSN 1870-8196
I ( x ) = I0 e
−μ x
⇒
⎛ I ⎞
ln ⎜ . ⎟ = − μ x
⎝ I0 ⎠
Resultados
Los resultados obtenidos para la primera medición de las tasas de conteo
promedio corregidas con respecto a cada espesor del líquido nos dicen que el
detector recibe más cuentas por segundo para el refresco normal en
comparación a las que presenta para el agua. Esto nos da una conclusión a
100
Agua
Coca Cola
10
1
0.
0
2.
5
5.
4
8.
11 3
.
14 2
.
17 1
.
19 0
.
22 9
.
25 8
.
28 7
.6
Tasa de conteo promedio
corregido (C/seg)
priori respecto a la atenuación de cada líquido (ver Gráfica 1).
Espesor (cm)
Fig. 2.- Presenta de manera clara la diferencia de la tasa de conteo promedio
corregida respecto al espesor de cada absorbedor..
Y que efectivamente la constante μ de la ecuación de la línea recta obtenida
del ajuste por mínimos cuadrados ponderados da un coeficiente de atenuación
lineal del agua de 0.090 ± 0.013 cm-1, mientras que el del refresco normal es de
0.050 ± 0.059 cm-1. El valor del coeficiente de atenuación lineal del agua
coincide con el valor reportado en la literatura con una incertidumbre del 3%.
5 XII JORNADAS DE INVESTIGACIÓN
Revista Investigación Científica, Vol. 4, No. 2, Nueva época. Mayo - Agosto 2008
ISSN 1870-8196
En el caso del refresco normal el valor es menor al coeficiente de
atenuación del agua y la probable explicación que se da se le atribuye a que
contiene gas disuelto que en forma efectiva reduce el espesor del líquido. Tal
conclusión nos lleva a la segunda medición realizada 2 meses después del
primer experimento. Este tiempo ayudó a que el gas disuelto en el refresco
normal, ya utilizado, se hiciera mínimo de tal manera no se tuviera problema con
la espuma que antes provocaba el líquido. El resultado de la medición le da la
razón a la explicación que se da en la primera. Debido a que el valor obtenido
del coeficiente de atenuación del líquido sin gas es de 0.103 ± 0.464 cm-1, que
resulta mayor a la atenuación del agua.
Conclusiones
Se han determinado los coeficientes de atenuación de tres medios en estado
líquido, agua, bebida comercial con y sin gas. El valor del coeficiente del agua
coincide con el reportado en la literatura. El coeficiente del refresco normal
resulta menor al del agua, tal hecho rechaza la hipótesis planteada en la
primera medición, tal motivo se le atribuye a la presencia de gas que reduce el
espesor efectivo. La medición del coeficiente de atenuación del refresco sin gas
nos da la efectividad de la conclusión hecha en la primera medición. Este
hallazgo permite establecer un procedimiento para medir la cantidad de gas
disuelto en un líquido.
6 XII JORNADAS DE INVESTIGACIÓN
Revista Investigación Científica, Vol. 4, No. 2, Nueva época. Mayo - Agosto 2008
ISSN 1870-8196
Bibliografía
CEMBER, H. Introduction to Health Physics. Estados Unidos: McGraw-Hill, 134-140,
1996.
VEGA-CARRILLO, H.R., Laboratorio de Mediciones Nucleares. México: Universidad
Autónoma de Zacatecas, Hipertexto en formato DVD, 2007.
_________., Least squares for different experimental data, Revista Mexicana de
Física. 35, 597-602, 1989.
7 
Descargar