Convección Natural Casos de estudio

Anuncio
Convección Natural
Casos de estudio
Luis M. de la Cruz
DCI- DGSCA - UNAM
Colaboradores
• Eduardo Ramos, CIE-UNAM
• Víctor Godoy, DGSCA-UNAM
• Alejandro Salazar, DGSCA-UNAM
• Humberto Muñoa, DGSCA-UNAM
Contenido
• Convección natural
• Ecuaciones gobernantes: laminar
• Modelo discreto
• Mezclado
• Ecuaciones gobernantes: turbulencia
• TUNA-CFD
Convección Natural
• Es una de las formas más usuales de
transferencia de calor y de masa, y se
caracteriza porque se produce a través del
desplazamiento de partículas entre regiones
con diferentes densidades.
Convección Natural
g
Convección Natural
• La convección es omnipresente en nuestra
experiencia diaria.
➡ Atmósfera terrestre
➡ Crecimiento de cristales
➡ Cocina
➡ En el caso de la atmósfera terrestre, la radiación solar
calienta la superficie de la tierra y este calor se transfiere
a la atmósfera por convección.
‣
Las corrientes de
convección causan brisas,
vientos, ciclones,
tormentas, y produce la
circulación atmósférica
global.
➡ En el crecimiento de cristales es vital controlar la
convección.
‣
El proceso de Czochralski
permite obtener lingotes
monocristalinos. La
temperatura se controla
para obtener cristales
grandes y homogéneos.
• La convección natural (convección libre) se
distingue de la convección forzada, por que
en esta última el movimiento convectivo se
debe a agentes externos.
• La convección natural (convección libre) se
distingue de la convección forzada, por que
en esta última el movimiento convectivo se
debe a agentes externos.
• La convección natural (convección libre) se
distingue de la convección forzada, por que
en esta última el movimiento convectivo se
debe a agentes externos.
• La convección natural (convección libre) se
distingue de la convección forzada, por que
en esta última el movimiento convectivo se
debe a agentes externos.
Modelo Teórico
• Ecuaciones gobernantes:
Modelo Teórico
• Ecuaciones gobernantes:
Modelo Teórico
• En el modelo anterior se ha considerado:
➡ Aproximación de Bousinesq:
‣
La densidad es constante excepto en los términos de fuerza
de cuerpo.
➡ Fluidos Newtonianos e Incompresibles.
➡ Energía interna = cvT
➡ Ley de Fourier:
Modelo Teórico
➡
es la densidad;
es una densidad de referencia;
es la viscosidad dinámica y
es la difusividad
térmica.
➡ Ecuación de estado:
➡ T0 valor de la temperatura cuando
➡ Coefiente de exp. volumétrica:
Ecs. adimensionales
➡ Las ecuaciones se
escalan de la
siguiente manera:
ν = µ / ρ0 d
Ecs. adimensionales
➡ Continuidad:
➡ Navier-Stokes:
➡ Energía:
Parámetros adim.
➡ Número de Prandtl:
➡ Número de Rayleigh:
Forma general
• En todos nuestros ejemplos Pr = cte. Esto
permite escribir:
Forma general
Ecuaciones gobernantes: flujo laminar
Discretización
Método numérico
• Volumen finito.
➡ Se integra cada ecuación
sobre cada volumen de
control y se seleccionan
esquemas numéricos
adecuados para cada uno
de los términos.
Ec. gral. discreta
• Integrando sobre cada volumen:
➡ La variable en cuestión es cte. en cada volumen
➡ Esquema explícito (Backward-Euler)
Coeficientes
donde:
donde:
Sistema lineal
donde:
Sistema lineal
donde:
Sistema lineal
1D
2D
3D
Términos difusivos
• Perfil lineal
Coef. difusivos
Términos convectivos
Términos convectivos
Coef. convectivos
Acoplamiento p-v
Ecs. de cantidad de movimiento:
Ec. de continuidad:
Acoplamiento p-v
• Complicaciones:
➡ Los términos convectivos son cantidades no lineales
➡ Las ecuaciones están fuertemente acopladas
➡ No existe una ecuación explícita para la presión.
➡ Aproximación del gradiente de presiones:
Mallas desplazadas
Desacoplamiento
Desacoplamiento
Desacoplamiento
Desacoplamiento
Desacoplamiento
SIMPLEC
SIMPLEC
SIMPLEC
SIMPLEC
SIMPLEC
• Sust. en la ec. de continuidad:
SIMPLEC
• Sust. en la ec. de continuidad:
SIMPLEC
1.
2.
3.
4.
5.
Inicio
Resolver ec. de energía
Resolver ecs. de Navier-Stokes
6.
7.
8.
Calc. coef. de ec. de presión
Resolver ec. de corr. de presión
9.
Corregir la presión
Corregir la velocidad
Verificar el criterio de
convergencia
FIN
Mezclado
Blinking vortex
Seguimiento de sup.
Mezclado caótico 2D
Creciminto de longitud
Mezclado caótico 3D
Creciminto de sup.
Turbulencia
• Flujo es irregular, consiste de un amplio
rango de escalas de movimiento, se
incrementa la difusividad, es completamente
tridimensional, es muy disipativo y el número
de Reynolds es grande.
• La una simulación directa (DNS : Direct
Numerical Simulation) requiere recursos
enormes de cómputo.
Large-Eddy Simulation
• La LES ayuda a simular flujos turbulentos en
mallas gruesas.
➡ Dividir la variables turbulentas f (T, ui, p) en:
‣
Componente de escalas grandes.
‣
Componente de escalas pequeñas (subgrid scales).
➡ La descomposición se escribe como:
Large-Eddy Simulation
➡ con:
➡ donde g es la función filtro que debe satisfacer
condición de normalización:
Large-Eddy Simulation
• Ecuaciones de convección en flujo
turbulento:
Large-Eddy Simulation
• Tensores submalla
• En la LES se requiere de un modelo SMG
(Subgrid Model) para parametrizar ambos
tensores.
➡ Producir resultados con significado físico y bajo
costo computacional.
Large-Eddy Simulation
• El SGM más común supone una viscosidad
turbulenta:
➡
viscosidad turbulenta y
➡ Tensor de deformación:
➡ Prandtl turbulento:
difusividad turbulenta
Large-Eddy Simulation
• Si el
está dado, solo se parametriza la
en términos de las cantidades resueltas.
➡
no está bien establecido, pero:
• En este trabajo usaremos:
Large-Eddy Simulation
• Función de estructura se define:
• con:
Large-Eddy Simulation
• Ecuaciones filtradas con el SGM:
Large-Eddy Simulation
Ecuaciones gobernantes: flujo turbulento
Func. de estructura
➡ Se mide el ángulo entre la vorticidad en punto y el
promedio de las vorticidades en los seis puntos
vecinos.
➡ Si el ángulo excede 20 grados, entonces se usa la
viscosidad turbulenta.
➡ En otro caso solo se toma en cuenta la viscosidad
molecular.
Convección turbu.
TUNA-CFD
• Template Units for Numerical Applications in
CFD
➡ Biblioteca de clases en C++
➡ Uso intensivo de templates para eficiencia
➡ Convección natural en prismas rectangulares
➡ Mallas uniformes y no uniformes
➡ Seguimiento de partículas
Trabajo actual
• CLEAR
• Detección de vórtices
• Coordenadas cilíndricas
• Mesh-free methods
• Paralelismo vía descomposición de dominio
Servicios en DGSCA
• Supercómputo www.super.unam.mx
• Visualización www.labvis.unam.mx
• Realidad Virtual www.ixtli.unam.mx
• Seguridad www.seguridad.unam.mx
• TUNA-CFD: www.labvis.unam.mx/luiggi
Descargar