Final de septiembre - Universidad de Granada

Anuncio
E.T.S.I. Caminos, Canales y Puertos
CONVOC. SEPTIEMBRE
I.C.C.P.
TEORÍA DE ESTRUCTURAS
Universidad de Granada
16 SEPTIEMBRE 2013
TEORÍA
Tiempo: 1 hora.
APELLIDOS:
FIRMA:
NOMBRE:
DNI:
La Teoría representa 1/3 de la nota total del examen.
▷ Ejercicio 1 (2,5 ptos)
Exponer la teoría de torsión en prismas de sección circular (Torsión de Coulomb). Enumerar las
hipótesis correspondientes. Deducir la expresión del giro relativo o deformada de la rebanada, la ley
de tensiones y la tensión máxima. Imprescindible realizar croquis explicativos.
▷ Ejercicio 2 (2,5 ptos)
Definición de Núcleo Central. Definición de línea neutra. Relación del núcleo
central con la línea neutra. Propiedades del núcleo central, propias y relacionadas
con la línea neutra.
Calcular el núcleo central de la sección maciza representada en la figura de la
derecha, correspondiente a un triángulo equilátero de altura h.
▷ Ejercicio 3 (2,5 ptos)
Hallar mediante consideraciones energéticas el factor de impacto (i.e. la relación entre la flecha
vertical dinámica, d, y la flecha vertical estática,e) de un cuerpo de masa m que cae libremente
desde una altura h, sometido a la acción de la gravedad, sobre una plataforma sostenida por un resorte
de rigidez K. Evaluar casos particulares para h=0 y h muy superior a las deformaciones producidas
(h>>>d).
▷ Ejercicio 4 (2,5 ptos)
Dadas las estructuras de las figuras descomponerlas aplicando
simetría y simplificarlas.
Empiece a responder en esta misma hoja
E.T.S.I. de Caminos, Canales y Puertos
I.C.C.P.
Universidad de Granada
TEORÍA. Convocatoria Septiembre 2013.
Ejercicio nº 2

Ecuación de la L.N. a partir de su definición  nx  0;
1 ey
e
 y  z z  0;
A Iz
Iy
1
A ey
Iz
y
A ez
z0
Iy

Ecuación de la LN. a partir de la geometría de la misma:
Tomando inicialmente, por ejemplo, la línea que contiene al lado inferior y desarrollando la
ecuación para ponerla en forma implícita al objeto de compararla con la obtenida en el apartado anterior,
resulta:
h
y ;
3
1
3
y0
h
De esta línea, que contiene a un lado de la sección, obtendremos un vértice del núcleo central. Y dado que
ambas ecuaciones representan a la misma línea tendrán idéntica ecuación, por tanto, igualando coeficiente a
coeficiente, se tiene:


A ez
 0; por tanto, e z  0
Iy
A ey
Iz

3
;
h
ey 
Iz 3
;
A h
(como se sabía por la simetría axial respecto al eje y)
b h3
I 3
3 h
e y  z  36
 ;
bh h 6
A h
2
ey 
h
6
Aplicando las propiedades de simetría del núcleo central y al tratarse de un triángulo equilátero (simetría
central 120º), resulta que a cada lado de la sección le corresponde un vértice del núcleo central situado a la
misma distancia de cada uno de ellos. A los vértices del triángulo corresponderán lados rectos del núcleo
central que unen los vértices del núcleo central correspondientes a los lados de la sección que confluyen en
dichos vértices del triángulo.
TEORÍA DE ESTRUCTURAS
Convocatoria Septiembre 2013
TEORIA. Pág. 1 de 2
E.T.S.I. de Caminos, Canales y Puertos
I.C.C.P.
Universidad de Granada
Ejercicio nº 4
TEORÍA DE ESTRUCTURAS
Convocatoria Septiembre 2013
TEORIA. Pág. 2 de 2
E.T.S.I. de Caminos, Canales y Puertos
EXAMEN SEPTIEMBRE
I.C.C.P.
TEORÍA DE ESTRUCTURAS
Universidad de Granada
16 SEPTIEMBRE 2013
EJERCICIO 1
Tiempo: 90 min.
APELLIDOS:
FIRMA:
NOMBRE:
DNI:
▷ APARTADO A
Se quiere emplear la sección de hormigón adjunta para construir la estructura de la figura. Determine
la máxima carga q que puede descansar sobre la estructura, según la figura adjunta, para que ésta sea
válida a efectos de tensiones normales (tracción - compresión), enumerando y razonando brevemente
en qué puntos de la estructura comprobará la resistencia de la sección y porqué.
DATOS:
│σmax,co│= σmax,tr=25 MPa
No considerar el peso propio.
▷ APARTADO B
La figura representa una viga en voladizo de 5 m de longitud, cuya sección es el perfil de pared
delgada que se adjunta, con sus cotas y la posición del CEC. Dicha viga está sometida en tres quintos
de la longitud (ver figura) a una carga uniforme repartida de 10 KN/m2 aplicada sobre toda la
proyección vertical de la viga (ver figura). Se pide:
-
Represetar en un croquis acotado las acciones (fuerzas y momentos) respecto al CEC a lo
largo de la viga.
Represetar las leyes de esfuerzos cortantes, flectores y torsores respecto al CEC.
Calcular el giro de torsión θx en el extremo del voladizo.
DATOS:
G = 80 GPa, e1 = 15 mm
No considerar el peso propio.
E.T.S.I. de Caminos, Canales y Puertos
I.C.C.P.
Universidad de Granada
▷ SOLUCIÓN APARTADO A:
Obtenemos en primer lugar la ley de momentos de la viga:
Ahora calculamos el área, centro de gravedad (tomamos origen en la fibra inferior de la sección) y
momento de inercia con respecto a un eje Z pasando por el centro de gravedad de la figura:
(
)
Para obtener las tensiones normales máximas, emplearemos la expresión de Navier con el término de
momento en z, no considerando el término de axil al ser este nulo. Las tensiones normales podrán ser
máximas o en el empotramiento o en el centro del vano de la parte cargada. Al tener el material igual
resistencia a la tracción y compresión, dimensionará la mayor “y” en la sección con mayor momento
en valor absoluto, es decir, la sección del empotramiento a compresión (fibra inferior de la sección):
E.T.S.I. de Caminos, Canales y Puertos
(
I.C.C.P.
Universidad de Granada
)
Como conocemos el valor de la tensión última del material podemos despejar la carga:
▷ SOLUCIÓN APARTADO B:
La viga está cargada en los tres metros más alejados del empotramiento con una carga distribuida en
proyección vertical uniforme de 10 kN/m2, lo cual hace una carga por metro lineal de:
q = 10 kN/m2 · 0,3 m = 3 kN/ml
Y dada la geometría d = 0,382 – 0,15 = 0,232 m
Obteniendo q · d = 0,696 kN·m/ml
Y por tanto se obtienen las siguientes acciones:
E.T.S.I. de Caminos, Canales y Puertos
I.C.C.P.
Universidad de Granada
Las leyes de esfuerzos respecto al CEC serán:
Ahora obtenemos el giro:
∑
∫
(
)
E.T.S. Ingenieros de Caminos, Canales y Puertos
EXAMEN SEPTIEMBRE
TEORÍA DE ESTRUCTURAS
Universidad de Granada
16 SEPTIEMBRE 2013
EJERCICIO 2
Tiempo: 90 min.
APELLIDOS:
FIRMA:
NOMBRE:
DNI:
▷ APARTADO A
La estructura de la figura corresponde a una marquesina, presentando las siguientes solicitaciones: una
fuerza vertical F de valor 3 toneladas en sentido descendente aplicada en el extremo D, y un aumento
de temperatura de 30ºC en la cara superior de la barra horizontal de la marquesina (B-D) debido al sol
incidente. La barra inclinada y la cara inferior de la barra horizontal no sufren cambio alguno de
temperatura.
Se pide obtener el desplazamiento vertical y horizontal del extremo D (donde está aplicada la fuerza)
despreciando las deformaciones tanto por axil como por cortante. Supóngase una distribución lineal de
temperatura entre ambas caras de la barra horizontal. Cotas en metros.
DATOS:
=10-5 ºC-1
E·I=106 KN·m2
La viga es rectangular con un canto h=0,5 m
▷ APARTADO B
La estructura representada en el croquis puede estar sometida a una carga vertical hacia abajo
uniformemente distribuida de valor q, que se puede extender continuamente y/o por tramos sobre
cualquier parte de la misma. Se pide estudiar, determinar y representar en un croquis el mínimo
número de tramos a cargar para obtener el máximo, en valor absoluto, del esfuerzo cortante por la
izquierda en el punto C de la estructura (Vc -) , y calcular dicho valor.
NOTA: Resolver exclusivamente utilizando la línea de influencia de Vc -.
E.T.S. Ingenieros de Caminos, Canales y Puertos
Universidad de Granada
▷ RESOLUCIÓN APARTADO A
Lo primero es obtener las reacciones y leyes de momentos:
Sólo conozco el desplazamiento vertical en los dos apoyos, planteo Mohr para en función de estos
averiguar el giro en C (cuidado con olvidar los dos términos de temperatura):
∑
(
∫
( ⁄
√
)
Si requiriese para algo el ángulo en C, este sería:
∑
∫
√
(
)
)
( )
( ⁄
)
E.T.S. Ingenieros de Caminos, Canales y Puertos
Universidad de Granada
Conociendo este ángulo planteo la ecuación del desplazamiento vertical entre D y A:
∑
(
∫
)
( ⁄
√
)
(
(
)
⁄ )
Ahora planteo la ecuación para el desplazamiento horizontal:
∑
∫
√
(
)
( ⁄
)
Ahora lo resuelvo por PTV, utilizando para el desplazamiento vertical el estado de origen como estado
virtual (las leyes por tanto son las mismas):
∫
∫
∫
∫
(
∫
[
[
)∫
√
(
)
]
]
[
]
[
]
Por último el desplazamiento horizontal, realizamos un nuevo estado de cargas virtual con una carga
horizontal unitaria en D, cuyas leyes son:
E.T.S. Ingenieros de Caminos, Canales y Puertos
Universidad de Granada
A partir de este nuevo estado virtual volvemos a operar mediante PTV para obtener el desplazamiento
horizontal en D:
∫
∫
∫
∫
(
∫
[
)∫
√
[
∫
∫
(
)]
[
]
]
▷ RESOLUCIÓN APARTADO B
Estructura isostática (hg=0). Estudio de VC- mediante L.I. de VC-
[Estado Real Equivalente]
(hg=0)
[Estado Auxiliar*]
(hg=-1)
Mecanismo S-R
Teorema de Reciprocidad:
F·v* (x)  VC - · Δv*C -  0;
VC-  F
v* (x)
Δv*C-
E.T.S. Ingenieros de Caminos, Canales y Puertos
Universidad de Granada
Si en lugar de F tomamos dF, con dF  q dx , resulta dVC-  dF
L

VC-  q
0
q  cte
v* (x)
q
dx 
 *
*
por tramos
Δv CΔv C-
q
 v (x) dx  Δv
*
tramos
*
C-
v* (x)
v* (x)

q
dx
, y por tanto,
Δv*CΔv*C-
A , siendo A el área de la deformada.
De lo que se deduce, tomando Δv*C-  1 para simplificar los cálculos, que:
 v (x) dx es máxima positiva (suma de áreas positivas).
 Máximo VC- positivo si
*
tramos
Valor:
VC -  q
L
1
1
 v (x) dx  q ·2· 4 ·1· 2  4 q L ,
*
tramos con v* (x)  0
(tramo BD)
 Máximo VC- negativo si
VC - 
1
qL
4
 v (x) dx es máxima negativa (suma de áreas negativas).
*
tramos
Valor:
VC -  q
1
 L 1
v* (x) dx  q   ·1·    q L ,
8
 4 2
tramos con v* (x)  0

1
VC -   q L
8
(tramo DE)
Así, el máximo VC- en valor absoluto corresponde con el máximo VC- positivo y se alcanza para el
mínimo número de tramos con q=cte cargando el tramo BD. Nótese que, en el tramo AB se tiene que
v* (x)  0 y por tanto, no determina el cortante por la izquierda de C, es decir, no produce VC(deformada nula, cortante nulo).
Descargar