UNIVERSIDAD VERACRUZANA INSTITUTO DE NEUROETOLOGIA POSTGRADO EN NEUROETOLOGIA Diferenciación y aislamiento reproductivo entre especies de moscas del grupo suavis en México TESIS Que para obtener el grado de: DOCTOR EN NEUROETOLOGIA PRESENTA: MC. Ramos Eduardo Tadeo Hernández DIRECTOR: Juan Antonio Rull Gabayet, PhD. Xalapa, Veracruz. Noviembre de 2014. Dedicada a: Los Doctores Juan A. Rull Gabayet y Larissa Guillén Conde, gracias por darme la oportunidad de conocer y trabajar con el género Rhagoletis. ii COMITÉ Dr. Juan A. Rull Gabayet Dra. Laura T. Hernández Dr. Jorge Morales Mavil Salazar Dr. Armando J. Martínez Dr. Francisco Díaz Fleischer Chacón iii AGRADECIMIENTOS Al Consejo Nacional de Ciencia y Tecnología (CONACyT), por la beca otorgada durante el periodo 2011-2014 (con número de Becario 272318), para cursar el doctorado en Neuroetología en la Universidad Veracruzana. A la Universidad Veracruzana e Instituto de Neuroetología por la oportunidad otorgada para realizar este posgrado. A la red de Manejo Biorracional de Plagas y Vectores del Instituto de Ecología A.C. por las facilidades brindadas para realizar esta investigación. A mi director de tesis, Dr. Juan A. Rull Gabayet, Investigador titular de la Red de Manejo Biorracional de plagas y Vectores, gracias por el apoyo, asesoría y consejos brindados para la elaboración de este trabajo de investigación. A los miembros de mi comité evaluador, Dra. Laura T. Hernández Salazar, Dr. Jorge E. Morales Mávil, Dr. Armando J. Martínez Chacón y Dr. Francisco Díaz Fleischer, por las aportaciones y consejos aportados para mejorar esta tesis. A la coordinadora del posgrado en Neuroetología Dra. Laura T. Hernández Salazar y al personal administrativo (en especial a Ivonne Hernández Rivera y Anell Higueredo Olgín por el apoyo y facilidades brindadas). A mis compañeros y amigos Emilio Acosta, Jovita Martínez, Rafael Ortega, Olinda E. Velázquez, Israel Peralta, Christian Rodríguez y Lizbeth González, por su apoyo y amistad. A mi familia por su cariño y apoyo incondicional. Gracias por ser el motor que me impulsa a seguir adelante cada día. iv CONTENIDO Pag. RESUMEN…………………………………………………………………………………………… 1 I. INTRODUCCIÓN…………………………………………………………………………................ 3 II. ANTECEDENTES…………………………………………………………………………………… 6 2.1. Género Rhagoletis…………………………………………………………………………….. 6 2.2. Generalidades del género Rhagoletis……………………………………………………….. 6 2.3. Distribución del grupo suavis…………………………………………………………............ 7 2.4. Características generales del grupo suavis…………………………………………........... 8 2.5. Género Juglans, hospedero natural del grupo suavis…………………………………… 9 2.6. Distribución del grupo suavis en México……………………………………………............ 10 2.7. Relaciones filogenéticas entre especies del grupo suavis………………………………… 11 2.8. Aislamiento reproductivo………………………………………………………………………. 12 III. 3. HIPÓTESIS……………………………………………………………………………………….. 15 IV. OBJETIVO GENERAL……………………………………………………………………………… 16 4.1. Objetivos específicos……….………………………………………………………………….. 16 REFERENCIAS………………………………………………………………………………………. 17 V. ESTUDIOS REALIZADOS (CAPITULOS)…………………………………………………………… 21 Capítulo 1. Alternative Mating Tactics as Potential Prezygotic Barriers to Gene Flow Between Two Sister Species of Frugivorous Fruit Flies……………………....................... 22 Abstract………………………………………………………………………………………………. 22 Introduction…………………………………………………………………………………………… 22 Materials and Methods……………………………………………………………………………… 24 Results………………………………………………………………………………………………... 26 Discussion……………………………………………………………………………………………. 30 References…………………………………………………………………………………………… 32 Capítulo 2. Reproductive isolation as a means to resolve phylogenetic relationships among recently derived species of frugivorous fruit flies in the genus Rhagoletis… Abstract………………………………………………………………………………………………. 35 36 v Introduction…………………………………………………………………………………………… 37 Materials and Methods……………………………………………………………………………… 40 Results………………………………………………………………………………………………... 43 Discussion……………………………………………………………………………………………. 47 References…………………………………………………………………………………………… 52 Figure Legends……………………………………………………………………………………... 58 Figures………………………………………………………………………………………………... 60 Capítulo 3. Behavioral patterns and relative strength of pre- and postzygotic isolation between two recently derived species of walnut infesting flies in the highlands of Mexico…………………………………………………………………………………………….. 65 Abstract………………………………………………………………………………………………. 66 Introduction…………………………………………………………………………………………… 67 Materials and Methods……………………………………………………………………………… 70 Results………………………………………………………………………………………………... 74 Discussion……………………………………………………………………………………………. 78 References…………………………………………………………………………………………… 84 Figure Legends……………………………………………………………………………………... 90 Figures………………………………………………………………………………………………... 92 VI DISCUSIÓN GENERAL…………………………………………………………………………….. 96 VII CONCLUSIONES…………………………………………………………………………………… 102 MODELO TEÓRICO…………..……………………………………………………………………. 104 REFERENCIAS……………………………………………………………………………………… 105 vi RESUMEN El género Rhagoletis Loew ha originado un gran número de estudios de tipo evolutivo tras el descubrimiento en 1876 de Rhagoletis pomonella Walsh infestando manzanas (Malus pumilla Mill) en lugar de su hospedero ancestral tejocote (Crataegus spp.) en el valle del río Hudson en Nueva York. Este evento convirtió a R. pomonella en el modelo estandarte de especiación simpátrica por cambio de hospedero. Recientes estudios han revelado que el surgimiento de las razas de hospedero de R. pomonella en los Estados Unidos, pudo ser el resultado de episodios de flujo génico entre poblaciones ancestrales refugiadas en México durante las glaciaciones del Pleistoceno. Al igual que para el grupo pomonella, poblaciones ancestrales de moscas en el grupo suavis se refugiaron en México durante el Pleistoceno quedaron también expuestas a procesos de especiación alopátrica que favorecieron el surgimiento de seis especies asociadas a plantas en el género Juglans (R. suavis Loew, R. completa Cresson, R. zoqui Bush, R. boycei Cresson, R. juglandis Cresson y R. ramosae Hernández-Ortiz), dos de estas endémicas de México (R. zoqui y R. ramosae). Recientes estudios reportan el descubrimiento de una zona de contacto en el noreste de México donde coocurren y se hibridan poblaciones de R. completa y R. zoqui sin la existencia aparente de barreras reproductivas que interrumpan el flujo génico entre especies. Por otro lado estudios moleculares recientes no han logrado separar filogenéticamente a tres especies mexicanas del grupo suavis. Este hecho y el descubrimiento de esta zona de contacto brindan la oportunidad de estudiar procesos evolutivos y abren la interrogativa de ¿Cuál es el grado de diferenciación y que tanto ha evolucionado el aislamiento reproductivo entre las especies del grupo suavis en México para evitar el flujo de genes? Para responder a esta pregunta realizamos una serie de 1 análisis sobre aislamiento reproductivo pre y poscigotico que abarcaron la fenología de diapausa, pruebas de compatibilidad de apareamiento, pruebas de viabilidad de híbridos y análisis etológicos entre R. completa, R. zoqui y R. ramosae. Los resultados obtenidos arrojaron evidencia sobre asincrónia en la emergencia de adultos entre especies influida por la fenología de fructificación de sus hospederos, distintos grados de aislamiento sexual que se reflejó en una inferioridad hibrida para algunas de las cruzas heterópicas y una serie de comportamientos que permiten especular sobre el posible camino evolutivo que siguieron de las especies del grupo suavis presentes en México. 2 I. INTRODUCCIÓN Los miembros del género Rhagoletis (Diptera: Tephritidae) se caracterizan por ser insectos monófagos muy especializados que ajustan su ciclo de vida a la fenología de fructificación de sus plantas hospederas (Berlocher y Feder, 2002). Para lograr dicho ajuste pasan el invierno en diapausa en forma de pupa (capullo) y sincronizan la emergencia de adultos con los periodos de fructificación de sus hospederos (AliNiazee, 1988; Aluja et al., 1998; Prokopy y Papaj, 2000). Lo cual junto con otras características biológicas del género han convertido a varias de estas especies en plagas de importancia económica, debido a que frecuentemente han pasado de hospederos nativos de poca importancia económica a plantas cultivadas con valor comercial frecuentemente introducidas (Boller y Prokopy, 1976). En los últimos diez años se ha retomado el estudio de varios grupos de especies en el género Rhagoletis presentes en territorio Mexicano, debido a que se ha descubierto que son un eslabón importante para entender los procesos evolutivos y de especiación que dieron origen a las especies simpátricas de importancia económica en los Estados Unidos (Michel et al., 2007; Xie et al., 2008). Como ejemplo de ello tenemos que lo que se consideraba una población de Rhagoletis pomonella en México, es en realidad un grupo de tres especies cripticas, aisladas geográficamente y distribuidas en zonas elevadas de la Sierra Madre Oriental, Eje Volcánico Trans Mexicano y los altos de Chiapas (Michel et al. 2007; Xie et al., 2007; Rull et al., 2010). Estas poblaciones o especies cripticas presentan variaciones genéticas y cierto grado de aislamiento reproductivo, además de que se ha encontrado que son la fuente de origen de la variación genética que permitió la sincronización en la emergencia de 3 adultos para los distintos frutos hospederos que favorecieron el surgimiento de las seis especies simpátricas del grupo pomonella en los Estados Unidos (Michel et al., 2007; Xie et al., 2007, 2008). Otro ejemplo de divergencia dentro del género Rhagoletis es el caso del grupo cingulata, para el cual luego de un controversial debate sobre la presencia de R. cingulata en territorio Mexicano (Bush, 1966; Foote, 1981), se ha descubierto un complejo de al menos dos poblaciones geográficamente aisladas, localizadas en zonas templadas de la Sierra Madre Oriental y el eje Volcánico Transversal Mexicano (Rull et al., 2011). Al igual que para las poblaciones de R. pomonella las poblaciones de R. cingulata presentan algún grado de incompatibilidad reproductiva e indicios de procesos de especiación incipiente (Tadeo, datos sin publicar). Respecto al grupo suavis, aún cuando ha sido poco estudiado, se ha demostrado recientemente la existencia de híbridos naturales en el noreste de México que al parecer son el producto de cruzamientos naturales entre individuos de dos especies (Rhagoletis zoqui y R. completa ). Estas especies al parecer no exhiben barreras reproductivas que reflejen alguna forma de inferioridad hibrida en comparación con cruzas homotípicas de las especies parentales (Rull et al., 2012). Además se ha descubierto que tres especies del grupo suavis presentes en México (R.zoqui, R.completa y R.ramosae), a pesar de sus notorias diferencias morfológicas son hasta ahora genéticamente indistinguibles (Frey et al., 2013; Rull et al., 2013). Este hecho, junto con los antecedentes que existen del género Rhagoletis en México, nos llevó a formular la interrogativa de ¿Qué es lo que está pasando dentro del grupo suavis en 4 México? y ¿Qué tan diferenciadas se encuentran estas especies de moscas y como mantienen su integridad sin haber desarrollado barreras reproductivas que interrumpan el flujo génico? Ante estas incógnitas en este trabajo se planteó someter individuos adultos de R. completa, R. zoqui y R. ramosae a un análisis experimental sobre barreras pre y postcigoticas que comprenden aspectos biológicos y conductuales, esquemas de cruzas intra e interespecíficos y análisis de viabilidad de híbridos que nos permitan recopilar información para el esclarecimiento del grado de divergencia y evolución de barreras reproductivas entre estas tres especies moscas del grupo suavis presentes en México. 5 II. ANTECEDENTES 2.1. Género Rhagoletis. El género Rhagoletis conocido por la mosca de la manzana (Rhagoletis pomonella Walsh, especie modelo del proceso de especiación simpátrica por cambio de hospedero), está compuesto por setenta y cuatro especies descritas, arregladas filogenéticamente en catorce grupos distribuidos en zonas templadas de Asia, Europa y América (Bush, 1966; Smith y Bush, 2000; Rull et al., 2013). En el continente Americano se encuentran treinta y cinco especies, agrupadas en diez grupos con afinidad morfológica y/o compatibilidad en el uso de plantas hospederas, de los cuales se sabe que los grupos pomonella (moscas de la manzana y el tejocote), cingulata (moscas de la cereza), striatella (moscas de las solanáceas) y suavis (moscas del nogal), se encuentran presentes en territorio Mexicano (Bush, 1966). 2.2. Generalidades del género Rhagoletis. Los miembros del género Rhagoletis se caracterizan por ser tefrítidos con metamorfosis completa u holometábola, dividida en cuatro etapas (huevo, larva, pupa y adulto) (Aluja, 1993). Todas las larvas de las mocas en este género se alimentan de la pulpa de frutos en desarrollo provenientes de plantas que pertenecen a la misma familia o género (oligófagas), además de que la mayoría de sus especies se caracterizan por presentar solo una generación por año (univoltinas) (Boller y Prokopy, 1976). Estas y otras características han convertido a las moscas del género Rhagoletis en insectos fitófagos muy especializados, que habitan sitios donde se desarrollan plantas con periodos de fructificación cortos y bien definidos, lo que ha favorecido que las moscas 6 de este género ajusten su ciclo de vida a la fenología de sus hospederos, pasando el invierno en diapausa en forma de pupa (Prokopy y Papaj, 2000). Durante esta diapausa, las moscas reducen su actividad metabólica al mínimo para hacer frente a las condiciones ambientales adversas (Aluja et al., 1998; AliNiazee, 1988). La duración de la diapausa está regida por la acumulación de horas frío y regulada mediante las mismas señales ambientales que regulan la fenología de fructificación de las plantas hospederas (humedad, temperatura, fotoperiodo, etc.), sincronizando el fin de la diapausa y la emergencia de adultos (Boller y Prokopy, 1976; Feder, et al., 1997). El sistema de apareamiento de las especies del género Rhagoletis que han sido estudiadas también está estrechamente ligado a sus plantas hospederas. Tanto hembras como machos son atraídos a distancia por los volátiles emitidos por los frutos en maduración y exhiben un sistema con defensa del recurso, donde el macho se posa sobre un fruto maduro y lo defiende de machos intrusos en espera de la llegada de una hembra en busca de sitios de oviposición. Posteriormente el macho resguardante aborda bruscamente a la hembra visitante por detrás para copular con ella sin cortejarla (Prokopy y Papaj, 2000). 2.3. Distribución del grupo suavis. El grupo suavis comprende seis especies neárticas (R. suavis, R. completa, R. zoqui, R.boycei y R. juglandis), distribuidas en zonas templadas de Estados Unidos y México (Bush, 1966, 1968; Foote, 1981; Smith y Bush, 2000). Rhagoletis suavis se encuentra distribuida únicamente en el norte y sureste de Estados Unidos, R. completa se distribuye en el centro este y costa oeste de Estados Unidos, aunque también se 7 encuentra en el norte de México (Foote, 1981; Berlocher 1984; Rull et al., 2013). Rhagoletis juglandis se encuentra distribuida desde el norte de Nuevo México al centro de México y posiblemente más al sur, R. zoqui está distribuida únicamente en territorio Mexicano, en tanto que R. boycei está restringida a Arizona y suroeste de Nuevo México, aunque aparentemente ocurre también en el norte de Sonora (Foote, 1981; Bush, 1968). Por otra parte Hernández (1985), describe e incluye una nueva especie dentro del grupo suavis, basado en las características descritas por Bush (1966), especie que denomina R. ramosae, la cual se localiza en el centro oeste de México, específicamente en Guerrero y Michoacán. 2.4. Características generales del grupo suavis. Todos los miembros del grupo suavis infestan especies nativas o introducidas de nogal (Juglans spp), por lo que parecen compartir preferencias similares o idénticas en cuanto al huésped se refiere (Foote, 1981; Bush, 1968). Sin embargo, morfológicamente difieren notablemente unos de otros, ya que presentan variaciones consistentes en sus patrones alares, además de que R. suavis, R. completa, y R. zoqui, presentan dimorfismo sexual y una coloración distintiva en tórax y el abdomen (negro y marrón), en tanto que para R. juglandis son completamente amarillos y para R. boycei completamente negros (Bush, 1968). En lo que respecta a R. ramosae, al igual que los otros miembros del grupo suavis, presenta características particulares en su patrón alar, y aunque es muy parecida a R. zoqui, se diferencia claramente de esta por la presencia de una franja negruzca en los márgenes laterales del escudo y una diferencia notable en tamaño tanto de hembras como de machos (Hernández, 1985). 8 2.5. Género Juglans, hospedero natural del grupo suavis. La familia Juglandaceae está compuesta por siete géneros y más de sesenta especies distribuidas en el Norte y Sur de América, el Caribe, sureste de Europa, este de Asia y Japón (Narave, 1983; Manos y Stone, 2001; Aradhya et al. 2005; Aradhya et al. 2007). Dentro de la familia Juglandaceae, el género Juglans L. es el que incluye el mayor número de especies (21 especies), mismas que están ampliamente distribuidas en zonas templadas del Viejo y Nuevo Mundo (Narave, 1983; Aradhya, et al. 2007). Para México se han reportado seis especies de Juglans, (Narave, 1983), las cuales según Manning (1957) y Stone et al., (2009), se distribuyen en territorio mexicano de la siguiente manera: 1) Juglans pyriformis Liebmann (Veracruz); 2) Juglans hirsuta Manning (Nuevo León); 3) Juglans mollis Engelm (Nuevo León, Tamaulipas, San Luis Potosí, Guanajuato, Hidalgo y Puebla); 4) Juglans major Torr (Sonora, Chihuahua, Sinaloa y Durango); 4a) Juglans major forma stellata Manning (Sonora, Chihuahua y Durango); 4b) Juglans major (Torr.) Heller variedad glabrata Manning (Durango, Jalisco, Michoacán, Edo. México y Guerrero); 5) Juglans microcarpa Berlandier in Berl (Nuevo León y Coahuila); 5a) Juglans microcarpa Berlandier variedad stewartii (Johnston) Manning (Coahuila y Chihuahua) y 6) Juglans olanchana Williams & Standley variedad standleyi Manning (Colima y Jalisco). Por otra parte Stone et al., (2009), además de las especies anteriores, reportan la presencia de J. steyermarkii Manning, en el estado de Chiapas, en la frontera entre México y Guatemala, en tanto que Narave (1983) y Stone et al., (2009), mencionan la presencia de cuatro especies de Juglans distribuidas en el estado de Veracruz, Juglans regia L, Juglans mollis Engelm, Juglans pyiformis Liebmann y Juglans olanchana Williams & Standley variedad olanchana. En lo que 9 respecta a las características generales del género Juglans, son árboles monoicos, caducifolios, de corteza rugosa y escamosa, hojas compuestas, flores unisexuales (formando una inflorescencia), fruto (pseudodrupa) que consiste en una nuez envuelta en una cascara más o menos carnosa (según la especie) y gran parte de los miembros de este género (también conocido como nogal) se consideran de gran importancia económica por el valor de su madera o frutos (nueces) (Manning, 1957; Narave, 1983; Stone et al., 2009). 2.6. Distribución del grupo suavis en México. Bush en 1966 documenta la presencia de R. completa en estados Unidos, con una población muy cercana a territorio Mexicano localizada en los límites de Texas, Nuevo México, Chihuahua y Coahuila. En tanto que a R. zoqui la describe y documenta solo en el centro de México, en el Estado de Hidalgo. Por su parte Foote en 1981 y Berlocher en 1984, mencionan la presencia de R. completa ya en el norte de Tamaulipas, México, situándola cerca de la frontera de Estados Unidos, en tanto que el mismo Foote en 1981 sigue considerando a la población de R. zoqui distribuida solo en el centro de México. En lo que respecta a R. ramosae, Hernández en 1985 la describe por primera vez, ubicándola en el centro oeste de México, en los estados de Guerrero y Michoacán. Sin embargo, actualmente Rull et al. (2013) reportan la presencia de R. completa en los Estados de Coahuila, Nuevo León y Tamaulipas, a R. zoqui ampliamente distribuida en el centro de país, cubriendo los estados de Veracruz, Hidalgo, Tlaxcala, Puebla, Distrito Federal, Querétaro y San Luis Potosí, y a R. Ramosae en los estados de Guerrero, Michoacán y Estado de México. Estos antecedentes junto con el reporte de Rull et al., (2012) sobre la presencia de híbridos 10 naturales en la frontera Tamaulipas y San Luis Potosi, hacen pensar que las poblaciones de moscas del grupo suavis en México se encuentran en contacto, quizás debido a la introducción de la nuez de castilla Juglans regia, cuya expansión quizás ha permitido establecer zonas hibridas donde ocurre el cruzamiento entre especies. 2.7. Relaciones filogenéticas entre especies del grupo suavis Las miembros del grupo suavis han generado un particular interés entre los evolucionistas debido al predominante origen alopátrico de las especies que lo componen (Bush, 1966). Esto último contrasta con el famoso proceso de especiación simpátrica documentado para las especies del grupo pomonella (Bush, 1966; Berlocher, 2000; Xie et al. 2008) y parte del grupo cingulata (Bush, 1966). Análisis moleculares mitocondriales usando citocromo oxidasa II (COII) para establecer la relación entre las seis especies del grupo suavis, han permitido estimar procesos evolutivos que datan de los últimos 2 millones de años, con una tasa aproximada de especiación de una especie cada 320,000 años (Bush y Smith, 1998). Sin embargo, esfuerzos adicionales incluyendo análisis moleculares, morfológicos y ecológicos, han sido necesarios para desarrollar la filogenia que involucra a cinco de las seis especies incluidas dentro del grupo suavis (Bush y Smith, 1998; Smith y Bush, 1999). Esta filogenia compuesta por dos ramas, coloca a R. suavis aislada en una de ellas, agrupando a las cuatro especies restantes dentro la una segunda rama conformada por tres clados, dos de ellos ocupados por R. juglandis y R. boycei, y un tercero compartido por R. completa y R. zoqui, consideradas estas últimas como las especies más cercanamente emparentadas dentro del grupo (Bush y Smith, 1998). 11 Recientes filogenias moleculares entre las especies del grupo suavis han permitido corroborar algunos resultados previamente obtenidos, colocando a R. juglandis y R. suavis en clados claramente delimitados. Sin embargo aún queda sin resolver la posición filogenética definitiva de las cuatro especies restantes, en particular la de R. ramosae, especie prácticamente desconocida (Smith y Bush, 1997; Smith y Bush, 2000; Frey et al., 2013;. Rull et al., 2013), El primer reporte de R. ramosae la relaciona como muy cercana a R. zoqui debido a sus características morfológicas (Hernández-Ortiz, 1985), no obstante lo anterior, los análisis moleculares no han logrado esclarecer la relación filogenética que guarda esta con las otras tres especies también sin delimitar (Rull et al., 2013). Dos hipótesis respecto al origen de R. ramosae han sido formuladas con base en nueva información recabada, por un lado la coloca como un pariente cercano de R. boycei, en tanto que por el otro lado la relaciona como más cercanamente emparentada con R. zoqui y R. completa (Rull et al., 2013). 2.8. Aislamiento reproductivo El origen de dos o más especies a partir de un ancestro común es producto de la evolución del aislamiento reproductivo entre poblaciones y puede manifestarse antes ó después de la formación del cigoto (pre y postcigótico) (Futuyma, 2003). Dentro de los mecanismos de especiación que resultan en el surgimiento de aislamiento reproductivo, destacan dos en particular, la especiación alopátrica que se produce cuando las poblaciones quedan aisladas físicamente debido al surgimiento de barreras geográficas (ríos, montañas, etc.) que interrumpen el flujo genético y la especiación simpátrica, que consiste en la diversificación de las distintas poblaciones de una misma especie que ocupan un mismo rango de distribución, debido a la aparición de mecanismos de 12 aislamiento (ecológico, etológico, sexual y genético) que cumplen la misma función que las barreras geográficas (Bush, 1969; Ruiz, 1988). La evolución de las barreras reproductivas entre poblaciones limita el cruzamiento interespecífico en la naturaleza, pues de suceder tiende a no producir descendencia o se produce descendencia completamente estéril o con algún grado de esterilidad hibrida (Dobzhansky, 1940). La existencia y grado de intensidad del aislamiento reproductivo puede ser utilizado para estimar el grado de divergencia entre especies cercanas (Coyne y Orr, 1989; 1997). Una compilación con 119 especies de Drosophila comparando la distancia genética y grado de divergencia concluye que el aislamiento precigótico evoluciona más rápido que el aislamiento postcigótico y que el primero suele ser más fuerte entre especies simpátricas que entre especies alopátricas (Coyne y Orr, 1989; 1997). La intensidad o evolución del aislamiento reproductivo puede cuantificarse utilizando una diversidad de índices con una base estadística que estiman el aislamiento sexual usando las frecuencias de apareamiento entre adultos maduros (Pérez-Figueroa et al., 2004). Comparaciones entre distintos métodos han demostrado que el margen de error o confiabilidad de cada método depende de factores particulares en cada estudio, aunque como es de esperarse algunos métodos resultan estadísticamente más robustos que otros cuando se consideran las variables pertinentes en cada caso particular (Pérez-Figueroa et al., 2004). En el caso del grupo suavis los primeros intentos por esclarecer el grado de aislamiento entre R. completa y R. zoqui no pudieron encontrar evidencia de aislamiento precopulatorio basado en la elección o discriminación de apareamiento entre adultos de poblaciones localizadas fuera de la zona de contacto (Rull et al., 2012). Análisis prostcopulatorios tampoco apoyaron una reducción de la fertilidad para los apareamientos híbridos ó F1, aunque estos parecían 13 tener menores tasas de fecundidad en comparación con la progenie producida por apareamientos homotípicos, además la descendencia F2 tuvo menores tasas de supervivencia, lo cual indica que al parecer la primera barrera intrínseca para el flujo de genes entre R. completa y R. zoqui es de tipo postcigótico y se manifiesta en híbridos de generaciones avanzadas (Rull et al., 2012). Esta evidencia sin embargo contradice los trabajos de Coyne y Orr (1989; 1997), lo cual abre la necesidad de nuevos estudios que permitan aportar más información para esclarecer el grado de divergencia y evolución del aislamiento reproductivo entre R. completa y R. zoqui. 14 III. HIPÓTESIS Las moscas del grupo suavis, R. completa, R. zoqui y R. ramosae se encuentran en un proceso de diferenciación incompleto que permite cierto grado de hibridación debido a la existencia de barreras reproductivas que no interrumpen por completo el flujo génico entre especies. Para responder a esta hipótesis se plantean las siguientes predicciones: Aun cuando los miembros del grupo suavis en México presentan diferencias fenotípicas notorias, no han evolucionado barreras precigóticas absolutas encaminadas a evitar la copula. Entre las especies de R. completa, R. zoqui y R. ramosae no han evolucionado barreras postcigóticas absolutas que se traduzcan en incompatibilidad reproductiva o inferioridad hibrida. Las barreras reproductivas entre especies filogenéticamente más cercanas serán más débiles que entre especies más derivadas. 15 IV. OBJETIVO GENERAL Documentar la existencia y el grado de evolución de las barreras reproductivas entre tres especies de moscas del grupo suavis presentes en México y contribuir al esclarecimiento de las relaciones filogenéticas entre estas. 4.1. OBJETIVOS ESPECÍFICOS Determinar la existencia y el grado de evolución de las barreras precigoticas encaminadas a evitar la copula entre las especies mexicanas de R. completa, zoqui y R. ramosae. Determinar la existencia y grado de evolución de las barreras postcigóticas entre especies que se traduzcan en algún grado de incompatibilidad reproductiva o inferioridad hibrida. Esclarecer la historia evolutiva de las especies Mexicanas del grupo suavis estudiadas aquí mediante la comparación del grado de aislamiento pre y postcigótico entre especies. 16 REFERENCIAS AliaNiazee M.T. (1988). Diapause modalities in some Rhagoletis species. Special report. Oregon State University, Agriculture Experiment Station, Oregon State University, Corvallis, Or., 830:13-25. Aluja M, López M, Sivinski J. (1998). Ecological evidence for diapause in four native and one exotic species of larval-pupal fruit fly (Diptera: Tephritidae) parasitoids in tropical environments. Annals of the Entomological Society of America, 91:821833. Aluja M. (1993). Biología y ecología de la mosca de la fruta. En: Manejo integrado de la mosca de la fruta. Editorial Trillas. México, Pp. 59-82. Aradhya M.K, Potter D, Simon C. J. (2005). Cladistic biogeography of Juglans (Juglandaceae) based on chlorosplast DNA intergenic spacer sequences. U.S. Department of Agriculture, Agricultural Research Service, 143-170. Aradhya M.K, Potter D, Gao Fangyou, Simon C.J. (2007). Molecular phylogeny of Juglans (Juglandaceae): a biogeographic perspective. Tree Genetics & Genomes, 3:363-378. Berlocher S.H. (1984). Genetic changes coinciding with the colonization of California by the walnut husk fly, Rhagoletis completa. Evolution, 38: 906–918. Berlocher S.H. (2000). Radiation and divergence in the Rhagoletis pomonella species group: inferences from allozymes. Evolution, 54: 543–557. Berlocher S.H, Feder J.L. (2002). Sympatric speciation in phytophagous insects: moving beyond controversy? Annual Review of Entomology, 47: 773–815. Boller E.F, Prokopy R.J. (1976). Bionomics and management of Rhagoletis. Annual Review of Entomology, 21:223-246. Bush G.L. (1966). The taxonomy, cytology, and evolution of the genus Rhagoletis in North America (Diptera: Tephritidae). Bulletin of the Museum of Comparative Zoology, 134: 431–562. Bush G.L. (1966). The taxonomy, cytology, and evolution of thegenus Rhagoletis in North America (Diptera: Tephritidae). Bulletin of the Museum of Comparative Zoology, 134:431–562. Bush G. (1968). Sympatric host race formation and speciation in frugivorus flies of the genus Rhagoletis (Diptera, Tephritidae). Evolution, 23:237-251. 17 Bush G.L, Smith J. (1998) The genetics and ecology of sympatric speciation: A case study. Society of Population Ecology. 40:175-157. Coyne JA, Orr HA. (1989). Patterns of speciation in Drosophila. Evolution, 43: 362-381. Coyne JA, Orr HA. (1997). “Patterns of speciation in Drosophila” revisited. Evolution, 51: 295-303. Feder J, Stolz U, Lewis K.M, Perry W, Roethele J.B, Rogers A. (1997). The effects of winter length on the genetics of apple and hawthorn races of Rhagoletis pomonella (Diptera: Tephritidae). Evolution, 51:1862-1876. Foote H.R. (1981). The genus Rhagoletis loew south of the United States (Diptera: tephritidae). United States Department of Agriculture, Technical Bulletin Number 1607: 75p. Frey, JE, Guillén L, Frey B, Samietz J, Rull J, Aluja M. (2013). Developing diagnostic SNP panels for the identification of true fruit flies (Diptera: Tephritidae) within the limits of COI-based species delimitation. BMC Evolutionary Biology, 13: 106. Futuyma D. J. (2003). Biología evolutiva contemporánea. Departamento de Ecología y Biología evolutiva. Universidad de Michigan. Conferencia presentada en la facultad de ciencias en 2002. Hernández-Ortiz V. (1985). Descripción de una nueva especie mexicana del género Rhagoletis Loew (Diptera Tephritidae). Folia Entomológica Méxicana, 64:73-79. Manning W.E. (1957). The genus Juglans in México and Central Amarica. Journal of the Arnold Arboretum, 2:121-150. Manos P.S. y Stone D.E. (2001). Evolution, phylogeny, and systematics of the Juglandaceae. Annals of the Missouri Botanical Gardarden, 88: 231-269. Michel A.P, Rull J, Aluja M, Feder J.L. (2007). The genetic structure of hawthorninfesting Rhagoletis pomonella populations in Mexico: implications for sympatric host race formation. Moleculare Ecology, 16: 2867- 2878. Narate H.V. (1983). Juglandaceae; en Flora de Veracruz. Instituto Nacional de Investigaciones sobre Recursos Bióticos, 31:1-30. Prokopy R.B, Papaj D.R. (2000). Behavior of flies of the genera Rhagoletis, Zonosemata, and Carpomya (Trypetinae: Carpomyina). En: Fluit Flies (Tephritidae); Phylogeny and Evolution of Behavior. CRC Press, Boca Raton, Florida. Pp 219-252. 18 Rull J, Aluja M, Feder J.L. (2010). Evolution of intrinsic reproductive isolation among fort North America populations of R. pomonella. Biological Journal of the Linnean Society, 100: 213-223. Rull J, Aluja M, Feder J. (2011). Distribution, host range, and basic biology of Black cherry-infesting Rhagoletis (Diptera: Tephritidae) in Mexico. Annals of the Entomological Society of America, 104:202-211. Rull J, Tadeo E, Aluja M, Guillen L, Egan S, Feder J. (2012). Hybridization and sequential components of reproductive isolation between parapatric walnutinfesting sister species Rhagoletis completa and R. Rhagoletis zoqui. Biological Journal of the Linnean Society, 107:886-898. Rull J, Aluje M, Tadeo E, Guillen L, Scott E, Glover M, Feder JL. (2013). Distribution, host plant affiliation, phenology, and phylogeny of walnut-infesring Rhagoletis flies (Diptera: Tephritidae) in Mexico. Biological Journal of the Linnean Society, 110: 765-779. Ruiz G.R. (1988). Especiación: Teorías, modelos y polémicas. Revista, Ciencias s/v. Pp 44-54. Smith JJ, Bush GL. (1997). Phylogeny of the genus Rhagoletis (Diptera: Tephritidae) inferred from DNA sequences of mitochondrial cytochrome oxidase II. Molecular Phylogeny and Evolution,7: 33–43. Smith JJ, Bush GL. (1999). Phylogeny of the subtribe Carpomyina (Trypetinae), emphasizing relationships of the genus Rhagoletis. In: Aluja M, Norrbom AL, eds. Fruit flies (Tephritidae) phylogeny and evolution of behavior. Boca Raton, FL: CRC Press, 187–217. Stone D.E, Oh S.H, Tripp E.A, Ríos L.E, Manos P.S. (2009). Natural histoty, distribution, phylogenetic relationships, and conservation of Central American blanck walnuts (Juglans sect. Rhysocaryon). Journal of the Torrey Botanical Society, 136:1-25. Tadeo E. (Sin publicar). Diferenciación ecológica y conductual entre mocas del grupo cingulata en México. Tesis maestría. Instituto de Neuroetología, Universidad Veracruzana. 70p. Velez S, Taylor M.S, Noor M.A. F, Lobo N.F, Feder L. (2006). Isolation end characterization of microsatellite loci from the apple maggot fly Rhagoletis pomonella (Diptera: Thephritidae). Molecular Ecology Notes, 6: 90-92. 19 Xie X, Rull J, Velez S, Forbes A, Michel A, Lobo N, Aluja M, Feder J.L. (2007). The Bio and phylogeography of Hawthorn-infesting Rhagoletis flies in Mexico and speciation mode plurality. Evolution, 61: 1091-1105. Xie X, Michel A, Schwarz D, Rull J, Velez S, Forbes A, Aluja M, Feder JL. (2008). Radiation and divergence in the Rhagoletis pomonella species group: inferences from DNA sequence data. Journal of Evolutionary Biology, 21: 900–913. 20 V. ESTUDIOS REALIZADOS (CAPÍTULOS) 21 CAPITULO 1 22 23 24 25 26 27 28 29 30 31 32 33 34 CAPITULO 2 For: Biological Journal of the Linnean Society Reproductive isolation as a means to resolve phylogenetic relationships among recently derived species of frugivorous fruit flies in the genus Rhagoletis. EDUARDO TADEO1,2*, MARTIN ALUJA1 , JUAN RULL1 1 Instituto de Ecología, A.C., Carretera Antigua a Coatepec no. 351, Colonia el Haya, C.P. 91070 Xalapa, Veracruz, México. 2 Posgrado en Neuroetologia, Instituto de Neuroetología, Universidad Veracruzana, Dr. Luis Castelazo s/n Col. Industrial Animas, Xalapa, Veracruz, México. “Corresponding autor Corresponding author information: Eduardo Tadeo, Posgrado Instituto de Neuroetología, Universidad Veracruzana, Dr. Luis Castelazo s/n Col. Industrial Animas, Xalapa, Veracruz, México e-mail: [email protected] Running head: REPRODUCTIVE ISOLATION IN RHAGOLETIS 35 Pleistocene glacial and postglacial cycles producing contraction and expansion of temperate habitats have resulted in substantial diversification among several plant and animal taxa of Nearctic origin undergoing periods of isolation and secondary contact in high elevation areas of Mexico. One of such groups are walnut infesting Tephritid fruit flies in the genus Rhagoletis, comprised of six recently derived species among which phylogenetic relationships have been difficult to unravel using conventional molecular methods. In order to contribute in establishing the time course of diversification and speciation, and to resolve phylogenetic relationships in the group. We examined pre and post zygotic isolation between two genetically similar and morphologically distinct species which are parapatric in central Mexico. Host plant phenology driven local adaptation differences between R. zoqui and R. ramosae resulted in allocronic isolation. Despite the existence of prezygotic mating isolation, there was a substantial number of hybrid matings. R. zoqui females were more reluctant to mate with R. ramosae males than with males of their own species. Distinctive behavioral differences were observed between males during contests and approach to conspecifics on fruit. There was also some asymmetric post zygotic isolation, with the hybrid combination of R. zoqui males and R. ramosae females producing lower egg hatch than other mating combinations. We discuss our results in light of previously formulated hypotheses on the evolutionary history of the R. suavis species group. ADITIONAL KEYWORDS: Divergence, prezygotic barriers, sexual selection, allopatric populations, Rhagoletis suavis 36 INTRODUCTION Historical climatic variation producing pulses of contraction and expansion of particular habitats and periods of isolation and secondary contact has been found to play an important role in divergence, genetic structure and distribution of many Neotropical species (Avise, 2000; Hewitt, 2000; Hewitt, 2004; Feder et al., 2005). In particular, Pleistocene glacial and interglacial cycles have played a key role in producing some of the current species diversity patterns (Huntley & Webb, 1989; Joseph et al., 1995; Hewitt, 1996; Roy et al., 1996; Willis & Whittaker, 2000). During glacial cycles, species with affinity for temperate climates were displaced to latitudes where less extreme climatic conditions allowed survival (Hewitt, 2004; Solis et al., 2006; Provan & Bennett, 2008). Following glaciations, such species took refuge in high elevation areas surrounded by dry and warm lowland habitats (Haffer, 1969; Burnham & Graham, 1999; Knowles, 2001; Hooghiemstra & Van der Hammen, 2004; Bush & de Oliveira, 2006). Isolation in refugia and genetic drift triggered differentiation in ecological islands that could be reinforced during periods of secondary contact (Fosberg, 1983; Petit et al., 2003; Zarza, et al,. 2008; De Mello, 2011; Ramírez-Barahona & Eguiarte, 2013) producing current diversity patterns in many lineages (Shepard & Burbrink, 2009; Salomon, 2001; Knowles, 2001; Qu et al., 2011). During geographic isolation, the accumulation of genetic differences due to disruptive environmental selection and genetic drift producing postzygotic isolation, was thought to be the most prevalent mode of speciation (Mayr, 1963; Salomon, 2001). After secondary contact, according to vicariance theory, prezygotic isolation tends to evolve to 37 prevent maladaptive hybridization (Dobzhansky, 1942). Although much evidence has been gathered supporting the likelihood and prevalence of speciation modes not involving periods of geographical isolation (Berlocher & Feder, 2002; Mallet, 2008), the relative strength of prezygotic and postzyotig isolation can shed some light into the evolutionary history and divergence patterns of particular groups (Coyne & Orr; 1989; 1997; 2004). Many insect species currently inhabiting North America, evolved in mountainous areas as a result of Pleistocene isolation and contact cycles (Ross, 1953; Howden, 1969). Mexico has a particularly complex topography that produced a rich complex of temperate pine-oak ecological islands surrounded by warm dry habitats that underwent several contractions and expansions (Martin & Harrell, 1957; Howden, 1963; Howden, 1969). A good example of the latter are flies in the genus Rhagoletis (Feder. et al., 2003; 2005; Michel et al., 2007; Xie et al., 2008) and in particular those species comprised in the walnut infesting suavis species group (Bush, 1966; Foote, 1981; Bush & Smith, 1998). The R. suavis species group is currently formed by five species whose phylogenetic relationships have been examined (R. suavis Loew, R. completa Cresson, R. zoqui Bush, R. boycei Cresson and R. juglandis Cresson) (Bush, 1966; 1968; Foote, 1981; Smith & Bush, 2000) and a more recently described species (R. ramosae) (Hernández-Ortiz, 1985). All species in the group excepting R. suavis, occur in Mexico (Bush, 1966; Foote, 1981; Foote et al., 1993; Smith & Bush, 2000), while R. zoqui and R. ramosae are endemic to central Mexico (Bush, 1966; Hernández, 1985; Rull et al., 2013). Rhagoletis zoqui described by Bush (1966), is distributed in a zone encompassing mid elevation areas (1000-2000m) in Veracruz, Tlaxcala, Puebla, Hidalgo and San Luis Potosí, while R. ramosae´s range encompasses Michoacán, 38 Guerrero, Estado de México, Jalisco and Nayarit (Bush, 1966; Foote, 1981; HernándezOrtiz, 1985; Foote et al., 1993; Smith & Bush, 2000; Rull et al., 2013). Molecular phylogenies on species in the R. suavis group have allowed to place R. suavis and R. juglandis in clearly delimited clades, grouping the remaining species in a tight unresolved cluster (Smith & Bush 1997; Smith & Bush 2000; Frey et al., 2013; Rull et al., 2013). In particular, the relationship between R. ramosae and a group comprising R. zoqui, R. completa and R. boycei is still unclear (Rull et al., 2013). Two hypotheses regarding the origin of R. ramosae have been put forth, one placing it as a close relative of R. boycei and a second one as more related to R. zoqui and R. completa. In the course of an extensive sampling effort to establish the distribution of walnut infesting Rhagoletis in Mexico (Rull et al., 2013) the discovery of natural hybrids between R. zoqui and R. completa led Rull et al. (2012) and Tadeo et al. (2013), to explore the evolution of postzygotic and prezygotic isolation between these two groups. Results of reproductive compatibility studies between these two fly species revealed little pre and postzygotic isolation, suggesting very recent divergence and a close relationship. Here, we report on a series of similar studies exploring the existence and strength of pre and postzygotic isolation between R. ramosae and R. zoqui. Comparison of our results and previous similar studies on other species in the suavis group could contribute in clarifying phylogenetic relationships that have not been resolved using molecular methods. 39 MATERIAL AND METHODS SOURCE OF FLIES Rhagoletis zoqui was recovered from infested Juglans pyriformis Liebmann fruit, collected in Xalapa (19°30’45.81”N, 96°56’38.86W, 1342 m) and Coacoatzintla Veracruz (19°38’48.95”N, 96°56’29.76W, 1440 m) between August and September 2011, while R. ramosae was obtained from Juglans major (Torr) Heller var glabrata Manning collected between late September and early October in Taxco Guerrero (18°33’16.9”N, 99°39’31.9”W, 1780 m). Fruit was taken to the laboratory at the Instituto de Ecología A.C, in Xalapa Veracruz, and processed following methods outlined in Rull et al. (2006) to recover pupae. Pupae were placed in 200 ml plastic cups lined at the bottom with a 2 cm. vermiculite lair and humidified regularly with a sodium benzoate (C 6H5COONa) solution at a 3g/L proportion to prevent fungal growth and desiccation. Plastic cups were capped with perforated lids to allow air flow and kept at room temperature until emergence of adults the following season. At emergence, the species, number, and sex of emerged adults was recorded on a daily basis. All emerged adults within five days of age were separated according to species and sex and placed in 3l. plastic cages provided with water and food (3:1 sugar: hydrolyzed protein) until sexual maturity (15 to 20 days) when they were used in experiments. PREZYGOTIC ISOLATION (OBSERVATION CAGE – SEXUAL BEHAVIOR) A 1.08 long, 1.08m. wide, 1.78 m. high cage was constructed using a 13 mm. PVC pipe frame wrapped with white tergaline cloth. Within the cage, four 1.5 m high potted oak 40 trees (Quercus spp.) were placed at each corner, along with Juglans pyriformis branches pinned in circle on the cage walls and ceiling to simulate a tree canopy. Ten ripe Juglans pyriformis fruits were hung in circle from the cage ceiling using metal wire long enough to reach the potted tree foliage. Fruit was evenly spaced and labeled with a 3cm2 green colored cardboard number to ease spatial location of activity. The observation cage was provided with water and food as described above. At 09:00 hours ten R. zoqui adult couples and ten R. ramosae couples (20 couples in total) between 20 and 36 days of age, were released in the cage. Each individual fly was marked on the back of the thorax with a dot of water based paint (Politec ®) using a single color or two-color combinations. Behavioral observations were performed by a single experienced observer from 10:00 to 17:00 hours with a combination of scanning and focal observation of key events (fruit and mate guarding, copulations, egg laying, etc.) Each fly cohort was observed for two consecutive days. A total of eight two-day observations (replicates) were performed. Male-female mating combination, hour of initiation and ending, and spatial location were recorded for every copulation. Fruit guarding was considered when a male remained motionless on a fruit for one or more minutes. For male-male encounters, the species, status (resident-intruder), location, and final outcome (considering the male remaining on the territory as the winner) of conflicts were recorded. Finally, in the case of females, fruit visits, egg laying events, and male rejections (brisk movements to prevent intromission after mounting) were recorded. 41 POSTZYGOTIC ISOLATION (HYBRID MATING FERTILITY) In order to compare fertility (egg hatch rates) among homotypic and heterotypic R. zoqui x R. ramosae crosses, groups of five virgin females and five virgin males between 20 and 38 days old were introduced in 3 liter cages provided with water and food in all possible male-female mating combinations (r♂r♀, r♂z♀, z♂r♀ and z♂z♀). For each one of the four mating combinations, couples were allowed to interact freely for 24 hours and then provided with 2.5 cm diameter agar spheres for egg laying. Spheres were replaced on a daily basis for a two week period and all eggs extracted and aligned over a dark piece of cloth placed over a moist piece of cotton within a Petri dish (Rull et al., 2010). Eggs were incubated at 24°C for six days and observed under a dissecting microscope to calculate percent egg hatch. The procedure was repeated five times for each mating combination. STATISTICAL ANALYSES Statistical comparisons made on the basis of frequencies were done using the total number of observations of a particular event per replicate. Frequency and duration in minutes of copulations for each possible male-female R. zoqui x R. ramosae mating combination, joint fruit residency by same or different species males, and the outcome of male-male conflicts (frequency of resident or intruder male remaining on fruit) were compared by means of one General Nolineal Model (GNM) with univariate design (ANOVA) and adjusted to a Poisson distribution error. Frequency of fruit guarding, male 42 combat, and percent egg-hatch for different male-female R. zoqui x R. ramosae mating combinations were compared with a univariate design (ANOVA). The frequency of male combats according to site (fruit vs. mesh) was compared by means of a t-test, while frequency of fruit visits, egg laying, and clutch size were compared between species and rank-transformed when necessary followed by a t-test verified that the assumtions of normality and homogeneity of variances were met. Analyses were performed using STATISTICA 7.0 Copyrigth © Statsoft, Inc. 1984-2004 and SigmaPlot 10.0 Software. Sexual isolation indices between R. zoqui and R. ramosae were calculated using JMATING software (Carvajal-Rodriguez & Rolan-Alvarez, 2006). RESULTS ADULT EMERGENCE Out of a 1050 R.zoqui pupae recovered from fruit collections in Veracruz a total of 247 adults (133 males and 114 females) were obtained, while in the case of R.ramosae from Guerrreo out of 725 pupae a total of 130 adults (70 males and 60 females) emerged. Seasonal adult emergence patterns were clearly distinct for R. zoqui and R. ramosae (Figure 1). In the case of R. zoqui, the emergence period lasted from April 8th to June 25th, while for R. ramosae it spanned from July 17th to September 1st. In sum, we detected a time gap between the end of R. zoqui and the beginning of R. ramosae adult emergence of about three weeks. 43 PREZYGOTIC ISOLATION A one way ANOVA adjusted to a Poisson distribution revealed significant differences in the frequency of copulations among male female R. zoqui x R. ramosae combinations (X2=19.783, p<0.0001). Homotypic combinations (zz=4.38±1.28, rr=4.75±0.82) and the “z♂r♀” hybrid cross (5.25±1.03) occurred at similar frequencies, however the “r♂z♀” hybrid cross was clearly less frequent (0.88±0.48) (figure 2). For duration of copulations a one way ANOVA adjusted to a Poisson distribution did not reveal significant differences among pure and hybrid male- female mating combinations (X2=2.118, p=0.55). For the z♂z♀ combination copulations lasted on average 14.51±0.92 min, r♂r♀ lasted 15.89±1.28 min, z♂r♀ 17.26±1.24 min and r♂z♀ 13.29±2.98 min. With respect to mating frequencies according to location (fruit or cage mesh) a two way ANOVA adjusted to a Poisson distribution did not reveal significant differences among different R. zoqui x R. ramosae male-female mating combinations (X2=1.06, p=0.79), but revealed significant differences between mating sites (X2=15.61, p<0.001) with 83.61% of copulations occurring on fruit and only 16.39% on the cage mesh (figure 3). Overall, we observed significant levels of sexual isolation between R. zoqui and R. ramosae (Ipsi = 0.34; P<0.001). MALE BEHAVIOR A one way ANOVA did not reveal significant differences y the frequency of fruit guarding among R. zoqui and R. ramosae male-male combinations (ZZ, RZ, RR) (F1,14=0.38, p=0.55). In general males from both species exhibited similar fruit guarding frequencies 44 (R. zoqui, 24.13±4.09 and R. ramosae 20.88±3.35). With respect to frequencies of joint fruit guarding, a one way ANOVA adjusted to a Poisson distribution did not reveal significant differences among the different male male combinations (X2= 2.2, p=0.53). On average, guarding frequencies of R. zoqui males sharing fruit with other R. zoqui males was 4.13±1.25, and with R. ramosae males of 3.0±0.71, while the frequency of R. ramosae males encountering their conspecifics and R. zoqui on fruit was 2.13±0.72 and 3.63±1.27 respectively. There were significant differences in the frequency of male contests according to location (fruit or mesh) (t1, 14 =3.663, p=0.003). On average 87.33% of male-male encounters occurred on fruit, while the remaining 12.67% occurred on the cage walls or ceiling (figure 4). A one way ANOVA did not reveal significant differences in frequency among different male-male species combinations according to resident status (F3,28=0.57, p=0.64). Male contests for the zz combination occurred at an average frequency of 16.50±4.71, contests for the zr resident intruder combination at 11.25±2.63, for the rr combination at 11.75±2.58 and for the rz resident intruder combination 14.75±2.87. Male status (resident/intruder) and species had no significant effect on the frequency of male-male contest victories (a particular male remaining on fruit after a contest) after a one way ANOVA adjusted to a Poisson distribution (X2=8.697, p=0.191). A total of 17.38% of male-male contest victories was for resident R. zoqui, 14.71% for R. zoqui intruders, 18.18% for resident R. ramosae, 10.71% for intruder R. ramosae, 13.10% for both R. zoqui male types, 7.22% for both R. ramosae male types and 18.72% for two males of different species (R. zoqui and R. ramosae). There were evident behavioral differences between species during male contests, R. zoqui typically 45 lifted their wings showing their patterns while R. ramosae male were static in an apparent state of alert (Figure 5). During contests, R. ramosae males lifted their wings in a 45 degree angle with respect to the thorax while R. zoqui males kept their wings somewhat folded (figure 6). FEMALE BEHAVIOR There were no significant differences between species in the frequency of fruit visits (t1, 91=0.403, p=0.688) but differences were significant in the frequency of egg-laying (t1, 91 =3.149, p=0.002). R. zoqui females performed a total of 381 visits and 32 eggdepositions, while R. ramosae females visited fruit 456 times and laid eggs on 116 occasions (figure 7). POSTZYGOTIC ISOLATION There were significant differences in the number of eggs laid per female per egg laying bout between species (t1, 266 =-4.06, p<0.001). Female R. zoqui laid from 1 to 11 eggs with an average of 5 eggs per bout, while R. ramosae females laid from 1 to 22 eggs with an average of 10. In total R. zoqui laid 617 eggs and R. ramosae laid 1611 eggs, representing 27.69% and 70.30% across the entire study respectively (Figure 8). A one way ANOVA revealed significant differences in percent egg hatch among different male female R. zoqui x R. ramosae mating combinations (r♂r♀, r♂z♀, z♂r♀ and z♂z♀) (F3, 15 =5.1455, p<0.01). The hybrid cross r♂z♀ produced the highest egg hatch and eggs laid by females from the hybrid cross z♂r♀ hatched in significantly lower proportion (Figure 8). 46 DISCUSSION In sum we found evidence of host plant phenology driven local adaptation differences between R. zoqui and R. ramosae that could result in some degree of allocronic isolation. We also found some degree of prezygotic mating isolation, although there was a substantial number of hybrid matings, R. zoqui females were more reluctant to mate with R. ramosae males than with males of their own species. The bulk of reproductive activities (male guarding, male contests, mating, egg laying) took place on the host fruit, with no evidence of alternative mating locations being used. Distinctive behavioral differences were observed between males during contests and approach to conspecifics on fruit. There was also some asymmetric postzygotic isolation, with the hybrid combination of R. zoqui males and R. ramosae females producing lower egg hatch than other mating combinations. Our results unveiled the existence of pre- and postzygotic barriers to gene flow between two endemic parapatric species of walnut infesting Rhagoletis in Mexico that have maintained their integrity (clear morphological differences) despite contact. The first barrier is constituted by clearly defined adult emergence periods tightly linked to differences in the fruiting phenology of their respective walnut hosts within their distributional ranges (R. ramosae/ J. major and R. zoqui/J. pyriformis) (see also Rull et al., 2013). As a result there is a three week temporal gap when adults of both species do not overlap from the end of the R. zoqui adult emergence period to the beginning of the R. ramosae emergence period. It has been proven for other species of Rhagoletis that diapause duration is genetically determined, highly variable, and that it responds to selection imposed by host plant fruiting phenology (Feder, et al., 1997; Prokopy & Papaj, 47 2000). Synchronization between host plant phenology and overwintering is a key feature affecting survival and offspring fitness among specialized phytophagous insects with affinity for temperate climates (Feder et al., 1997; Prokopy & Papaj 2000; Van Asch & Vissier, 2007). Host plant phenology can have evolutionary consequences, Feder et al. (1997; 2003) established that a shift in the fruiting period of host plants R. pomonella (two to three weeks), in addition to allelic changes in host associated populations, played an important role in host race formation leading to speciation. Temporal isolation between host races and closely related species has been documented for several species of phytophagous insects (Drés & Mallet, 2002; Matsubayashi et al., 2010). We found evidence of asymmetric sexual isolation (sensu Kaneshiro, 1983) during behavioral observations with R. zoqui females preferring to mate with conspecifics than with R. ramosae males. In contrast, R. ramosae females mated assortatively with males of both species. Asymmetric sexual isolation has been documented between other closely related species pairs in the suavis group (R. zoqui and R. completa) (Tadeo et al., 2013) to a lesser degree than what we observed between R. zoqui and R. ramosae. Sexual selection has been claimed to be one of the most important forces triggering divergence and speciation between populations with allopatric history (Ritchie, 2007; Jennings et al., 2011). Additionally prezygotic barriers to gene flow may have a stronger effect than postzygotic barriers in generating reproductive isolation (Coyne & Orr, 2004; Cuevas, 2012) since they prevent the waste of costly gametes in production of hybrids with lower fitness (Kaneshiro, 1976). Although in general, male behavior of both R. zoqui and R. ramosae adjusted to generic patterns summarized by Prokopy and Papaj (2000) for Rhagoletis flies (males defending fruit from rivals to force copulations on females seeking to oviposit), some 48 distinctive behavioral displays and tactics may be useful for comparative studies aiming to clarify the evolutionary history within the entire suavis group as it has been done for Hawaiian drosophilids (Kaneshiro, 1976). An example of the later may be the degree of aggressiveness or tolerance to the presence of other males displayed by R. zoqui and R. ramosae during fruit guarding, which often resulted in two males occupying the same territory (fruit). Tadeo et al. (2013) had observed this behavioral pattern for some R. zoqui males which could constitute an alternative mating tactic used to remain on fruit by avoiding contests with more aggressive or otherwise superior males and thus maintain access to females visiting fruit for egg-laying. Our study constitutes the first behavioral description for R. ramosae, a species for which there is are only published records of taxonomy, parasitism, distribution, and phenology (Hernández-Ortiz, 1985; Ovruski et al., 2007; Rull et al., 2013). Other interesting details of mating behavior observed during our study that may have relevance in understanding species relationships in the suavis group were the differences in male displays during fruit guarding when facing an intruder (male or female, conspecific or not). Male R. zoqui almost invariably held their wings lifted perpendicular to the thorax (figure 5) a display also exhibited by R. completa (Tadeo et al., 2013), but not by R. ramosae. Such pattern argues against the hypothesis of a close relationship with R. zoqui, since R. ramosae males remain motionless in an alert posture with their wings folded (figure 6). Another relevant observed trait is the way R. ramosae males open their wings during male-male combat, a behavior also regularly displayed by R. boycei, a member of the suavis group which could also have a common origin with R. ramosae (Rull et al., 2013). The observed behavioral differences with R. zoqui and R. completa, and the similarities with R. boycei male behavior lend support to the idea that R. juglandis, R. boycei and R. ramosae arose from an initial 49 migration/speciation event followed by a second round of migration/differentiation giving rise to R. zoqui and R. completa and argue against a close relationship with R. zoqui (Rull et al., 2013). Solving R. ramosae phylogenetic relationships will therefore not only shed light into the evolutionary history of the suavis group but also it will allow to determine if some behavioral traits are useful in establishing phylogenetic relationships among genetically similar species. We observed significant differences in percent eclosion between eggs laid by R. zoqui x R. ramosae hybrid mating combinations (rz & zr), yet these were only numerically inferior to those recorded from eggs recovered from both pure crosses (zz and rr). In contrast, Rull et al. (2012) found no differences in percent eclosion among eggs laid by pure and hybrid R. zoqui x R. completa crosses, two species that hybridize in nature. In the case of R. zoqui x R. ramosae hybrid combinations, the observed pattern (asymmetric cytoplasmic incompatibility) could be indicative of R. zoqui infection with Wolbachia (Werren et al., 2008). However, it is interesting to note, that the hybrid cross yielding the highest levels of egg-hatch was the one that was the least likely to occur during prezygotic isolation tests, a result contrary to findings for uninfected and infested sympatric pairs of Drosophila species, where uninfected females were selected to discriminate against infected males in areas of sympatry (Jaenike et al., 2006). Tracking F1 and F2 hybrid fertility, as it was done by Rull et al. (2012) for other species in the suavis group, coupled with screening for Wolbachia infections could contribute to the understanding of the evolution of reproductive compatibility between R. zoqui and R. ramosae and open avenues for research focused on a finer understanding of differentiation among all species in the R. suavis group. 50 Altogether, our results appear to indicate that R. zoqui and R. ramosae display a higher degree of reproductive incompatibility than the one observed between R. zoqui and R. completa. We believe that biological differences between these two species could have arisen during geographic isolation as a result in part to adaptation to the fruiting phenology of their respective host plants, a pattern documented among other species in the genus Rhagoletis (Feder et al., 1997: 2003, Prokopy & Papaj, 2000; Xie et al., 2008). For R. ramosae, exploiting late fruiting J. major (Rull et al., 2013), reproduction may be temporally restricted to a well-defined fruiting period, while R. zoqui has been recovered from two native and an introduced species of Juglans (J. mollis, J. pyriformis and J. regia) that differ in the timing of fruit maturation (Rull et al., 2013) perhaps favoring the evolution of a longer period of adult emergence. Postzygotic isolation could have been reinforced during periods of secondary contact producing patterns documented here. According to Coyne & Orr (1989) both prezygotic and postzygotic isolation in Drosophila increase with divergence time between taxa, if such pattern holds true for flies in the genus Rhagoletis, our results and those of Rull et al. (2012) and Tadeo et al. (2013) would support a closer relationship between R. zoqui and R. completa than between R. zoqui and R. ramosae. It would be interesting to complete studies on reproductive compatibility among Mexican species in the R. suavis group by examining interactions between R. ramosae and R. completa and R. ramosae and R. boycei, these coupled with results of mass sequencing techniques for a detailed phylogeny of the suavis group, and screening for Wolbachia infections, may yield a comprehensive picture of speciation for a taxonomic group other than Drosophila on which most knowledge on the time course of speciation is based (Coyne & Orr 1997). 51 AKNOWLEDGEMENTS We are grateful to Emilio Acosta for assistance in fruit collections. This work was partly funded by the Mexican Campaña Nacional Contra Moscas de la Fruta (Secretaría de Agricultura, Ganadería, Desarrollo Rural y Pesca-Instituto Interamericano de Cooperación para la Agricultura (to M.A.), Consejo Nacional de Ciencia y Tecnologia (CONACyT) special grant 1100/596/04 C-837-04 (to J.R.), and CONACyT CB 200525889-50008Q (to J.R.). REFERENCES Avise JC. 2000. Phylogeography: The History and Formation of Species Cambridge, Massachusetts: Harvard University Press. Berlocher SH, Feder JL. 2002 Sympatric speciation in phytophagous insects: Moving beyond controversy? Annual Review of Entomology 47: 773-815. Burnham RJ, Graham A. 1999. The history of Neotropical vegetation: new developments and status. Annals of the Missouri Botanical Garden 86:546–589. Bush GL, Smith JJ. 1998. The genetics and ecology of sympatric speciation: a case study. Researches on Population Ecology 40: 175–187. Bush GL. 1966. The taxonomy, cytology, and evolution of the genus Rhagoletis in North America (Diptera: Tephritidae). Bulletin of the Museum of Comparative Zoology 134: 431-562. Bush GL. 1968. Sympatric host race formation and speciation in frugivorous flies of the genus Rhagoletis (Diptera, Tephritidae). Evolution 23: 237-251. Bush MB, de Oliveira PE. 2006. The rise and fall of the Refugial hypothesis of Amazonian speciation: a paleoecological perspective. Biota Neotropica 6:1–17. Cuevas E. 2012. Mecanismos de especiación en plantas y animales. Biológicas 14:713. Coyne JA, Orr HA. 1989. Patterns of speciation in Drosophila. Evolution 43: 362-381. 52 Coyne JA, Orr HA. 1997. “Patterns of speciation in Drosophila” revisited. Evolution 51: 295-303. Coyne JA, Orr HA. 2004. Speciation. Sinauer Associates, Sunderland, MA, USA. De Mello F. 2011. Historical biogeography of the Brazilian Atlantic forest and the Carnaval–Moritz model of Pleistocene refugia: what do phylogeographical studies tell us? Biological Journal of Linnean Society 104: 499–509. Drès M, Mallet J. 2002. Host races in plant–feeding insects and their importance in sympatric speciation. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 357: 471-492. Dobzhansky T. 1942. Section of biology: Races and methods of their study. Transactions of the New York Academy of Sciences 4, 115-123. Feder JL, Stolz U, Lewis KM, Perry W, Roethele JB, Rogers A. 1997. The effects of winter length on the genetics of apple and hawthorn races of Rhagoletis pomonella (Diptera: Tephritidae). Evolution 51: 1862-1876. Feder JL, Berlocher SH, Roethele JB, Dambroski H, Smith JJ, Perry WL, Gavrilovic L, Filchak KE, Rull J, Aluja M. 2003. Allopatric genetic origins for sympatric hostplant shifts and race formation in Rhagoletis. Proceedings of the National Academy of Sciences U.S.A. 100: 10314-10319. Feder JL, Xie X, Rull J, Velez S, Forbes A, Leung B, Dambroski H, Filchak KE, Aluja M. 2005. Mayr, Dobzhansky, and Bush and the complexities of sympatric speciation in Rhagoletis. Proceedings of the National Academy of Sciences U.S.A. 102: 6573-6580. Foote HR. 1981. The genus Rhagoletis loew south of the United States (Diptera: tephritidae). United States Department of Agriculture, Technical Bulletin Number 1607. 75p. Foote RH, Blanc FL, Norrbom AL. 1993. Handbook of the fruit flies (Diptera: Tephritidae) of America north of Mexico. Ithaca, NY: Comstock Publishing Associates. Fosberg FR. 1983. The human factor in the biogeography of oceanic islands. CompteRendu des séance de la Société de Biogéographie. 59:147-190. 53 Frey JE, Guillén L, Frey B, Samietz J, Rull J, Aluja M. 2013. Developing diagnostic SNP panels for the identification of true fruit flies (Diptera: Tephritidae) within the limits of COI-based species delimitation. BMC Evolutionary Biology 13: 106. Haffer J. 1969. Speciation in Amazonian forest birds. Science 165: 131–137. Hernández-Ortiz V. 1985. Descripción de una nueva especie Mexicana del género Rhagoletis Loew (Diptera: Tephritidae). Folia Entomologica Mexicana 64: 73–79. Hewitt GM. 1996. Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society 58: 247–276. Hewitt GM. 2004. Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 359:183-195. Hewitt GM. 2000. The genetic legacy of the Quaternary ice ages. Nature 405: 907–913. Hooghiemstra H, Van der Hammen T. 2004. Quaternary Ice-Age dynamics in the Colombian Andes: developing an understanding of our legacy. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 359: 173–181. Howden HF. 1963. Speculations on some beetles, barriers and climates during the Pleistocene and pre-Pleistocene periods in some nonglaciated portions of North America. Systematic Zoology 12: 178-201. Howden HF. 1969. Effects of the pleistocene on North American insects. Annual Review of Entomology 14: 39-56. Huntley B, Webb T. 1989. Migration: species’ response to climatic variations caused by changes in the earth’s orbit. Journal of Biogeography 16: 5–19. Jaenike J, Dyer KA, Cornish C, Minhas MS. 2006. Asymmetrical reinforcement and Wolbachia infection in Drosophila. PLoS Biol 4: e325. DOI: 10.1371/journal.pbio.0040325 Jennings J, Mazzi D, Ritchie M, Hoikkala A. 2011. Sexual and postmating reproductive isolation between allopatric Drosophila montana populations suggest speciation potential. BMC Evolutionary Biology 11: 1471-2148. Joseph L, Moritz C, Hugall A. 1995. Molecular support for vicariance as a source of diversity in rainforest. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 260: 177–182. 54 Kaneshiro K. 1976. Ethological isolation a phylogeny in the plan tibia subgroup of Hawaiian Drosophila. Evolution 30: 740-45. Kaneshiro K. 1983. Sexual selection and direction of evolution in the biosystematics of Hawaiin Drosophilidae. Ann. Rev. Entomol 28: 161-178. Knowles LL. 2001. Did the Pleistocene glaciations promote divergence? Tests of explicit refugial models in montane grasshoppers. Molecular Ecology 10: 691-701. Mallet J. 2008. Hybridization, ecological races and the nature of species: empirical evidence for the ease of speciation. Philosophical Transactions of the Royal Society B: Biological Sciences 363: 2971-2986. Martin PS, Harrell BE. 1957. The Pleistocene history of tempo rate biotas in Mexico and eastern United States. Ecology 38: 468-80. Matsubayashi KW, Ohshima I, Nosil P. 2010. Ecological speciation in phytophagous insects. Entomologia experimentalis et applicata 134: 1-27. Mayr E (1963) Animal Species and Evolution Belknap Press. Michel AP, Rull J, Aluja M, Feder JL. 2007. The genetic structure of hawthorn-infesting Rhagoletis pomonella populations in Mexico: implications for sympatric host race formation. Molecular Ecology 16: 2867–2878. Ovruski S, Wharton R, Rull J, Guillen L. 2007. Aganaspis alujai (Hymenoptera: Figitidae: Eucoilinae), a new speciesattacking Rhagoletis (Diptera: Tephritidae) in the neotropical region. Florida Entomologist 90: 626–634. Petit RJ, Aguinagalde I, de Beaulieu JL, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohanty A, Müller G, Demesure B, Palmé A, Martín JP, Rendell S, Vendramin G. 2003. Glacial refugia: Hotspots but not melting pots of genetic diversity. Science. 300: 1563–1565. Prokopy RB, Papaj DR. 2000. Behavior of flies of the genera Rhagoletis, Zonosemata, and Carpomya (Trypetinae: Carpomyina). En: Fluit Flies (Tephritidae); Phylogeny and Evolution of Behavior. CRC Press, Boca Raton, Florida. Pp 219-252. Provan J, Bennett KD. 2008. Phylogeographic insights into cryptic glacial refugia. Trends in Ecology & Evolution 23: 564–571. Qu Y, Luo X, Zhang R, Song G, Zou F, Lei F. 2011. Lineage diversification and historical demography of a montane bird Garrulax elliotii – implications for the 55 Pleistocene evolutionary history of the eastern Himalayas. Evolutionary Biology 11:174. Ramírez‐Barahona S, Eguiarte LE. 2013. The role of glacial cycles in promoting genetic diversity in the Neotropics: the case of cloud forests during the Last Glacial Maximum. Ecology and Evolution 3: 725-738. Ritchie M. 2007. Sexual Selection and Speciation. Annual Review of Ecology, Evolution, and Systematics 38: 79–102. Ross HH. 1953. On the origin and composition of the nearctic insect fauna. Evolution 7: 145-58. Roy K, Valentine J, Jablonski D, Kidwell S. 1996. Scales of climatic variability and time averaging in Pleistocene biotas: implications for ecology and evolution. Trends in Ecology and Evolution 11: 458–463. Rull J, Aluja M, Feder JL, Berlocher SH. 2006. The distribution and host range of hawthorn-infesting Rhagoletis (Diptera: Tephritidae) in Mexico. Annals of the Entomological Society of America 99: 662-672. Rull J, Tadeo E, Aluja M, Guillen L, Egan SP, Feder JL. 2012. Hybridization and sequential components of reproductive isolation between parapatric walnutinfesting sister species Rhagoletis complete and Rhagoletis zoqui. Biological Journal of the Linnean Society 107: 886–898. Rull J, Aluje M, Tadeo E, Guillen L, Scott E, Glover M, Feder JL. 2013. Distribution, host plant affiliation, phenology, and phylogeny of walnut-infesring Rhagoletis flies (Diptera: Tephritidae) in Mexico. Biological Journal of the Linnean Society 110: 765-779. Salomon M. 2001. Evolutionary biogeography and speciation: essay on a synthesis. Journal of Biogeography 28: 13-27. Shepard DB, Burbrink FT. 2009. Phylogeographic and demographic effects of Pleistocene climatic fluctuations in a montane salamander, Plethodon fourchensis. Molecular Ecology 18: 2243-2262. Smith JJ, Bush GL. 1997. Phylogeny of the genus Rhagoletis (Diptera: Tephritidae) inferred from DNA sequences of mitochondrial cytochrome oxidase II. Molecular Phylogeny and Evolution 7: 33–43. 56 Smith JJ, Bush GL. 2000. Phylogeny of the subtribe Carpomyina (Trypetinae), emphasizing relationships of the genus Rhagoletis. In: Aluja M, Norrbom AL, eds. Fruit flies (Tephritidae) phylogeny and evolution of behavior. Boca Raton, FL: CRC Press, 187–217. Solis DE, Morris AB, McLachlan JS, Manos PS, Soltis PS. 2006. Comparative phylogeography of unglaciated eastern North America. Molecular Ecology 15: 4261–4293. Tadeo E, Aluja M, Rull J. 2013. Alternative Mating Tactics as Potential Prezygotic Barriers to Gene Flow Between Two Sister Species of Frugivorous Fruit Flies. Journal of Insect Behavior 26: 708-720. Van Asch M, Visser ME. 2007. Phenology of forest caterpillars and their host trees: the importance of synchrony. Annual Review of Entomol 52: 37-55. Werren JH, Baldo L, Clark ME. 2008. Wolbachia: master manipulators of invertrebrate biology. Nature Reviews Microbiology 6: 741-751. Willis KJ, Whittaker RJ. 2000. The refugial debate. Science 287: 1406–1407 Xie X, Michel A, Schwarz D, Rull J, Velez S, Forbes A, Aluja M, Feder JL. 2008. Radiation and divergence in the Rhagoletis pomonella species group: inferences from DNA sequence data. Journal of Evolutionary Biology 21: 900–913. Zarza E, Reynoso V, Emerson B. 2008. Diversification in the northern neotropics: mitochondrial and nuclear DNA phylogeography of the iguana Ctenosaura pectinata and related species. Molecular 17: 3259–3275. 57 FIGURE LEGENDS Figure 1. Total number of emerged adults over time of Rhagoletis zoqui (dots) from Veracruz collected from Juglans pyriformis Liebmann between August and September and Rhagoletis ramosae (triangles) collected in Guerrero from Juglans major Heller between late September and early October. Figure 2. Mean ± SEof frequency of copulation for different male-female pure and hybrid mating combinations between Rhagoletis zoqui (z) and Rhagoletis ramosae (r). Different letters represent significant differences at the α=0.05 level. Figure 3. Percent of total copulations according to location in cages (fruit [Black bar] or mesh [White bar]) among adult Rhagoletis zoqui and Rhagoletis ramosae. Figure 4. Mean ± SE of number of Rhagoletis zoqui x Rhagoletis ramosae male-male encounters according to contest location in cages (fruit [Black bar] or mesh [White bar]). Different letters represent significant differences at the α=0.05 level. Figure 5. Typical fruit guarding postures by A) and B) Rhagoletis ramosae, and C) and D) Rhagoletis zoqui males. Figure 6. Typical wing postures of A) a Rhagoletis zoqui male (folded wings) vs. a Rhagoletis ramosae male (extended wings), B) two Rhagoletis ramosae males (both contestants with extended wings) and C) two Rhagoletis. zoqui males (both contestants with folded wings) during male-male contests on host fruit. Figure 7. Mean ± SE. Number of egg-laying bouts per female per replicate for Rhagoletis zoqui and Rhagoletis ramosae. Different letters represent significant differences at the α=0.05 level. 58 Figure 8. Mean ± SE of number of eggs laid per egg-laying bouts for female Rhagoletis zoqui or Rhagoletis ramosae. Different letters represent significant differences at the α=0.05 level. Figure 9. Mean ± SE of percent egg hatch for pure (zz and rr) and hybrid (zr and rz) crosses between adult R. zoqui and R. ramosae. Different letters represent significant differences at the α=0.05 level. 59 FIGURES Figure 1 Figure 2 60 Figure 3 Figure 4 61 Figure 5 Figure 6 62 Figure 7 Figure 8 63 Figure 9 64 CAPITULO 3 For: Biological Journal of the Linnean Society Behavioral patterns and relative strength of pre- and postzygotic isolation between two recently derived species of walnut infesting flies in the highlands of Mexico. EDUARDO TADEO1,2*, MARTÍN ALUJA1,JUAN RULL1 1 Instituto de Ecología, A.C., Carretera Antigua a Coatepec no. 351, Colonia el Haya, C.P. 91070 Xalapa, Veracruz, México. 2 Posgrado Instituto de Neuroetología, Universidad Veracruzana, Dr. Luis Castelazo s/n Col. Industrial Animas, Xalapa, Veracruz, México. “Corresponding autor Corresponding author information: Eduardo Tadeo, Posgrado Instituto de Neuroetología, Universidad Veracruzana, Dr. Luis Castelazo s/n Col. Industrial Animas, Xalapa, Veracruz, México e-mail: [email protected] Running head: REPRODUCTIVE ISOLATION IN RHAGOLETIS 65 Episodes of isolation and secondary contact among populations of insects of Nearctic origin during Pleistocene glacial/postglacial climatic cycles had a strong evolutionary influence on diversity of flies in the genus Rhagoletis in mountainous areas of Mexico. As a series of experiments undertaken to gather support for inconclusive molecular phylogenetic hypotheses on the origin of three walnut infesting species in the suavis group, we examined pre and postzygotic isolation between Rhagoletis completa Cresson and R. ramosae Hernandez-Ortiz. Mating experiments in large enclosures revealed asymetric sexual isolation between R. completa and R. ramosae. There were notable differences in male behavior between species. While R. ramosae males mated exclusively on host fruit, R. completa males used fruit and alternative mating locations. During fruit guarding and male-male contests male R. completa exhibited behavioral patterns similar to those of its close relative R. zoqui while behavior of R. ramosae males was more reminiscent of that typically exhibited by R. boycei. During no choice crosses in small enclosures, there was a marked reduction of egg hatch for the hybrid cross of R. completa males x R. ramosae females. In comparison to previous studies on reproductive isolation between species pairs in the suavis group, both pre and post zygotic isolation were stronger between R. ramosae and R. completa than between R. ramosae and R. zoqui and R. zoqui and R. completa. Our results appear to support common ancestry of R. ramosae and R. boycei rather than R. ramosae and R. completa/R. zoqui. We discuss the value of gathering comprehensive evidence from different sources (molecular, behavioral, ecological) when resolving phylogeny of recently derived species. 66 ADITIONAL KEYWORDS: Ecological speciation, Rhagoletis suavis, allochronic isolation, Pleistocene INTRODUCTION Pleistocene glacial cycles played a key role in giving rise to diversity patterns of current lineages of insects of Nearctic origin in Neotropical highlands (Knowles, 2001; Salomon, 2001; Shepard & Burbrink, 2009). Populations with affinity for temperate climates took refuge during glaciations in areas of Southern latitude with less harsh conditions (Hewitt, 2004; Solis et al., 2006; Pravan & Bennet, 2008). During postglacial cycles, such populations underwent periods of isolation in high elevation areas of México (Ross, 1953; Martin & Harrell, 1957; Howden, 1963; 1969; Domínguez-Domínguez et al., 2011) followed by periods of secondary contact, producing gene flow, hybridization and reinforcement. Populations undergoing isolation-secondary contact cycles can initiate differentiation as a result of divergent natural selection between environments (Schluter, 2003; Funk et al., 2006), or trough accumulation of differences that result in production of hybrids with lower fitness (Dobzhansky, 1936;1937; Muller, 1942). In similar environments, under a polygenetic drift model, populations evolving independently under stabilizing selection can undergo allelic changes where a few loci are incompatible with multiple alleles in the genetic background of hybrids (Fierst & Hansen, 2009). During secondary contact, prezygotic reproductive barriers can arise in response to direct selection against hybrids with lower fitness (Hoskin et al., 2005). Examining the existence and relative strength of postzygotic and prezygotic isolation between species 67 pairs may shed some insight into their evolutionary history (Coyne & Orr, 2004) and a number of indices have been developed to compare between species divergence that allow to make inferences on the evolutionary history of particular lineages (PerezFigueroa et al., 2005). A good example of insects undergoing recent differentiation triggered by Pleistoicenic climatic pulses in the highlands of Mexico are Tephritid fruit flies in the genus Rhagoletis. In particular, within the pomonella species group, ancestral populations of hawthorn infesting flies took refuge in the Mexican Altiplano 1.57 million years ago in isolation from North American populations. Subsequent episodes of gene flow infused North American populations with inversion polymorphisms affecting key diapause traits that later allowed flies to adapt to plants with different fruiting phenology (Feder et al., 2003; Feder et al., 2005). Allochronic isolation, coupled with host plant specific mating, and host fidelity allowed recent spawning of new taxa giving rise to a group of six morphologically similar sibling species differing in host plant affiliation (Xie et al., 2008). Mexican populations of R. pomonella are also in the process of diversification, three populations exploiting hosts with different fruiting phenology occur across the Mexican Trans Volcanic Belt, the Sierra Madre Oriental, and los Altos de Chiapas (Rull et al., 2006). These populations are genetically distinct (Michel et al., 2007; Xie et al., 2007) and exhibit some degree of reproductive isolation among themselves (Rull et al., 2010). Also, flies in the black cherry infesting cingulata species group, also appear to be undergoing geographical host plant mediated differentiation (Rull et al., 2011), with populations in the central Altiplano and the Sierra Madre Oriental exhibiting distinct 68 morphological features and displaying some degree of reproductive isolation between them and with US populations (Tadeo et al., unpublished results). The walnut infesting suavis group is currently composed of six morphologically distinct species (Rhagoletis suavis Loew, R. juglandis Cresson, R. boycei Cresson, R. completa Cresson, R. zoqui Bush and R. ramosae Hernández-Ortiz) though to be the product of isolation in allopatry (Bush, 1966;1975; Foote, 1981; Bush & Smith, 1998). Until recently, only five of the six described species in the group had been phylogenetically arranged (Bush, 1966;1968; Bush & Smith, 1997;1998; Smith & Bush, 2000) with R. zoqui and R. completa always appearing in a tight cluster. More recent molecular scrutiny of the suavis group has incorporated R. ramosae to this cluster (Frey et al., 2013; Rull et al., 2013) resulting in an unresolved phylogeny and two mutually exclusive hypotheses regarding its origin. The first hypothesis proposes that R. ramosae arose from an R. boycei/R. juglandis ancestor migrating from the Sierra Madre Occidental, while the second suggests a R. completa/R. zoqui ancestor from the Sierra Madre Oriental (Rull et al., 2013). It has been found that R. completa and R. zoqui can hybridize in nature in a contact zone in Northeastern Mexico (Rull et al., 2012), and exhibit no clear evidence of prezygotic and postzygotic isolation, except perhaps a breakdown of F2 hybrids and a tendency of R. completa to copulate both on fruit and on alternative mating locations (Rull et al., 2012; Tadeo et al., 2013). Additionally, in the case of R. zoqui and R. ramosae, R. zoqui females were observed to be more reluctant to mate with R. ramosae males than with males of their own species and there was a significant reduction of egg hatch for the hybrid cross of R. zoqui males and R. ramosae females in comparison to that of other male-female mating combinations (Tadeo et al., unpublished results). In the 69 course of experiments R. zoqui and R. completa males exhibited similar distinctive wing displays and fighting postures, while R. ramosae male behavior was more similar to that observed for R. boycei (Tadeo et al., 2013; Tadeo et al., unpublished results). Here, we examine prezygotic and postzygotic isolation between R. completa and R. ramosae in order to be able to compare it with previous studies involving other members of the suavis group and contribute in depicting the evolutionary history of the group. MATERIAL AND METHODS BIOLOGICAL MATERIAL To recover R. completa, infested Juglans hirsuta Manning fruit were collected in Buena Vista, Nuevo León (25°23’36.6’’N, 100°18’5.1’’W, 1480 msnm) during September 2011 and 2012. To obtain R. ramosae pupae, infested fruit of Juglans major (Torr) Heller var. glabrata Manning was collected in Taxco, Guerrero (18°33’16.9”N, 99°39’31.9”W, 1780 msnm) during the months of September and October 2011 and 2012. Collected fruit was taken to the laboratories of the Instituto de Ecología A.C, in Xalapa Veracruz, and processed according to methods described in Rull et al. (2006) to obtain pupae. Recovered pupae were placed in 200 ml plastic cup lined with a 2.5 cm vermiculite layer and regularly moistened with a sodium benzoate (C6H5COONa) 3g/L solution to prevent desiccation and fungal growth. Cups were sealed with perforated plastic lids to allow air flow and kept in a sheltered laboratory at room temperature until emergence of overwintering adults the following season. All adults emerging at five days intervals were separated according to species and sex and placed in 3 L. plastic cages provided with 70 water and food (a 3:1 sugar; hydrolyzed protein mixture) until sexual maturity (15 to 20 days) when they were used in experiments. Daily records of adult emergence were kept for pupae from Veracruz and Guerrero. POSTDIAPAUSE ADULT EMERGENCE Seasonal patterns of adult emergence were compared between species by recording daily emergence for lots of pupae collected in 2011. The duration of emergence post dipause was calculated in days from fruit collection date to emergence of adults. For R. completa a 300 pupae lot collected on August 30th 2011 was used, while for R. ramosae emergence was recorded for a 371 pupae lot collected on September 30 of the same year. PREZYGOTIC ISOLATION (EXPERIMENTAL CAGE-MATING BEHAVIOR) An experimental rectangular 1.08 x 1.08 m 1.78 m high cage was built using a 13mm PVC pipe frame wrapped with white tergaline cloth. Within the cage, four 1.5 m. potted oak trees (Quercus spp.) were placed at each corner along with walnut (J. pyriformis) fresh foliage pinned on the upper part of the cage walls and ceiling attempting to mimic a tree canopy. To serve as mating arenas, ten ripe, evenly spaced, J. pyriformis fruit were hung in circle from the cage ceiling using copper wires long enough to reach the potted oak foliage. Each copper wire received an individually numbered 3cm 2 green cardboard label to ease recording of activity. The cage was provided with water and adult food as described above. At 09:00 hours ten adult sexually mature (between 26 71 and 41 d old) R. completa and ten adult sexually mature R. ramosae couples (20 couples in total) were released in the experimental cage. Each fly was individually marked on the back of the thorax with one or two dots of water based paint (Politec ®). Behavioral observations were performed by a single experienced observer from 10:00 to 17:00 hours for two consecutive days using a combination of scanning and focal observation of key behavioral events. A total of five 2-day replicates were performed foror each replicate, the type of male-female combination, duration in minutes, and location (fruit or mesh) were recorded for all copulations. For male fruit guarding (considered when a male remained motionless on a particular fruit for more than one minute) the identity and species of guarding males was recorded for every labeled fruit. For male-male contests, the identity (species), status (resident-intruder), location (fruitmesh), and outcome (considering the male remaining on the contest site as the winner and the one leaving the site as the loser) were recorded. Finally, in the case of females, all fruit visits, egg laying bouts, and rejection of copulation attempts (vigorous movements preventing intromission after mounting) were recorded. POSTYGOTIC ISOLATION To compare fertility among all possible R. completa x R. ramosae pure and hybrid mating combinations [R. completa ♂ x R. completa ♀, R. completa ♂ x R. ramosae ♀; R. ramosae ♂ x R. completa ♀; and R. ramosae ♂ x R. ramosae♀ (hereafter cc, cr, rc, and rr respectively)], groups of five virgin females and five virgin males between 20 and 38 days of age were introduced into 3L, plastic cages provided with water and food as described above. Flies in cages were allowed to interact for 24 h and offered two 2.5 cm 72 diameter agar spheres (1,350 ml water, 44.70 gr bacterial agar BDBioxon® and 1.5 ml of McCORMICK® green food colour) for egg laying (Rull et al., 2010). Spheres were replaced daily for 4 days and dissected under a microscope (Celestron®) to recover eggs. Eggs were aligned over a piece of black cloth placed over a piece of cotton (ZUUM®) moistened with water inside a Petri dish. Eggs were counted and incubated at 24°C for six days. After incubation, eggs were observed under the microscope and egg hatch recorded. The entire procedure was repeated 5 times. STATISTICAL ANALYSES The length of dipause was compared between species using a General Nolineal Model (GNM) twoway ANOVA adjusted to a Poisson distribution error. Frequency of copulation per replicate was compared among different male-female R. completa x R. ramosae pure and hybrid mating combinations by means of a oneway ANOVA, mating frequency according to sex was compared with a oneway ANOVA adjusted to a Poisson distribution. Copulation frequency according to mating location was compared among male-female R. completa x R. ramosae pure and hybrid mating combinations with a twoway ANOVA on ranked data. For male behavior, the frequency of fruit guarding and contests was compared between species using t-tests on Log10 transformed data. In the case of guarding frequency according to male-male potential combinations (including individual and joint guarding) and male permanency on fruit after contests frequencies were compared using twoway ANOVAS adjusted to Poisson distribution. For females, the frequency of fruit visits and egg laying bouts was compared between species using t-tests, with egg-laying frequencies ranked. Finally, the total number of 73 eggs laid and percent egg hatch were compared among mating combinations using oneway ANOVAs. Tests were run using STATISTICA 7® and SigmaPlot 10.0®. Sexual isolation indices for mating frequencies were calculated using JMATING software (Calvajal-Rodriguez & Rolan-Alvarez, 2006). RESULTS POSTDIAPAUSE ADULT EMERGENCE We recorded 22% of adult emergence for both R. completa and R. ramosae. In the case of R. completa 45 % of these adults were females and 55% males, while for R. ramosae 48% were females and 52% males. A twoway ANOVA revealed significant differences in dipause duration between species (X2=39.39, p<0.001) but not between sexes (X2 =1.72, p=0.19). The interaction between species and sex was not significant (X2 =0.86, p=0.77). Adult R. ramosae emerged on average 302.253 ± 4.189 (S.E) days after fruit collection, while adult R. completa did so after 245.66±8.05 days (Figure 1). This four week time lag roughly coincided with seasonal differences in the fruting phenology of the respective walnut host plants. PREZYGOTIC ISOLATION A oneway ANOVA revealed significant differences in the frequency of copulation among different male-female R. completa x R. ramosae mating combinations (F3, 16=11.67, p<0.001). The cc pure cross occurred in higher frequency (12.80±1.63 de S.E), followed by the hybrid cross cr (7.80±2.63 de S.E) and the pure cross rr (3.0±0.95 S.E), while the 74 hybrid cross rc occurred in the lowest frequency (0.2±0.2 de S.E) (Figure 2). A two way ANOVA adjusted to a Poisson distribution revealed significant differences in individual mating frequency among males and females of both species (X2=7.03, p=0.008). R. completa males mated an average of 3.27±0.39 times per replicate and R. completa females 2.31±1.29 times. In the case of R. ramosae, males mated an average of 1.33±0.14 times, and females 2.25±0.51 (Figure 3). A two way ANOVA on ranked data revealed a significant interaction between mating combination and mating location (F 3, 32=6.82, p<0.001). For mating combinations involving R. completa males copulations occurred both on fruit and the cage mesh, while R, ramosae males mated more often on fruit (Figure 4). Overall, there was a significant degree of mating isolation between R. completa and R. completa (Ipsi=0.53, SD=0.08, t=6.68) as revealed by calculations using JMATING on a total of 114 pure and hybrid copulations. Other observed behaviors that were not analyzed due to the low frequency of occurrence were failed copulation attempts and male-male copulation attempts. Five R. ramosae males unsuccessfully attempted to copulate with R. completa females, while three R. completa males failed to copulate with R. ramosae females. It is worth noting that these last males made up to seven consecutive attempts to mate. With respect to female rejection behavior (pushing with hind legs to dislodge mounting males) six R. completa males were rejected by R. ramosae females and only one by a female of its own species. Twelve R. completa males attempted to copulate with R. ramosae males, while only two R. ramosae attempted copulation with males of R. completa. 75 MALE BEHAVIOR There was no significant difference in the frequency of fruit guarding between R. completa (23.2±7.69) and R. ramosae (22.8±6.75 de S.E) males. However, when comparing the frequency of individual and joint fruit guarding a one way ANOVA adjusted Poisson distribution revealed significant differences among male and malemale (joint) guarding combinations (X2= 85.56, p<0.001) (Figure 5). R. ramosae males guarded fruit at greater frequencies (14.2± 3.46 de S.E), followed by lone R. completa males (10.0±1.97 de S.E), while joint conspecific and heterospecific guarding occurred at lower frequencies (between 1.4±0.6 and 4.4 ±2.06 S.E.). There were no significant differences in log 10 transformed frequencies of malemale contests between species (t1,63=1.63, p=0.109). R. completa males participated in an average of 9.158±1.11 contests per replicate and R. ramosae males in 6.373±0.958. A twoway ANOVA adjusted to a Poisson distribution revealed significant differences in the frequencies of contestants remaining of fruit (winner) between species (X 2=5.91, p=0.015) and according to status (resident, invader, both) (X2=8.82, p=0.012). Male R. completa remained on contested fruit more frequently (5.2±0.99 de S.E) than R. ramosae males (2.83±0.51 de S.E) while permanence of both males was more frequent (4.8±1.09 S.E) than permanence of residents (2.1±0.69 de S.E) or invaders (1.6±0.4 de S.E) alone (Figure 6). Some noteworthy behavioral observations include contest avoidance and postures adopted by different species during guarding and contests. Some R. ramosae males preferred to retreat or abandon fruit rather than engaging in contests with R. completa males. Males of both species exhibited marked behavioral differences during guarding and contests across the entire study, while R. completa 76 guarded fruit with both wings raised perpendicular to the thorax R. ramosae remained with their wings folded and a slight extension of the front legs (Figure 5). During combat R. ramosae males extended and rotated their wings as if to show wing patterns to rivals while R. completa males kept their wings folded (Figure 6). FEMALE BEHAVIOR There were no significant differences in ranked frequencies of female fruit visits between species (t1,58=-0.66, p=0.26). Female R. completa visited fruit at an average frequency of 7.47±1.44 times while R. ramosae did so at an average frequency of 8.2±1.8 times per replicate. We also failed to detect significant differences in transformed egg-laying frequencies (t1,34=-1.39, p=0.195). Female R. completa laid eggs at an average of 2.37± 0.29 times per replicate while R. ramosae did so at an average frequency pf 3.53±0.56 times per replicate. POSTZYGOTIC ISOLATION A one way ANOVA revealed no significant differences in the number of eggs laid by females among different male-female, R. completa x R. ramosae mating combinations (F3, 24 =2.29, p=0.107). Females in no choice 5-couple cages of the cc pure cross laid an average of 92.71±11.71 eggs, females from the cr hybrid cross laid 33.57±15.94 eggs, females from the pure cross rr laid 76.86±23.72 eggs, and females from the hybrid rc cross laid an average of 71.57±11.94 eggs. In contrast, a oneway ANOVA revealed significant differences in egg hatch for eggs laid by females from different mating combinations (F3,24 =5.94, p=0.004). Mean percent hatch for eggs laid by females in cc 77 cages was significantly greater than egg hatch for eggs laid in cages with other malefemale combinations, and egg hatch for eggs laid by females in the cr combination cage was statistically lower than egg hatch for eggs recovered from both the rr and rc mating combinations, between which there were no statistical differences (figure 7). DISCUSSION We detected asymetric sexual isolation between R. completa and R. ramosae, with R. completa females being more reluctant to mate with R. ramosae males than with conspecific males. R. completa males outcompeted R. ramosae in gaining access to females of both species. While R. ramosae males exclusively mated on host fruit R. completa males used alternative mating locations. R. completa males won more malemale contests than R. ramosae. During fruit guarding and male-male contests, male R. completa exhibited behavioral patterns similar to those of R. zoqui reported elsewhere (Tadeo et al., unpublished results) while behavior of R. ramosae males was reminiscent of that typically exhibited by R. boycei. Females of both species visited fruit and attempted egg laying in similar frequencies. There was a marked reduction of egg hatch for the hybrid cross of R. completa males x R. ramosae females. In comparison to previous studies of reproductive isolation between species pairs in the suavis group, both pre and post zygotic isolation were stronger between R. ramosae and R. completa than between R. ramosae and R. zoqui and R. zoqui and R. completa. According to classical allopatric speciation models championed by Mayr (1963), speciation processes almost invariably initiate when geographically isolated populations evolve in different environments. During ecological speciation reproductive isolation 78 arises as a consequence of divergent natural selection on populations that may be allopatric or sympatric (Schluter, 2001; Rundle & Nosil, 2005; Via, 2009; Cocroft et al., 2010). R. completa and R. ramosae in Mexico are geographically isolated, R. completa range encompasses the Sierra Madre Oriental, from San Luis Potosí to the Texas border in Coahuila, while R. ramosae occurs west of Mexico city on the Eje volcanico Trans Mexicano from Morelos to Jalisco (Hernández-Ortiz, 1985; Rull et al., 2013). R. completa and R. ramosae occupy environments that differ in humidity and mean temperature (more arid and cool in the Northeast and warm and moist in Western Mexico), and develop in fruit of different species of plants in the genus Juglans (Rull et al., 2013). Rhagoletis completa exploits J. hirsuta, J. microcarpa and J. mollis while R. ramosae has only been reported on J. major (Hernández-Ortiz, 1985; Rull et al., 2013). Annual peaks in precipitation and the onset of cool temperatures during winter produce differences in the fruiting phenology of Northeastern and Western walnut tree species, which in turn influence diapause regulation of their fly parasites and result in allochronic isolation between R. completa and R. ramosae (see Rull et al., 2013). Divergence among phytophagous insect host plants is known to produce reproductive isolation among host races (Berlocher & Feder, 2002; Nosil, 2003; Cocroft et al., 2010), especially when mating occurs on the host plant where the offspring develops. Flies in the genus Rhagoletis are generally specialized on fruit of plants in the same family or genus where they mate and develop (Boller & Prokopy, 1976; Prokopy & Papaj, 2000), additionally for flies in the pomonella species group, differences in the fruiting phenology of host plants have been found to favor or strengthen divergence between host races eventually resulting in speciation (Berlocher, 2000; Berlocher & Feder, 2002; Feder et al., 2003; Xie et al., 2008). 79 Asymetric prezygotic isolation was manifest through a marked tendency of R. completa but not R. ramosae females to mate with males of their own species, a common outcome among recently diverged insect species (Kaneshiro, 1983; Arnqvist et al., 2000; Jennings et al., 2011). Asymetric sexual isolation had also been found between other closely related species pairs in the suavis group (R. completa & R. zoqui and R. zoqui & R. ramosae) (Tadeo et al., 2013; Tadeo et al., unpublished results). If as it has been found for drosophila by Coyne & Orr (1997), prezygotic reproductive isolation in the suavis group increases between taxa with divergence time, then R. completa and R. zoqui appear to be more closely related between them than with R. ramosae [R. completa & R. zoqui Ipsi=0 (Tadeo et al., 2013); R. zoqui & R. ramosae con Ipsi=0.34 (Tadeo et al., Unpublished results); and R. completa & R. ramosae Ipsi=0.53 here]. Such an outcome does not favor one of the hypotheses put forth by Rull et al. (2013) regarding the origin of R. ramosae where this species would be most closely related to a common ancestor of R. zoqui and R. completa than to R. boycei. Divergence between ancestors of R. completa and R. ramosae could have arisen as a result of natural selection in different environments (Nosil et al., 2002; Mckinnon et al., 2004) favored in part by physical separation of their respective host plants J. major vs. J. hirsuta/J. mollis, which could have evolved among other things, differences in fruiting phenology in response to climatic conditions. Periods of interruption of gene flow, drift, and differential selection could have resulted in differences in behavioral patterns or morphological traits related to reproduction (Kaneshiro, 1976, Jennings et al., 2011) which can become fixed within populations and reinforced during periods of secondary contact (Kaneshiro, 1983; Ritchie, 2007, Perez et al., 2011). As opposed to flies in the pomonella species group, there are clearly distinctive morphological differences in wing 80 patterns and body coloration among all known species in the suavis group (Smith & Bush, 2000), although these differences were hypothesized to produce sexual isolation (Bush, 1966; Smith & Bush, 2000) there is still potential for gene flow between some species pairs within the suavis group (Rull et al., 2012; Tadeo et al., 2013) a pattern suggestive of recent divergence. Here, we observed behavioral differences between R. completa and R. ramosae males manifested during mating location guarding and malemale contests (figures 5 and 6). Distinctive morphological traits and behavioral mating patterns can aid in resolving phylogenetic relationships and the direction of evolutionary history of the suavis group in Mexico as suggested by Kaneshiro (1976) for closely related species of drosophila in Hawaii. So far, morphological and behavioral evidence points to a common origin of R. ramosae and R. boycei whose ancestor may have separated as a result of physical separation of different subspecies of their host J. major across the Sierra Madre Occidental. Some noteworthy behavioral patterns observed during our study are the use of alternative mating locations by R. completa males coupled with greater aggressiveness during male-male contests. Such patterns were also reported during similar studies involving R. zoqui (Tadeo et al., 2013) and were hypothesized to increase mating probability among R. completa individual males. Kaneshiro (1983) proposed that any behavioral modification conferring a male mating advantage is subject to sexual selection and may become fixed in a population. In contrast to R. completa, R. ramosae males were less aggressive and exhibited typical patterns of resource (host fruit) defense mating behavior for flies in the genus Rhagoletis (Prokopy & Papaj, 2000) and for other species in the suavis group such as R. zoqui (Tadeo et al., 2013). Apparently, small sized males of both R. ramosae and R. zoqui avoid male-male contests on fruit, by 81 crouching when confronted by larger males but remain on mating territories and potentially mate with egg-laying females, although this claim still needs to be experimentally confirmed. The hybrid cross of R. completa males x R. ramosae females produced eggs with lower hatch than other mating combinations. These results are similar to those of Tadeo et al., (unpublished results) for the hybrid cross of R. zoqui males x R. ramosae females, whereas no evidence of postzygotic isolation was reported for the crosses of R. completa x R. zoqui by Rull et al., (2012). These patterns could be explained if R. ramosae carry Wolbachia infections not shared by R. completa and R. zoqui. Alternatively, reduced egg hatch could be the product of Bateson- Dobzhansky-Muller (BDM) epistatic interactions between sets of alleles substituted at different loci during geographic isolation of ancestral populations (Bateson 1909; Dobzhansky, 1936;1937; Muller, 1942). The BDM model of postzygotic isolation has received recent attention and support (Baton & Charlesworth, 1984; Orr & Turreli, 2001; Sweigart et al., 2006; Fierts & Hansen, 2009; Cattani & Presgraves, 2009). In any case, as for prezygotic isolation, our results and those of Rull et al., (2012) and Tadeo et al., (unpublished results) appear to place R. ramosae in a clade with a different evolutionary history than R. completa and R. zoqui, and again highlight the importance of examining reproductive isolation between R. boycei and R. ramosae for a comprehensive view of speciation in the suavis group. This and previous studies examining reproductive isolation between species pairs in the suavis group have been useful for understanding of the evolutionary history of a group of recently diverged flies. We would like to stress the value of documenting behavioral patterns as a valuable trait for phylogenetic reconstruction where previous conventional molecular studies (Frey et al., 2013; Rull et al., 2013) had failed to 82 separate three closely related species. In general gathering data of diverse nature (e.g. behavioral, genetic, ecological, and morphological) provides a more comprehensive picture than merely constructing gene trees. Future studies including further molecular scrutiny of flies and associated symbionts and other species pairs evaluations of reproductive isolation involving R. boycei and other walnut infesting species of Rhagoletis will allow empiric testing of several hypotheses regarding differentiation of phytophagous insects, a welcome addition to the understanding of speciation largely based on experiments on a handful of easy to rear species. AKNOWLEDGEMENTS We are grateful to Emilio Acosta for assistance in fruit collections. This work was partly funded by the Mexican Campaña Nacional Contra Moscas de la Fruta (Secretaría de Agricultura, Ganadería, Desarrollo Rural y Pesca-Instituto Interamericano de Cooperación para la Agricultura (to M.A.), Consejo Nacional de Ciencia y Tecnologia (CONACyT) special grant 1100/596/04 C-837-04 (to J.R.), and CONACyT CB 200525889-50008Q (to J.R.). 83 References Arnqvist G, Edvardsson M, Friberg U, Nilsson T. 2000. Sexual conflict promotes speciation in insects. Proceedings of the National Academy of Sciences of the United States of America 97(19):10460–10464. Barton NH, Charlesworth B. 1984. Genetic revolutions, founder effects, and speciation. Annual Reviews Ecology systematics 15:133-164 Bateson W. 1909. Heredity and variation in modern lights. Pp. 85-101. In Darwin and Modern Science. Cambridge University Press, Cambridge. Berlocher S. Feder JL. 2002. Sympatric speciation in phytophagous insectcs: moving beyond controversy? Annual Review of Entomology 47:773-815. Berlocher SH. 2000. Radiation and divergence in the Rhagoletis pomonella species group: inferences from allozymes. Evolution 54: 543–557. Boller E, Prokopy R. 1976. The biology and management of Rhagoletis. Annual Review of Entomology 112:289-303. Bush GL, Smith JJ. 1997. The sympatric origin of phytophagous insects. Pp. 3-19. In K. Dettner And W. Völkl (eds.) Vertical food wed interactions: Evolutionary patterns and driving forces. Springer-Verlag, Heidelberg. Bush GL, Smith JJ. 1998. The genetics and ecology of sympatric speciation: a case study. Researches on Population Ecology 40: 175–187. Bush GL. 1966. The taxonomy, cytology, and evolution of the genus Rhagoletis in North America (Diptera: Tephritidae). Bulletin of the Museum of Comparative Zoology 134:431–562. Bush GL. 1968. Sympatric host race formation and speciation in frugivorus flies of the genus Rhagoletis (Diptera, Tephritidae). Evolution 23:237-251. Bush GL. 1975. Modes of animal speciation. Annual Review of Ecology, Evolution, and Systematics 6:339-364. Carbajal-Rodriguez A, Rolan-Alvarez E. 2006. JMATING: a software for the analalysis of the sexual selection and sexual isolation effects from mating frequency data. BMC Evolutionary Biology 6:40. 84 Cattani MV, Presgraves DC. 2009. Genetics and lineage-specific evolution of lethal hybrid incompatibility between Drosophila mauritiana and Its sibling species. The Genetics Society of America 181:1545-1555. Cocroft RB, Rodríguez RL, Hunt RE. 2010. Host shifts and signal divergence: mating signals covary with host use in a complex of specialized plant-feeding insects. Biological Journal of Linnean Society 99:60-72. Coyne JA, Orr HA. 1997. “Patterns of speciation in Drosophila” revisited. Evolution 51:295-303. Coyne JA, Orr HA. 2004. Speciation. Sinauer Associates, Inc., Sunderland, MA. Dobzhansky TH. 1937. Genetics and the Origin of Species. Columbia University Press, New York. Dobzhansky TH., 1936. Genetic nature of species differences. The American Naturalist 71:404-420. Domínguez-Domínguez O, Vila M, Pérez-Rodriguez R, Remón N, Doadrio I. 2011. Complex evolutionary history of the Mexican stoneroller Campostoma ornatum Girard,1856 (Actinopterygii: Cyprinidae). BMC Evolutionary Biology 11: 153– 173. Feder JL, Berlocher SH, Roethele JB, Dambroski H, Smith JJ, Perry WL. 2003. Allopatric genetic origins for sympatric host-plant shifts and race formation in Rhagoletis. Proceedings of the National Academy of Sciences of the United States of America 100:1034-1039. Feder JL, Xie X, Rull J, Velez S, Forbes A, Leung B, Dambroski H, Filchak KE, Aluja M. 2005. Mayr, Dobzhansky, and Bush and the complexities of sympatric speciation in Rhagoletis. Proceedings of the National Academy of Sciences of the United States of America 102:6573-6580. Fierts JL, Hansen T. 2009. Genetic architecture and postzygotic reproductive isolation:Evolution of Bateson-Dobzhansky-Muller incompatibilities in a polygenic model. Evolution 64:675-693. Foote HR. 1981. The genus Rhagoletis loew south of the United States (Diptera: tephritidae). United States Department of Agriculture, Technical Bulletin Number 1607. 75p. 85 Funk DJ, Nosil P, Etges WJ. 2006. Ecological divergence exhibits consistently positive associations with reproductive isolation across disparate taxa. Proceedings of the National Academy of Sciences of the United States of America 103:3209– 3213. Frey JE, Guillén L, Frey B, Samietz J, Rull J, Aluja M. 2013. Developing diagnostic SNP panels for the identification of true fruit flies (Diptera: Tephritidae) within the limits of COI-based species delimitation. BMC Evolutionary Biology 13: 106. Hernández-Ortiz V. 1985. Descripción de una nueva especie Mexicana del Género Rhagoletis Loew (Diptera: Tephritidae). Folia Entomológica Mexicana 64:73-79. Hewitt GM. 2004. Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of London. Series B Biological Sciences 359:183-195. Hoskin CJ, Higgie M, McDonald KR Moritz C. 2005. Reinforcement drives rapid allopatric speciation. Nature 437: 1353-1356. Howden HF. 1963. Speculations on some beetles, barriers and climates during the Pleistocene and pre-Pleistocene periods in some nonglaciated portions of North America. Systematic Zoology 12:178-201. Howden HF. 1969. Effects of the pleistocene on north American insects. Annual Reviews. Entomology 14:39-56. Jennings J, Mazzi D, Ritchie M, Hoikkala A. 2011. Sexual and postmating reproductive isolation between allopatric Drosophila montana populations suggest speciation potential. BMC Evolutionary Biology 11:1471-2148. Kaneshiro K. 1976. Ethological isolation an phylogeny in the plan tibia subgroup of Hawaiian Drosophila. Evolution 30:740-45. Kaneshiro K. 1983. Sexual selection and direction of evolution in the biosystematics of Hawaiin Drosophilidae. Ann. Rev. Entomol. 28:161-178. Knowles LL. 2001. Did the Pleistocene glaciations promote divergence? Tests of explicit refugial models in montane grasshoppers. Molecular Ecology 10:691701. Martin PS, Harrell BE. 1957. The Pleistocene history of tempo rate biotas in Mexico and eastern United States. Ecology 38:468-80. Mayr, E. 1963. Animal Species and Evolution. Cambridge, Mass: Harvard Univ. Press 86 McKinnon JS, Mori S, Blackman BK, David L, Kingsley DM, Jamieson L. 2004. Evidence for ecology’s role in speciation. Nature 429: 294–298. Michel AP, Rull J, Aluja M, Feder JL. 2007. The genetic structure of hawthorn-infesting Rhagoletis for sympatric host race formation. Molecular Ecology 16:2867-2878. Muller H.J. 1942. Isolating mechanisms, evolution, and temperature. Biol. Symp. 6:71– 125. Nosil P, Crespi BJ, Sandoval C. 2002. Host-plant adaptation drives the parallel evolution of reproductive isolation. Nature 417:441–443. Nosil P, Crespi BJ, Sandoval CP. 2003. Reproductive isolation driven by the combined effects of ecological adaptation and reinforcement. Procceding of the Royal Society B: Biological Sciences 270:1911-1918. Orr HA., Turrelli M. 2001. The evolution of postzygotic isolation: Accumulating Dobzhansky-Muller incompatibilities. Evolution 55:1085-1094. Pérez‐Figueroa A, Caballero A, Rolán‐Alvarez E. 2005. Comparing the estimation properties of different statistics for measuring sexual isolation from mating frequencies. Biological Journal of the Linnean Society 85: 307-318. Pérez P, Calcagno J, Lovrich G. 2011. Absence of a prezygotic behavioural barrier to gene flow between the two sympatric morphs of the squat lobster Munida gregaria (Fabricius, 1793) (Decapoda: Anomura: Galatheidae). Helgoland Marine Research 65:513-523. Prokopy R, Papaj DR. 2000. Behavior of flies of the genera Rhagoletis, Zonosemata, and Carpomya (Trypetinae: Carpomyina). En: Fluit Flies (Tephritidae); Phylogeny and Evolution of Behavior. CRC Press, Boca Raton, Florida. Pp 219252. Provan J, Bennett KD. 2008. Phylogeographic insights into cryptic glacial refugia. Trends in Ecology & Evolution 23:564–571. Ritchie M. 2007. Sexual Selection and Speciation. Annual Review of Ecology, Evolution, and Systematics 38:79–102. Ross HH. 1953. On the origin and composition of the nearctic insect fauna. Evolution 7:145-58. 87 Rull J, Aluja M, Feder JL, Berlocher SH. 2006. The distribution and host range of hawthorn-infesting Rhagoletis (Diptera: Tephritidae) in Mexico. Annals of the Entomological Society of America 99: 662–672. Rull J, Aluja M, Feder JL. 2010. Evolution of intrinsic reproductive isolation among four North American populations of Rhagoletis pomonella (Diptera: Tephritidae). Biological Journal of the Linnean Society 100:213-223. Rull J, Aluja M, Feder JL. 2011. Distribution and Basic Biology of Black CherryInfesting Rhagoletis (Diptera: Tephritidae) in México. Annals of the Entomological Society of America 104: 202-211. Rull J, Tadeo E, Aluja M, Guillen L, Egan SP, Feder JL. 2012. Hybridization and sequential components of reproductive isolation between parapatric walnutinfesting sister species Rhagoletis complete and Rhagoletis zoqui. Biological Journal of the Linnean Society 107:886–898. Rull J, Aluja M, Tadeo E, Guillen L, Egan S, Glover M, Feder JL. 2013. Distribution, host plant affiliation, phenology, and phylogeny of walnut-infesting Rhagoletis flies (Diptera: Tephritidae) in Mexico. Biological Journal of the Linnean Society 110:765–779. Rundle HD, Nosil P. 2005. Ecological speciation. Ecology letters 8:336-352. Salomon M. 2001. Evolutionary biogeography and speciation: essay on a synthesis. Journal of Biogeography 28:13-27. Schluter D. 2001. Ecology and the origin of species. Trends in ecology & evolution 16:372-380. Schluter D. 2001. Ecology and the origin of species. TRENDS in ecology & Evolution 16:372-380. Shepard DB, Burbrink FT. 2009. Phylogeographic and demographic effects of Pleistocene climatic fluctuations in a montane salamander, Plethodon fourchensis. Molecular Ecology 18: 2243-2262. Smith JJ, Bush GL. 2000. Phylogeny of the subtribe Carpomyina (Trypetinae), emphasizing relationships of the genus Rhagoletis. In: Aluja M, Norrbom AL, eds. Fruit flies (Tephritidae) phylogeny and evolution of behavior. Boca Raton, FL: CRC Press, 187–217. 88 Solis DE, Morris AB, McLachlan JS, Manos PS, Soltis PS. 2006. Comparative phylogeography of unglaciated eastern North America. Molecular Ecology 15:4261–4293. Sweigart AL, Fishman L, Willis JH. 2006. A simple genetic incompatibility causes hybrid male sterility in minulus. The Genetics Society of America 172:24652479. Tadeo E, Aluja M, Rull J. 2013. Alternative mating tactics as potential prezygotic barriers to gene flow between two sister species of frugivorous fuit flies. Journal of Insec Behavior 26:708-720. Via S. 2009. National selection in action during speciation. Proceedings of the National Academy of Sciences of the United States of America 106:9939-9946. Xie X, Michel A, Schwarz D, Rull J, Velez S, Forbes A, Aluja M, Feder JL. 2008. Radiation and divergence in the Rhagoletis pomonella species grupo: inferences from DNA sequence data. Journal of Evolutionary Biology 21:900-913. Xie X, Rull J. Velez S, Forbes A, Michel A, Lobo N, Aluja M, Feder JL. 2007. The bio and phylogeography of hawthorn-infesting Rhagoletis flies in Mexico and speciation mode plurality. Evolution 61:1091-1105. 89 FIGURE LEGENDS Fig.1. Post diapause adult emergence (male and female) per day for pupae recovered from Juglans hirsuta in Nuevo Léon during September (R. completa) and Juglans major in Guerrero (R. ramosae) between late September and early October. Fig. 2. Mean (± SE) number of copulations per replicate per male-female mating combination in a1.08x1.08x1.78m cage with 20 sexually mature R. completa (c) and R. ramosae (r) couples. Bars with different letters represent significant differences (α=0.05). Fig. 3. Average individual frequency of copulations per replicate for males and females of R. completa and R. ramosae during prezygotic isolation tests in large enclosures. Fig. 4. Mean (± SE) number of copulations per mating location (fruit- white bars/ meshblack bars) for different male x female, R. completa (c) x R. ramosae (r) mating combinations Bars with different letters represent significant differences (α=0.05). Fig. 5. Mean (±SE) number of single and shared fruit guarding events per replicate for R. completa (c) and R. ramosae (r) males Bars with different letters represent significant differences (ANOVA: p<0.05). Wing displays during guarding by R. completa (lifted wings, top picture), R. ramosae (alert, folded wings, middle picture), shared guarding by two males (no aggression, bottom picture). Fig. 6. Mean (±SE) number of male/males remaining on fruit after contests per replicate according to status (resident/invader) and species (R. completa = c / R. ramosae = r) Bars with different letters represent significant differences (α=0.05). Picture son the left of figure depict postures during contests. R. ramosae males extended wings during boxing (top picture) while R. completa males kept their wings folded (bottom picture). 90 Fig. 7. Mean (±SE) percent egg hatch for different male-female R. completa (c) x R. ramosae (r) mating combinations. Bars with different letters represent significant differences (ANOVA: p<0.05). 91 FIGURES Figure 1 Figure 2 92 Figure 3 Figure 4 93 Figure 5 Figure 6 94 Figure 7 95 VI. DISCUSIÓN GENERAL Considerando los resultados más relevantes de los tres estudios donde se comparó el nivel de aislamiento reproductivo entre R. completa, R. zoqui, R. ramosae, destacan los siguientes aspectos: Aislamiento precigótico. Aislamiento temporal (fenología de hospedero) En primer lugar destaca que R. completa, R. zoqui y R. ramosae infestan especies y/o variedades distintas de Juglans (Rull et al., 2013). Estos hospederos presentan variaciones en sus periodos de fructificación como resultado de procesos adaptativos en ambientes distintos (Via, 2009; Cocroft et al., 2010). Las asincronias en el periodo de fructificación, causan un desfase en cascada en el periodo de emergencia de los adultos de las distintas especies de moscas del grupo suavis que las infestan. La sincronización en la emergencia de adultos durante los periodos de fructificación de sus hospederos está determinada genéticamente y resulta fundamental para los insectos altamente especializados como es el caso de los miembros del genero Rhagoletis (Feder et al., 1997; Prokopy y Papaj, 2000), pues la disponibilidad de frutos es un aspecto crucial para asegurar la supervivencia de su progenie (Feder et al., 1997). En este estudio encontramos evidencia de un proceso de aislamiento reproductivo temporal como resultado de diferencias en los periodos de fructificación de las distintas especies de Juglans distribuidas en México que causa desfases en la ocurrencia de adultos (contados a partir del inicio y fin de la emergencia de adultos post-dipapausa) de entre dos a cuatros semanas en el caso de R. completa y R. zoqui y entre esta última y los adultos de R. ramosae. Este desfase en la emergencia de 96 adultos evita o reduce la probabilidad de encuentro entre adultos de R. ramosae con los adultos de las otras dos especies en un mismo periodo de tiempo en zonas de contacto. Lo cual de acuerdo con Nosil (2003) y Cocroft et al. (2010) las diferencias entre hospederos pueden causar aislamiento reproductivo y para el caso de los miembros del genero Rhagoletis se ha demostrado que diferencias en la fenología de fructificación favorecen la divergencia y formación de nuevas especies y razas (Xie et al., 2008). Como ejemplo de ello figuran las especies divergentes de R. pomonella asociadas a la manzana y tejocote en los Estados Unidos, las cuales presentan un desplazamiento de dos a tres semanas entre los periodos de fructificación de sus plantas de acogida Crataegus y Malus (Drés y Mallet, 2002; Feder et al., 1997; 2003). En el caso de las moscas del grupo suavis presentes en México ó por lo menos entre R. zoqui y R. ramosae este desplazamiento en los periodos de fructificación de las especies de Juglans resulto en un factor que dificultó los estudios en laboratorio, en la naturaleza parece ser un factor relevante para evitar el flujo de genes entre estas dos especies en zonas de contacto. Cópulas Otro resultado relevante es la existencia de cierto nivel de aislamiento sexual entre especies. Este aspecto de acuerdo con el modelo de aislamiento sexual asimétrico de Kaneshiro (1976; 1983), establece que cuando entre dos especies estrechamente relacionadas las hembras de una de ellas aceptan los cortejos de los machos de ambas especies, pero las hembras de la segunda especie exhiben una fuerte discriminación por los machos de la primera y prefieren aparearse con los machos de su misma especie se presenta este tipo de aislamiento. Nosotros 97 encontramos distintos grados de aislamiento sexual entre R. completa, R. zoqui y R. ramosae al comparar las frecuencias de cópula de las distintas combinaciones machohembra posibles. En el caso de la primera comparación que comprendió a R. completa con R. zoqui el aislamiento se manifestó con una mayor frecuencia de cópula de la combinación homotípica de R. completa y heterópica de machos de R. completa con hembras de R. zoqui, las cuales ocurrieron con mayor frecuencia que las combinación homotípica de R. zoqui y heterópica de machos de R. zoqui con hembras de R. completa. En la segunda comparación, que comprendió a R. zoqui con R. ramosae, el aislamiento se manifestó por la discriminación que mostraron las hembras de R. zoqui en contra de los machos de R. ramosae, prefiriendo aparearse con los machos de su misma especie y discriminando a los machos de R. ramosae casi por completo, en tanto que las hembras de R. ramosae se aparearon con los machos de ambas especies sin mostrar ninguna discriminación por los machos de alguna de ellas. Por último en la tercera comparación que comprendió a R. completa con R. ramosae el aislamiento se manifestó por una menor frecuencia de cópula de los machos de R. ramosae con las hembras de ambas especies, en tanto que los machos de R. completa copularon indistintamente con las hembras de ambas especies. Los diferentes tipos de discriminación de pareja encontrados durante la observación de pares de especies muestran como el aislamiento sexual puede evolucionar en distintas formas, pero además se traduce en diversos niveles de aislamiento sexual que puede estimarse mediante el uso de índices de aislamiento reproductivo “Ipsi” (Calvajal-Rodriguez y Rolan-Alvarez, 2006). De esta forma al comparar R. completa con R. zoqui se obtuvo un Ipsi=0, es decir que no presentan aislamiento sexual, lo cual concuerda con los recientes hallazgos que reportan la presencia de una zona hibrida en el noreste de 98 México donde coocurren y se hibridan estas dos especies en forma natural (Rull et al., 2013). El hecho de que hayamos encontrado diferencias en las frecuencias de cópula entre especies, puede usarse para inferir la historia de la evolución de barreras precigóticas como resultado de periodos de contacto secundario que podrían evolucionar rápidamente como un refuerzo para evitar el flujo de genes (Dobzhansky, 1970). En lo que respecta a la segunda comparación que comprendió a R. zoqui y R. ramosae se obtuvo un Ipsi=0.34, lo cual muestra ya la evolución de del aislamiento reproductivo como mecanismo para evitar el flujo de genes entre dos poblaciones vecinas geográficamente aisladas en el centro de México (R. zoqui se distribuye del centro hacia el golfo de México y R. ramosae del centro hacia el océano pacífico). Por ultimo para la comparación entre R. completa y R. ramosae se obtuvo un de Ipsi=0.53, lo cual concuerda con la hipótesis que postula que durante el evento fundador que acompaña a la especiación alopátrica las poblaciones más lejanas tienden a desarrollar mayor diferenciación e incompatibilidad que las poblaciones más cercanas como resultado de una interrupción en el flujo de genes (Mayr, 1942; Kaneshiro, 1983; Futuyma, 1989; Badii et al., 2007). Comportamiento Este aspecto es quizás el más conspicuo puesto que evidencia claras diferencias en el comportamiento sexual de los machos. De acuerdo con la teoría de la selección sexual cualquier cambio morfológico o conductual que proporciona a los machos una ventaja sobre otros machos para incrementar su probabilidad de apareamiento estará sujeto a un proceso de selección sexual y será seleccionado para la población que lo exhibe (Kaneshiro, 1983; Ritchie, 2007; Jennings, et al., 2011; Pérez-Barros et al., 99 2011). En nuestro estudio encontramos una clara evidencia de un proceso de selección sexual entre los machos de R. completa, los cuales mostraron el uso de sitios alternativos de apareamiento y una mayor agresividad en contra de machos de R. zoqui y R. ramosae durante la defensa del recurso y en los combates. Esta agresividad, junto con el uso de sitios alternativos, parecen haber sido los factores clave que permitieron a los machos de R. completa incrementar su frecuencia de cópula con las hembras de R. zoqui y R. ramosae. Otros comportamientos importantes a pesar de que no se encontró evidencia de un efecto en la discriminación de pareja fueron las marcadas diferencias en los despliegues mostrados por los machos de R. ramosae durante el resguardo de fruto y combates. El hecho de haber encontrado estas notorias diferencias en el comportamiento de los machos resulta interesante ya que se ha demostrado que el comportamiento puede analizarse para establecer la dirección de la evolución (Kaneshiro, 1976). En nuestro caso, este análisis nos aportó elementos para hipotetizar sobre la probabilidad de dos líneas evolutivas para moscas del grupo suavis en México. La primera de estas líneas pudo haberse desarrollado a lo largo de la Sierra Madre Oriental donde R. completa y R. zoqui presentan comportamientos muy similares, en tanto que la segunda línea pudo ocurrir a lo lago de la Sierra madre Occidental donde R. ramosae, R. juglandis y R. boycei, parecen presentar comportamientos muy similares. Esta hipótesis aun cuando parece aventurada ha sido planteada con anterioridad por los trabajos de Rull et al., (2013) al considerar una serie de aspectos ecológicos y genéticos. Además como lo discute Kaneshiro (1976), nuestros resultados muestran que el estudio del comportamiento es una pieza importante al abordar 100 estudios de corte evolutivo ya que pueden ser pieza clave para mostrar la dirección de la evolución. Aislamiento postcigótico. Viabilidad de huevos En el caso del análisis sobre la evolución del aislamiento postcigótico entre R. completa, R. zoqui y R. ramosae, la evidencia encontrada fortalece los resultados obtenidos durante el análisis sobre aislamiento precigótico, apoyando el hecho de la evolución de un mayor grado de aislamiento entre las poblaciones de R. completa y R. ramosae. Es decir, las especies con mayor aislamiento geográfico cuyas poblaciones por efecto de la interrupción en el flujo de genes y la presión por selección natural en ambientes divergentes (Koevoets y Beukeboom, 2008; Jennings et al., 2011) han evolucionado diferencias genéticas que se traducen en una reducción en la aptitud hibrida de la progenie resultante de las cruzas heterotípicas (Baton y Charlesworth, 1984; Orr y Turreli, 2001; Sweigart et al., 2006; Fierts y Hansen, 2009; Cattani y Presgraves, 2009). 101 VII. CONCLUSIONES En relación a la hipótesis aquí planteada que postula que las especies mexicanas del grupo suavis, R. completa, R. zoqui y R. ramosae se encuentran en un proceso de diferenciación incompleto debido a la existencia de barreras reproductivas con distinto grado evolutivo que no interrumpen por completo el flujo génico entre especies, podemos concluir lo siguiente: 1. Se acepta la hipótesis de una diferenciación incompleta entre R. completa, R. zoqui y R. ramosae, las cuales presentan distintos grados de aislamiento reproductivo parcial entre especies. 2. Los distintos niveles de aislamiento reproductivo encontrados entre R. completa, R. zoqui y R. ramosae, evidencian la evolución de barreras reproductivas como consecuencia de la interrupción génica y la presión por selección natural en ambientes divergentes. 3. Aun cuando no se encontró evidencia de barreras reproductivas absolutas capaces de evitar el flujo de genes entre especies. Lo cierto es que nuestros resultados aportan evidencia sobre la evolución de barreras pre y postcigóticas que podrían reforzarse en zonas de contacto para mantener la integridad genética de R. completa, R. zoqui y R. ramosae, lo cual representa una excelente oportunidad para estudiar aspectos evolutivos y de aislamiento reproductivo en un escenario natural. 4. Los resultados aquí obtenidos confirman la importancia que representa la inclusión del comportamiento dentro de los estudios de corte evolutivo ya que la 102 información que originan resulta una herramienta importante para discernir entre líneas de divergencia evolutiva entre especies. 5. Aun cuando nuestros resultados aportan valiosa información para el esclarecimiento del nivel de divergencia y posible camino evolutivo de las moscas del grupo suavis en México, creemos que es necesario incluir en futuros estudios a R. juglandis y R. boycei, especies también reportadas para México pero cuya información actual es desconocida, así como también a las dos nuevas especies asociadas al nogal recientemente descubiertas por Rull y colaboradores en el sur del estado de Veracruz y Chiapas. La inclusión de estas especies en futuras investigaciones serácrucial para esclarecer procesos evolutivos que dieron origen a las moscas del grupo suavis en México y Estados Unidos y quizás aportar valiosa información para resolver el origen de los otros grupos en el género Rhagoletis también refugiados en México durante el Pleistoceno. 103 MODELO TEÓRICO Modelo teórico de las posibles líneas evolutivas seguidas por las moscas del grupo suavis en México. Línea azul de doble cara muestra la posible ruta evolutiva de R. completa y R. zoqui, en tanto que la línea gris muestra la posible ruta de R. ramosae y R. boycei. Las imágenes circulares muestran la similitud de los comportamientos mostrados por los machos en cada línea evolutiva. Los signos de interrogación muestran la ubicación de dos nuevas especies recientemente descubiertas en Veracruz y Chiapas. 104 REFERENCIAS Badii M.H, Landeros J, Foroughbakhch R, Abreu J.L. (2007). Biodiversity, evolution, extintion and sustainability. Daena, 2: 290-308. Barton N.H, Charlesworth B. (1984). Genetic revolutions, founder effects, and speciation. Annual Review of Ecology and Systematics, 15:133-164 Carbajal-Rodriguez A, Rolan-Alvarez E. (2006). JMATING: a software for the analysis of the sexual selection and sexual isolation effects from mating frequency data. BMC Evolutionary Biology, 6:40. Cattani M.V, Presgraves D.C. (2009). Genetics and lineage-specific evolution of lethal hybrid incompatibility between Drosophila mauritiana and its sibling species. The Genetics Society of America, 181:1545-1555. Cocroft R.B, Rodríguez R.L, Hunt R.E. (2010). Host shifts and signal divergence: mating signals covary with host use in a complex of specialized plant-feeding insects. Biological Journal of the Linnean Society, 99:60-72. Dobzhansky T. H. (1970). Genetics of the Evolutionary Process. New York: Columbia Univ. Press. 505 p. Drés M, Mallet J. (2002). Host races in plant-feeding insects and their importance in sympatric speciation. Philosophical Transactions of the Royal Society of London B., 357:471-492. Feder J.L, Berlocher S.H, Roethele J.B, Dambroski H, Smith J.J, Perry W.L. (2003). Allopatric genetic origins for sympatric host-plant shifts and race formation in Rhagoletis. Proceedings of the National Academy of Sciences of the United States of America 100: 1034-1039. Feder J, Stolz U, Lewis K. M, Perry W, Roethele J.B, Rogers A. (1997). The effects of winter length on the genetics of apple and hawthorn races of Rhagoletis pomonella (Diptera: Tephritidae). Evolution, 51: 1862-1876. Fierts J.L, Hansen T. (2009). Genetic architecture and postzygotic reproductive isolation:Evolution of Bateson-Dobzhansky-Muller incompatibilities in a polygenic model. Evolution, 64-3:675-693. Futuyma D.J. (1989). Speciation and its Consequences. Eds Otte, D. & Endler, J. Sinauer, Sunderland, Massachusetts, 557-578. 105 Jennings J, Mazzi D, Ritchie M, Hoikkala A. (2011). Sexual and postmating reproductive isolation between allopatric Drosophila montana populations suggest speciation potential. BMC Evolutionary Biology. http://www.biomedcentral.com 11:68/14712148. Jennings J, Mazzi D, Ritchie M, Hoikkala, A. (2011). Sexual and postmating reproductive isolation between allopatric Drosophila montana populations suggest speciation potential. BCM Evolutionary Biology, 11:1186-2148. Kaneshiro K. (1976). Ethological isolation an phylogeny in the plan tibia subgroup of Hawaiian Drosophila. Evolution. 30:740-45. Kaneshiro K. (1983). Sexual selection and direction of evolution in the biosystematics of Hawaiin Drosophilidae. Annual Review of Entomology 28:161-178. Koevoets T, Beukeboom L.W. (2008). Genetics of postzygotic isolation and Haldane's rule in haplodiploids. Heredity advance online publication 4 June 2008; doi: 10.1038/hdy, 2008. 44 Mayr E. (1942). Especiación y macroevolución. Intercienci,. 3:133-142. Nosil P, Crespi BJ, Sandoval C.P. (2003). Reproductive isolation driven by the combined effects of ecological adaptation and reinforcement. Proceedings of the Royal Society B, 270:1911-1918. Orr H.A, Turrelli M. (2001). The evolution of postzygotic isolation: Accumulating Dobzhansky-Muller incompatibilities. Evolution, 55:1085-1094. Pérez-Barros P, Calcagno J, Lovrich G. (2011). Absence of a prezygotic behavioural barrier to gene flow between the two sympatric morphs of the squat lobster Munida gregaria (Fabricius, 1793) (Decapoda: Anomura: Galatheidae). Helgolan Marine Research, 65:513-523. Prokopy R.B, Papaj D.R. (2000). Behavior of flies of the genera Rhagoletis, Zonosemata, and Carpomya (Trypetinae: Carpomyina). En: Fluit Flies (Tephritidae); Phylogeny and Evolution of Behavior. CRC Press, Boca Raton, Florida. Pp 219-252. Ritchie M. (2007). Sexual Selection and Speciation. Annual Reviews Ecology Evolution, and Systematics, 38:79–102. Ritchie M. 2007. Sexual selection and speciation. Annual Reviews Ecology Evolution, and Systematics, 38:79-102. 106 Rull J, Aluja M, Tadeo E, Guillen L, Egan S, Glover M, Feder J.L. (2013). Distribution, host plant affiliation, phenology, and phylogeny of walnut-infesting Rhagoletis flies (Diptera: Tephritidae) in Mexico. Biological Journal of the Linnean Society, 110:765–779. Sweigart A.L, Fishman L, Willis J.H. (2006). A simple genetic incompatibility causes hybrid male sterility in minulus. The Genetics Society of America, 172:24652479. Via S. (2009). National selection in action during speciation. Proceedings of the National Academy of Sciences of the United States of America 106:9939-9946. Xie X, Michel A, Schwarz D, Rull J, Velez S, Forbes A, Aluja M, Feder JL. (2008). Radiation and divergence in the Rhagoletis pomonella species grupo: inferences from DNA sequence data. Journal of Evolutionary Biology 21:900-913. 107